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Abstract. TS1To improve the initial condition (“analysis”)
for numerical weather prediction, we attempt to assimilate
observations from the Advanced Microwave Sounding Unit-
A (AMSU-A) on board the low-Earth-orbiting satellites. The
data assimilation system, used in this study, consists of the5

Data Assimilation Research Testbed (DART) and the Com-
munity Earth System Model as the global forecast model.
Based on the ensemble Kalman filter scheme, DART sup-
ports the radiative transfer model that is used to simulate
the satellite radiances from the model state. To make the10

AMSU-A data available to be assimilated in DART, prepro-
cessing modules are developed, which consist of quality con-
trol, spatial thinning, and bias correction processes. In the
quality control, two sub-processes are included, outlier test
and channel selection, depending on the cloud condition and15

surface type. The bias correction process is divided into scan-
bias correction and air-mass-bias correction. Like input data
used in DART, the observation errors are also estimated for
the AMSU-A channels. In the trial experiments, a positive
analysis impact is obtained by assimilating the AMSU-A ob-20

servations on top of the DART data assimilation system that
already makes use of the conventional measurements. In par-
ticular, the analysis errors are significantly reduced in the
whole troposphere and lower stratosphere over the North-
ern Hemisphere. Overall, this study demonstrates a positive25

impact on the analysis when the AMSU-A observations are
assimilated in the DART assimilation system.

1 Introduction

Data assimilation is a numerical procedure for making the
initial condition (“analysis”) that is used as the starting point 30

for a numerical weather prediction (NWP). In the data as-
similation process, various observation data are combined
with the short-term forecast (“background”) derived from the
NWP model, based on the error characteristics of the obser-
vations and model forecast (Kalnay, 2003). With the huge 35

number of satellite observations and advances in model con-
figurations (e.g., horizontal/vertical resolution and dynamic
core) and data assimilation, the quality of the initial condi-
tion is significantly increasing, which enhances the forecast
skill. In particular, the initial condition has dramatically im- 40

proved since the satellite observations started to be assimi-
lated (Migliorini et al., 2008; Eyre et al., 2020, 2022). This
is because the satellites cover the regions where the con-
ventional observations are sparse or absent. Among many
types of satellite observations being assimilated, a signifi- 45

cant forecast benefit mainly comes from the observations of
the hyperspectral infrared and microwave sounders that pro-
vide unique information on the vertical structure of key at-
mospheric parameters (e.g., temperature and moisture) (Joo
et al., 2013; Eresmaa et al., 2017; Menzel et al., 2018). For 50

this reason, satellite observations are actively being assimi-
lated into the data assimilation system in many operational
NWP centers.

To advance the research related to data assimilation, a
well-organized data assimilation system is essential, which 55

consists of the forecast model, a data assimilation scheme,
and flexible interfaces to use various types of observations.
Operational NWP centers have well-constructed assimilation
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systems to use diverse types of available observations with
up-to-date data assimilation schemes. However, as most op-
erational global NWP systems require huge computation re-
sources, it is practically impossible for researchers to recre-
ate those systems outside of the NWP centers. Thus, a5

user-friendly global data assimilation system is needed for
small numerical modeling communities to attempt challeng-
ing studies related to advancing the data assimilation quality.

The National Center for Atmospheric Research (NCAR)
has developed an open-source data assimilation tool that10

is named the Data Assimilation Research Testbed (DART)
for data assimilation research, development, and educa-
tion (Anderson et al., 2009). DART has interfaces to di-
verse Earth system components (e.g., atmosphere, ocean,
and cryosphere) developed by many modeling centers. For15

instance, the Community Atmospheric Model (CAM), the
atmospheric component of the Community Earth System
Model (CESM) developed by NCAR, can be used to pro-
vide the short-range forecast that is the background field in
DART. DART is based on the ensemble data assimilation20

method instead of the variational method, which requires
complicated software specific to a particular numerical pre-
diction model (Anderson et al., 2009; Raeder et al., 2012).
In addition, well-defined modules are included to make vari-
ous types of observations available in the DART data assim-25

ilation process. Thus, DART can assimilate many observa-
tion types (e.g., conventional and satellite-based wind). Liu
et al. (2012) investigated the impact of the Global Position-
ing System (GPS) radio occultation (RO) observations on the
forecast of Hurricane Ernesto (2006) using the DART assim-30

ilation system. Coniglio et al. (2019) showed that additional
forecast benefit is made by assimilating the measurements
of ground-based wind profilers. In addition, a decade-long
reanalysis was created with 80 ensemble members derived
from DART, using ground-based data, satellite-based winds,35

GPS-RO observations, and temperature soundings retrieved
from the Atmospheric Infrared Sounder (AIRS) observation
(Raeder et al., 2021).

However, there are few studies of assimilating satellite-
measured radiances in the DART data assimilation system40

because the previous version of DART did not have the es-
sential components, e.g., the radiative transfer model (RTM),
needed to simulate the satellite radiances from the model
state. Fortunately, in the recent version of DART (version
9.11.13), the RTM is included. The Radiative Transfer for45

TIROS Operational Vertical Sounder (RTTOV) version 12.3
is supported to map the model space into observation space
in the data assimilation scheme (Saunders et al., 2018).
In Zhou et al. (2022), the visible imagery of the Chinese
geosynchronous-orbiting (GEO) satellite was assimilated in50

DART but using the Observing System Simulation Experi-
ment (OSSE) framework in which the visible imagery was
simulated and then assimilated. Considering that, it is inter-
esting to assimilate the satellite-observed radiances using the

DART data assimilation system to know how the analysis de- 55

rived from DART is affected by real satellite observations.
Considering the fact that the analysis/CE2 forecast impact

derived from the satellite radiances mainly comes from ob-
servations of hyperspectral infrared and microwave sounders
(English et al., 2013; Joo et al., 2013; Kim and Kim, 2019), it 60

is reasonable to assimilate the observations of both sounders
first. Unfortunately, the use of hyperspectral infrared sounder
observations was not supported in the recent version of
DART. For this reason, we attempt to assimilate the radiances
of the Advanced Microwave Sounding Unit-A (AMSU-A) 65

temperature sounder within the DART data assimilation sys-
tem coupled with the NCAR CESM. AMSU-A instruments
are currently operating on board many low-Earth-orbiting
(LEO) satellite platforms, and thus a large amount of AMSU-
A observation data is available for assimilation. In addition, 70

as the microwave sounder observations are less sensitive to
clouds than the infrared sounder observations, the data avail-
ability of AMSU-A is better than that of the infrared sounder.
AMSU-A observations are actively used to improve glob-
al/regional forecasts as well as severe weather forecasts such 75

as tropical cyclones (Zhang et al., 2013; Zhu et al., 2016;
Migliorini and Candy, 2019; Duncan et al., 2022). As the
preprocessing modules (e.g., quality control, cloud detection,
and spatial thinning) for AMSU-A observations are not pro-
vided in the DART package, they are developed in this study. 80

In addition, the diagonal observation error covariance ma-
trix is estimated using the method suggested by Desroziers
et al. (2005), and a bias correction scheme is also developed
based on the methods suggested by Harris and Kelly (2001).
In this study, we attempt to assimilate the AMSU-A radi- 85

ances in clear-sky conditions. In many operational NWP cen-
ters, the AMSU-A radiances have been assimilated in all-sky
conditions (i.e., clear-sky and cloudy-sky) (Zhu et al., 2016;
Migliorini and Candy, 2019; Duncan et al., 2022). However,
as the current version of DART is not ready to assimilate 90

the AMSU-A radiances in cloudy-sky conditions, only the
clear-sky assimilation of AMSU-A radiances is considered.
To assess the impact of assimilating AMSU-A observations
on the analysis derived from DART, the assimilation exper-
iments are conducted using the DART assimilation system 95

coupled with the CESM as the forecast model system.
This paper is organized as follows. Section 2 provides

the background information on the DART data assimila-
tion system and CESM. Observation data assimilated in
DART are described in Sect. 3. The developed preprocess- 100

ing steps and the estimated observation errors are presented
in Sects. 4 and 5, respectively. The setup of the assimilation
experiments is explained in Sect. 6. The results of the first-
guess/analysisCE3 departure analysis and the analysis impact
are explored in Sect. 7, followed by a summary in Sect. 8. 105
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2 DART–CESM data assimilation system

2.1 Data Assimilation Research Testbed (DART)

DART is an open-source assimilation package that has been
developed by NCAR since 2002 for data assimilation devel-
opment, research, and education. DART can be coupled with5

full-complexity Earth system components due to the flexible
interfaces provided. In addition, the DART package provides
the modules to convert observation data from a variety of
native formats, e.g., the Binary Universal Form for the Rep-
resentation of meteorological data (BUFR) format and the10

Hierarchical Data Format (HDF), into the input format spec-
ified for the DART system (Anderson et al., 2009; Raeder
et al., 2012). The recent version of DART (version 9.11.13)
is capable of using the RTTOV, a fast RTM, for assimilating
visible, infrared, and microwave satellite observations. Pro-15

vided in the RTTOV, many satellite instruments on board the
GEO and LEO satellites are also supported in the DART as-
similation package, but the hyperspectral infrared sounders,
e.g., the Cross-track Infrared Sounder (CrIS) and the Infrared
Atmospheric Sounding Interferometer (IASI), are excluded20

(Hoar et al., 2020). The main data assimilation technique
provided by DART is the ensemble Kalman filter (EnKF) in
which the forecast error covariance is estimated using short-
range ensemble forecasts. The derived forecast error covari-
ance is fully multivariate and depends on the synoptic situa-25

tion.

2.2 Community Earth System Model (CESM)

CESM version 2 (CESM v2.1.0) is used as the model com-
ponent of the ensemble data assimilation system. CESM2 is
the latest generation of a coupled climate–Earth modeling30

system developed by NCAR, consisting of the atmosphere,
land surface, ocean, sea-ice, land-ice, river, and wave models.
These component models can be coupled to exchange states
and fluxes (Hurrell et al., 2013; Kay at al., 2015). In this
study, atmosphere and land component models are actively35

coupled, but the ocean component (sea surface temperature)
and sea-ice coverage are specified by data read from files. As
the atmosphere model of CESM2, CAM version 6 (CAM6)
is an atmospheric general circulation model (AGCM) with
the Finite Volume (FV) dynamical core (Danabasoglu et al.,40

2020). CAM6 provides the short-term forecast (6 h forecast)
of the atmospheric state, which is used as the background
state in the DART assimilation scheme. The land model is
the Community Land Model version 5 (CLM5). The atmo-
spheric variables are directly updated by the information de-45

rived from the observations ingested in the DART assimi-
lation process, while the land state is affected interactively
by the updated atmosphere state because the two compo-
nent models are coupled. The two active models (CAM6 and
CLM5) are run with a nominal 1◦ (1.25◦ in longitude and50

0.95◦ in latitude) horizontal resolution. CAM6 has 32 verti-

cal levels from the surface level to the top at 3.6 hPa (about
40 km).

3 Observations

3.1 NCEP PrepBUFR data 55

The baseline observation data are obtained from the Na-
tional Centers for Environmental Prediction (NCEP) Au-
tomated Data Processing (ADP) global upper-air and sur-
face weather observations that are available from the NCAR
Research Data Archive (NCAR RDA) (https://rda.ucar.edu/ 60

datasets/ds337.0/TS3 ). These data are produced in the Prep-
BUFR format for assimilation in the diverse NCEP NWP
systems and mainly consist of ground-based observations
and satellite-based wind retrievals. The ground-based ob-
servations include land and marine surface reports, aircraft 65

reports, and radiosonde and pilot balloon (pibal) measure-
ments, which are transmitted via the Global Telecommunica-
tions System (GTS) coordinated by the World Meteorologi-
cal Organization (WMO). The satellite-based retrievals are
provided by the National Environmental Satellite Data and 70

Information Service (NESDIS). They include oceanic wind
derived from the Special Sensor Microwave Imager (SSMI)
and upper wind from the LEO and GEO satellites. As the
NCEP ADP dataset is provided in the BUFR format, it must
be converted to the data format available in the DART assim- 75

ilation system, using the modules provided in the DART data
assimilation package.

3.2 AMSU-A data

AMSU-A is the microwave temperature sounder that is cur-
rently on board diverse sun-synchronous satellite platforms 80

e.g., MetOp satellites (MetOp-A, MetOp-B, and MetOp-C),
three satellites of the National Oceanic and Atmospheric
Administration (NOAA), and the National Aeronautics and
Space Administration (NASA) research satellite Aqua. These
three LEO satellite constellations provide near-global cover- 85

age, even in data assimilation that has a sub-daily assimi-
lation window; NOAA satellites circle in an early-morning
orbit (around 06:00 local time), MetOp satellites have a mid-
morning orbit (around 09:00 local time), and Aqua has an
afternoon orbit (around 13:00 local time). As a cross-track 90

scanning sounder, the AMSU-A instrument has a total of 15
channels that consist of 12 channels (AMSU-A channels 3–
14) over the 50–58 GHz oxygen (O2) absorption band and
three window channels (AMSU-A channels 1, 2, and 15) at
23.8, 31.4, and 89 GHz. The instrument measures 30 pixels 95

in each swath with a spatial footprint size of 48 km in nadir.
The channels over the O2 absorption band mainly provide
information about the vertical structure of tropospheric and
stratospheric temperature (Mo, 1999; Goldberg et al., 2001).
In this study, observations of AMSU-A instruments on board 100

four LEO satellites (i.e., NOAA-19, Aqua, MetOp-A, and

https://rda.ucar.edu/datasets/ds337.0/
https://rda.ucar.edu/datasets/ds337.0/
https://rda.ucar.edu/datasets/ds337.0/


4 Y.-C. Noh et al.: Assimilation of the AMSU-A radiances

MetOp-B) are assimilated within the DART data assimila-
tion system.

4 Preprocessing AMSU-A observations

Prior to assimilating the AMSU-A observations into DART,
the AMSU-A observations should be passed through a pre-5

processing stage. Figure 1 shows the flowchart of the pre-
processing stage for the AMSU-A observations as well as
the DART assimilation step. In the preprocessing, three main
steps are included: quality control, spatial thinning, and bias
correction. Quality control consists of two sub-processes,10

outlier test and channel selection, depending on the cloud
condition and surface type. If the difference between the ob-
served AMSU-A brightness temperature and the forward-
modeled brightness temperature derived from the model
background (6 h forecast) is larger than 3 times the square15

root of the sum of the observation error variance and the prior
background error variance, the AMSU-A observation is not
assimilated (called outlier test). As the prior background er-
ror variance is based on the ensemble spread, the larger the
ensemble spread of the 6 h forecast, the more the AMSU-A20

observations are assimilated. More detailed information on
the channel selection, spatial thinning, and bias correction
process is described in Sect. 4.1, 4.2, and 4.3, respectively.

4.1 Channel selection for the cloud condition and
surface type25

As each AMSU-A channel has distinct spectral character-
istics, it is necessary to carefully choose the channels to be
assimilated in the DART data assimilation system. First,
the three AMSU-A channels at 23.8, 31.4, and 89 GHz
(i.e., channels 1, 2, and 15), distributed over the window30

region of the microwave spectrum, are not assimilated.
These three window channels are mostly affected by
the emitted radiances from the surface under clear-sky
conditions, so there is almost no information about the
atmosphere. However, AMSU-A channels 1 (23.8 GHz)35

and 2 (31.4 GHz) are highly sensitive to clouds, so they are
used for the quality control in which clouds are detected. In
addition, even though the AMSU-A channels 3 (50.3 GHz)
and 4 (52.8 GHz) are located over the O2 absorption band
used for the temperature sounding, they have a strong40

sensitivity to the surface, so they are not used in DART.
Considering that the upper parts of the weighting function
of AMSU-A channels 12 (57.29± 0.322± 0.022 GHz),
13 (57.29± 0.322± 0.010 GHz), and 14
(57.29± 0.3222± 0.0045 GHz) are above the top of45

the atmosphere (i.e., 3.6 hPa) in the CAM6, these three chan-
nels are also removed to prevent vertical interpolation errors
that may occur in the forward modeling using the RTM. This
leaves channels 5–11 (53.596± 0.115, 54.4, 54.94, 55.5,

57.29, 57.29± 0.217, and 57.29± 0.322± 0.048 GHz) as 50

the ones which may be assimilated.
As this study aims to assimilate the AMSU-A observations

under clear-sky conditions, the cloud-affected channels are
filtered out in the quality control step. In other words, the tro-
pospheric channels (channels 5–7) whose peak of the weight- 55

ing function is below 200 hPa are rejected if the AMSU-A
pixel is determined to be a cloud-affected pixel. To deter-
mine this, we calculate the cloud liquid water (CLW) derived
from observations of AMSU-A channels 1 and 2 over the
ocean, using the retrieval methodology suggested by Grody 60

et al. (2001). The CLW is defined as follows:

CLW= cosθ [D0 + 0.754ln(285.0−BT23)

−2.265ln(285.0−BT31)] (1)
D0 = 8.240 (2.622 − 1.846 cosθ) cosθ, (2)

where θ is the satellite viewing zenith angle. BT23 and BT31
are the brightness temperature of AMSU-A channels 1 and 2, 65

respectively. If the retrieved CLW is larger than 0.2 mm, the
AMSU-A pixel is judged to be cloud-contaminated, and then
the three tropospheric channels (channels 5–7) are rejected.

In this study, seven candidate AMSU-A channels (i.e.,
channels 5–11) are assimilated differently, depending on the 70

surface type. Channels 5, 6, and 7 are the main tropospheric
channels. Their weighting functions peak below 200 hPa but
also have a bit of sensitivity to the surface because of the
broad vertical shape of the weighting functions. Thus, the
quality of the analysis can be degraded by assimilating the 75

three tropospheric channels over the land and sea-ice types
whose surface information (e.g., surface temperature and
surface spectral emissivity) is uncertain. For this reason,
AMSU-A channels 5–7 are not assimilated over the land and
sea ice. To identify sea-ice area, the sea-ice index (SII) is re- 80

trieved from observations of AMSU-A channels 1 and 3 over
the high-latitude region (poleward of 50◦), using the retrieval
algorithm suggested by Grody et al. (1999). The SII is de-
rived as follows:

SII= 2.85 + 0.20BT23− 0.028BT50, (3) 85

where BT50 is the brightness temperature of AMSU-A chan-
nel 3. Three tropospheric channels are turned off if the SII
is larger than 0.1 in the latitudes beyond 50◦. However, as
the surface information over the ocean is relatively reliable,
seven candidate AMSU-A channels are assimilated under 90

clear-sky conditions. The AMSU-A channel list for DART
is summarized in Table 1.

As an example, Fig. 2a and b present the spatial distri-
bution of the CLW and the SII retrieved from AMSU-A on
board NOAA-19 on 12 August 2014. It is found that many 95

regions over the ocean are covered by cloud-related systems
(CLW> 0.2 mm) and also that sea ice (SII> 0.1) exists near
the North and South Pole regions. Observations of AMSU-
A channel 5 over the cloud region and sea-ice areas are re-
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Figure 1. Flowchart of the preprocessing system for AMSU-A brightness temperatures (BTs).

Table 1. AMSU-A channel list for the DART data assimilation.

Satellite platform Type CH5 CH6 CH7 CH8 CH9 CH10 CH11

Aqua
Land/sea ice

NA∗
X

NA
O O O O

Ocean O O O O O
Cloud X O O O O

NOAA-19
Land/sea ice X X X

NA
O O O

Ocean O O O O O O
Cloud X X X O O O

MetOp-A
Land/sea ice X X

NA NA
O O O

Ocean O O O O O
Cloud X X O O O

MetOp-B
Land/sea ice X X X O O O O
Ocean O O O O O O O
Cloud X X X O O O O

∗ NA: not available due to the malfunction in August and September 2014. O: assimilated. X: excluded.

jected (Fig. 2c). The channel selection process is also ap-
plied to the other two AMSU-A channels (channels 6 and 7),
which are likely affected by clouds and sea ice. In the pre-
trial runs, it was found that the analysis quality is degraded
if the AMSU-A observations are assimilated over Antarctica5

during the Southern Hemisphere winter season. This seems
to be due to the complex topography of the Antarctic conti-
nent, extreme cold weather conditions, and large errors in the
numerical model. Thus, AMSU-A observations are not used

over the high-latitude region (> 60◦ S) during the Southern 10

Hemisphere winter season, in order to prevent the degrada-
tion of the analysis quality.

4.2 Spatial thinning

In addition to the inter-channel error correlation (refer to
Sect. 5), spatial error correlation between the observations at 15

a close distance also exists due to different representativeness
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Figure 2. Spatial distribution of (a) cloud liquid water (CLW; mm),
(b) sea-ice index (SII) retrieved from AMSU-A observations, and
(c) quality flag of AMSU-A channel 5 (53.6 GHz) from NOAA-19
on 12 August 2014.

of the observed radiances and the model state, and the uncer-
tain quality control process such as cloud detection (Ochotta
et al., 2005; Bormann and Bauer, 2010). Thus, the analysis
is likely to be sub-optimized if highly dense observations are
assimilated without considering the spatial error correlations.5

A common treatment to counteract the spatial error correla-
tion is spatial thinning, which is widely used in data assim-
ilation systems operated by the NWP centers. To choose the
optimal spatial thinning distance, we performed four extra
assimilation runs in which different spatial thinning distance10

(i.e., 96, 192, 288, and 384 km) was applied. Except for the
spatial thinning distance, these pre-trial runs were set up with
the same assimilation factors, i.e., the estimated bias correc-
tion coefficients (refer to Sect. 4.3), the estimated observa-
tion errors (refer to Sect. 5), and the localization half-width15

of 0.075 (refer to Sect. 6). These distances are multiples of
the AMSU-A field-of-view (FOV) footprint size (∼ 48 km in
nadir). The thinning interval of 288 km resulted in the largest

analysis impact, so that distance was used to thin the obser-
vations in this study. 20

4.3 Bias correction

The biases mainly come from systematic errors: instrument
calibration errors, inaccuracies of the RTM, and uncertain
preprocessing (e.g., cloud detection errors). The biases tend
to depend on the time of day and on the season as well as 25

the instrument scan angle and air mass. While random er-
rors are considered by defining the observation errors used
in the assimilation process, the biases should be removed
before assimilating the satellite observations. In these ex-
periments, the biases are estimated using the time-averaged 30

departures between the observed radiances and the simu-
lated radiances from the spatiotemporally collocated model
field (background) because of the absence of reference data
suitable to compare the satellite observations (Scheck et al.,
2018). The use of the simulated radiances from the model 35

background (i.e., 6 h forecast) may be questionable because
the model background could be biased. However, it is ef-
fectively impossible to find sufficient reference observations
for comparing with these satellite observations, so the bi-
ases are madeCE4 using the departures between the observed 40

radiances and the model-simulated radiances. To estimate
the systematic biases coming from diverse error sources, in
this study, two bias correction processes are performed sepa-
rately: scan-bias correction and air-mass-bias correction, us-
ing the statistical bias correction methods suggested by Har- 45

ris and Kelly (2002).
As a cross-track microwave sounder, AMSU-A scans 30

FOVs per scan line, which are distributed symmetrically
about the nadir. The scan angles of 30 FOVs range between
±48.33◦. Thus, the observed radiance varies depending on 50

the scan angle, even though the observation point is the same.
The variation of AMSU-A radiance is due to the change
in the optical path length between the Earth and the satel-
lite instrument, called the limb effect. The variation of ra-
diance along with the scan angle can be simulated in the 55

RTTOV embedded in DART. However, the mean first-guess
departures between the AMSU-A-observed radiances and
forward-modeled radiances still increase with an increasing
scan angle on the center of two near-nadir FOVs (15 and 16)
(Fig. 3a), meaning that the residual scan-angle-dependent bi- 60

ases exist for each AMSU-A channel. Thus, the scan-bias
correction is required to correct the residual scan bias for
each AMSU-A channel. In this study, the scan-bias correc-
tion is performed using the pre-computed residual scan bias
for each AMSU-A channel. There are two steps to estimate 65

the residual scan bias for AMSU-A channels assimilated.
First, the mean bias of the departure between the AMSU-A-
observed radiances and forward-modeled radiances for each
FOV is made with the data assimilation results derived from
the pre-trial run. The pre-trial run was set up with the spatial 70

thinning of 96 km (refer to Sect. 4.2) and the default localiza-
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Figure 3. (a) Globally averaged, residual scan bias of AMSU-A channels 5–11 and (b) the regionally averaged, residual scan bias depending
on 13 latitude bands for AMSU-A channel 6 on board MetOp-B during the period from 11 August to 25 August 2014.

tion half-width (0.15, refer to Sect. 6). The instrument noise
errors were used as the observation errors within DART. Sec-
ond, as the scan bias derived from the departures between the
observed radiances and forward-modeled radiances likely in-
cludes the air-mass bias, the averaged residual scan bias is5

obtained by removing the mean bias of two near-nadir FOVs
(15 and 16) from the bias for each FOV (1–30). In addition,
as shown in Fig. 3b, it is also found that the residual scan
biases have different patterns depending on the latitude band
for AMSU-A channel 6 (not shown for other channels), sug-10

gesting that the use of globally averaged scan bias is likely to
deteriorate the quality of AMSU-A data assimilation. Thus,
the residual scan (bscan) bias for each AMSU-A channel is
subdivided into 14 latitude bands as follows:

bscan
i (θ,φ)=

[
y−H (xb)

]
i
(θ,φ)−

[
y−H (xb)

]
i

(θ = 0,φ), (4)15

where the subscript i denotes the AMSU-A channel number
(i = 1,2, . . .,15), θ is the satellite scan angle, φ is the latitude
band at an interval of 10◦ in the latitudes below 60 and 30◦ in
the latitudes beyond 60◦, y is the AMSU-A radiance, xb is the

background model state, and H is the observation operator. 20

Prior to the air-mass-bias correction, the observed brightness
temperatures of each AMSU-A channel are corrected using
the estimated scan-bias coefficients.

The air-mass bias (bairmass) is predicted using the multi-
variate regression method. The biases are mainly due to un- 25

certainties in the RTM, which tend to vary with the air-mass
and surface characteristics. The predictors, used in the re-
gression method, come from the model variables (i.e., 1000–
300 hPa thickness, 200–50 hPa thickness, and surface tem-
perature) that include information on air-mass and surface 30

characteristics. The predictors regress to the first-guess de-
parture between the satellite radiances and forward-modeled
radiances as follows:

bairmass
i = βi,0+

N∑
j=1

βi,jpi,j , (5)

where βi,0 indicates the constant component of bias bi , and 35

βi,j denotes the bias correction coefficients of the predictor
pi,j . The subscripts i and j denote the AMSU-A channel
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number and the predictor number (i.e., j = 1,2. . .N ), respec-
tively.

For the tropospheric AMSU-A channels (channels 5–7),
the air-mass bias is estimated with two model variables (i.e.,
1000–300 hPa thickness and surface temperature) because5

the peak of the channel weighting function is positioned be-
low the 200 hPa pressure level, and these channels have a bit
of sensitivity to the surface. However, 200–50 hPa thickness
is only employed for other upper-tropospheric and strato-
spheric AMSU-A channels (channels 8–11) whose peak of10

the weighting function is above 200 hPa. As the biases fluc-
tuate with time, it is reasonable to update the regression coef-
ficients and an intercept point periodically, rather than using
the climatological-based coefficients that are estimated using
the long-term model outputs. In this study, at each data as-15

similation cycle, the regression coefficients and an intercept
point for each AMSU-A channel are computed using DART
outputs for the last four cycles and then used to predict the
air-mass biases. As shown in Fig. 4, the histograms of the
first-guess departures of the MetOp-B channels 5–11 show20

a positive bias and a Gaussian distribution if the AMSU-A
observations are not bias-corrected. In particular, channels 5
and 6 have a large positive bias of 1.0–1.5 K. However, the
positive biases are almost removed through the bias correc-
tion process, meaning that the bias correction scheme works25

well (Table 2).

5 AMSU-A observation errors

As well as the model background error, the observation er-
rors play an important role in determining the weight of the
observations in the data assimilation system. Thus, it is an30

important step to define the observation errors so that the ob-
servations are suitably blended with the model background,
which is a 6 h forecast derived from the CAM6, in order to
provide the optimal initial condition to the numerical model.
In this study, a diagonal observation error covariance matrix35

is used for the AMSU-A channels, meaning that the inter-
channel error correlation is not considered. In fact, the use
of the diagonal observation error covariance matrix may be
problematic because the inter-channel error correlation def-
initely exists for the infrared and microwave sounders (Bor-40

mann and Bauer, 2010; Stewart et al., 2014; Weston et al.,
2014; Campbell et al., 2017). Unfortunately, the recent ver-
sion of DART (version 9.11.13) does not support the use of
a full observation error covariance matrix in which the di-
agonal and off-diagonal components are fully defined. For45

this reason, the diagonal observation errors are empirically
inflated to counteract the effect of error correlation between
different AMSU-A channels. In other words, the inflated di-
agonal observation errors take account of the inter-channel
error correlation as well.50

To estimate the diagonal components (called variances) of
the observation error covariance matrixTS5 (R) for AMSU-

A channels, we use a diagnostic procedure suggested by
Desroziers et al. (2005), in which the error variances are cal-
culated with two departures, i.e., the background innovation 55

(O-BCE5 ) between the observation (y) and the model back-
ground (xb) and the analysis innovation (O-ACE6 ) between
the observation and the model analysis (xa), using the ex-
pression in Eq. (6).

R= E
[
{y−H (xb)} {y−H (xa)}

T] , (6) 60

where E is the statistical expectation operator, and the su-
perscript “T” indicates the matrix transpose. To compute
the observation error variances of AMSU-A channels on
board four satellite platforms (i.e., Aqua, NOAA-19, MetOp-
A, and MetOp-B), the background and analysis innovations 65

were derived from the pre-trial run that was conducted from
25 August to 30 September 2014. In the pre-trial run, instru-
ment noise errors were simply used as the observation errors.
The pre-trial run was set up with the default localization half-
width (0.15, refer to Sect. 6), the spatial thinning of 96 km 70

(refer to Sect. 4.2), and the bias correction scheme (refer to
Sect. 4.3). Then, the observation error variances were esti-
mated using the Eq. (6).

As the surface-sensitive channels and upper-stratospheric
channels are not assimilated in this study (see Sect. 4.1), 75

Fig. 5 shows the observation errors of seven AMSU-A chan-
nels (channels 5–11) as well as the instrument noise errors
employed in the pre-trial run. As some channels (i.e., chan-
nels 5 and 7 for Aqua, channel 8 for NOAA-19, and channels
7 and 8 for MetOp-A) malfunctioned during the trial period 80

(11 August–30 September 2014), the errors for these chan-
nels were not needed or estimated. The estimated errors are
larger than the instrument noise errors because various er-
ror sources (e.g., the radiative transfer modeling errors, rep-
resentative errors, and systematic errors) are considered as 85

well as the instrument noise errors. The estimated errors for
the tropospheric and upper-tropospheric channels (channels
5–9) are smaller than the errors for the stratospheric channels
(channels 10–11). This error pattern is also presented for the
instrument noise errors. As mentioned before, the estimated 90

observation errors were inflated by a factor of 2 that was em-
pirically estimated by the multiple pre-trial runs, in order to
counteract the inter-channel error correlation. Then, the in-
flated observation errors, 2 times the estimated observation
errors, were employed for the trial experiments, aiming at 95

assessing the analysis impact of assimilating the AMSU-A
observations.

6 Trial experiment design

To diagnose the analysis impact of assimilating the AMSU-
A observations into the DART global data assimilation sys- 100

tem, two assimilation experiments were conducted: (a) a con-
trol run (CNTL), where the conventional observations (i.e.,
ground-based observations and satellite-derived winds) were
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Figure 4. Histogram of the first-guess departures between the observations of the MetOp-B AMSU-A channels 5–11 and the corresponding
model background (6 h forecast). Colors indicate the results before the bias correction (hatched blue) and after the bias correction (red),
respectively.

Table 2. Mean biases and standard deviations of the first-guess departures (O-B) for MetOp-B AMSU-A channels before and after the bias
correction.

O-B Bias correction CH5 CH6 CH7 CH8 CH9 CH10 CH11

Bias
X 1.518 1.181 0.514 0.937 0.514 0.590 0.612
O 0.0005 0.002 0.003 0.014 0.033 0.028 0.010

SD TS4
X 0.677 0.489 0.521 0.572 0.639 0.688 1.052
O 0.627 0.482 0.494 0.554 0.580 0.642 0.966

assimilated, and (b) the “AMSU-A run”, where the AMSU-A
observations from four LEO satellite platforms (i.e., Aqua,
NOAA-19, MetOp-A, and MetOp-B) were assimilated as
well as the conventional data that were assimilated in the
CNTL run. For the AMSU-A run, the developed prepro-5

cessing steps (e.g., channel selection, thinning, and bias cor-
rection) were applied to the AMSU-A-observed radiances,
and then the pre-computed AMSU-A observation errors were
employed in the DART data assimilation process.

For two trial runs, available observation data were assim-10

ilated within a 6 h assimilation window from −3 to +3 h
centered at the nominal analysis time (00:00, 06:00, 12:00,
and 18:00 UTC). All trial runs were carried out four times
a day for the trial period from 00:00 UTC 11 August to

18:00 UTC 30 September 2014. The CAM6 forecast model 15

was run with a nominal 1◦ horizontal resolution (1.25◦ in lon-
gitude and 0.95◦ in latitude) and 32 vertical levels. The ini-
tial ensembles that are available at the NCAR RDA (https:
//rda.ucar.edu/datasets/ds345.0/TS6 ) were obtained from the
DART reanalysis. To adjust the effect of initial ensembles, a 20

2-week spin-up period (00:00 UTC 11 August to 18:00 UTC
24 August 2014) was included in the trial period. In this
study, the ensemble adjustment Kalman filter (EAKF) is ap-
plied, which is a variation of the EnKF (Anderson, 2001).
A total of 20 ensemble members were integrated to compute 25

the flow-dependent background error covariance and the cor-
relation between the DART state variables and observations.

https://rda.ucar.edu/datasets/ds345.0/
https://rda.ucar.edu/datasets/ds345.0/
https://rda.ucar.edu/datasets/ds345.0/
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Figure 5. Estimated observation errors (K) for AMSU-A channels on board Aqua (black: circle), NOAA-19 (red: square), MetOp-A (blue:
diamond), and MetOp-B (green: triangle) satellite platforms. Black asterisks indicate the instrument noise errors for AMSU-A channels.

All EnKF-based assimilation techniques have the sam-
pling error that is induced by the limited size of the ensemble.
In particular, the sampling error is likely to be large when
the absolute value of correlation between the DART state
variables and the observations is small. To remove the spuri-5

ous correlation induced by limited ensemble size in DART,
the correlation is multiplied by a localization factor that de-
creases from 1 to 0 with the physical distance between the
model state variables and the observations. In DART, the lo-
calization half-width can be user-defined, which is half of the10

distance to where the localization factor is zero. To determine
the localization half-width, three extra assimilation experi-
ments were run with different half-widths (i.e., 0.15, 0.075,
and 0.0375). Except for the localization half-width, the as-
similation experiments were set up with the spatial thinning15

of 96 km (refer to Sect. 4.2), the bias correction scheme (re-
fer to Sect. 4.3), and the estimated observation errors (refer
to Sect. 5). As the largest analysis impact was made with the
half-width of 0.075, the horizontal/vertical localization half-
width of 0.075 rad was employed to prevent the use of erro-20

neous correlation. However, as the model top height is much
lower than the Earth’s horizontal scale, the localization half-
width in the vertical is normalized by the user-defined scale
height, which is equivalent to 1 rad. In DART, the difference
in scale height between the model top (360 Pa) and the stan-25

dard surface pressure (101 325 Pa) is 5.73. In this study, the
normalization scale height of 1.5, a default value in DART,
was used, which is assumed to be equal to 1 rad. Thus, the lo-
calization half-width of 0.075 rad is converted into the scale
height of 0.11, meaning that the localization cutoff can be30

an ellipsoid that is flat horizontally. In addition to the re-
duction of localization half-width (compared to the default
value of 0.15), the sampling error correction algorithm was
applied, which uses pre-defined information about the corre-
lation between the model state variables and the observations35

as a function of ensemble size. Detailed information on the
sampling error correction algorithm is described in Ander-
son (2012).

The EnKF technique has a risk of underestimation of the
ensemble spread, meaning that the ensemble estimates are 40

too confident. If the ensemble spread becomes too small, the
observation data are ignored in the data assimilation process,
resulting in an ensemble collapse (Anderson et al., 2009; El
Gharamti et al., 2019). To mitigate the underestimation issue
of the ensemble spread, the uncertainty in the ensemble es- 45

timate is inflated by linearly moving each ensemble member
away from the ensemble mean. It means that the standard de-
viation of the ensemble spread increases by applying the in-
flation value in a way that the ensemble mean is unchanged.
In DART, the ensemble spread varies spatiotemporally, as a 50

function of the evolving observation network and the chosen
inflation algorithm. These experiments use a spatiotempo-
rally varying inflation algorithm with a Gaussian distribution.
More detailed information on the inflation algorithm adopted
in DART is presented in El Gharamti et al. (2019). 55

7 Results

7.1 Assessment of first-guess departure and analysis
departure

As the same conventional radiosonde measurements were as-
similated in the two trial runs (i.e., CNTL and AMSU-A), the 60

first-guess departure statistics between the radiosonde mea-
surements and the spatiotemporally collocated background
states (6 h forecast) can be used to assess the impact of the
AMSU-A observations on the short-range forecast. Figure 6
shows the vertical structure of the standard deviation (SD) 65

of the first-guess departure from the radiosonde temperature,
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zonal wind, and meridional wind as well as the number of
the radiosonde measurements used.

For the temperature, the first-guess departure errors are
significantly reduced below 300 hPa for the AMSU-A runs
as compared with the errors for the CNTL run (Fig. 6a).5

Because the AMSU-A channels provide vertical information
about the air temperature, the temperature error reduction is
the direct impact derived by assimilating the AMSU-A ob-
servations in the AMSU-A run. In addition to the radiosonde
temperature, the first-guess departure errors decrease for the10

two wind components (i.e., zonal and meridional winds)
(Fig. 6b and c). In particular, the SDs of the two winds at
the 300 hPa level are reduced by up to about 4.7 m s−1 TS7 in
the AMSU-A run, compared to the error of about 5.1 m s−1

for the CNTL run. As the model background error covari-15

ance includes the multivariate correlation between different
model parameters (e.g., temperature and winds), a change in
one model parameter can change another model parameter in
the assimilation process. In addition, model parameters are
linked in the governing equations and the physical parame-20

terizations, which are embedded in the CAM6. That is, the
change in one parameter results in the adjustment of another
parameter in the model time integration. Thus, the error re-
duction of the wind components is the indirect impact of the
improved temperature field by assimilating the AMSU-A ob-25

servations.
In addition to the first-guess departure analysis of ra-

diosonde, the assimilation impact of the AMSU-A observa-
tions can be diagnosed by comparing the first-guess depar-
tures of the AMSU-A with the analysis departures between30

the AMSU-A observations and the model analysis state. In
general, if the observations are successfully assimilated, the
SD of the analysis departure is smaller than that of the first-
guess departure because the background fields are improved
by assimilating the observations. As shown in Fig. 7, the SDs35

of the analysis departure are significantly smaller than those
of the first-guess departure for AMSU-A-assimilated chan-
nels (channels 5–11), regardless of the satellite platforms,
meaning that the AMSU-A observations have a positive anal-
ysis impact. In particular, the gap between the SDs of two40

departures is large for the stratospheric AMSU-A channels
(channels 9–11).

7.2 Analysis impact of AMSU-A observations

To assess the impact of the AMSU-A observations on the
analysis derived from the DART data assimilation system,45

the analysis errors are computed between the DART analysis
and the European Centre for Medium-Range Weather Fore-
casts (ECMWF) reanalysis version 5 (ERA5) as the refer-
ence data. As the ERA5 is made throughCE7 the assimilation
of all available observation data in the ECMWF data assim-50

ilation system and provides consistent maps without spatial
gaps, the ERA5 is employed to assess the model-derived out-
put. For four primary atmospheric parameters (i.e., 500 hPa

geopotential height, temperature, zonal wind, and meridional
wind), the departures between the DART ensemble-mean 55

analysis and the ERA5 are computed. Then bias and stan-
dard deviation are derived from the long-term departures. In
particular, the error of 500 hPa geopotential height is widely
used to assess the overall performance of the model-derived
output because large-scale atmospheric motion in the mid- 60

dle troposphere (500 hPa) is closely linked with lower-level
atmospheric motion.

Figure 8 describes the mean bias and SD of 500 hPa
geopotential height for the CNTL and AMSU-A run, de-
pending on the latitudinal regions. Detailed error values are 65

described in Table 3. For two trial runs, overall negative
mean bias occurs, reaching up to about−18 m. However, the
bias difference varies depending on the latitudinal regions.
Over the Northern Hemisphere (30–90◦ N), the AMSU-A
run has a larger negative bias than the bias for the CNTL 70

run. However, over the tropics (30◦ S–30◦ N) and Southern
Hemisphere (30–90◦ S), the CNTL run has a larger negative
bias than the bias for the AMSU-A run. Thus, similar global
mean bias (about −18 m) for two trial runs is caused by the
offsetting between regionally different bias patterns. 75

Considering that the geopotential height is a primary func-
tion of the average air temperature between the surface and
the pressure level, we assumed that the model temperature
has a cold bias at least below the 500 hPa pressure level. As
expected, it is found that a negative bias is presented in the 80

temperature field for both two trial runs (not shown). In ad-
dition, as shown in Fig. 9, the first-guess departure of the ra-
diosonde temperature for the two trial runs has large positive
values, implying that a cold bias exists in the model tempera-
ture fields (6 h forecast). In Raeder et al. (2021), it was noted 85

that the CAM6/DART-derived reanalysis has a cold bias in
the troposphere. However, it is still unclear as to why the
CAM6-based temperature fields have a cold bias. The bias
issue in CAM6 will be an interesting study in future work.

Even though the AMSU-A observations, including the 90

temperature information, are additionally assimilated in the
AMSU-A run, the AMSU-A run has a negative temperature
bias that occurs in the CNTL run. It is related to the bias
correction applied to the AMSU-A observations in DART.
As mentioned in Sect. 4.3, the AMSU-A radiances are cor- 95

rected by eliminating the biases based on the departure be-
tween the observed radiances and the forward-simulated ra-
diances from the model background field. In addition, in this
study, the bias correction coefficients were even updated at
each cycle, using the DART outputs from the last four cy- 100

cles. Thus, the information on the model bias is included in
the biases derived from the correction scheme, which grad-
ually fits the observations to the model background over the
sequent assimilation cycles. As a result, the model bias still
exists in the AMSU-A run as well as the CNTL run. 105

However, the global-mean SD of 500 hPa geopotential
height for the AMSU-A run is reduced to about 42 m as com-
pared with the SD (about 49 m) for the CNTL run, meaning
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Figure 6. The standard deviation (SD) of the first-guess departures for the radiosonde (a) temperature, (b) zonal wind, and (c) meridional
wind for the control (CNTL run: circle symbol and black line) and experiment (AMSU-A run: square symbol and red line) runs. Solid and
dashed lines indicate the SD and the number (top axis) of radiosonde measurements assimilated, respectively. The 99 % confidence intervals
are indicated by the horizontal black lines.

Figure 7. The standard deviations (SDs) of the first-guess departure (unfilled symbols) and analysis departure (filled symbols) for AMSU-A
channels on board Aqua (black: circle), NOAA-19 (red: square), MetOp-A (blue: diamond), and MetOp-B (green: triangle) satellites.

that the 500 hPa geopotential height predictions are improved
by assimilating the AMSU-A observations (Table 3). In par-
ticular, the error is largely reduced over the Northern Hemi-
sphere. That is, the analysis impact is more significant in the
Northern Hemisphere. It is inconsistent with the consensus5

that the assimilation impact of satellite observations is larger
in the Southern Hemisphere, where the conventional data are
sparse (Terasaki and Miyoshi, 2017; Yamazaki et al., 2023).

As shown in Fig. 10a and b, a positive impact mainly oc-
curs in the high-latitude region (> 60◦ N). In contrast, over 10

the tropics and Southern Hemisphere, the error reduction is
relatively smaller than over the Northern Hemisphere. In the
tropics, the analysis error (about 14 m) is quite small for the
CNTL run, as compared with the large errors of about 48
and 63 m in the Northern Hemisphere and Southern Hemi- 15

sphere, respectively. Following Judt (2020), it was demon-
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Figure 8. (a) Mean bias and (b) standard deviation (SD) of the analysis of 500 hPa geopotential height over the global (grey), Northern
Hemisphere (NH: blue), tropics (TR: green), and Southern Hemisphere (SH: red), derived against the ERA5 reanalysis. Filled and hatched
bars indicate the results for the control (CNTL) and experiment (AMSU-A) run, respectively. The 99 % confidence intervals are indicated by
the vertical black lines.

Table 3. Error statistics of 500 hPa geopotential height (m) for the control (CNTL run) and experiment (AMSU-A run) run. Better values
are bolded. In parentheses, error statistics are shown over the midlatitude region (30–60◦ S and 30–60◦ N) in the Northern and Southern
Hemisphere.

Trial name Bias SD

Global NH TR SH Global NH TR SH

CNTL −18.70 −13.90 −19.05 −27.45 48.82 48.02 13.55 62.54
(−18.43) (−19.84) (26.71) (38.55)

AMSU-A −18.59 −17.39 −17.73 −25.51 42.42 31.55 12.41 58.29
(−16.95) (−19.54) (20.24) (33.49)

strated that the tropical atmosphere has longer predictability
than the extratropical atmosphere. Thus, the AMSU-A ob-
servations are conservatively assimilated in the tropics due
to the small forecast errors, leading to less analysis impact.

It is noted that the AMSU-A assimilation impact is neutral5

in the high-latitude region (> 60◦ S) over the Southern Hemi-
sphere. In contrast, in the high-latitude region (> 60◦ N) over
the Northern Hemisphere, the assimilation impact is signifi-
cant. It is because the AMSU-A observations were not assim-
ilated in the high-latitude region (> 60◦ S) over the Southern10

Hemisphere during the Southern Hemisphere winter season
when the trial runs were conducted (mentioned in Sect. 4.1),
resulting in the neutral analysis impact. Thus, if the high-
latitude regions (i.e., 60–90◦ S and 60–90◦ N) are extracted
in the error computation over both hemispheres, the analy-15

sis impact is still significant, but the difference in the analy-
sis impact between both hemispheres considerably decreases
(Table 3). It is still a challenging issue to assimilate the satel-
lite radiances over the Antarctic continent because of the
complex topography, extreme weather condition, and large20

errors in the numerical model. In particular, as the conven-
tional observations are quite sparse in the high-latitude re-
gion, the forecast errors are relatively larger than the other
latitudinal regions (i.e., the tropics and midlatitude region,
shown in Fig. 10a). In addition, the trial period (11 August–25

30 September 2014) is the Southern Hemisphere winter sea-
son when the Antarctic continent was under extremely cold
weather conditions. In fact, in the pre-trial run, we found that
the analysis field was degraded near the Antarctic continent
by assimilating the AMSU-A observations. Thus, to prevent 30

the analysis degradation, the AMSU-A observations were re-
jected over the high-latitude region (> 60◦ S) in the Southern
Hemisphere. The assimilation of the AMSU-A observation
in the Antarctic region will be handled in future work.

Figure 11 shows the normalized difference of SD of 35

temperature, zonal wind, and meridional wind between the
AMSU-A run and CNTL run, depending on the latitudi-
nal regions (i.e., global, Northern and Southern Hemisphere,
and tropics). The SD difference is normalized by the SD for
the CNTL run. A negative value means that assimilating the 40

AMSU-A observations provide analysis benefit. In contrast,
a positive value indicates that the analysis error increases for
the AMSU-A run compared with the error for the CNTL run,
implying a negative analysis impact of the AMSU-A obser-
vations. 45

For the temperature, the global-mean analysis errors are
significantly reduced in the whole troposphere and lower
stratosphere for the AMSU-A run, as compared with the
CNTL run. Large error reduction occurs in the lower strato-
sphere (−28 % and−21 % in 100 and 200 hPa, respectively), 50
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Figure 9. Mean bias of the first-guess departure for the radiosonde
temperature measurements for the control (CNTL run: circle sym-
bol and black line) and experiment (AMSU-A run: square symbol
and red line) runs. Horizontal lines indicate 99 % confidence inter-
vals.

which is consistent with the large gap between the SDs
of the first-guess departure and the analysis departure for
the stratospheric AMSU-A channels (channels 9–11) whose
peak of the weighting function is above 200 hPa (shown in
Fig. 7). Similar to the results of the 500 hPa geopotential5

height, a strong error reduction mainly occurs in the North-
ern Hemisphere where the error reduces up to about 28 %
in the 500 hPa pressure level (Fig. 11a). The error decrease
trends are consistent with the trends of the first-guess depar-
ture errors of the radiosonde temperature measurements in10

which a significant error decrease occurs in the 500 hPa layer
(Fig. 6a). However, in the lower stratosphere (100 hPa pres-
sure level), the analysis error decreases up to about 45 % in
the Southern Hemisphere.

For two wind components (i.e., zonal and meridional15

winds), similar to the results of the temperature, the global-
mean analysis errors for the AMSU-A run overall decrease
in the whole troposphere and lower stratosphere (Fig. 11b
and c). It is noted that the magnitude of the error decrease
tends to increase with height, reaching about −13 % in the20

Figure 10. Spatial distribution of the standard deviation (SD) of
the analysis of 500 hPa geopotential height for the (a) control run
(CNTL) and (b) experiment (AMSU-A) runs, derived against the
ERA5 reanalysis.

100 hPa level for the zonal and meridional wind. Moreover,
most analysis impact is made in the Northern Hemisphere,
except in the 100 hPa level, where the maximum error de-
crease occurs in the Southern Hemisphere. However, over
the Southern Hemisphere, the analysis errors for the AMSU- 25

A runs are larger than the errors for the CNTL run in the
middle and lower troposphere. For the spatial pattern of the
SD of two wind components (not shown), it is found that
the error increment mainly occurs in the high-latitude region
(> 60◦ S), where the AMSU-A data were not assimilated for 30

the AMSU-A run. Considering that the temperature fields
above the latitude of 60◦ S were only updated by the AMSU-
A assimilation, the analysis degradation is possibly due to
the discontinuity of the latitudinal temperature gradient near
the latitude of 60◦ S. 35

In the model humidity field, a positive analysis impact
only occurs in the Northern Hemisphere (not shown) but
is not as significant as the abovementioned parameters (i.e.,
500 hPa geopotential height, temperature, and winds). As a
further study, we plan to assimilate the Microwave Humidity 40

Sounder (MHS), providing information on the vertical struc-
ture of humidity so that the initial condition of model humid-
ity is improved.
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Figure 11. Normalized difference of the standard deviation (SD) of the analysis of (a) temperature, (b) zonal wind, and (c) meridional
wind between the experiment (AMSU-A) run and the control (CNTL) run, derived against the ERA5 reanalysis. Hatched colors indicate
the latitude regions (global: grey, Northern Hemisphere: blue, tropics: green, and Southern Hemisphere: red). Horizontal lines indicate 99 %
confidence intervals.

8 Summary

In this study, we attempted to assimilate the AMSU-A ob-
servations using the global data assimilation system consist-
ing of DART and CESM. To make the AMSU-A data avail-
able to be assimilated, preprocessing steps were developed,5

which include quality control (i.e., outlier test and channel
selection), spatial thinning, and bias correction (i.e., scan-
bias correction and air-mass-bias correction). In addition, the
observation error covariance matrix was estimated, but only
its diagonal components were employed in DART because10

the inter-channel error correlation is not considered in the
current version of DART. To counteract the inter-channel er-
ror correlation, the diagonal components were inflated.

To assess the impact of the AMSU-A observations on the
DART-derived analysis, trial experiments were conducted15

from 11 August to 30 September 2014. The derived analy-
sis fields were verified using the ERA5 as the reference. For
the primary atmospheric parameters (i.e., 500 hPa geopoten-
tial height, temperature, zonal wind, and meridional wind),
an additional analysis benefit is provided by assimilating the20

AMSU-A observations on top of the DART data assimila-
tion system which already makes use of the conventional
ground-based observations. In particular, a large analysis im-
pact is shown in the Northern Hemisphere, where the anal-
ysis errors of the temperature and two wind components25

are significantly reduced in the whole troposphere. How-
ever, in the tropics, the analysis impact is relatively small
due to the small forecast errors. Compared with the North-
ern Hemisphere, less analysis impact in the Southern Hemi-

sphere seems to be due to the reduction in the number of 30

assimilated AMSU-A observations. The AMSU-A observa-
tions are rejected in the high-latitude regions (> 60◦ S) dur-
ing the Southern Hemisphere winter season because assimi-
lating these observations worsens the analysis quality.

Code and data availability. DART version 9.11.13 was ob- 35

tained from https://github.com/NCAR/DART TS8 . CESM version
2.1.0 is released at https://github.com/ESCOMP/CESM/tree/
release-cesm2.1.0TS9 . Atmospheric initial conditions and the
baseline observations at the BUFR format were obtained from
the NCAR RDA (https://rda.ucar.edu/datasets/ds337.0 TS10 or 40

https://doi.org/10.5065/Z83F-N512, National Centers for En-
vironmental Prediction/National Weather Service/NOAA/U.S.
Department of Commerce, 2008). AMSU-A Level-1B ver-
sion 5 data from the Aqua satellite, including the calibrated
brightness temperatures, were downloaded from the NASA 45

Goddard Earth Sciences Data and Information Services Cen-
ter (https://www.earthdata.nasa.gov/eosdis/daacs/gesdiscTS11 ).
In addition, AMSU-A Level-1B from NOAA-19, MetOp-A,
and MetOp-B satellites were downloaded from the atmo-
sphere product section in the EUMETSAT product nav- 50

igator (https://navigator.eumetsat.intTS12 ). The ECMWF
ERA5 hourly data on pressure levels were acquired from
the Copernicus Climate Change Service (C3S) Climate
Data Store (https://cds.climate.copernicus.eu/cdsapp#!/
dataset/reanalysis-era5-pressure-levels TS13 ). As well as 55

the software codes, the model outputs are available at
https://doi.org/10.5281/zenodo.7714755 (Noh, 2023a) and
https://doi.org/10.5281/zenodo.7983459 (Noh, 2023b)TS14 .

https://github.com/NCAR/DART
https://github.com/ESCOMP/CESM/tree/release-cesm2.1.0
https://github.com/ESCOMP/CESM/tree/release-cesm2.1.0
https://github.com/ESCOMP/CESM/tree/release-cesm2.1.0
https://rda.ucar.edu/datasets/ds337.0
https://doi.org/10.5065/Z83F-N512
https://www.earthdata.nasa.gov/eosdis/daacs/gesdisc
https://navigator.eumetsat.int
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels
https://doi.org/10.5281/zenodo.7714755
https://doi.org/10.5281/zenodo.7983459
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