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Abstract. To improve the initial condition (“analysis”) for numerical weather prediction, we attempt to assimilate observations 9 

from the Advanced Microwave Sounding Unit-A (AMSU-A) on board the low-earth-orbiting satellites. The data assimilation 10 

system, used in this study, consists of the Data Assimilation Research Testbed (DART) and the Community Earth System 11 

Model as the global forecast model. Based on the ensemble Kalman filter scheme, DART supports the radiative transfer model 12 

that is used to simulate the satellite radiances from the model state. To make the AMSU-A data available to be assimilated in 13 

DART, preprocessing modules are developed, which consist of quality control and bias correction processes. In the quality 14 

control, three sub-processes are included: gross quality control, channel selection, and spatial thinning. The bias correction 15 

process is divided into scan-bias correction and air-mass-bias correction. As input data used in DART, the observation errors 16 

are also estimated for the AMSU-A channels. In the trial experiments, a positive analysis impact is obtained by assimilating 17 

the AMSU-A observations on top of the DART data assimilation system that already makes use of the conventional 18 

measurements. In particular, the analysis errors are significantly reduced in the whole troposphere and lower stratosphere over 19 

the Northern Hemisphere. Overall, this study demonstrates a positive impact on the analysis when the AMSU-A observations 20 

are assimilated in the DART assimilation system. 21 

1 Introduction 22 

Data assimilation is a numerical procedure for making the initial condition (“analysis”) that is used as the starting 23 

point for a numerical weather prediction (NWP). In the data assimilation process, various observation data are combined with 24 

the short-term forecast (“background”) derived from the NWP model, based on the error characteristics of the observations 25 

and model forecast (Kalnay, 2003). With the advances in the observation/computation technique and the improved data 26 

assimilation methodology, the quality of the initial condition significantly increases, which enhances the forecast skill. In 27 

particular, the initial condition has dramatically improved since the satellite observations started to be assimilated (Migliorini 28 

et al., 2008; Eyre et al., 2020; Eyre et al., 2022). It is because the satellites cover the regions where the conventional 29 

observations are sparse or absent. Among many types of satellite observations being assimilated, a significant forecast benefit 30 

mainly comes from the observations of the hyperspectral infrared and microwave sounders that provide unique information on 31 

the vertical structure of key atmospheric parameters (e.g., temperature and moisture) (Joo et al., 2013; Eresmaa et al., 2017; 32 

Menzel et al., 2018). For this reason, satellite observations are actively being assimilated into the data assimilation system in 33 

many operational NWP centers. 34 

To advance the research related to data assimilation, a well-organized data assimilation system is essential, which 35 

consists of the forecast model, a data assimilation scheme, and flexible interfaces to use various types of observations. 36 

Operational NWP centers have well-constructed assimilation systems to use diverse types of available observations with up-37 

to-date data assimilation schemes. However, researchers, who are not affiliated with the operational NWP centers, are restricted 38 

from accessing these data assimilation systems, because these operational NWP systems should be securely managed to 39 
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provide global weather forecasting to the forecasters and users on time. In addition, as most operational global NWP systems 40 

are installed in high-performing computation systems due to the huge computation resources required, it is practically 41 

impossible to handle the operational NWP system under the computation environment in which sufficient computation 42 

resources are not provided. Thus, a user-friendly global data assimilation system is needed for small numerical modeling 43 

communities to attempt challenging studies related to advancing the data assimilation quality. 44 

 The National Center for Atmospheric Research (NCAR) has developed an open-source data assimilation tool that is 45 

named the Data Assimilation Research Testbed (DART) for data assimilation research, development, and education (Anderson 46 

et al., 2009). DART has interfaces to diverse Earth system components (e.g., atmosphere, ocean, and cryosphere) developed 47 

by many modeling centers. For instance, the Community Atmospheric Model (CAM), the atmospheric component of the 48 

Community Earth System Model (CESM) developed by NCAR, can be used to provide the short-range forecast that is the 49 

background field in DART. DART is based on the ensemble data assimilation method instead of the variational method, which 50 

requires complicated software specific to a particular numerical prediction model (Anderson et al., 2009; Raeder et al., 2012). 51 

In addition, well-defined modules are included to make various types of observations available in the DART data assimilation 52 

process. Liu et al. (2012) investigated the impact of the Global Positioning System (GPS) Radio Occultation (RO) observations 53 

on the forecast of Hurricane Ernesto (2006) using the DART assimilation system. Coniglio et al. (2019) showed that additional 54 

forecast benefit is made by assimilating the measurements of ground-based wind profilers. In addition, a decade-long reanalysis 55 

was created with 80 ensemble members derived from DART, using ground-based data, satellite-based winds, GPS-RO 56 

observations, and temperature soundings retrieved from the Atmospheric Infrared Sounder (AIRS) observation (Raeder et al., 57 

2021). 58 

 However, there are few studies of assimilating satellite-measured radiances in the DART data assimilation system, 59 

because the previous version of DART did not have the essential components, e.g., the radiative transfer model (RTM), needed 60 

to simulate the satellite radiances from the model state. Fortunately, in the recent version of DART (version 9.11.13), the RTM 61 

is included. The Radiative Transfer for TIROS Operational Vertical Sounder (RTTOV) version 12.3 is supported to map the 62 

model space into observation space in the data assimilation scheme (Saunders et al., 2018). In Zhou et al. (2022), the visible 63 

imagery of the Chinese geosynchronous-orbiting (GEO) satellite was assimilated in DART, but using the Observing System 64 

Simulation Experiment (OSSE) framework in which the visible imagery was simulated and then assimilated. Thus, it is of 65 

interest to assimilate the satellite-observed radiances using the DART data assimilation system, in order to know how the 66 

analysis derived from DART is affected by satellite observations.  67 

Considering the fact that the analysis/forecast impact derived from the satellite radiances mainly comes from 68 

observations of hyperspectral infrared and microwave sounders (English et al., 2013; Joo et al., 2013; Kim and Kim, 2019), it 69 

is reasonable to assimilate the observations of both sounders first. Unfortunately, the use of hyperspectral infrared sounder 70 

observations was not supported in the recent version of DART. For this reason, we attempt to assimilate the radiances of the 71 

Advanced Microwave Sounding Unit-A (AMSU-A) temperature sounder within the DART data assimilation system coupled 72 

with the NCAR CESM. AMSU-A instruments are currently operating on board many low-earth-orbiting (LEO) satellite 73 

platforms, and thus a large amount of AMSU-A observation data is available for assimilation. In addition, as the microwave 74 

sounder observations are less sensitive to clouds than the infrared sounder observations, the data availability of AMSU-A is 75 

better than that of the infrared sounder. As the preprocessing modules (e.g., quality control, cloud detection, and spatial thinning) 76 

for AMSU-A observations are not provided in the DART package, they are developed in this study. In addition, the diagonal 77 

observation error covariance matrix is estimated using the method suggested by Desroziers et al. (2005), and the bias correction 78 

scheme is also developed based on the methods suggested by Harris and Kelly (2001). To assess the impact of assimilating 79 

AMSU-A observations on the analysis derived from DART, the assimilation experiments are conducted using the DART 80 

assimilation system coupled with the CESM as the forecast model system. 81 

 This paper is organized as follows. Section 2 provides the background information on the DART data assimilation 82 
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system and CESM. Observation data assimilated in DART are described in section 3. The developed preprocessing steps and 83 

the estimated observation errors are presented in sections 4 and 5, respectively. The setup of the assimilation experiments is 84 

explained in section 6. The results of the first-guess/analysis departure analysis and the analysis impact are explored in section 85 

7, followed by a summary in section 8. 86 

2 DART-CESM data assimilation system 87 

2.1 Data Assimilation Research Testbed (DART) 88 

DART is an open-source assimilation package that has been developed by NCAR since 2002 for data assimilation 89 

development, research, and education. DART can be coupled with full-complexity Earth system components due to the flexible 90 

interfaces provided. In addition, the DART package provides the modules to convert observation data from a variety of native 91 

formats, e.g., the Binary Universal Form for the Representation of meteorological data (BUFR) format and the Hierarchical 92 

Data Format (HDF), into the input format specified for the DART system (Anderson et al., 2009; Raeder et al., 2012). The 93 

recent version of DART (version 9.11.13) is capable of using the RTTOV, a fast RTM, for assimilating visible, infrared, and 94 

microwave satellite observations. Provided in RTTOV, many satellite instruments on board the GEO and LEO satellites are 95 

also supported in the DART assimilation package, but the hyperspectral infrared sounders, e.g., the Cross-track Infrared 96 

Sounder (CrIS) and the Infrared Atmospheric Sounding Interferometer (IASI), are excluded (Hoar et al., 2020). The main data 97 

assimilation technique provided by DART is the ensemble Kalman filter (EnKF) in which the forecast error covariance is 98 

estimated using short-range ensemble forecasts. The derived forecast error covariance is fully multivariate and depends on the 99 

synoptic situation. 100 

2.2 Community Earth System Model (CESM) 101 

 CESM version 2 (CESM v2.1.0) is used as the model component of the ensemble data assimilation system. CESM2 102 

is the latest generation of coupled climate/earth modeling system developed by NCAR, consisting of the atmosphere, land 103 

surface, ocean, sea-ice, land-ice, river, and wave models. These component models can be coupled to exchange states and 104 

fluxes (Hurrell et al., 2013; Kay at al., 2015). In this study, atmosphere and land component models are actively coupled, but 105 

the ocean component (sea surface temperature) and sea ice coverage are specified by data read from files. As the atmosphere 106 

model of CESM2, CAM version 6 (CAM6) is an atmospheric general circulation model (AGCM) with the Finite Volume (FV) 107 

dynamical core (Danabasoglu et al., 2020). CAM6 provides the short-term forecast (6-h forecast) of the atmospheric state, 108 

which is used as the background state in the DART assimilation scheme. The land model is the Community Land Model 109 

version 5 (CLM5). The atmospheric variables are directly updated by the information derived from the observations ingested 110 

in the DART assimilation process, while the land state is affected interactively by the updated atmosphere state because the 111 

two component models are coupled. The two active models (CAM6 and CLM5) are run with a nominal 1° (1.25° in longitude 112 

and 0.95° in latitude) horizontal resolution. CAM6 has 32 vertical levels from the surface level to the top at 3.6 hPa (about 40 113 

km). 114 

3 Observations 115 

3.1 NCEP PrepBUFR data 116 

 The baseline observation data are obtained from the National Centers for Environmental Prediction (NCEP) 117 

Automated Data Processing (ADP) global upper air and surface weather observations that are available from the NCAR 118 

Research Data Archive (NCAR RDA) (https://rda.ucar.edu/). These data are produced in the PrepBUFR format for assimilation 119 
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in the diverse NCEP NWP systems, and mainly consist of ground-based observations and satellite-based wind retrievals. The 120 

ground-based observations include land and marine surface reports, aircraft reports, radiosonde, and pilot balloon (pibal) 121 

measurements, which are transmitted via the Global Telecommunications System (GTS) coordinated by the World 122 

Meteorological Organization (WMO). The satellite-based retrievals are provided from the National Environmental Satellite 123 

Data and Information Service (NESDIS). They include oceanic wind derived from the Special Sensor Microwave Imager 124 

(SSMI) and upper wind from the LEO and GEO satellites. As the NCEP ADP dataset is provided in the BUFR format, it must 125 

be converted to the data format available in the DART assimilation system, using the modules provided in the DART data 126 

assimilation package. 127 

3.2 AMSU-A data 128 

 AMSU-A is the microwave temperature sounder that is currently on board diverse sun-synchronous satellite 129 

platforms e.g., MetOp satellites (MetOp-A, -B, and -C), three satellites of the National Oceanic and Atmospheric 130 

Administration (NOAA), and the National Aeronautics and Space Administration (NASA) research satellite Aqua. These three 131 

LEO satellite constellations provide near-global coverage, even in data assimilation that has a sub-daily assimilation window; 132 

NOAA satellites circle in an early-morning orbit (around 0600 local time), MetOp satellites have a mid-morning orbit (around 133 

0900 local time), and Aqua has an afternoon orbit (around 1300 local time). As a cross-track scanning sounder, the AMSU-A 134 

instrument has a total of 15 channels that consist of 12 channels (AMSU-A channels 3–14) over the 50–58 GHz oxygen (O2) 135 

absorption band and three window channels (AMSU-A channels 1, 2, and 15) at 23.8, 31.4, and 89 GHz. The instrument 136 

measures 30 pixels in each swath with a spatial footprint size of 48 km in nadir. The channels over the O2 absorption band 137 

mainly provide information about the vertical structure of tropospheric and stratospheric temperature (Mo, 1999; Goldberg et 138 

al., 2001). In this study, observations of AMSU-A instruments on board four LEO satellites (i.e., NOAA-19, Aqua, MetOp-A, 139 

and MetOp-B) are assimilated within the DART data assimilation system. 140 

 141 

 142 
Figure 1. Flowchart of the preprocessing system for AMSU-A brightness temperatures (BTs). 143 

4 Preprocessing AMSU-A observations 144 
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 Prior to assimilating the AMSU-A observations into DART, the AMSU-A observations should be passed through a 145 

preprocessing stage. Figure 1 shows the flowchart of the preprocessing stage for the AMSU-A observations as well as the 146 

DART assimilation step. In the preprocessing, two main steps are included: quality control and bias correction. Quality control 147 

consists of three sub-processes: gross quality control, channel selection, and spatial thinning. If the difference between the 148 

observed AMSU-A brightness temperature and the forward-modeled brightness temperature derived from the model 149 

background (6-h forecast) is larger than three times the square root of the sum of the observation error variance and the prior 150 

background error variance, the AMSU-A observation is not assimilated (called gross quality control). More detailed 151 

information on the other two sub-processes (i.e., channel selection and spatial thinning) of the quality control and the bias 152 

correction process is described in sections 4.1, 4.2, and 4.3, respectively. 153 

 154 
Figure 2. Spatial distribution of (a) cloud liquid water (CLW, mm), (b) sea-ice index (SII) retrieved from AMSU-A observations on board 155 
NOAA-19, and (c) quality flag of AMSU-A channel 5 (53.6 GHz) from NOAA-19 on 12 August 2014. 156 

4.1 Channel selection 157 

 As each AMSU-A channel has distinct spectral characteristics, it is necessary to carefully choose the channels to be 158 

assimilated in the DART data assimilation system. First, the three AMSU-A channels at 23.8, 31.4, and 89 GHz (i.e., channels 159 

1, 2, and 15), distributed over the window region of the microwave spectrum, are not assimilated. These three window channels 160 
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are mostly affected by the emitted radiances from the surface under clear-sky conditions, so there is almost no information 161 

about the atmosphere. However, AMSU-A channels 1 (23.8 GHz) and 2 (31.4 GHz) are highly sensitive to clouds, so they are 162 

used for the quality control in which clouds are detected. In addition, even though the AMSU-A channels 3 (50.3 GHz) and 4 163 

(52.8 GHz) are located over the O2 absorption band used for the temperature sounding, they have a strong sensitivity to the 164 

surface, so they are not used in DART. Considering that the upper parts of the weighting function of AMSU-A channels 12 165 

(57.29±0.322±0.022 GHz), 13 (57.29±0.322±0.010 GHz), and 14 (57.29±0.3222±0.0045 GHz) are above the top of the 166 

atmosphere (i.e., 3.6 hPa) in the CAM6, these three channels are also removed to prevent vertical interpolation errors that may 167 

occur in the forward modeling using the RTM. This leaves channels 5-11 (53.596±0.115, 54.4, 54.94, 55.5, 57.29, 57.29±0.217, 168 

and 57.29±0.322±0.048 GHz) as the ones which may be assimilated. 169 

 As this study aims to assimilate the AMSU-A observations under the clear-sky condition, the cloud-affected channels 170 

are filtered out in the quality control step. In other words, the tropospheric channels (channels 5–7) whose peak of the weighting 171 

function is below 200 hPa are rejected if the AMSU-A pixel is determined to be a cloud-affected pixel. To determine this, we 172 

calculate the cloud liquid water (CLW) derived from observations of AMSU-A channels 1 and 2 over the ocean, using the 173 

retrieval methodology suggested by Grody et al. (2001). The CLW is defined as follows: 174 

 175 

CLW = cosθ [D0 + 0.754 ln(285.0 – BT23) – 2.265 ln(285.0 – BT31)]   (1) 176 

 177 

 D0= 8.240 – (2.622 – 1.846 cosθ) cosθ       (2) 178 

 179 

where θ is the satellite viewing zenith angle. BT23 and BT31 are the brightness temperature of AMSU-A channels 1 and 2, 180 

respectively. If the retrieved CLW is larger than 0.2 mm, the AMSU-A pixel is judged to be cloud-contaminated, then the three 181 

tropospheric channels (channels 5–7) are rejected. 182 

In this study, seven candidate AMSU-A channels (i.e., channels 5–11) are assimilated differently, depending on the 183 

surface type. Channels 5, 6, and 7 are the main tropospheric channels. Their weighting functions peak below 200 hPa, but also 184 

have a bit of sensitivity to the surface because of the broad vertical shape of the weighting functions. Thus, the quality of the 185 

analysis can be degraded by assimilating the three tropospheric channels over the land and sea-ice types whose surface 186 

information (e.g., surface temperature and surface spectral emissivity) is uncertain. For this reason, AMSU-A channels 5–7 are 187 

not assimilated over the land and sea ice. To identify sea-ice area, the sea-ice index (SII) is retrieved from observations of 188 

AMSU-A channels 1 and 3 over the high latitude region (poleward of 50 degrees), using the retrieval algorithm suggested by 189 

Grody et al. (1999). The SII is derived as follows: 190 

 191 

SII = 2.85 + 0.20 BT23 – 0.028 BT50       (3) 192 

 193 

where BT50 is the brightness temperature of AMSU-A channel 3. Three tropospheric channels are turned off if the SII is larger 194 

than 0.1 in the latitudes beyond 50 degrees. However, as the surface information over the ocean is relatively reliable, seven 195 

candidate AMSU-A channels are assimilated under the clear-sky condition. The AMSU-A channel list for DART is summarized 196 

in Table 1. As an example, Figures 2a and b present the spatial distribution of the CLW and the SII retrieved from AMSU-A 197 

on board NOAA-19 on 12 August 2014. It is found that many regions over the ocean are covered by cloud-related systems 198 

(CLW > 0.2 mm) and also sea-ice (SII > 0.1) exists near the north and south pole regions. Observations of AMSU-A channel 199 

5 over the cloud region and sea-ice areas are rejected (Fig. 2c). The channel selection process is also applied to the other two 200 

AMSU-A channels (channels 6 and 7) which are likely affected by clouds and sea ice. In the pre-trial runs, it was found that 201 

the analysis quality is degraded if the AMSU-A observations are assimilated over Antarctica during the Southern Hemisphere 202 
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winter season. It seems to be due to the complex topography of the Antarctic continent, extreme cold weather conditions, and 203 

large errors in the numerical model. Thus, AMSU-A observations are not used over the high latitude region (> 60°S) during 204 

the Southern Hemisphere winter season, in order to prevent the degradation of the analysis quality. 205 

 206 

Table 1. AMSU-A channel list for the DART data assimilation. 207 

Satellite 
platform Type CH5 CH6 CH7 CH8 CH9 CH10 CH11 

Aqua 
Land/Sea-ice 

N/A* 
X 

N/A 
O O O O 

Ocean O O O O O 
Cloud X O O O O 

NOAA-19 
Land/Sea-ice X X X 

N/A 
O O O 

Ocean O O O O O O 
Cloud X X X O O O 

MetOp-A 
Land/Sea-ice X X 

N/A N/A 
O O O 

Ocean O O O O O 
Cloud X X O O O 

MetOp-B 
Land/Sea-ice X X X O O O O 

Ocean O O O O O O O 
Cloud X X X O O O O 

*N/A; not available due to the malfunction in August and September 2014. O; assimilated. X; excluded. 208 

4.2 Spatial thinning 209 

 In addition to the inter-channel error correlation (refer to section 5), spatial error correlation between the observations 210 

at a close distance also exists due to different representativeness of the observed radiances and the model state, and the 211 

uncertain quality control process such as cloud detection (Ochotta et al., 2005; Bormann and Bauer, 2010). Thus, the analysis 212 

is likely to be sub-optimized if highly dense observations are assimilated without considering the spatial error correlations. A 213 

common treatment to counteract the spatial error correlation is spatial thinning which is widely used in data assimilation 214 

systems operated by the NWP centers. In this study, the AMSU-A observations are spatially thinned at an interval of about 290 215 

km that was empirically estimated with multiple pre-trial runs. 216 

4.3 Bias correction 217 

 The biases mainly come from systematic errors: instrument calibration errors, inaccuracies of the RTM, and 218 

uncertain preprocessing (e.g. cloud detection errors). The biases tend to change with time (diurnal or seasonal), the scan 219 

position of the instrument, and air mass. While random errors are considered by defining the observation errors used in the 220 

assimilation process, the biases should be removed before assimilating the satellite observations. In general, the biases are 221 

estimated using the time averaged departures between the observed radiances and the simulated radiances from the 222 

spatiotemporally collocated model field (background), because of the absence of reference data suitable to compare the satellite 223 

observations. To estimate the systematic biases coming from diverse error sources, in this study, two bias correction processes 224 

are performed separately: scan-bias correction and air-mass-bias correction, using the statistical bias correction methods 225 

suggested by Harris and Kelly (2002). 226 

As a cross-track microwave sounder, the AMSU-A scans 30 field of views (FOVs) per scan line, which are distributed 227 

symmetrically about the nadir. The scan angles of 30 FOVs range between ±48.33°. Thus, the observed radiance varies 228 

depending on the scan angle even though the observation point is the same. The variation of AMSU-A radiance is due to the 229 
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change in the optical path length between the earth and the satellite instrument, called the limb effect. The variation of radiance 230 

along with the scan angle can be simulated in the RTTOV embedded in DART. However, the mean first-guess departures 231 

between the AMSU-A observed radiances and forward-modeled radiances still increase with an increasing scan angle on the 232 

center of two near-nadir FOVs (15 and 16) (Fig. 3a), meaning that the residual scan-angle-dependent biases exist for each 233 

AMSU-A channel. Thus, the scan-bias correction is required to correct the residual scan bias for each AMSU-A channel. In 234 

this study, the scan-bias correction is performed using the pre-computed residual scan bias for each AMSU-A channel. There 235 

are two steps to estimate the residual scan bias for AMSU-A channels assimilated. First, the mean bias of the departure between 236 

the AMSU-A observed radiances and forward-modeled radiances for each FOV is made with the data assimilation results 237 

derived from the pre-trial run. Second, the averaged residual scan bias is obtained by removing the mean bias of two near-238 

nadir FOVs (15 and 16) from the bias of the departure for each FOV (1–30). In addition, as shown in Fig. 3b, it is also found 239 

that the residual scan biases have different patterns depending on the latitude band for AMSU-A channel 6 (not shown for 240 

other channels), suggesting that the use of globally averaged scan bias is likely to deteriorate the quality of AMSU-A data 241 

assimilation. Thus, the residual scan (𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) bias for each AMSU-A channel is subdivided into 15 latitude bands as follows: 242 

 243 

𝑏𝑏i
scan(𝜃𝜃,𝜙𝜙)= [𝑦𝑦 − 𝐻𝐻(𝑥𝑥b)]𝑖𝑖(𝜃𝜃,𝜙𝜙) − [𝑦𝑦 − 𝐻𝐻(𝑥𝑥b)]𝑖𝑖(𝜃𝜃 = 0,𝜙𝜙)  (4) 244 

 245 

where the subscript i denotes the AMSU-A channel number (i=1, 2, . . . , 15), θ is the satellite scan angle, ϕ is the latitude band 246 

at an interval of 10 degrees, y is the AMSU-A radiance, xb is the background model state, and H is the observation operator. 247 

Prior to the air-mass-bias correction, the observed brightness temperatures of each AMSU-A channel are corrected using the 248 

estimated scan bias coefficients. 249 

 250 
Figure 3. (a) Globally averaged, residual scan bias of AMSU-A channels 5–11 and (b) the regionally averaged, residual scan bias depending 251 

on 14 latitude bands for AMSU-A channel 6 on board MetOp-B during the period from 11 August to 25 August 2014. 252 

 253 
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The air-mass bias (𝑏𝑏𝑠𝑠𝑖𝑖𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠) is predicted using the multivariate regression method. The biases are mainly due to 254 

uncertainties in the RTM, which tend to vary with the air mass and surface characteristics. The predictors, used in the regression 255 

method, come from the model variables (i.e., 1000–300 hPa thickness, 200–50 hPa thickness, and surface temperature) that 256 

include information on air mass and surface characteristics. The predictors regress to the first-guess departure between the 257 

satellite radiances and forward-modeled radiances as follows: 258 

 259 

𝑏𝑏𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠 =  𝛽𝛽𝑖𝑖,0 + ∑ 𝛽𝛽𝑖𝑖,𝑗𝑗𝑝𝑝𝑖𝑖,𝑗𝑗𝑁𝑁
𝑗𝑗=1       (5) 260 

 261 

where βi,0 indicates the constant component of bias bi, and βi,j are the bias correction coefficients of the predictor pi,j. The 262 

subscripts i and j denote the AMSU-A channel number and the predictor number (i.e., j = 1,2…N), respectively. 263 

 264 

 265 
Figure 4. Histogram of the first-guess departures between the observations of the MetOp-B AMSU-A channels 5–11 and the corresponding 266 
model background (6-h forecast). Colors indicate the results before the bias correction (blue) and after the bias correction (red), respectively. 267 
 268 

For the tropospheric AMSU-A channels (channels 5–7), the air mass bias is estimated with two model variables (i.e., 269 

1000–300 hPa thickness and surface temperature), because the peak of the channel weighting function is positioned below the 270 

200 hPa pressure level, and these channels have a bit of sensitivity to the surface. However, 200–50 hPa thickness is only 271 

employed for other upper-tropospheric and stratospheric AMSU-A channels (channels 8–11) whose peak of the weighting 272 

function is above 200 hPa. As the biases fluctuate with time, it is reasonable to update the regression coefficients and an 273 

intercept point periodically, rather than using the climatological-based coefficients that are estimated using the long-term model 274 

outputs. In this study, at each data assimilation cycle, the regression coefficients and an intercept point for each AMSU-A 275 

channel are computed using DART outputs for the last four cycles and then used to predict the air-mass biases. As shown in 276 

Fig. 4, the histograms of the first-guess departures of the MetOp-B channels 5–11 show a positive bias and a Gaussian 277 

distribution if the AMSU-A observations are not bias-corrected. In particular, channels 5 and 6 have a large positive bias of 278 
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1.0–1.5K. However, the positive biases are almost removed through the bias correction process, meaning that the bias 279 

correction scheme works well. 280 

5 AMSU-A observation errors 281 

 As well as the model background error, the observation errors play an important role in determining the weight of 282 

the observations in the data assimilation system. Thus, it is an important step to define the observation errors so that the 283 

observations are suitably blended with the model background, which is a 6-hour forecast derived from the CAM6, in order to 284 

provide the optimal initial condition to the numerical model. In this study, a diagonal observation error covariance matrix is 285 

used for the AMSU-A channels, meaning that the inter-channel error correlation is not considered. In fact, the use of the 286 

diagonal observation error covariance matrix may be problematic because the inter-channel error correlation definitely exists 287 

for the infrared and microwave sounders (Bormann and Bauer, 2010; Stewart et al., 2014; Weston et al., 2014; Campbell et al., 288 

2017). Unfortunately, the recent version of DART (version 9.11.13) does not support the use of a full observation error 289 

covariance matrix in which the diagonal and off-diagonal components are fully defined. For this reason, the diagonal 290 

observation errors are empirically inflated to counteract the effect of error correlation between different AMSU-A channels. In 291 

other words, the inflated diagonal observation errors take account of the inter-channel error correlation as well. 292 

 293 

 294 
Figure 5. Estimated observation errors (K) for AMSU-A channels on board Aqua, NOAA-19, MetOp-A, and MetOp-B satellite platforms. 295 

Black asterisks indicate the instrument noise errors for AMSU-A channels. 296 

 297 

 To estimate the diagonal components (called variances) of the observation error covariance matrix (R) for AMSU-A 298 

channels, we use a diagnostic procedure suggested by Desroziers et al. (2005) in which the error variances are made with two 299 

departures, i.e., the background innovation (O-B) between the observation (y) and the model background (xb) and the analysis 300 

innovation (O-A) between the observation and the model analysis (xa), using the expression in Eq. (6). 301 

 302 

𝑅𝑅 = 𝐸𝐸[{𝑦𝑦 − 𝐻𝐻(𝑥𝑥b)} {𝑦𝑦 − 𝐻𝐻(𝑥𝑥a)}T]     (6) 303 

 304 

where E is the statistical expectation operator and the superscript “T” indicates the matrix transpose. To compute the 305 

observation error variances of AMSU-A channels on board four satellite platforms (i.e., Aqua, NOAA-19, MetOp-A, and 306 

MetOp-B), the background and analysis innovations were derived from the pre-trial run. In the pre-trial run, the instrument 307 

noise errors were initially used as the observation errors within DART. Then, the observation error variances were estimated 308 
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using the Eq. (6). 309 

As the surface-sensitive channels and upper-stratospheric channels are not assimilated in this study (see section 4.1), 310 

Figure 5 shows the observation errors of seven AMSU-A channels (channels 5–11) as well as the instrument noise errors 311 

employed in the pre-trial run. As some channels (i.e., channels 5 and 7 for Aqua, channel 8 for NOAA-19, and channels 7 and 312 

8 for MetOp-A) malfunctioned during the trial period (11 August – 30 September 2014), the errors for these channels were not 313 

needed or estimated. The estimated errors are larger than the instrument noise errors because various error sources (e.g., the 314 

radiative transfer modeling errors, representative errors, and systematic errors) are considered as well as the instrument noise 315 

errors. The estimated errors for the tropospheric and upper-tropospheric channels (channels 5–9) are smaller than the errors 316 

for the stratospheric channels (channels 10–11). This error pattern is also presented for the instrument noise errors. As 317 

aforementioned, the estimated observation errors were inflated by a factor of two that was empirically estimated by the multiple 318 

pre-trial runs, in order to counteract the inter-channel error correlation. Then, the inflated observation errors, two times the 319 

estimated observation errors, were employed for the trial experiments aiming at assessing the analysis impact of assimilating 320 

the AMSU-A observations. 321 

6 Trial experiment design 322 

 To diagnose the analysis impact of assimilating the AMSU-A observations into the DART global data assimilation 323 

system, two assimilation experiments were conducted: (a) a control run (CNTL) where the conventional observations (i.e., 324 

ground-based observations and satellite-derived winds) were assimilated, and (b) “AMSU-A run”, where the AMSU-A 325 

observations from four LEO satellite platforms (i.e., Aqua, NOAA-19, MetOp-A, and MetOp-B) were assimilated as well as 326 

the conventional data that were assimilated in the CTRL run. For the AMSU-A run, the developed preprocessing steps (e.g., 327 

channel selection, thinning, and bias correction) were applied to the AMSU-A observed radiances and then the pre-computed 328 

AMSU-A observation errors were employed in the DART data assimilation process. 329 

For two trial runs, available observation data were assimilated within a 6-h assimilation window from -3 to +3 h 330 

centered at the nominal analysis time (0000, 0600, 1200, and 1800 UTC). All trial runs were carried out four times a day for 331 

the trial period from 0000UTC 11 August to 1800UTC 30 September 2014. The CAM6 forecast model was run with a nominal 332 

1° horizontal resolution (1.25° in longitude and 0.95° in latitude) and 32 vertical levels. The initial ensembles that are available 333 

at the NCAR RDA (https://rda.ucar.edu/ datasets/ds345.0/) were obtained from the DART reanalysis. To adjust the effect of 334 

initial ensembles, a two-week spin-up period (0000UTC 11 August to 1800UTC 24 August 2014) was included in the trial 335 

period. In this study, the ensemble adjustment Kalman filter (EAKF) is applied, which is a variation of the EnKF (Anderson, 336 

2001). Twenty ensemble members were integrated to compute the flow-dependent background error covariance and the 337 

correlation between the DART state variables and observations.  338 

All EnKF-based assimilation techniques have the sampling error that is induced by the limited size of the ensemble. 339 

In particular, the sampling error is likely to be large when the absolute value of correlation between the DART state variables 340 

and the observations is small. To remove the spurious correlation induced by limited ensemble size in DART, the correlation 341 

is multiplied by a localization factor that decreases from 1 to 0 with the physical distance between the model state variables 342 

and the observations. In DART, the localization half-width can be user-defined, which is half of the distance to where the 343 

localization factor is zero. In this study, the horizontal/vertical localization half-width of 0.075 radians was employed to prevent 344 

the use of erroneous correlation. However, as the model top height is quite lower than the Earth’s horizontal scale, the 345 

localization half-width in the vertical is normalized by the user-defined scale height, which is equivalent to one radian. In 346 

DART, the difference in scale height between the model top (360 Pa) and the standard surface pressure (101325 Pa) is 5.73. 347 

In this study, the normalization scale height of 1.5, a default value in DART, was used, which is assumed to be equal to one 348 

radian. Thus, the localization half-width of 0.075 radians is converted into the scale height of 0.11, meaning that the localization 349 
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cutoff can be an ellipsoid that is flat horizontally. 350 

In addition to the reduction of localization half-width (compared to the default value of 0.15), the sampling error 351 

correction algorithm was applied, which uses pre-defined information about the horizontal distribution of the correlation 352 

between the model state variables and the observations as a function of ensemble size. Detailed information on the sampling 353 

error correction algorithm is described in Anderson (2012). 354 

 In addition, the EnKF technique has a risk of underestimation of the ensemble spread, meaning that the ensemble 355 

estimates are too confident. If the ensemble spread becomes too small, the observation data are ignored in the data assimilation 356 

process, resulting in an ensemble collapse (Anderson et al., 2009; Gharamti et al., 2019). To mitigate the underestimation issue 357 

of the ensemble spread, the uncertainty in the ensemble estimate is inflated by linearly moving each ensemble member away 358 

from the ensemble mean. It means that the standard deviation of the ensemble spread increases by applying the inflation value 359 

in a way that the ensemble mean is unchanged. In DART, the ensemble spread varies spatiotemporally, as a function of the 360 

evolving observation network and the chosen inflation algorithm. These experiments use a spatiotemporally varying inflation 361 

algorithm. More detailed information on the inflation algorithm adopted in DART is presented in Gharamti et al. (2019). 362 

 363 

 364 
Figure 6. The standard deviation (STDDEV) of the first-guess departures for the radiosonde (a) temperature, (b) zonal wind, and (c) 365 
meridional wind for the control (CNTL run; black line) and experiment (AMSU-A run; red line) runs. Solid and dashed lines indicate the 366 
STDDEV and the number (top axis) of radiosonde measurements assimilated, respectively. Horizontal bars indicate 99% confidence intervals. 367 

7 Results 368 

7.1 Assessment of first-guess departure and analysis departure 369 

 As the same conventional radiosonde measurements were assimilated in the two trial runs (i.e., CNTL and AMSU-370 

A), the first-guess departure statistics between the radiosonde measurements and the spatiotemporally-collocated background 371 

states (6-h forecast) can be used to assess the impact of the AMSU-A observations to the short-range forecast. Figure 6 shows 372 

the vertical structure of the standard deviation (STDDEV) of the first-guess departure from the radiosonde temperature, zonal 373 

wind, and meridional wind as well as the number of the radiosonde measurements used.  374 

For the temperature, the first-guess departure errors are significantly reduced below 300 hPa for the AMSU-A runs 375 

as compared with the errors for the CNTL run (Fig. 6a). Because the AMSU-A channels provide vertical information about 376 
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the air temperature, the temperature error reduction is the direct impact derived by assimilating the AMSU-A observations in 377 

the AMSU-A run. In addition to the radiosonde temperature, the first-guess departure errors decrease for the two wind 378 

components (i.e., zonal and meridional winds) (Figs. 6b and c). In particular, the STDDEVs of the two winds at the 300 hPa 379 

level are reduced by up to about 4.7m/s in the AMSU-A run, compared to the error of about 5.1m/s for the CNTL run. As the 380 

model background error covariance includes the multivariate correlation between different model parameters (e.g., temperature 381 

and winds), a change in one model parameter can change another model parameter in the assimilation process. In addition, 382 

model parameters are linked in the governing equations and the physical parameterizations, which are embedded in the CAM6. 383 

That is, the change in one parameter results in the adjustment of another parameter in the model time integration. Thus, the 384 

error reduction of the wind components is the indirect impact of the improved temperature field by assimilating the AMSU-A 385 

observations. 386 

 In addition to the first-guess departure analysis of radiosonde, the assimilation impact of the AMSU-A observations 387 

can be diagnosed by comparing the first-guess departures of the AMSU-A with the analysis departures between the AMSU-A 388 

observations and the model analysis state. In general, if the observations are successfully assimilated, the STDDEV of the 389 

analysis departure is smaller than that of the first-guess departure, because the background fields are improved by assimilating 390 

the observations. As shown in Fig. 7, the STDDEVs of the analysis departure are significantly smaller than that of the first-391 

guess departure for AMSU-A assimilated channels (channels 5–11) regardless of the satellite platforms, meaning that the 392 

AMSU-A observations have a positive analysis impact. In particular, the gap between the STDDEVs of two departures is large 393 

for the stratospheric AMSU-A channels (channels 9–11). 394 

 395 

 396 
Figure 7. The standard deviations (STDDEVs) of the first-guess departure (square) and analysis departure (diamond) for AMSU-A channels 397 
on board Aqua, NOAA-19, MetOp-A, and MetOp-B satellites. 398 

7.2 Analysis impact of AMSU-A observations  399 

 To assess the impact of the AMSU-A observations on the analysis derived from the DART data assimilation system, 400 

the analysis errors are computed between the DART analysis and the European Centre for Medium-Range Weather Forecasts 401 

(ECMWF) reanalysis version 5 (ERA5) as the reference data. As the ERA5 is made through the assimilation of all available 402 

observation data in the ECMWF data assimilation system and provides consistent maps without spatial gaps, the ERA5 is 403 

employed to assess the model-derived output. For four primary atmospheric parameters (i.e., 500 hPa geopotential height, 404 

temperature, zonal wind, and meridional wind), the analysis errors are computed. In particular, the skill score of 500 hPa 405 

geopotential height is widely used as one of the key indicators to assess the overall performance of the model-derived output, 406 

because large-scale atmospheric motion in the middle troposphere (500 hPa) is closely linked with lower-level atmospheric 407 

motion. 408 
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Figure 8 describes the mean bias and STDDEV of 500 hPa geopotential height for the CNTL and AMSU-A run, 409 

depending on the latitudinal regions. Detailed error values are described in Table 2. For two trial runs, overall negative mean 410 

bias occurs, reaching up to about -18m. However, the bias difference varies depending on the latitudinal regions. Over the 411 

Northern Hemisphere (30°N–90°N), the AMSU-A run has a larger negative bias than the bias for the CNTL run. However, 412 

over the tropics (30°S–30°N) and Southern Hemisphere (30°S–90°S), the CNTL run has a larger negative bias than the bias 413 

for the AMSU-A run. Thus, similar global mean bias (about -18m) for two trial runs is caused by the offsetting between 414 

regionally different bias patterns. 415 

 416 

 417 
Figure 8. (a) Mean bias and (b) standard deviation (STDDEV) of 500 hPa geopotential height over the global (grey), Northern 418 
Hemisphere (NH; blue), tropics (TR; green), and Southern Hemisphere (SH; red). Filled and hatched bars indicate the results 419 
for the control (CNTL) and experiment (AMSU-A) run, respectively. 420 
 421 

Considering that the geopotential height is a primary function of the average air temperature between the surface 422 

and the pressure level, we assumed that the model temperature has a cold bias at least below the 500 hPa pressure level. As 423 

expected, it is found that a negative bias is presented in the temperature field for both two trial runs (not shown). In addition, 424 

as shown in Fig. 9, the first-guess departure of the radiosonde temperature for the two trial runs has large positive values, 425 

implying that a cold bias exists in the model temperature fields (6-h forecast). In Raeder et al. (2021), it was noted that the 426 

CAM6/DART-derived reanalysis has a cold bias in the troposphere. However, it is still unclear the reason why the CAM6-427 

based temperature fields have a cold bias. The bias issue in CAM6 will be an interesting study in future work. 428 

 429 

Table 2. Error statistics of 500 hPa geopotential height (m) for the control (CNTL run) and experiment (AMSU-A run) run. Better values 430 
are bolded. 431 

Trial  
name 

Bias STDDEV 

Global NH TR SH Global NH TR SH 

CNTL -18.70 -13.90 -19.05 -27.45 48.82 48.02 13.55 62.54 

AMSU-A -18.59 -17.39 -17.73 -25.51 42.42 31.55 12.41 58.29 
 432 

Even though the AMSU-A observations, including the temperature information, are additionally assimilated in the 433 

AMSU-A run, the AMSU-A run has a negative temperature bias that occurs in the CNTL run. It is related to the bias correction 434 

applied to the AMSU-A observations in DART. As mentioned in section 4.3, the AMSU-A radiances are corrected by 435 

eliminating the biases based on the departure between the observed radiances and the forward-simulated radiances from the 436 

model background field. In addition, in this study, the bias correction coefficients were even updated at each cycle, using the 437 

DART outputs from the last four cycles. Thus, the information on the model bias is included in the biases derived from the 438 
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correction scheme, which gradually fits the observations to the model background over the sequent assimilation cycles. As a 439 

result, the model bias still exists in the AMSU-A run as well as the CNTL run. 440 

However, the global-mean STDDEV of 500 hPa geopotential height for the AMSU-A run is reduced to about 42 m 441 

as compared with the STDDEV (about 49 m) for the CNTL run, meaning that the 500 hPa geopotential height predictions are 442 

improved by assimilating the AMSU-A observations (Table 2). In particular, the error is significantly reduced over the Northern 443 

Hemisphere. As shown in Figs. 10a and b, a positive impact mainly occurs in the high-latitude region (> 60°N). In contrast, 444 

over the tropics and Southern Hemisphere, the error reduction is relatively smaller than over the Northern Hemisphere. In the 445 

tropics, the analysis error (about 14 m) is quite small for the CNTL run, as compared with the large errors of about 48 m and 446 

63 m in the Northern Hemisphere and Southern Hemisphere, respectively. The small STDDEV over the tropics in the CNTL 447 

run (shown in Fig. 10a) suggests that the assimilation of the conventional data has brought the model ensembles into an 448 

agreement with the AMSU-A observations, so less improvement is there compared to the extratropics. 449 

 450 

 451 

Figure 9. Mean bias of the first-guess departure for the radiosonde temperature measurements for the control (CNTL run; black line) and 452 
experiment (AMSU-A run; red line) runs. 453 
 454 

It is noted that the AMSU-A assimilation impact is neutral in the high-latitude region (> 60°S) over the Southern 455 

Hemisphere. In contrast, in the high-latitude region (> 60°N) over the Northern Hemisphere, the assimilation impact is 456 

significant. It is because the AMSU-A observations were not assimilated in the high latitude region (> 60°S) over the Southern 457 

Hemisphere during the Southern Hemisphere winter season when the trial runs were conducted (mentioned in section 4.1), 458 

resulting in the neutral analysis impact. Thus, if the high-latitude regions (i.e., 60°S-90°S and 60°N-90°N) are extracted in the 459 

error computation over both hemispheres, the assimilation impact is comparable (not shown). It is still a challenging issue to 460 

assimilate the satellite radiances over the Antarctic continent, because of the complex topography, extreme weather condition, 461 

and large errors in the numerical model. In particular, as the conventional observations are quite sparse in the high latitude 462 

region, the model errors are relatively larger than the other latitudinal regions (i.e., the tropics and mid-latitude region, shown 463 
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in Fig. 10a). In addition, the trial period (11 August – 30 September 2014) is the Southern Hemisphere winter season when the 464 

Antarctic continent was under extremely cold weather conditions. In fact, in the pre-trial run, we found that the analysis field 465 

was degraded near the Antarctic continent by assimilating the AMSU-A observations. Thus, to prevent the analysis degradation, 466 

the AMSU-A observations were rejected over the high latitude region (> 60°S) in the Southern Hemisphere. The assimilation 467 

of the AMSU-A observation in the Antarctic region will be handled in future work. 468 

 469 

 470 
Figure 10. Spatial distribution of the standard deviation (STDDEV) of the 500 hPa geopotential height for the (a) control run 471 
(CNTL) and (b) experiment (AMSU-A) runs. 472 
 473 

 Figure 11 shows the normalized difference of STDDEV of temperature, zonal wind, and meridional wind between 474 

the AMSU-A run and CNTL run, depending on the latitudinal regions (i.e., global, Northern/Southern Hemispheres, and 475 

tropics). The STDDEV difference is normalized by the STDDEV for the CNTL run. A negative value means that assimilating 476 

the AMSU-A observations provide analysis benefit. In contrast, a positive value indicates that the analysis error increases for 477 

the AMSU-A run compared with the error for the CNTL run, implying a negative analysis impact of the AMSU-A observations. 478 

 For the temperature, the global-mean analysis errors are significantly reduced in the whole troposphere and lower 479 

stratosphere for the AMSU-A run, as compared with the CNTL run. Large error reduction occurs in the lower stratosphere (-480 

28% and -21% in 100 hPa and 200 hPa, respectively), which is consistent with the large gap between the STDDEVs of the 481 

first-guess departure and the analysis departure for the stratospheric AMSU-A channels (channels 9–11) whose peak of the 482 

weighting function is above 200 hPa (shown in Fig. 7). Similar to the results of the 500 hPa geopotential height, a strong error 483 

reduction mainly occurs in the Northern Hemisphere where the error reduces up to about 28% in the 500 hPa pressure level 484 

(Fig. 11a). The error decrease trends are consistent with the trends of the first-guess departure errors of the radiosonde 485 

temperature measurements in which a significant error decrease occurs in the 500 hPa layer (Fig. 6a). However, in the lower 486 
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stratosphere (100 hPa pressure level), the analysis error decreases up to about 45% in the Southern Hemisphere. 487 

 For two wind components (i.e., zonal and meridional winds), similar to the results of the temperature, the global-488 

mean analysis errors for the AMSU-A run overall decrease in the whole troposphere and lower stratosphere (Figs. 11b and c). 489 

It is noted that the magnitude of the error decrease tends to increase with height, reaching about -13% in the 100 hPa for the 490 

zonal and meridional wind. Moreover, most analysis impact is made in the Northern Hemisphere, except in the 100 hPa where 491 

the maximum error decrease occurs in the Southern Hemisphere. However, over the Southern Hemisphere, the analysis errors 492 

for the AMSU-A runs are larger than the errors for the CNTL run in the middle and lower troposphere. For the spatial pattern 493 

of the STDDEV of two wind components (not shown), it is found that the error increment mainly occurs in the high latitude 494 

region (> 60°S) where the AMSU-A data were not assimilated for the AMSU-A run. Considering that the temperature fields 495 

above the latitude of 60°S were only updated by the AMSU-A assimilation, the analysis degradation is possibly due to the 496 

discontinuity of the latitudinal temperature gradient near the latitude of 60°S. 497 

 498 

 499 
Figure 11. Normalized difference of the standard deviation (STDDEV) of (a) temperature, (b) zonal wind, and (c) meridional wind between 500 
the experiment (AMSU-A) run and the control (CNTL) run. Colors indicate the latitude regions (global; grey, Northern Hemisphere; blue, 501 
tropics; green, and Southern Hemisphere; red). Horizontal bars indicate 99% confidence intervals. 502 

8 Summary 503 

 In this study, we attempted to assimilate the AMSU-A observations using the global data assimilation system 504 

consisting of DART and CESM. To make the AMSU-A data available to be assimilated, preprocessing steps were developed, 505 

which include quality control (i.e., gross quality control, channel selection and spatial thinning) and bias correction (i.e., scan-506 

bias correction and air-mass-bias correction). In addition, the observation error covariance matrix was estimated, but only its 507 

diagonal components were employed in DART because the inter-channel error correlation is not considered in the current 508 

version of DART. To counteract the inter-channel error correlation, the diagonal components were inflated.  509 

To assess the impact of the AMSU-A observations on the DART-derived analysis, trial experiments were conducted 510 

from 11 August to 30 September 2014. The derived analysis fields were verified using the ERA5 as the reference. For the 511 

primary atmospheric parameters (i.e., 500 hPa geopotential height, temperature, zonal wind, and meridional wind), an 512 

additional analysis benefit is provided by assimilating the AMSU-A observations on top of the DART data assimilation system 513 

which already makes use of the conventional ground-based observations. In particular, a large analysis impact is shown in the 514 
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Northern Hemisphere where the analysis errors of the temperature and two wind components are significantly reduced in the 515 

whole troposphere. However, in the tropics, the analysis impact is relatively small due to the small model errors. Compared 516 

with the Northern Hemisphere, the number of assimilated AMSU-A data is small over the Southern Hemisphere, because the 517 

AMSU-A data are not assimilated in the harsh condition of high latitude regions (> 60°S) during the Southern Hemisphere 518 

winter season, resulting in a relatively small analysis impact over the Southern Hemisphere. 519 

 520 

Code and data availability. DART version 9.11.13 is available at https://github.com/NCAR/DART. CESM version 2.1.0 is 521 

released at https://github.com/ESCOMP/CESM/tree/release-cesm2.1.0. Atmospheric initial conditions and the baseline 522 

observations at the BUFR format are obtained from the NCAR RDA (https://rda.ucar.edu). AMSU-A observations from Aqua 523 

satellite are downloaded via the NASA data center (https://www.earthdata.nasa.gov). AMSU-A observations from NOAA-19, 524 

MetOp-A, and MetOp-B satellites are offered from the EUMETSAT data store (https://www.eumetsat.int/eumetsat-data-store). 525 

The ECMWF ERA5 is available at the Climate Data Store (https://cds.climate.copernicus.eu). As well as the software codes, 526 

the model outputs are available at https://doi.org/10.5281/zenodo.7714755. 527 
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