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Abstract: This study investigates the use of new machine learning techniques in mapping variation in 15 

ground levels based on ordinary spirit levelling (SL) measurements. Convolution Neural Network (CNN), 16 

Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and bi-directional LSTM (BI-17 

LSTM) were developed and compared in the current study to estimate the leveling through SL 18 

measurements. SL measurements of the Manzalla region, Egypt, were used in the current study. 3253 19 

datasets of SL observation points, including 229 benchmarks of precise levelling (PL), were used to design 20 

and verify the proposed model’s results. The results show the developed LSTM model outperforms CNN, 21 

RNN, and BI-LSTM in modeling ground leveling in the training and testing stages. The root mean square 22 

error and correlation determination of the LSTM model are 7.4 cm and 0.99, respectively, in the testing 23 

stage. The accuracy of mapping ground levelling through the developed LSTM model is close to 99% in 24 

terms of model error.      25 

Keywords: Spirit levelling, Deep learning, CNN, LSTM, Fitting  26 

1. Introduction 27 

Modeling the variation of the earth's surface is one of the essential requirements in engineering applications. 28 

Traditional leveling methods are commonly used in small scale engineering projects; however, satellite 29 

systems, e.g., satellite images and coordinate systems such as global positioning systems (GPS), are 30 

commonly used in large-scale projects (Ahmed EL-Mowafy 2004; IHO 2011; CDT 2012; Shanker and 31 

Acharya 2022). Ordinary spirit levelling (SP) is a lower-cost method compared to other surveying methods, 32 

and it is almost always used to cover a wide area of construction projects. However, satellite systems and 33 

precise leveling (PL) are almost as costly and used in special survey engineering networks (Karila et al. 34 

2013; Kemboi 2016; Janos et al. 2022). In order to decrease the cost and time of survey engineering works, 35 

this study aims to develop a soft computing technique that can be used to map variations of the earth's 36 

surface through SP measurements in construction and infrastructure projects. 37 

SP, or levelling, is a process to estimate the land elevation of a measured point based on the known elevation 38 

of another point with a level instrument and an ordinary vertical staff. It is known as a relative measurement 39 

of leveling with low accuracy. However, it is widely used in construction projects. The details of SP can be 40 
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found in (Kemboi 2016; LSC 2018). Machine learning was applied for modeling the geoid undulation 41 

(Yιlmaz et al. 2006; Kaloop et al. 2020b; Tütüncü et al. 2021; Asenso-Gyambibi et al. 2022). However, 42 

mapping variation in earth surface or surface elevation through SP is still limited based on our literature. 43 

Latitude and longitude are commonly used in leveling modeling (Veronez et al. 2011; Erol and Erol 2013). 44 

Erol and Erol (Erol and Erol 2013) applied multivariable polynomial regression equations (MPRE), artificial 45 

neural networks (ANNs), adaptive network-based fuzzy inference system (ANFIS) and especially wavelet 46 

neural networks (WNNs) to interpolate the geoid surface; ANFIS and WNN outperformed other models. 47 

In addition, the ANN model was tested to estimate the geoid height in Brazil, and the results found it was 48 

efficient compared to the Brazilian geoid model (MAPGEO2004) (Veronez et al. 2011). Kernel Ridge 49 

Regression (KRR) was applied to estimate the Kuwait geoid model based on GPS/Levelling measurements, 50 

with the results that its performance is better than that of least squares support vector regression (LSSVR), 51 

gaussian process regression (GPR), and multivariate adaptive regression splines (MARS) in modeling the 52 

geoid (Kaloop et al. 2019). More studies can be found in (Zhong 1997; Veronez et al. 2011; Rabah and 53 

Kaloop 2013; Sorkhabi et al. 2015; Kaloop et al. 2018; Tütüncü et al. 2021) for modeling the geoid. 54 

However, due to the limitations of the data used in modeling the geoid, the use of deep learning in geoid 55 

modeling is still limited.  56 

Nowadays, Deep learning techniques, such as convolutional neural networks (CNN), recurrent neural 57 

networks (RNN), long short-term memory (LSTM), have been used in modeling and classifying land 58 

use/land cover (LULC) based on satellite images. Rußwurm and Korner (Rußwurm and Körner 2017) found 59 

LSTM to be more efficient in LULC classification. Sun et al. (Sun et al. 2019) evaluated LSTM-RNN, 60 

RCNN, and CNN in mapping and classification LULC; their results found the LSTM-RNN model can be 61 

precisely used in LULC. Modeling of Land-use and land-cover change (LULCC) through machine learning 62 

techniques was collected and discussed in Wang et al. (Wang et al. 2022); the review summarized that  63 

machine and deep learning may be limited in “(i) describing occurrence, transition, and spatial patterns of 64 

changes ; (ii) unavailability of training data for all the change drivers, particularly sequence data, and (iii) 65 

lack of inclusion of local ecological, hydrological, and social-economic drivers when addressing the 66 

spectral feature change”. Bi-directional long short-term memory (Bi-LSTM) was integrated with the 67 

optimal guidance-whale optimization algorithm (OG-WOA) technique to classify and map the LULC 68 

(Vinaykumar et al. 2023). The accuracy of Bi-LSTM was found to be better than that of CNN and RNN in 69 

LULC classification. Furthermore, CNN, Deep Boltzmann Machines (DBM), Deep Belief Net (DBN), and 70 

RNN are used to estimate and evaluate the geodetic velocity, and the results showed that the CNN was 71 

better than other deep learning models (Sorkhabi et al. 2022). Other applications of soft computing 72 

techniques in water leveling and wave height modeling can be found in (Kaloop et al. 2016, 2020a; Miky et 73 

al. 2021; Sinha and Abernathey 2021; Minuzzi and Farina 2023). 74 

Therefore, this study aims to use deep learning techniques, such as CNN, RNN, LSTM, and BI-LSTM, in 75 

the elevation interpolation of grid points. With modeling the ground leveling, even in the relative 76 

measurements, the time and cost of traditional leveling fieldworks should be decreased. To train the 77 

proposed models, 3253 datasets leveling points of SL, including 229 benchmarks of precise levelling (PL), 78 

were used. These measurements were collected from a project in the Manzalla region, Egypt. The accuracy 79 

of the proposed models was evaluated based on the collected datasets; this means the accuracy should be 80 

changed based on the volume of data used and the topography of the study regions. However, the concept 81 

of the proposed models can be used in a similar area.     82 

 83 
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2. Methods  84 

In this study, four input-output deep learning techniques, CNN, RNN, LSTM, and BI-LSTM, are applied 85 

and compared to map the leveling based on Latitude and longitude measurements. The following is a theory 86 

summary of the proposed models. 87 

2.1. Convolution neural network (CNN)  88 

CNN is one of the most essential deep learning methods, in which multiple layers are powerfully trained.  89 

The convolutional layer is the center of the CNN and is the cause of its name. This layer receives and 90 

processes data by performing a convolution function. The CNN is made up of multiple convolutional layers 91 

that can be integrated or completely connected, as well as multilayer perceptron’s (Oh et al. 2019; Wang et 92 

al. 2020; Zhang et al. 2022; Sorkhabi et al. 2022). This approach is very effective and one of the most 93 

popular approaches in a variety of computer vision applications. The convolution layer, the pooling layer, 94 

and the fully connected layer are the three major layers that make up a CNN network. 95 

Different layers carry out different tasks (Jang et al. 2019). The architecture of 1D conventional Neural 96 

Network (1D-CNN) for layer-by-layer leveling is shown in Figure 1.a. In general, there are two training 97 

phases in each CNN: the feedforward phase and the backpropagation phase. The input signal is fed into the 98 

network in the first stage, which consists of multiplying the input by the parameters of each neuron and 99 

then performing convolution in each layer to produce the network output (Sorkhabi et al. 2022). In this 100 

case, the network parameters are modified, or to put it another way, the network is trained, and the output 101 

product is used to figure out how much network error there is. To do this, compute the error rate by 102 

comparing the network output with an accurate response using an error function (loss function). Based on 103 

the calculated error rate, the backpropagation process starts in the following step. The gradient of each 104 

parameter is determined in this phase using the chain rule, and all parameters are changed based on their 105 

impact on the error introduced into the network (Sorkhabi et al. 2022). Following the updating of the 106 

parameters, the following feed-forward process starts. The network training comes to a conclusion after 107 

repeating a significant number of these steps (Sorkhabi et al. 2022). In general, a convolutional neural 108 

network is a hierarchical neural network that has a number of completely connected layers after the pooling 109 

and convolutional layers. 110 

 111 

2.2. Recurrent neural networks (RNN) 112 

 The convolutional model works with a fixed number of inputs and produces a fixed vector as an output 113 

with a predefined number of steps. We can manipulate vector sequences at both the input and the output 114 

thanks to return grids (Hang et al. 2019; Sorkhabi et al. 2022; Amalou et al. 2022). In the case of the RNN, 115 

the link between the units forms a direct cycle. The inputs and outputs of a recursive neural network are 116 

connected rather than independent, in contrast to conventional neural networks. Additionally, each layer of 117 

the RNN uses the same standard settings. RNN design is shown in Figure 1.b. The backpropagation method 118 

can be used to train the return network to mimic a conventional neural network (Hang et al. 2019). Here, 119 

the flow step is only one factor that is considered in the computation of the gradient. The two-way neural 120 

network takes into account both the expected future output and the prior output. Deep learning can be 121 

achieved in two-way and direct RNN by adding numerous hidden levels. With a lot of learning data, these 122 

deep networks have a greater learning capacity (Sorkhabi et al. 2022). 123 
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(a) 

 
(b) 

Figure 1. Diagram of Leveling estimation using (a) 1D convolution CNN and (b) Simple RNN 

 124 

2.3. Long short-term memory (LSTM) 125 

LSTM is a model or structure for sequential data created by (Hochreiter and Schmidhuber 1997) for the 126 

advancement of RNN. It employs a unique combination of hidden units, elementwise products, and sums 127 

between units to create gates that control "memory cells." These cells are intended to store information 128 

without modification for extended periods of time (Apaydin et al. 2020). The most important feature of 129 

LSTM is its capacity to learn long-term dependency, which RNNs cannot do. To anticipate the next step, 130 

the weight values on the network must be updated, which necessitates the preservation of information from 131 

the previous steps. RNN can only learn a finite number of short-term relationships and cannot learn long-132 

term series. However, because LSTM has three gates—input, forget, and output—it can effectively learn 133 

these long-term relationships. (Figure 2a). To show how much of the prior memory is remembered and how 134 

much of it has been lost, the forget gate is embedded. The concealed state ℎ𝑡 for LSTM is calculated as 135 

follows: 136 

𝑖𝑡 = 𝜎(𝑤𝑖𝑋𝑡 + 𝑢𝑖ℎ𝑡−1 + 𝑏𝑖)                                                                                  (1) 137 

𝑓𝑡 = 𝜎(𝑤𝑓𝑋𝑡 + 𝑢𝑓ℎ𝑡−1 + 𝑏𝑓)                                                                                (2) 138 

𝑂𝑡 = 𝜎(𝑤𝑂𝑋𝑡 + 𝑢𝑂ℎ𝑡−1 + 𝑏𝑂)                                                                               (3) 139 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝐶𝑋𝑡 + 𝑢𝐶ℎ𝑡−1 + 𝑏𝐶)                                                                          (4) 140 

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × �̃�𝑡                                                                                         (5) 141 

ℎ𝑡 = tanh(𝐶𝑡) × 𝑂𝑡                                                                                                (6) 142 

Where, 𝑖𝑡 , 𝑓𝑡 , 𝑎𝑛𝑑𝑂𝑡 are the input, forget, and output gates at time t, respectively; 𝑤𝑖 , 𝑤𝑓 , 𝑤𝑂, 𝑎𝑛𝑑𝑤𝐶   are 143 

weights that map the hidden layer input to the three gates of input, forget, and output while 144 

𝑢𝑖 , 𝑢𝑓 , 𝑢𝑂, 𝑎𝑛𝑑𝑢𝐶  weights matrices map the hidden layer output to gates; 𝑏𝑖 , 𝑏𝑓 , 𝑏𝑂, 𝑎𝑛𝑑𝑏𝐶 are vectors. 145 

Additionally, 𝐶𝑡 𝑎𝑛𝑑ℎ𝑡 represent the results of the cell and stratum, respectively (Apaydin et al. 2020). 146 

 147 

2.4. Bi-directional long short-term memory (Bi-LSTM) 148 

In fact, the network is processed in two directions rather than just one: backward and forward, with two 149 

distinct hidden levels. Bidirectional networks performed better than unidirectional networks in situations 150 

like phonemic grouping, as shown by Graves and Schmidhuber (Graves and Schmidhuber 2005). Figure 151 

2b shows the bidirectional network's layout. These networks have a structure with a forward and backward 152 

LSTM layer based on this image. The forward layer output order, ℎ⃗ 𝑡, is computed repeatedly from time𝑡 −153 

𝑛 to time𝑡 − 1  using positive order inputs, whereas the backward layer outcome order, ℎ⃖⃗𝑡, is computed 154 
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repeatedly using inverted inputs [36]. Both the forward and backward layers outputs are calculated similarly 155 

to the unidirectional LSTM. In the Bi-LSTM layer, Yt is computed from Equation (7): 156 

𝑌𝑡 = 𝜎(ℎ⃗ 𝑡 , ℎ⃖⃗𝑡)                                                                                                                                             (7) 157 

where 𝜎 function is used to combine the two output sequences. 158 

  
Figure 2. LSTM (a) and BI-LSTM (b) diagrams for levelling prediction (Apaydin et al. 2020) 

 159 

2.5. Design models and evaluation   160 

To design the proposed models, CNN, RNN, LSTM, and BI-LSTM, trial-and-error runs were performed. 161 

Table 1 proposes the details of the model`s configuration. The optimum CNN consists of two input layers, 162 

one convolutional layer with 32 neurons followed by a flat layer, a dense layer with 64 neurons, and an 163 

output layer. For the best model fit and optimization, mean square error and Adam were used. For a simple 164 

RNN, the number of hidden neurons in the hidden layers was investigated in the range of 2 to 40 using trial 165 

and error approach, the appropriate value of hidden neuron was determined to be 20 and 8 for the two 166 

hidden layers, respectively. The optimum RNN model consists of two input layers, a simple RNN hidden 167 

layer with 20 neurons followed by a dense layer with 8 neurons, and an output layer. In each hidden layer, 168 

ReLU (rectified linear unit) was used as the activation function. In particular, "mean square error" and 169 

"rmsprop" were utilized in the processes of model fitness and optimization, respectively. To achieve optimal 170 

performance, LSTM neural networks are structured into the following layers: two input layers, one LSTM 171 

hidden layers consisting of 50 neurons each, and an output layer. Similarly, the optimal BI-LSTM network 172 

consist of a two-input layer, one hidden BI-LSTM layer with 64 neurons, and one output layer. Notably, 173 

the 'sigmoid' function was utilized in each hidden layer, while the Adam and mean squared errors were used 174 

for model fitness and optimization, respectively, in both of the models. It is also noted that, different epoch 175 

numbers of 100, 300, and 500 were tested in each run of the LSTM and BI-LSTM models, with the optimum 176 

epoch found to be 500.    177 

Table 1. Parametric configuration of the developed models 178 

Model Optimum model configuration 

CNN 1D convolutional layer, flatten layer, dense layer, learning rate = 0.0001 batch size = 

10, epoch = 500 

RNN 20 hidden neurons in simple RNN layer, 8 hidden neurons in dense layer, input shape 

= (2,1), learning rate = 0.0001, batch size = 16, epoch = 500 

LSTM 100 hidden neurons, input shape = (2,1), learning rate = 0.01, batch size = 15, epoch = 

500 

BI-LSTM 64 hidden neurons, input shape = (2,1), learning rate = 0.01, batch size = 15, epoch = 

500 
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 179 

To assess the accuracy of the proposed models, different statistical indices were used. The accuracy of the 180 

proposed models in term of the correlation between measured and estimated values was evaluated using 181 

the coefficient of determination (R2), where 1 is the best, and Nash-Sutcliffe efficiency (NAF), where 100 182 

is the best. In addition, the model errors were evaluated using root mean square error (RMSE); where 0 is 183 

the best, mean absolute error (MAE), where 0 is the best, and mean bias error (MBE), where 0 is the best. 184 

Furthermore, percentage error (PE) is applied to measure the accuracy of the proposed models in error 185 

terms, 0 is the best, and the overall performance of models is tested using the performance index (PI), where 186 

2 is the best. These indices are presented as follows: 187 

𝑅2 =
∑ (𝑍𝑖−𝑍𝑚𝑒𝑎𝑛)2𝑁

𝑖=1 −∑ (𝑍𝑖−𝑍𝑝𝑖)
2𝑁

𝑖=1

∑ (𝑍𝑖−𝑍𝑚𝑒𝑎𝑛)2𝑁
𝑖=1

                                                                                                         (8) 188 

𝑉𝐴𝐹 = 100 × (1 −
𝑣𝑎𝑟(𝑍𝑖−𝑍𝑝𝑖)

𝑣𝑎𝑟(𝑍𝑖)
)                                                                                                             (9) 189 

𝑅𝑀𝑆𝐸 = √
∑ (𝑍𝑖−𝑍𝑝𝑖)

2𝑁
𝑖=1

𝑁
                                                                                                                         (10) 190 

𝑀𝐴𝐸 =
∑ |(𝑍𝑖−𝑍𝑝𝑖)|

𝑁
𝑖=1

𝑁
                                                                                                                              (11) 191 

𝑀𝐵𝐸 =
1

𝑁
∑ (𝑍𝑖 − 𝑍𝑝𝑖)

𝑁
𝑖=1                                                                                                                        (12) 192 

𝑃𝐼 = 𝑎𝑑𝑗. 𝑅2 + (0.01 × 𝑉𝐴𝐹) − 𝑅𝑀𝑆𝐸                                                                                                (13) 193 

𝑃𝐸 = 100 ×
𝑅𝑀𝑆𝐸

𝑍𝑚𝑎𝑥−𝑍𝑚𝑖𝑛
                                                                                                                           (14) 194 

Where, 𝑍𝑖 𝑎𝑛𝑑𝑍𝑝𝑖 represent the measured and predicted levelling, 𝑧𝑚𝑒𝑎𝑛 , 𝑧𝑚𝑎𝑥 , 𝑎𝑛𝑑𝑧𝑚𝑖𝑛 are the average, 195 

maximum and minimum, respectively, of measured values, 𝑎𝑑𝑗. 𝑅2  is the adjustment R2, and N is the 196 

number of the data sample.  197 

Figure 3 proposes the data processing and mapping in three stages. Data collection, adjustment, and 198 

improvement are implemented in the first stage using the least squares method and PL benchmarks. E and 199 

N are collected using GPS observation networks. Z was calculated at observed points using SL equipment. 200 

The data were divided into training and testing stages. The training datasets were used to design the 201 

proposed models in the second stage. In the last stage, training and testing datasets were used to assess the 202 

performance of the proposed models. In addition, the whole datasets were used to validate the best-fit 203 

model. Also, grids of 500 m were generated to map the ground level of the study area. 204 

 205 
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Figure 3. Data processing and modeling flowchart 

  206 

3. Data collection 207 

The ground level observations were collected in 2019 for a national Egyptian project that aims at the full 208 

rehabilitation of the sanitary networks of the Egyptian small cities. The Sokkia B40 automatic level device 209 

was utilized to measure elevations, and the benchmarks were connected by paths to form a closed network. 210 

The corrections for the measurements were estimated using the Least Squares method. The observations 211 

were carried out by a professional team of surveyors under the management of a consulting engineering 212 

team. Figure 4 shows the study area, Manzalla region, and distribution of levelling points. The project 213 

started by fixing more than 250 benchmarks covering the whole study region. Then these benchmarks were 214 

connected using a full, precise leveling network, which was observed with great care by professional 215 

surveyors and calibrated spirit level instruments. The network leveling observations were analyzed, filtered, 216 

and corrected using the main principles of random error theory and rejection of outlier observations. Then, 217 

the precise leveling network was corrected using the least squares method, which presented an estimated 218 

standard deviation of nearly 6 millimeters for the estimated observations of the benchmarks. All the 219 

benchmarks that presented a standard deviation of more than 1 cm were removed from the network, leaving 220 

229 benchmarks used in the ground level observations. 221 

After estimating the corrected reduced levels of the selected benchmarks, they were used as a reference for 222 

ground leveling observations, which were conducted along the longitudinal center of every street in the 223 

study region with spacing ranging between 10 and 20 meters. The ground level observations were collected, 224 

analyzed, and filtered to remove any blunder observations. 225 

https://doi.org/10.5194/gmd-2023-62
Preprint. Discussion started: 12 April 2023
c© Author(s) 2023. CC BY 4.0 License.



8 
 

 
Figure 4. Study area and levelling points (a) study location, (b) leveling points and routes (Images 

resources from Esri) 

 226 

Figure 5 and Table 1 present the data collection evaluation. histogram of trend data used, and the normal 227 

distribution of data used. The mean (M), maximum (MX), minimum (MN), standard deviation (STDEV), 228 

and correlation (Corr) between input variables (E and N) and output variables (Z) are presented in Table 1. 229 

The data distribution is shown to be non- normal. Negative and positive correlations between E and N and 230 

Z, respectively, are observed. The statistical evaluation and data distribution show there is a nonlinear 231 

correlation between Z and E,N. This indicates that a non-linear relationship between the input and output 232 
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variables can be detected, which is advantageous for using deep learning approaches in modeling the ground 233 

levels. 234 

 235 

 
Figure 5. Histogram and normal distribution of data used 

Table 1. Statistical evaluation of measured datasets 236 

Variables E N Z 

M 399952.067 3447484.489 2.023 

MX 403979.133 3451633.725 6.640 

MN 393723.542 3444154.308 -2.939 

STDEV 3089.666 1558.468 0.876 

Corr -0.394 0.218 1.000 

 237 

4. Results and Discussion 238 

Figure 6 and Table 2 present the performance evaluations of the proposed models. The rank of the proposed 239 

models is presented in Table 2. A high score value indicates the best performance. In the training stage, 240 

LSTM outperformed other deep learning techniques. The correlation between measured and predicted 241 

levels for LSTM is shown to be high, R2 and VAF are 0.99 and 99%, respectively. The estimation error of 242 

the LSTM model is shown to be low: RMSE = 8.0 cm, MAE = 7.2 cm, and MBE = -2 cm. The overall 243 

performance of LSTM is the best compared to other models PI = 1.9, and the percentage of the model error 244 

is 0.84%. The rank of LSTM is 26, followed by BI-LSTM, rank = 22. The model followed in modeling the 245 

leveling is BI-LSMT with PI=1.67 and PE = 2.18%; while the worst model is shown to be the CNN model. 246 

From Figure 6, it can be seen that the scatter plot of LSTM is very close to the best fitting line (dashed line), 247 

while the variation around the best fitting line is high for CNN and RNN.   248 

As a result, in the testing stage, the LSTM model outperformed other models in all statistical indices. The 249 

rank evaluation of the proposed models showed that LSTM has a high rank compared to other models. 250 

CNN was shown to be better than RNN at this stage. BI-LSTM still followed LSTM in the testing stage to 251 

model the ground levels. From Figure 6, it can be seen that the scatter plot of LSTM is very close to the 252 

best fitting line, while the variation around the best fitting line is high for CNN and RNN. The performance 253 

of BI-LSTM is shown to be acceptable in the testing stage, rank = 21; however, LSTM performance 254 

achieved a high rank (28) in estimating ground levels.   255 
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Figure 6. Training and testing scatter plot of predicted and measured leveling 

Table 2. Models’ performance assessments in the training and testing stages 256 

Training R2 VAF PI RMSE MAE MBE PE Total score 

CNN Value 0.614 60.807 0.840 0.382 0.426 -0.189 3.986 7 

 Ranke 1 1 1 1 1 1 1 

RNN Value 0.890 89.003 1.510 0.270 0.239 -0.015 2.819 15 

 Ranke 2 2 2 2 2 3 2 

LSTM Value 0.991 99.145 1.903 0.080 0.072 -0.020 0.839 26 

 Ranke 4 4 4 4 4 2 4 

BI-LSTM Value 0.940 93.961 1.670 0.209 0.126 -0.001 2.180 22 

 Ranke 3 3 3 3 3 4 3 

Testing         

CNN Value 0.645 63.232 0.905 0.372 0.429 -0.186 4.685 13 

 Ranke 2 2 2 2 2 1 2 

RNN Value 0.516 48.580 0.439 0.562 0.557 0.053 7.082 8 

 Ranke 1 1 1 1 1 2 1 

LSTM Value 0.993 99.326 1.912 0.074 0.062 -0.012 0.936 28 

 Ranke 4 4 4 4 4 4 4 

BI-LSTM Value 0.978 97.840 1.825 0.132 0.100 -0.014 1.663 21 

 Ranke 3 3 3 3 3 3 3 
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 257 

In addition, the performances, of LSTM and BI-LSTM models in modeling ground variation levels are 258 

presented in Figure 7 in the testing phase. From the figure, it can be seen that the variation of errors for both 259 

models are small. The error ranges of LSTM and BI-LSTM are (-0.13 to 0.07) and (-1.09 to 0.26) m, 260 

respectively. Thus, both models can be used to estimate levelling.  261 

 

 
Figure 7. Modeling performance of LSTM and BI-LSTM models in the testing stage 

 262 

For more investigation, a visualization plot is used to assess the performance of the proposed models. The 263 

Taylor diagram (Figure 8.a) and boxplot (Figure 8.b) are presented to evaluate overall performance and 264 

model errors, respectively. Taylor's diagram is a two-dimensional diagram that provides a comparative 265 

review of models in terms of R-value, root mean square deviation (RMSD), and ratio of standard deviation 266 

between measured and predicted values. The best model is the one closest to the reference point. The details 267 

of the Taylor diagram can be found in (Taylor 2005). Here, test datasets are used to assess the proposed 268 

models based on untuned datasets of models. Taylor's diagram shows the overall performance of LSTM in 269 

modeling ground level is better than that of BI-LSTM, CNN, and RNN, respectively. The accuracy of BI-270 

LSTM is close to that of LSTM, and it can be used for ground level estimation. However, boxplots show 271 

there are outliers that can be observed with BI-LSTM. In addition, the model error range of LSTM is very 272 
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small, and the interquartile range of LSTM is very small compared to other models. Although the CNN 273 

model outperforms the RNN model in terms of overall performance, it has a high number of outliers. 274 

Boxplot obviously shows the LSTM model can be accurately used in ground level estimation.  275 

 276 

 
(a) 

 
(b) 

Figure 8. Visualization analysis of the proposed models (a) Taylor diagram (b) boxplot 

 277 

Figure 9 shows the map estimation of the study area for ground levels and the error of the estimation levels. 278 

The error is the difference between levels of mapping and measurements. From the map, it can be seen that 279 

the ground level is smooth and slopes from 0 to 6 m in one direction. From the measured errors, it can be 280 

seen that the absolute mean error of the estimated ground levels is 0.187 cm, and the standard deviation of 281 

error is 0.666 m. The error distribution is roughly normal, and the majority of the confidence in the model 282 

error falls within the 95% confidence interval. This indicates that the estimated levels are acceptable, and 283 

that LSTM can be accurately applied to estimate the ground level of the study area. These results reveal the 284 
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proposed model is accurate in estimating ground level, and LSTM can be applied in similar areas to decrease 285 

the cost and time of SL field works. 286 

 287 

 
(a) 

 
(b) 

Figure 9. Mapping of the ground level, (a) contour map and (b) model error 

 288 

5. Conclusions 289 

In the current study, the applicability of using deep learning techniques for mapping ground relative 290 

levelling from spirit leveling (SL) measurements was investigated. Convolution Neural Network (CNN), 291 

Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and bi-directional LSTM (BI-292 

LSTM) were developed and compared to estimate the leveling through SL measurements of Manzalla 293 

region, Egypt. 3253 datasets leveling points of SL including 229 benchmark points of precise levelling (PL) 294 

were used to map an area of about 77 Km2 and to verify the proposed models. 295 

In a comparative study, the proposed models showed overall performances of RNN, BI-LSTM, and LSTM 296 

models of 1.51, 1.67, and 1.90, respectively, in the training stage. The overall performance of CNN is 0.91, 297 

while the overall performance (PI) of the BI-LSTM and LSTM models is 1.82 and 1.91, respectively, in 298 

the testing stage. The accuracy of BI-LSTM and LSTM models in estimating ground level reaches up to 299 

98.5% and 99% in terms of model error (PE). The visualization evaluation of the proposed models showed 300 

LSTM outperformed other models in terms of the Taylor diagram and box plot. Thus, the LSTM model can 301 

be considered an accurate soft computing model that can be used to estimate the ground level of the study 302 

area. With the same concepts, it can be applied in the same regions. LSTM is applied to map the ground 303 

level of the study area, and the results show that the estimated accuracy of the ground level of the study 304 

area is 0.187 cm + 0.666 m. The error distribution of the model error is significantly within the 95% interval. 305 

These results reveal the proposed model is accurate in estimating ground level, and LSTM can be applied 306 

in similar areas to decrease the cost and time of SL field works.   307 

 308 

 309 

 310 

 311 
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