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Abstract. A standardized methodology for the validation of short-term air quality forecast applications was developed in the
framework of FAIRMODE activities. The proposed approach, focusing on specific features to be checked when evaluating a
forecasting application, investigates the model capability to detect sudden changes of pollutants concentrations levels, to
predict threshold exceedances and to reproduce air quality indices. The proposed formulation relies on the definition of
specific forecast Modelling Quality Objective and Performance Criteria, defining the minimum level of quality to be
achieved by a forecasting application when it is used for policy purposes. The persistence model, which uses the most recent
observed value as predicted value, is used as benchmark for the forecast evaluation. The validation protocol has been applied
to several forecasting applications across Europe, using different modelling paradigms and covering a range of geographical
contexts and spatial scales. The method is successful, with room for improvement, in highlighting shortcomings and
strengths of forecasting applications. This provides a useful basis for using short-term air quality forecast as a supporting

tool for correct information to citizens and regulators.

1 Introduction

Air pollution models play a key role in both enhancing the scientific understanding of atmospheric processes and supporting

policy in adopting decisions aimed at reducing human exposure to air pollution. Current European Air Quality Directives
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(AQD), 2008/50/EC (European Union, 2008) and 2004/107/EC (European Union, 2004), and even more the proposal of their
revision (European Union, 2022), encourage the use of models in combination with monitoring in a wide range of
applications. Indeed, models have the advantages of being cheaper than measurements and covering continuously and
simultaneously large areas. Advances in the knowledge of atmospheric processes and the enhancement in computational
technologies fostered the usage of 3-dimensional numerical models, the Chemical Transport Models{STFM), not only for air
quality assessment (retrospective simulation of historical air quality scenarios in support of regulation and planning) but also

for real-time air quality forecasting-(AQF). Indeed, during last decades, air quality forecastingAQF systems based on CTM

Chemical Transport Models have been rapidly developed and they are currently operational in many countries, providing

early air quality warnings that allow policy makers and citizens to take measures in order to reduce human exposure to
unhealthy levels of air pollution. On European scale, a real-time air quality forecasting system (Marécal et al., 2015) is
operational since 2015 in the framework of the Copernicus Atmosphere Monitoring Service (CAMS) and currently includes
eleven numerical air quality models, contributing to the CAMS Regional Ensemble production

(https://regional.atmosphere.copernicus.eu/). Several review papers are available in literature, comprehensively describing

current status and emerging challenges in real-time air quality forecasting (e.g. Kukkonen et al., 2012; Zhang et al., 2012;
Baklanov et al., 2014; Ryan, 2016; Bai et al., 2018; Baklanov and Zhang, 2020; Sokhi et al., 2022), including air quality
forecastingAQF system based on artificial intelligence (AH methods (e.g. Cabaneros et al., 2019; Masood and Ahmad, 2021,
Zhang et al., 2022).

A thorough assessment of model performances is fundamental to build confidence in models’ capabilities and potentials and
becomes imperative when model applications support policymaking. Moreover, performance evaluation is very important
also for research purposes, since investigating models’ strengths and limitations provides essential insights for planning new
model developments.

The main goal of a model evaluation process is to prove that the performances are satisfactory for its intended use, in other
words, that it is “fit for purpose”_(e.g. Hanna and Chang, 2012; Dennis et al., 2010; Baklanov et al., 2014; Olesen, 1996).

Indeed, to be able to determine whether a model application is “fit for purpose”, its purpose should be stated at the outset.
Since air quality models are used to perform various tasks (e.g. assessment, forecasting, planning), depending on the aim
pursued, different evaluation strategies should be put into practice.

Several scientific studies have already proposed different evaluation protocols or suggested recommendations for good
practices (e.g. Seigneur et al., 2000; Chang and Hanna, 2004; Borrego et al., 2008; Dennis et al., 2010; Baklanov et al., 2014;
Emery et al., 2017). Models applied for regulatory air quality assessment are commonly evaluated by statistical analysis,
examining how well they match the observations. From literature review, many statistical measures are used to quantify the
different aspects of the agreement between simulations and observations. Indeed, no single metric is likely to reveal all
aspects of model skills. So, the usage of several metrics, in concert, is generally recommended to support an in-depth
assessment of performances. Zhang et al. (2012) provide an exhaustive collection of the most used metrics,—. The list

includesing both traditional discrete statistical measures (e.g. Emery et al., 2017), quantifying the differences between
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modelled and observed values, and categorical indices (e.g. Kang et al., 2005), describing the capability of the model
application in predicting categorical answers (e.g. exceedances of limit values).

Ideally, a set of performances criteria should be given within a model evaluation exercise, stating if the model application
skills can be considered adequate. As an example, Boylan and Russell (2006) and Chemel et al. (2010) proposed
performance criteria and goals for mean fractional bias (MFB) and mean fractional error (MFE) concerning the validation of
aerosol and ozone modelling applications, respectively. More in details, criteria define the acceptable accuracy level whereas
goals specify the highest expected accuracy. Russell and Dennis (2000), citing Tesche et al. (1990), provided informal
fitness criteria for urban photochemical modelling, according to some commonly used metrics (i.e. normalized bias,
normalized gross error, unpaired peak prediction accuracy). Indeed, these recommendations are based on outcomes of

performances skills from previous model studies. Specifically concerning air quality forecastingAQF, in the framework of

CAMS Regional Ensemble production, performances targets (Key Performance Indicators, KPI) are defined for the root
mean square error (RMSE) in simulating ozone, nitrogen dioxide and aerosol. and-tTheir compliance is regularly reported

within the Quarterly Evaluation and Quality Control Reports (https://atmosphere.copernicus.eu/regional-services).

Concerning both the definition of protocols for model evaluation and the proposal of performances criteria, an important
contribution came in the last decades from the activities and the coordination efforts of the Forum for Air quality Modeling
in Europe (FAIRMODE, https://fairmode.jrc.ec.europa.eu/home/index). FAIRMODE was launched in 2007 as a joint
initiative of the European Environment Agency (EEA) and the European Commission Joint Research Centre. Its primary aim
is to promote the exchange of good practices among air quality modellers and users and foster harmonization in the use of
models by European Member States, with emphasis on model application under the European Air Quality Directives. In this
context, one of the main activities of FAIRMODE has been the development of harmonized protocols for the validation and

the benchmarking of modelling applications;-. These protocols includeirg the definition of common standardized Modelling

Quality Objectives (MQO) and Modelling Performance Criteria (MPC) to be fulfilled in order to ensure a sufficient level of
quality of a given modelling application. More in details, an evaluation protocol was proposed for the evaluation of model
applications for regulatory air quality assessment. The methodology (Thunis et al., 2012b; Pernigotti et al., 2013; Thunis et
al., 2013; Janssen and Thunis, 2022) is based on the comparison of model-observation differences (namely, the root mean
square error) with a quantity proportional to the measurement uncertainty. The rationale is that a model application can be
considered “fit-for-purpose”-acceptable if the model-measurement differences remain within a given proportion of the
measurement uncertainty. The approach—_is consolidated in the DELTA Tool software (Thunis et al. 2012a,
https://agm.jrc.ec.europa.eu//Section/Assessment/Download),—). It has reached a good level of maturity and it has been
widely used and tested by model developers and users (Georgieva et al., 2015; Carnevale et al., 2015; Monteiro et al., 2018;
Kushta et al., 2019). This approach focuses on applications related to air quality assessment, in the context of the AQD
2008/50/EC (European Union 2008), taking into account pollutants and metrics consistently with the AQD requirements.

Recently, FAIRMODE worked on developing and testing additional quality control indicators to be complied when

evaluating a forecast application, extending the approach used for assessment applications. A scientific consensus was
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reached, focusing on the model ability in the specific purpose of accurately predicting sudden changes and peaks in the

pollutant concentration levels. The proposed methodology, based on the usage of the persistence model (e.g. Mittermaier,
2008) as a benchmark, is now publicly available for testing and application.

This paper describes this new standardized approach and is organized as follows. Sect. 2 illustrates the rationale and the
main features of the developed methodology. Sect. 3 describes the setup of the forecasting simulations to which the
methodology was applied, including information on the monitoring data used for the validation. Results are presented in
Sect. 4, focusing on lessons learnt from the application of the proposed approach in different geographical contexts and

spatial scales. Finally, some conclusions are drawn in Sect. 5 together with hints for further developments.

2 Methodology

The validation protocol proposed in this work is specific for forecasting evaluation. It is an extension of the consolidated and

well documented methodology
evaluation-protecel-fostered by FAIRMODE for the evaluation of model applications for regulatory air quality assessment.
Therefore, it is recommended that the metrics suggested when evaluating forecasting applications are applied in addition to
fe#eeasnﬁg—applwanens—tu#u—the standard assessment MQO as defined in Janssen and Thunis (2022)—as—weH-as—the
This section describes #s-the main
features_of the proposed protocol, which focusesmg on some-specific-skills-to-be checked when-evaluating-a forecasting
apphication—namely-the model capability to (1) detect sudden changes of concentrations levels (Sect. 2.1), to-(2) predict
threshold exceedances (Sect. 2.2) and to-(3) reproduce air quality indices (Sect. 2.3). Note that the proposed approach is not

exhaustive. It does not evaluate all relevant features of a forecast application and other analyses will be helpful to gain

further insights into the behaviour, the strengths and the shortcomings of a forecast application.

The methodology, as currently implemented in the DELTA Tool software, supports the following pollutants and time
averages: NO; daily maximum, O3 daily maximum of 8-hour average, PM10 and PM2.5 daily mean.
2.1 Forecast Modelling Quality Objective (MQOs) based on the comparison with the persistence model

Predicting the status of air quality is useful in order to prevent or reduce health impacts from acute episodes and to trigger

short-term action plans. Therefore, it is of main interest to verify the forecast applications ability in getting the purpose of

accurately reproducing sudden changes in the pollutant concentration levels. To account for this, within the proposed

protocol, the main evaluation assessment of the “fitness for purpose” of a forecast application is based on the usage, as a
benchmark, of the persistence model, that is by default not able to capture any changes in the concentration levels, since
measurement data of the previous day are used as an estimate for the full forecast horizon. Indeed, the persistence approach
is the simplest method for predicting the future behaviour, if no other information is available and is often used as a

reference in verifying the performances of weather forecasts (e.g. Knaff and Landsea, 1997; Mittermaier, 2008).
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Within the proposed forecasting evaluation protocol, the root mean square error of the forecast model is compared with the
root mean square error of the persistence model. More in detail, a forecast Modelling Quality Indicator (MQIy) is defined as

the ratio between the two RMSEs, i.e.

1
Nzﬁvﬂ(Mi - Oi)z

1
N2t (P — 0y)?

MQI; = ey
where M;, Pi, O; represent respectively the forecast, the persistence, and the measured values for day i, and N is the number
of days included in the time series.

The persistence model uses the observations from the previous day as an estimate for all forecast days. As an example, we
can consider a 3 day-forecast, providing today (day0), tomorrow (dayl), and the day after tomorrow (day2) concentration
values. If today is 5th February, persistence model uses data referring to yesterday (4th February) for all forecast data
produced today. So, P; refers to O;.; for day0 (5th February), it refers to Oi., for dayl (6th February) and it refers to O;.; for
day?2 (7th February). More generally, the persistence model is related to the forecast horizon (FH =0, 1, 2, etc.) as follows:

Py = 0i_1-pn 2 U(Oj—1_py) (2)
where the measurement uncertainty U is also taken into account, consistently with the FAIRMODE approach. The
methodology for estimating the measurement uncertainty as a function of the concentrations values is described in Janssen

and Thunis (2022), where the parameters for its calculation for PM, NO, and O3 are provided as well. It is important to note

that we use as representative for the measurement uncertainty the 95 percentile highest value among all uncertainty values.

For PM10 and PM2.5 the results of a JRC instrument inter-comparison (Pernigotti et al., 2013) have been used whereas a set

of EU AIRBASE stations available for a series of meteorological years has been used for NO, and analytical relationships

have been used for Os;. These 95" percentile uncertainties only include the instrumental error. MoreSeme details are

provided in Appendix A.

The Ffulfilment of the forecast Modelling Quality Objective (MQOx)_is proposed implies-thatas a necessary but not sufficient
quality test minimum-tevel-of-quality-for-pelicy-purpeses—isto be achieved by the forecasting application. The MQOy is

fulfilled when MQI; is less than or equal to 1, indicating that the forecast model performs better (within the measurement

uncertainty) than the persistence one, with respect to its capability of detecting sudden changes of concentrations levels.

Within the proposed protocol, two aspects are included in a single metric (MQI; ): (1) check how well the model prediction

compares with measurements and (2) check whether the model prediction performs better than a given benchmark (here the

persistence model).

The magnitude of the MQI; score, since it is referenced to a benchmark, is dependent on the skill of the benchmark itself.

To account for this, Aadditional Modelling Performance Indicators (MPIs) are defined-proposed as part of the evaluation

protocol, based on the mean fractional error (MFE), a normalized statistical indicator widely used in literature, defined as

follows:
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Based on this indicator, two different MPIs are defined and both included within the protocol: 1) MPl,= MFE¢/MFE, that
compares the forecast model performances with the persistence model ones; 2) MPl,= MFE;/MFy that evaluates forecast
performances regardless of persistence aspects, using an acceptability threshold based on measurement uncertainty, where
MFy is the Mean Fractional Uncertainty, defined as follows:

10 20(0)

T Ns 0;
i=1

MF,

C))

Using the uncertainty parameters provided in Table Al in Appendix A, it turns out that 2U(0;)/0; shows larger values in
the low concentration range and then tends towards a constant (0.5 for NO2, 0.3 for Os, 0.55 for PM10, 0.6 for PM2.5) at
higher concentration values (Fig. AL, in Appendix A). So, the choice of MFy as the acceptability threshold is consistent with
performances criteria and goals defined in literature for PM (Boylan and Russell, 2006) and O3 (Chemel et al., 2010) and it
has the advantage that it does not introduce any additional free parameters and it can be applied to all pollutants for which
uncertainty parameters are set. For both MPIs, Modelling Performance Criteria (MPC) are definedproposed, being fulfilled

when MPIs are less or equal to 1.

2.2 Assessment of modelling application capability in predicting Threshold Exceedances

When a forecasting system is used for policy purposes, it is of main interest to verify the skill in predicting categorical
answers (yes/no) in relation to exceedances of specific threshold levels, e.g. the limit values set by the current European
legislation (European Union, 2008).

To account for this, the most commonly used threshold indicators (as defined in Table 1) are included in the proposed
validation approach, based on the 2x2 contingency table (Table B1, in Appendix B) representing the joint distribution of
categorical events (below/above the threshold value) predicted by the model and observed by the measurements. Namely,
GA- represents the number of correctly forecasted exceedances, GA. represents the number of correctly forecasted non-
exceedances, FA (False Alarms) represents the number of forecasted exceedances that were not observed, and MA (Missed
Alarms) represents the number of observed exceedances that were not forecasted.

All metrics included are listed in Table 1, ranging from 0 to 1, being 1 the optimal value.

Table 1. Categorical metrics included in the validation protocol.

Metrics Mathematical Expression

GA, + GA_
FA+ GA, + GA_ + MA

Accuracy ACC =
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GA,

. SR=————
Success Ratio FA+ GA,
pp = G4+
Probability of Detection T GA, + MA
FA+GA,
. FB=———
FBias score GA, + MA
GA,
TS =———7F7———
Threat score FA+ GA, + MA
GSS = GA, —
" FA+GA,+MA-H
Gilbert Skill score
_ (GA, + MA)(FA + GA,)
with H =

FA+ GA, +GA_+ MA

2.3 Assessment of modelling application capability in predicting Air Quality Indices

One of the main objectives of a forecasting system is to provide citizens with simple information about local air quality and
its potential impact on their health, with special regard to the sensitive and vulnerable groups (i.e., the very young or old,
asthmatics, etc.). Air Quality Indices (AQI) are designed to provide information on the potential effects of the different
pollutants on people’s health by means of a classification of concentrations values in terms of qualitative categories.

The AQI outcome is commonly provided by operational forecasting systems, therefore its assessment has been included in
the proposed validation approach, by means of a simple multiple thresholds assessment. More in detail, the number of days
predicted by the forecast model in each category is compared with the corresponding number of measured days.

Of course, the performance assessment depends on the chosen classification table. In the current approach, several AQI

tables are available, namely EEA (https://www.eea.europa.eu/themes/air/air-quality-index/index), United Kingdom

(https://uk-air.defra.gov.uk/air-pollution/dagi; https://uk-air.defra.gov.uk/air-pollution/dagi?view=more-info), and USEPA

(U.S. Environmental Protection Agency, https://www.airnow.gov/aqgi/aqi-basics/, Eder et al. 2010) classification tables.

3 Forecasting applications: models, setup and monitoring data for validation

The proposed methodology was applied across Europe to evaluate the performances of several forecasting applications. This
paper focuses on lessons learnt by the validation of five forecasting applications, based on various methods (both in terms of

chemical transport models and statistical approaches) and covering different geographical contexts and spatial scales, from
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very local to European scale. The key features of the forecast applications are summarized in Table 2. Some more details are

205 provided for each of them in the following, along with information on the monitoring data used for the validation.



Table 2. Main features of the forecast applications.

Forecast . . . Horizontal Data
- Modelling Modelling Time IZ. _ Boundary .
application  Operated by . Domain & Meteo Emissions . Assimil
System approach Period . Conditions .
Acronym Resolution ation
Dispersion E
Chemical car-long (25°\l/1\;0;.)58°E CAMS
FA1 ENEA MINNI Simulation ' IFS REG C-IFS NO
Transport (2018) 30°N-72°N) (5.1)
Model Resolution: 0.1° '
GOCART for
Dispersion Year-lon Portugal dust, LMDz-
WRF- Chemical . . g (10.3°W-5.7°W, NCEP/ EMEP/ INCA for
FA2 CESAM Simulation NO
CHIMERE Transport (2021) 36.4°N-42.6°N) GFS CEIP gaseous and
Model Resolution: 0.05° other aerosol
species
Year-long Ireland
Neural . . (10.5°W-5.9°W, Not .
VITO OPA lat ECMWEF Not applicabl NO
FA3 Q Networks SII’(T]ZLIOSZI)OH 51.4°N-55.4°N) applicable ot applicable
Resolution: 3 km
Prepair PREPAIR
Dispersion domain 1SPRA.
Chemical ~ 10N0 5 ocer 16.75° EMEP/
FA4 ARPAE NINFA Simulation . onn COSMO kAIROS NO
Transport (2021) 43.1°N-47.35°N) CEIP,
Model Resolution: 0.07° PREPAIR
x 0.05°
Variable spatial
grid-size covering
. . July 2020 - Kosovo
Dispersion Kosovo . CAMS
ATMOTERM  CALPUFF September WRF emission YES
FAS Model P (1 km/0.5km) emisst ENSEMBLE
2022 Pristine inventory

(200m/50m)
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3.1 MINNI simulation over Europe (FAL)

The first forecast application (FA1) was operated by ENEA applying the MINNI Atmospheric Modelling System (Mircea et
al., 2014; D’Elia et al., 2021) on a European domain at 0.1° horizontal spatial resolution. FAL is aA year-long simulation,

referring to 2018

MINNI, which is operationally providing air quality predictions over an Italian domain since 2017 (Adani et al., 2020,

2022), was recently added to the ensemble of the eleven models contributing to the CAMS Regional Ensemble production.

As-FAL was carried out during a preliminary benchmark phase, planned-forevaluating-moedelperformances-and-for-setting-
up-the-operational-chain-Hwas-carried-eut-using CAMS input and setup, but it is not an official CAMS product.

Since no data assimilation was applied within FAL, all available data measured at European background monitoring stations
and collected by EEA (Ela at https://discomap.eea.europa.eu/map/fme/AirQualityExport.htm) were considered for the

validation.

3.2 WRF-CHIMERE simulation over Portugal (FA2)

In Portugal, an air quality modelling system based on the WRF version 3 (Skamarock et al., 2008) and the CHIMERE
chemical transport model v2016al (Menut et al., 2013; Mailler et al., 2017) is being used for forecasting purposes at daily
basis since 2007 (Monteiro et al., 2005, 2007a, b). The modelling setup comprises three nested domains covering part of the
North Africa and Europe, with horizontal resolutions of 125x125 km?, 25%25 km? and 5x5 km? for the innermost domain

covering Portugal. At the boundaries of the outermost domain, the outputs from LMDz-INCA (Szopa et al., 2009) are used
for all gaseous and aerosol species, and dust from the GOCART model (Ginoux et al., 2001). For-the-nested-domains,-the

human activities emissions (traffic, industries and agriculture, among others) are derived based on data from the annual
EMEP/CEIP emission database (available at https://www.ceip.at/webdab-emission-database/), following a procedure of
spatial and temporal downscaling. Biogenic emissions are computed online using the MEGAN model (Guenther et al.,

2006), while dust emission fluxes are calculated using the dust production model proposed by Alfaro and Gomes (2001).
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Data from the Air Quality National Monitoring network (https://qualar.apambiente.pt) is used every year to assess the

performance of this forecasting modelling system, usually evaluated at annual basis. This comprehends a group of more than
40 background monitoring stations, classified as urban, suburban and rural environment, according to the classification

settled by European legislation.

3.3 OPAQ simulation over Ireland (FA3)

The OPAQ (Hooyberghs et al., 2005; Agarwal et al., 2020) statistical forecast system has been configured and applied to
forecast pollution levels in Ireland by the Irish EPA and VITO. During the configuration stage neural networks are trained at
station level with historical observations, ECMWF-ERAS5 reanalysis meteorological data and the CAMS air quality

forecasts.

forecasts at station level are interpolated to forecast maps for the whole country using the detrended kriging model RIO

(Janssen et al., 2008; Rahman et al., 2023) which is part of the OPAQ system. Fhe-interpolation-model-has-been-configured

In this study, we present the historical validation results of a feed-forward neural network model that uses 2-metre

temperature, vertical and horizontal wind velocity component, CAMS PM10 forecasts, and PM10 observations. More than
two years of data are used to configure the OPAQ model. Data from October 2019 to June 2022 are used for training. The
model is validated on the data for July to December 2022. The testing holdout sample, used to avoid over fitting, covers a
timespan of three months from June to September 2019._The model was optimized using the Adamax algorithm (Kingma
and Ba, 2014) with 4 hidden layers and 200 units per layer, the activation function uses sigmoid functions while the mean

squared error is used as loss function.

3.4 NINFA simulation over Po Valley and Slovenia (FA4)

FA4 was operated by ARPAE applying NINFA, his operational Air Quality Model Chain over Po Valley and Slovenia in the
framework of Life lp Prepair—PREPAIR project (https://www.lifeprepair.eu/; Raffaelli et al., 2020),—with—herizontal
resolution-of 5-km. The model suite includes a Chemical Transport Model, a meteorological model and an emissions pre-
processing tool. The chemical transport model is CHIMERE, v2017r3. Starting-from-the-eEmission data forcover the Po

Valley (Marongiu et al., 2022), Slovenia and the other regions/countries present in the model domain
(http://www.lifeprepair.eu/wp-content/uploads/2017/06/Emissions-dataset_final-report.pdf);—the-emissions-are-prescribed-to
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COSMO (http://www.cosmo-model.org; Baldauf et al., 2011; Doms and Baldauf, 2018).—the-national-meodel-used-by-the

Naria-in-itatial).
The database of observed data used in this work, was built with the support of PREPAIR partners providing revised
validated data for 2021.

3.5 CALPUFF simulation over Kosovo (FA5)

FAS5 was operated by ATMOTERM Company between July 2020 and September 2022. Analyses were based on data
available from Kosovo Air Quality Portal hosted by the Hydrometeorological Institute of Kosovo and Kosovo Open Data

Platform (https://airqualitykosova.rks-gov.net/en/; https://opendata.rks-gov.net/en/organization/khmi). Forecast Service was

using the following modelling tools: WRF meteorological prognostic model, CAMS ENSEMBLE Eulerian air quality
models and CALPUFF Modelling System with 1 km receptor grid covering the Kosovo territory and 0.5 km grid applied in

the main Kosovo cities. In addition a high resolution receptor network was created for Pristine, with the basic grid step of

ENSEMBLE -medeb-The system includes an assimilation module implemented at the post-processing stage using available
data from all monitoring stations in Kosovo. FA5-presented-3-day-forecast-of four-potutants PMIOPM2.5,- NO.-and-Os-and

4 Results, Lessons learnt and Discussion

The proposed evaluation methodology for forecasting comes on top of the consolidated FAIRMODE protocol for

assessment. The assessment MQO therefore comes first to provide a preliminary evaluation of the five forecasting

applications (see Appendix C). This section presents-focuses on the outcomes of applying the additional forecast objectives
and criteriavalidation-of-the-five forecasting-applications, foeusing-in particular on the lessons learnt by the-their application
of the-propesed-evaluationprotocol-to different geographical contexts and spatial scales, and-pointing out to the strengths
and shortcomings of the approach-in-highlighting-the-skills-of forecasting-applications.

12


http://www.cosmo-model.org/
https://airqualitykosova.rks-gov.net/en/
https://opendata.rks-gov.net/en/organization/khmi

305

310

315

320

325

4.1 MQO: skills versus the capability of predicting Threshold Exceedances

Fhe-main-assessment-of-the“fitnessfor-purpese”is-Forecast Modelling Quality Objective (MQOs) outcomes are presented

here for three forecasting applications, covering different spatial scales, namely FA1 (European scale), FA2 (nhational scale),

and FA4 (regional scale). Along with MQOs outcomes, the skills of the three modelling applications in predicting threshold
exceedances are provided as well. We present outcomes for PM10 daily mean and O3 daily maximum of 8-hour average,
since both indicators have a daily limit value set by the current European legislation (European Union, 2008).

Figs. 1-2, Figs. 23-4, and Figs.3- 5-6 show the outcomes for FA1, FA2, FA4 applications, respectively—in-the-form-of panels
of4-plets. PM10 outcomes are on-the-left-side-of-each-panelprovided in Figs. 1, 3, and 5 while Figs. 2, 4, and 6 present the
O3 ones are-en-therightside. MQI; values are provided in the Forecast Target Plots (Janssen and Thunis, 2022), at the top of
each panelFigure. Within these plots, MQIs is represented by the distance between the origin and a given point (for each

monitoring station). Values lower than 1 (i.e. within the green circle) indicate better capabilities than the persistence model
(within the measurement uncertainty), whereas values larger than 1 indicate poorer performances. Indeed, the green area
identifies the fulfilment of the MQOs at each monitoring stations. The MQI¢ associated to the 90t percentile worst station is
reported in the upper left corner of the plots. This value is used as the main indicator in the proposed benchmarking
procedure: its value should be less than or equal to 1 for the fulfilment of the benchmarking requirements. In other words,

within the proposed protocol a forecasting application is_considered “fit for purpose” if MQIs is lower than 1 for at least

90% of the available stations. Note that passing the MQOy test is intended here as a necessary condition for the use of the

modelling results but it must not be understood as a sufficient condition that ensures that model results are of sufficient

quality.
The outcomes of all categorical metrics included in the validation protocol are provided at the bottom of each panelFigure,

by means of the Forecast Summary P-Normalized Reports. Within these plots, the statistical distribution (5%, 25t, 50t, 75t
95t percentiles) of the outcomes of all the indicators defined in Sect. 2.2 are summarized and compared with the
corresponding outcomes of the persistence model (i.e. the ratios of the skills are considered). Green area indicates that model

performs better than the persistence model for that particular indicator.
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Figure 1: FA1 validation outcomes for PM10. Forecast Target Plots (top) provide MOl values for each monitoring station, as the

distance between the origin and a given point. Box plots in the Forecast Summary P-Normalized Reports (bottom) provide the

statistical distribution (5%, 25t 50t 75t 95t percentiles) of the categorical metrics.
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340 Figure 2: FA1 validation outcomes for Os. Forecast Target Plots (top) provide MOIs values for each monitoring station, as the
distance between the origin and a given point. Box plots in the Forecast Summary P-Normalized Reports (bottom) provide the
statistical distribution (5™, 25t 50t 75" 951 percentiles) of the categorical metrics.
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Figure 3: FA2 validation outcomes for PM10. Forecast Target Plots (top) provide MOl values for each monitoring station, as the
345 distance between the origin and a given point. Box plots in the Forecast Summary P-Normalized Reports (bottom) provide the
statistical distribution (5™, 25t 50t 75" 95t percentiles) of the categorical metrics.
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Figure 4: FA2 validation outcomes for Os. Forecast Target Plots (top) provide MQIs values for each monitoring station, as the
distance between the origin and a given point. Box plots in the Forecast Summary P-Normalized Reports (bottom) provide the
statistical distribution (5%, 25t 50t 75t 95t percentiles) of the categorical metrics.

20

350




FORECAST TARGET PLOT (OU) PM10
T T T T T T T T T I T T T T T T T T T T T T T T T T T T T T T T T T T T T
2 /195 valid stations BIAS b 0 Thresh= 50.0 3
_ MQIZRqrecast= 0.8947398 Forecast_Hogiz= 0.0 _
1+ - -
- - N .
f— a —
= w ]
BIAS | : . ]
oL FA<wvA - FA>=MA ]
A =
- < ]
-2 1 1 L L L L L 'l Il I Il 1 1 1 L L L IBI§S 9 Il 1 1 1 1 1 L L I 'l Il Il Il 1 1 1 1 L
-2 -1 0 1 2
<- CRMSE ->
SUMMARY STATISTICS P-Normalized Nb of stations/groups: 148 valid / 195 selected
INDICATOR
GA+ = . : . |
0 25 50 100 200 300 365
£ | GA- L ] \ —— |
1] 25 50 100 200 300 365
O [FA = e . . . |
R 0 25 100 200 300 365.
MA = . ; . |
E 0 25 50 100 200 300 365.
c | ACC/ACCP . . . e 7%
0 25 5 75 1 125 15 175 2 225 250
A | SRISRp ]
0 25 5 15 1 125 15 175 2 225 250
S | posPDp /—————————F————-1]
T 0 .25 5 75 1 1.25 15 175 2 225 250
FB/FBp I e . . . —
1] 25 5 % 1 125 15 175 2 225 250
TSTSp [ /=i
0 25 5 15 1 125 15 175 2 225 250
GSS/GSYp | - T e e e ———
035 1 5 0 5 1 15 2 2.50

Figure 5: FA4 validation outcomes for PM10. Forecast Target Plots (top) provide MOl values for each monitoring station, as the
distance between the origin and a given point. Box plots in the Forecast Summary P-Normalized Reports (bottom) provide the
statistical distribution (5™, 25t 50t 75" 951 percentiles) of the categorical metrics.
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Figure 6: FA4 validation outcomes for Os. Forecast Target Plots (top) provide MQIs values for each monitoring station, as the
distance between the origin and a given point. Box plots in the Forecast Summary P-Normalized Reports (bottom) provide the
statistical distribution (5%, 25t 50t 75t 95t percentiles) of the categorical metrics.
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Forecast Target Plots outcomes indicate a very good level of quality of all forecast applications in simulating Os. The 90t
percentile of the MQIs values is lower than 1 for all three forecast applications, indicating that model performs better than
persistence in simulating Oz at more than 90% of the available stations. FA2 and FA4 fulfil MQI; requirements also in
simulating PM10, instead there is room for improvement for the European scale simulation FA1 (90t percentile of the MQlI¢
values is slightly higher than 1). Further investigations show that most of the issues emerge in a limited part of the modelling
domain (Turkey), where very high, and sometimes unlikely, PM10 values are measured at several monitoring sites for most
of the year. Removing Turkish monitoring stations from the validation data set, MQOs turns out to be fulfilled (Fig. €4D1, in
Appendix €D)._It is worth noting that the MQOy outcomes are consistent with the standard assessment evaluation (Appendix
C). Table C1 shows that the standard MQO s fulfilled for all O3 forecast applications. For PM10, the MQI is higher than 1

but only for the FA1 simulation.

Concerning the capability in predicting exceedances, model performances improve moving from FAL to FA4 applications
(i.e. as spatial resolution increases) and skills are generally better in simulating O3 than PM10. Concerning the comparison of
the performances according to the different metrics, all forecast applications turn out to be better in avoiding false alarms
than in reproducing all of them, since Success Ratio (SR) scores are generally better than Probability of Detection (PD) ones,
especially for PM10.

In general, even if forecast applications are generally better than the persistence model according to the main outcome MQO
(top plots of Figs.1-6;-Fig—2-and-Fig—3), it becomes harder for them to beat the persistence model in predicting exceedances
(bottom plots of Figs.1-6;-Fig—2-and-Fig—3). Apart from few cases (namely the regional FA4 application), the median values
of the statistical distribution of the outcomes are not in the green area, indicating that model performs worse than persistence

at more than 50% of the available stations.

4.2 MPI Plot supporting the interpretation of MQOr outcomes

When evaluating a forecasting application, it is of interest to assess the evolution of skills metrics with the forecast horizon.
Indeed, a good forecasting application should not incur a substantial degradation of its performances along with forecast
time.

FAZ3, carried out over Ireland by means of the OPAQ statistical system, was evaluated for each of the forecasted days, which
included the current day (day0), tomorrow (dayl) and the day after tomorrow (day2).

Fig—4-In the following it is reported shews-how performances in simulating PM10 vary along with the forecast days. More in
detail outcomes for day0 {en-the-left}-and day2 {en-the-right}-are shown_in Fig. 7 and Fig. 8, respectively. On the top of the
each panelFigure, the Forecast Target Plots (described in the previous section) are reported. On the bottom, the Forecast MPI

Plots are added, describing the fulfilment of both the criteria defined in Sect. 2.1 (i.e. MPI less than or equal to 1). Indeed,
here the forecast performances (MFEy) are compared to the persistence model performances (MFE,) along Y axis (MPI1) and
to the Mean Fractional Uncertainty (MFy) along the X axis (MPI,). The green area identifies the area of fulfilment of both

proposed criteria. The orange areas indicate where only one of them is fulfilled.
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Figure 7: FA3 validation outcomes for day0. Forecast Target Plots (top) provide MOl values for each monitoring station, as the

distance between the origin and a given point. Forecast MP1 Plots (bottom) provide for each monitoring station MPI1 along Y axis

and MP12 along the X axis.
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Figure 8: FA3 validation outcomes for day2. Forecast Target Plots (top) provide MOl values for each monitoring station, as the
distance between the origin and a given point. Forecast MP1 Plots (bottom) provide for each monitoring station MPI1 along Y axis
and MP12 along the X axis.
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Outcomes in Figs. 4-7-8 indicate a very good level of quality of the forecast application, since Modelling Quality Objective

is fulfilled (top), together with the two additional Performance Criteria (bottom). These outcomes are consistent with the

standard MQO skills provided in Table C1 of Appendix C, which points out very good performances of FA3 for PM10,

namely the best performances among all forecast applications.

Concerning the evolution of skills metrics with forecast horizon, according to the Forecast Target Plot outcomes (top),
modelling performances unexpectedly get better from dayO to day2, since the MQIs value associated to the 90t percentile
worst station (reported in the upper left corner of the plots) turns out to get lower. According to the Forecast MPI Plots
(bottom), performances remain almost constant with forecast horizon, indicative of a good behaviour of the modelling
application. Moreover, Forecast MP1 Plots help to clarify that the unrealistic improvement of model performances from day0
to day2, pointed out by the Forecast Target Plots, is due to persistence model performances degradation. Indeed, moving
from dayO to day2, the forecast model performances get slightly better along Y axis, where they are normalized to
persistence model skills, but they slightly deteriorate along X axis, where they are considered regardless of persistence
aspects. In other words, model performances slightly deteriorate along with the forecast days but persistence model

deteriorate more, so that performances ratios (i.e. both MQI: and MPI; values) get lower.

4.3 Assessment of modelling application capability in predicting Air Quality Indices

The current approach for the assessment of modelling application capability in predicting Air Quality Indices is based on a
cumulative analysis for answering the following questions: “Are citizens correctly warned against high pollution episodes?”
or in another words: “Does the model properly forecast AQI levels?”

Air Quality Indices are designed to provide information on local air quality. Moreover, within the proposed validation
protocol, the capability of correctly predicting AQI is assessed at single monitoring stations. For these reasons, FA5 at the
local scale is the most suitable for testing the proposed approach. Indeed, it was carried out at high spatial resolution and
focuses on only two monitoring sites, located in two cities in Kosovo: Pristine (the capital) and Drenas.

Before analysing AQI results for PM2.5, it has to be mentioned that the FA5 standard MQO is fulfilled for all available

pollutants (Table C1 in Appendix C). Concerning additional features of the forecasting validation protocol, both the Forecast

Target Plot and the Forecast MPI Plot show very good performances for both locations. The Forecast Summary P-
Normalized Report indicates good model performance in Drenas and some room for improvements in Pristine location due
to underestimation of PM2.5 episodes.

Fig. 5-9 provides the AQI diagram, based on EEA classification, for PM2.5 and for dayO forecast. For each station, the bar
plot shows two paired bars: the number of predicted (left bar) and measured (right bar) concentration values that fall within a
given air quality category. In Drenas, forecast values populate categories 2 (“Good”), 3 (“Medium™), and 4 (“Poor”) to a
greater extent than the measurements. On the contrary, in Pristine forecast values are more frequent than the measurements
at the lowest AQI (“Very Good”).
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Figure 59: FAS5 validation outcomes for PM2.5 at Drenas and Pristina. AQI diagram provide for each monitoring station the
number of predicted (left bar) and measured (right bar) concentration values that fall within each air quality category. The last
two EEA AQI classes (“Very poor” and “Extremely poor’) are merged into one.

Overall, Fig. 5-9 points out that FA5 generally overestimates PM2.5 concentration levels in Drenas and underestimates them
in Pristine. Anyway, AQI forecast bar plots provide information about the total number of occurrences in each AQI class but
there is no information about the correct timing of the forecasted AQI level.

So, there is room for future improvement and other additional outputs could be included within the protocol. In particular,
multi-category contingency tables can be created for each station and multi-categorical skill scores can be computed,
according to literature (e.g. EPA, 2003). Outcomes can be plotted for single stations or describing, for each AQI class, skill
scores statistical distribution among the stations.

For example, in Fig. 8-10 an in-depth insight of AQI assessment is proposed for Drenas (top) and Pristina (bottom). Two
additional multi-categorical metrics are proposed. Both of them are computed for each AQI level and are based on the
comparison between forecast and measurement values considering also the correct timing of the predicted AQI level. AQI
comparability (left plots in Fig. 610) represents, for each of the five AQI classes, the percentage of the correct forecast
events in this class with respect to the total events based on measurements. Since AQI comparability values are percentages,

they range from 0 to 100, being 100 the optimal value. TS_AQI (right plots in Fig. 610) is computed according to the same
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definition of TS in Table 1. Indeed, here multiple thresholds (i.e. class limits) are taken into account and so multiple

455  outcomes, one for each AQI class, are provided. TS_AQI values range from 0 to 1, being 1 the optimal value.
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Figure 610: Multi-categorical metrics outcomes for Drenas (top) and Pristina (bottom). AQI comparability plots (left) provide for
each AQI class the percentage of the correct forecast events with respect to the total events based on measurements. TS_AQI plots
(right) provide for each AQI class TS_AQI values.

AQI Comparability and TS_AQI in Fig. 6-10 provide additional information with respect to AQI diagram. For example, in
the case of Drenas, it turns out that, according to both the metrics, the best agreement between forecast and measurements in
predicting the correct timing of the occurrences are found for “Poor” AQI class. It is also worth noting that, even if
according to cumulative analysis (Fig. 59) forecast and measurements present a similar number of occurrences in both the
“Medium” and the “Very Poor” classes, according to AQI Comparability, these classes are characterized by the worst
performances. TS_AQI gives additional information about the model performances, which is especially noticeable for the
“Medium” and “Very poor” classes, as it defines levels differently (“Medium” class means “Medium” class and all higher

classes — “Poor” and “Very poor”). In this case the “Medium” class is characterized by better performances than the “Very
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Poor” class. In the case of Pristine location, the best performances, according to both the metrics, are achieved for low
concentrations (“Very Good” and “Good” classes) and the worst ones for “Very Poor” and “Medium” AQI levels. It is also
worth noting that the best agreement is found for “Good” class, according to the cumulative comparison (Fig. 59), but it is

better for “Very Good” class if the timing of the occurrences is taken into account (Fig. 610).

4.4 Discussion

Several lessons were learnt from the results presented here. The main “fithess-for-purpoese”proposed criterion (MQOy) turned

out to be useful for a—comprehensive—evaluation—efevaluating the strengths and the shortcomings of a forecasting
evaluationapplication, focusing on features which could not be addressed with the assessment evaluation approach.

Side outcomes, included within the protocol, can help in deepening the analysis. For example, MPIs analysis based on MFE
helps in interpreting the outcomes, since MPI; is formulated regardless of persistence aspects, providing—as-an-added-value;
details an-evaluation-of-on the model performances-guatity-itself.

Consistently with the FAIRMODE approach, the measurement uncertainty is considered within the MQO;: formulation.

While values are currently based on maximum uncertainties (95t percentile), these could be modified in the future to obtain

a consensus level of stringency for the MQOy, i.e. a level reachable for best applications while stringent enough to preserve

sufficient quality. In Appendix E the outcomes of a sensitivity analysis are provided, in which we investigate the impact of

the value chosen as representative measurement uncertainty.

Concerning the capability in predicting the exceedances, it turned out that, regardless of the spatial scale and the pollutants,
even if a forecast application is better than the persistence model according to the general “fitnessfor-purpese”evaluation
criterion (MQOy), it can be worse in correctly providing categorical answers. Indeed, the difficulty in beating the persistence
model skills is not infrequent in weather forecasting applications (Mittermaier, 2008). Moreover, it is worth noting that,
differently from MQO:s analysis, the evaluation of the model capability in predicting the exceedances, being based on the
definition of fixed thresholds, does not take into account the measurement uncertainty. For these reasons, a “fitness for
purpose” criterion concerning exceedances metrics (e.g., which percentiles of a categorical indicator should be in the green
area in order to define its skill “good enough”? and following on from that, how many indicators should be “good enough” in
order to define the forecast application “fit for purpose”?) is not definitively set within the proposed protocol. Indeed, some
more discussion based on further tests on forecasting applications are needed.

The greatest room for improvement turns out concerning the evaluation of the capability of the forecasting application in
predicting AQI levels. The current approach is based on a cumulative analysis and no information is provided about the
correct timing of the forecasted AQI levels. To account for this, some preliminary tests were carried out based on two
additional multi-categorical metrics, which sound interesting in complementing the current approach. The main weakness of
the proposed approach is the large number of different values to be provided, so making this type of outcome usable only for
single monitoring stations. Moreover, the question of which level of performances in AQI predicting is “good enough” is

currently an open issue and benchmarking of several forecasting applications is needed to establish some quality criteria.
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5 Conclusions

A standardized validation protocol for air quality forecast applications was proposedmade-avatable, following FAIRMODE
community discussions on how to address specific issues typical of forecasting applications.

A-The proposal of a common benchmarking framework for model developers and users supporting policymaking under the

European Air Quality Directives is a major achievement.

The proposed validation protocol enables an objective assessment of the “fitness for purpose” of a forecasting application,
since it relies on the usage of a reference forecast as a benchmark (i.e. the persistence model), includes the measurement
uncertainty, and bases the evaluation on the fulfilment of specific performance criteria, defining an acceptable quality level

of the given model application._On top of a pass/fail test to ensure fitness-for-purpose (intended as a necessary but not

sufficient _condition), a series of indicators is proposed to further analyse the strengths and weaknesses of the forecast

application.
Moreover, relying on a common standardized validation protocol, the comparison of performances of different forecast

applications, within a common benchmarking framework, is made available.

The application of the methodology to validate several forecasting simulations across Europe, using different modelling
systems and covering various geographical contexts and spatial scales, suggested some general considerations about its
usefulness.

The main “fitness for purpose” criterion, describing the global performances of the model application with respect to
persistence skills, proves to be useful for a comprehensive evaluation of the strengths and the shortcomings of a forecasting
application. Generally, the forecast Modelling Quality Objective turns out to be achievable for most of the examined
validation exercises. When the criterion was not addressed, side analyses and outcomes, included within the protocol, helped
in deepening the analysis and in identifying the most critical issues of the forecasting application.

On the other hand, it turned out that, regardless of the spatial scale and the pollutants, it can be hard for a forecast application
beating persistence model skills in correctly providing categorical answers, namely on exceedances of concentration
thresholds. Therefore, further tests and analyses are needed in order to provide some criteria for defining the “fitness for
purpose” of a forecasting application in predicting exceedances.

The last model capability assessed within the proposed validation protocol concerns the correct prediction of Air Quality
Indices, designed to provide citizens with effective and simple information about air quality and its impact on their health.
The current approach is based on a cumulative analysis of relative distributions of observed and forecasted AQIs. As no
information is provided about the correct timing of the forecasted AQI levels, further developments are foreseen based on
multi-category contingency tables and multi-categorical skill scores.

Actually, discussion on the proposed approach will go on within the FAIRMODE community and upgrades and

improvements of the current validation protocol will be fostered by its usage. In particular, it will be of interest to collect

feedback from in-depth diagnostic analyses focusing on the validation of specific forecast applications, using both the
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proposed criteria_and the threshold-based categorical metrics to gain further insights. Anyway, from its preliminary

applications across Europe, the methodology turns out to be sufficiently robust indeed—both-the-methedology—and-the
software—are—publichyavailable for testing and application, especially targeting air quality forecasting services supporting
policymaking in European Member States.

Appendix A

Measurement uncertainty U(0;) as a function of the concentration values 0; can be expressed as follow:

U, = Ur(RV)\/(l — a?)0? + a?RV? (A1)

An in-depth description of the rationale and the formulation of the measurement uncertainty estimation is provided in Thunis

et al. (2013) and Pernigotti et al. (2013) for O3, and PM and NO,, respectively. More in details, the formulation of the

measurement uncertainty as a function of the measured concentration is based on two coefficients: U-(RV), i.e. the relative

uncertainty around a reference value RV and «, i.e. the fraction of uncertainty non proportional to the concentration value. It

is important to note that we use as representative for the measurement uncertainty the 95 percentile highest value among all

uncertainty values. For PM10 and PM2.5 the results of a JRC instrument inter-comparison (Pernigotti et al., 2013) have been

used whereas a set of EU AIRBASE stations available for a series of meteorological years has been used for NO, and

analytical relationships have been used for Os. These 95" percentile uncertainties only include the instrumental error.
Parameters U-(RV), RV, and a for U(0;) calculation for NO,, Oz and PM are provided in Table Al.

Table Al Parameters for the calculation of measurement uncertainty.

U,(RV) RV a
NO, 0.24 200 pg/m3 0.20
Os 0.18 120 pg/m3 0.79
PM10 0.28 50 pg/m3 0.25
PM2.5 0.36 25 pg/m3 0.50
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Appendix B

Table B1 Contingency Table.

Forecast Events Yes FA CA
No GA- MA
No Yes
CONTINGENCY TABLE
Observed Events
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Appendix C

The standard Modelling Quality Objective (MQQO), valid for assessment, is defined by the comparison of model-observation

differences (namely, the root mean square error, RMSE) with a quantity proportional to the measurement uncertainty.

RMSE
MQI = (1)

/ v, (u))
B 1T

B is set to 2, thus allowing the deviation between modelled and observed concentrations to be twice the measurement

uncertainty. Measurement uncertainty J(0;) as a function of the concentration values 0;is defined in Appendix A.

The MQQ is fulfilled when MQI is less than or equal to 1.

Standard assessment MQO outcomes (i.e., MQI value associated to the 90" percentile worst station) for all available

pollutants are summarized in Table C1 for all forecast applications.

Table C1 Standard assessment MQI values (associated to the 90t percentile worst station) for all forecast applications.

NO, oF PM10 PM2.5
FA3 0.479
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Figure €1D1: FAL Forecast Target Plot for PM10, removing Turkish monitoring stations from the validation data set.

Appendix E

The effect on MQIr outcomes of lowering measurement uncertainty estimates is investigated here. More in detail, the values

of U-.(RV) parameters in Table Al (i.e. the estimates of the relative uncertainty around the reference value, defining the

asymptotic behaviour of the functions of Figure Al) were reduced by 25% and 50% for all the pollutants and the MQ/r were

recalculated for the different forecast applications. Figure E1 shows the results for all available data: FA1l, FA2, FA4

outcomes for the current forecast day (all pollutants available), and FA3 outcomes along a three-days forecast horizon (only

PM10 available). Different colours refer to results based on different U-(RV) values: 1 U-(RV) indicates the original values
in Table Al, 0.75 Ux(RV) and 0.50 U-(RV) refer to 25% and 50% reductions, respectively. Indeed, the 50% reduction
decreases the U-(RV) values to 0.12 (NO;), 0.09 (Os), 0.14 (PM10), 0.18 (PM2.5), i.e. well below the data quality objective
values set by the current European legislation (European Union, 2008), namely 15%, 15% and 25% for NO,, O3, and

particulate matter.

The results of the sensitivity analysis are provided by means of the violin plots (Hintze and Nelson, 1998), showing the

distributions of the MQIr values computed for each monitoring station. In other words, each violin refers to all the data
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provided within the corresponding Forecast Target Plot, giving in a single plot an overall view of all the outcomes available.

Three lines were added to the display of each violin, indicating the 10, the 50t and 90t percentiles of the distributions.

Results show that both MQ/r values and the shape of their distribution depend on both the forecast application and the

pollutant. Within this context, changing U-(RV) values induces a very slight effect on the shape of the MQIr values

distribution, apart from the case of PM2.5 for FA2, where a small amount of data is available (11 monitoring stations). On

the contrary, as expected, changing U-(RV) values turns out in variations of MQIr values, which get higher as U-(RV) gets

lower, to a different extent depending on the forecast application and the pollutant. Generally, variations tend to be lower if

data availability is higher. Concerning the main MQOr criterion fulfilment (i.e. the 90t percentile of the MQI; values is lower

than 1), being based on a categorical answer (yes/no), it changes or not mainly depending on the performances of the

reference analysis (1 U-(RV)). The same answer is maintained both in case of very good performances (MQI; 90 percentile

value largely lower than 1) and in case the criterion is not fulfilled even in the reference analysis (MQIl; 90 percentile value

already higher than 1). When MQI; 90t percentile value is lower but quite close to 1, MQOr criterion fulfilment is of course

more sensitive to measurement uncertainty estimate. Indeed, this is expected and it is a typical shortcoming of the usage of

criteria based on categorical answers.
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Code and data availability. The DELTA Tool software and all datasets generated and analysed during the current study are

480 available on Zenodo at

https://doi.org/10.5281/zenodo.7949868. DELTA—Tool—software —is—available—at
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