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Abstract. To improve the initial condition (“analysis”) for numerical weather prediction, we attempt to assimilate observations 9 

from the Advanced Microwave Sounding Unit-A (AMSU-A) on board the low-earth-orbiting satellites. The data assimilation 10 

system, used in this study, consists of the Data Assimilation Research Testbed (DART) and the Community Earth System 11 

Model as the global forecast model. Based on the ensemble Kalman filter scheme, DART supports the radiative transfer model 12 

that is used to simulate the satellite radiances from the model state. To make the AMSU-A data available to be assimilated in 13 

DART, preprocessing modules are developed, which consist of quality control, spatial thinning, and bias correction processes. 14 

In the quality control, two sub-processes are included: outlier test and channel selection depending on the cloud condition and 15 

surface type. The bias correction process is divided into scan-bias correction and air-mass-bias correction. As input data used 16 

in DART, the observation errors are also estimated for the AMSU-A channels. In the trial experiments, a positive analysis 17 

impact is obtained by assimilating the AMSU-A observations on top of the DART data assimilation system that already makes 18 

use of the conventional measurements. In particular, the analysis errors are significantly reduced in the whole troposphere and 19 

lower stratosphere over the Northern Hemisphere. Overall, this study demonstrates a positive impact on the analysis when the 20 

AMSU-A observations are assimilated in the DART assimilation system. 21 

1 Introduction 22 

Data assimilation is a numerical procedure for making the initial condition (“analysis”) that is used as the starting 23 

point for a numerical weather prediction (NWP). In the data assimilation process, various observation data are combined with 24 

the short-term forecast (“background”) derived from the NWP model, based on the error characteristics of the observations 25 

and model forecast (Kalnay, 2003). With the huge amount of satellite observations and advances in model configurations (e.g., 26 

horizontal/vertical resolution and dynamic core) and data assimilation, the quality of the initial condition significantly increases, 27 

which enhances the forecast skill. In particular, the initial condition has dramatically improved since the satellite observations 28 

started to be assimilated (Migliorini et al., 2008; Eyre et al., 2020; Eyre et al., 2022). It is because the satellites cover the 29 

regions where the conventional observations are sparse or absent. Among many types of satellite observations being 30 

assimilated, a significant forecast benefit mainly comes from the observations of the hyperspectral infrared and microwave 31 

sounders that provide unique information on the vertical structure of key atmospheric parameters (e.g., temperature and 32 

moisture) (Joo et al., 2013; Eresmaa et al., 2017; Menzel et al., 2018). For this reason, satellite observations are actively being 33 

assimilated into the data assimilation system in many operational NWP centers. 34 

To advance the research related to data assimilation, a well-organized data assimilation system is essential, which 35 

consists of the forecast model, a data assimilation scheme, and flexible interfaces to use various types of observations. 36 

Operational NWP centers have well-constructed assimilation systems to use diverse types of available observations with up-37 

to-date data assimilation schemes. However, as most operational global NWP systems require huge computation resources, it 38 

is practically impossible for researchers to recreate those systems outside of the NWP centers. Thus, a user-friendly global data 39 
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assimilation system is needed for small numerical modeling communities to attempt challenging studies related to advancing 40 

the data assimilation quality. 41 

 The National Center for Atmospheric Research (NCAR) has developed an open-source data assimilation tool that is 42 

named the Data Assimilation Research Testbed (DART) for data assimilation research, development, and education (Anderson 43 

et al., 2009). DART has interfaces to diverse Earth system components (e.g., atmosphere, ocean, and cryosphere) developed 44 

by many modeling centers. For instance, the Community Atmospheric Model (CAM), the atmospheric component of the 45 

Community Earth System Model (CESM) developed by NCAR, can be used to provide the short-range forecast that is the 46 

background field in DART. DART is based on the ensemble data assimilation method instead of the variational method, which 47 

requires complicated software specific to a particular numerical prediction model (Anderson et al., 2009; Raeder et al., 2012). 48 

In addition, well-defined modules are included to make various types of observations available in the DART data assimilation 49 

process. Thus, DART can assimilate many observation types (e.g., conventional and satellite-based wind). Liu et al. (2012) 50 

investigated the impact of the Global Positioning System (GPS) Radio Occultation (RO) observations on the forecast of 51 

Hurricane Ernesto (2006) using the DART assimilation system. Coniglio et al. (2019) showed that additional forecast benefit 52 

is made by assimilating the measurements of ground-based wind profilers. In addition, a decade-long reanalysis was created 53 

with 80 ensemble members derived from DART, using ground-based data, satellite-based winds, GPS-RO observations, and 54 

temperature soundings retrieved from the Atmospheric Infrared Sounder (AIRS) observation (Raeder et al., 2021). 55 

 However, there are few studies of assimilating satellite-measured radiances in the DART data assimilation system, 56 

because the previous version of DART did not have the essential components, e.g., the radiative transfer model (RTM), needed 57 

to simulate the satellite radiances from the model state. Fortunately, in the recent version of DART (version 9.11.13), the RTM 58 

is included. The Radiative Transfer for TIROS Operational Vertical Sounder (RTTOV) version 12.3 is supported to map the 59 

model space into observation space in the data assimilation scheme (Saunders et al., 2018). In Zhou et al. (2022), the visible 60 

imagery of the Chinese geosynchronous-orbiting (GEO) satellite was assimilated in DART, but using the Observing System 61 

Simulation Experiment (OSSE) framework in which the visible imagery was simulated and then assimilated. Considering that, 62 

it is interesting to assimilate the satellite-observed radiances using the DART data assimilation system to know how the analysis 63 

derived from DART is affected by real satellite observations. 64 

Considering the fact that the analysis/forecast impact derived from the satellite radiances mainly comes from 65 

observations of hyperspectral infrared and microwave sounders (English et al., 2013; Joo et al., 2013; Kim and Kim, 2019), it 66 

is reasonable to assimilate the observations of both sounders first. Unfortunately, the use of hyperspectral infrared sounder 67 

observations was not supported in the recent version of DART. For this reason, we attempt to assimilate the radiances of the 68 

Advanced Microwave Sounding Unit-A (AMSU-A) temperature sounder within the DART data assimilation system coupled 69 

with the NCAR CESM. AMSU-A instruments are currently operating on board many low-earth-orbiting (LEO) satellite 70 

platforms, and thus a large amount of AMSU-A observation data is available for assimilation. In addition, as the microwave 71 

sounder observations are less sensitive to clouds than the infrared sounder observations, the data availability of AMSU-A is 72 

better than that of the infrared sounder. AMSU-A observations are actively used to improve global/regional forecasts as well 73 

as severe weather forecasts such as tropical cyclones (Zhang et al., 2013; Zhu et al., 2016; Migliorini and Candy, 2019; Duncan 74 

et al., 2022). As the preprocessing modules (e.g., quality control, cloud detection, and spatial thinning) for AMSU-A 75 

observations are not provided in the DART package, they are developed in this study. In addition, the diagonal observation 76 

error covariance matrix is estimated using the method suggested by Desroziers et al. (2005), and a bias correction scheme is 77 

also developed based on the methods suggested by Harris and Kelly (2001). In this study, we attempt to assimilate the AMSU-78 

A radiances in clear-sky conditions. In many operational NWP centers, the AMSU-A radiances have been assimilated in all-79 

sky conditions (i.e., clear-sky and cloudy-sky) (Zhu et al., 2016; Migliorini and Candy, 2019; Duncan et al., 2022). However, 80 

as the current version of DART is not ready to assimilate the AMSU-A radiances in cloudy-sky conditions, only the clear-sky 81 

assimilation of AMSU-A radiances is considered. To assess the impact of assimilating AMSU-A observations on the analysis 82 
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derived from DART, the assimilation experiments are conducted using the DART assimilation system coupled with the CESM 83 

as the forecast model system. 84 

 This paper is organized as follows. Section 2 provides the background information on the DART data assimilation 85 

system and CESM. Observation data assimilated in DART are described in section 3. The developed preprocessing steps and 86 

the estimated observation errors are presented in sections 4 and 5, respectively. The setup of the assimilation experiments is 87 

explained in section 6. The results of the first-guess/analysis departure analysis and the analysis impact are explored in section 88 

7, followed by a summary in section 8. 89 

2 DART-CESM data assimilation system 90 

2.1 Data Assimilation Research Testbed (DART) 91 

DART is an open-source assimilation package that has been developed by NCAR since 2002 for data assimilation 92 

development, research, and education. DART can be coupled with full-complexity Earth system components due to the flexible 93 

interfaces provided. In addition, the DART package provides the modules to convert observation data from a variety of native 94 

formats, e.g., the Binary Universal Form for the Representation of meteorological data (BUFR) format and the Hierarchical 95 

Data Format (HDF), into the input format specified for the DART system (Anderson et al., 2009; Raeder et al., 2012). The 96 

recent version of DART (version 9.11.13) is capable of using the RTTOV, a fast RTM, for assimilating visible, infrared, and 97 

microwave satellite observations. Provided in RTTOV, many satellite instruments on board the GEO and LEO satellites are 98 

also supported in the DART assimilation package, but the hyperspectral infrared sounders, e.g., the Cross-track Infrared 99 

Sounder (CrIS) and the Infrared Atmospheric Sounding Interferometer (IASI), are excluded (Hoar et al., 2020). The main data 100 

assimilation technique provided by DART is the ensemble Kalman filter (EnKF) in which the forecast error covariance is 101 

estimated using short-range ensemble forecasts. The derived forecast error covariance is fully multivariate and depends on the 102 

synoptic situation. 103 

2.2 Community Earth System Model (CESM) 104 

 CESM version 2 (CESM v2.1.0) is used as the model component of the ensemble data assimilation system. CESM2 105 

is the latest generation of coupled climate/earth modeling system developed by NCAR, consisting of the atmosphere, land 106 

surface, ocean, sea-ice, land-ice, river, and wave models. These component models can be coupled to exchange states and 107 

fluxes (Hurrell et al., 2013; Kay at al., 2015). In this study, atmosphere and land component models are actively coupled, but 108 

the ocean component (sea surface temperature) and sea ice coverage are specified by data read from files. As the atmosphere 109 

model of CESM2, CAM version 6 (CAM6) is an atmospheric general circulation model (AGCM) with the Finite Volume (FV) 110 

dynamical core (Danabasoglu et al., 2020). CAM6 provides the short-term forecast (6-h forecast) of the atmospheric state, 111 

which is used as the background state in the DART assimilation scheme. The land model is the Community Land Model 112 

version 5 (CLM5). The atmospheric variables are directly updated by the information derived from the observations ingested 113 

in the DART assimilation process, while the land state is affected interactively by the updated atmosphere state because the 114 

two component models are coupled. The two active models (CAM6 and CLM5) are run with a nominal 1° (1.25° in longitude 115 

and 0.95° in latitude) horizontal resolution. CAM6 has 32 vertical levels from the surface level to the top at 3.6 hPa (about 40 116 

km). 117 

3 Observations 118 

3.1 NCEP PrepBUFR data 119 
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 The baseline observation data are obtained from the National Centers for Environmental Prediction (NCEP) 120 

Automated Data Processing (ADP) global upper air and surface weather observations that are available from the NCAR 121 

Research Data Archive (NCAR RDA) (https://rda.ucar.edu/datasets/ds337.0/). These data are produced in the PrepBUFR 122 

format for assimilation in the diverse NCEP NWP systems, and mainly consist of ground-based observations and satellite-123 

based wind retrievals. The ground-based observations include land and marine surface reports, aircraft reports, radiosonde, 124 

and pilot balloon (pibal) measurements, which are transmitted via the Global Telecommunications System (GTS) coordinated 125 

by the World Meteorological Organization (WMO). The satellite-based retrievals are provided from the National 126 

Environmental Satellite Data and Information Service (NESDIS). They include oceanic wind derived from the Special Sensor 127 

Microwave Imager (SSMI) and upper wind from the LEO and GEO satellites. As the NCEP ADP dataset is provided in the 128 

BUFR format, it must be converted to the data format available in the DART assimilation system, using the modules provided 129 

in the DART data assimilation package. 130 

3.2 AMSU-A data 131 

 AMSU-A is the microwave temperature sounder that is currently on board diverse sun-synchronous satellite 132 

platforms e.g., MetOp satellites (MetOp-A, -B, and -C), three satellites of the National Oceanic and Atmospheric 133 

Administration (NOAA), and the National Aeronautics and Space Administration (NASA) research satellite Aqua. These three 134 

LEO satellite constellations provide near-global coverage, even in data assimilation that has a sub-daily assimilation window; 135 

NOAA satellites circle in an early-morning orbit (around 0600 local time), MetOp satellites have a mid-morning orbit (around 136 

0900 local time), and Aqua has an afternoon orbit (around 1300 local time). As a cross-track scanning sounder, the AMSU-A 137 

instrument has a total of 15 channels that consist of 12 channels (AMSU-A channels 3–14) over the 50–58 GHz oxygen (O2) 138 

absorption band and three window channels (AMSU-A channels 1, 2, and 15) at 23.8, 31.4, and 89 GHz. The instrument 139 

measures 30 pixels in each swath with a spatial footprint size of 48 km in nadir. The channels over the O2 absorption band 140 

mainly provide information about the vertical structure of tropospheric and stratospheric temperature (Mo, 1999; Goldberg et 141 

al., 2001). In this study, observations of AMSU-A instruments on board four LEO satellites (i.e., NOAA-19, Aqua, MetOp-A, 142 

and MetOp-B) are assimilated within the DART data assimilation system. 143 

 144 

 145 
Figure 1. Flowchart of the preprocessing system for AMSU-A brightness temperatures (BTs). 146 
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4 Preprocessing AMSU-A observations 147 

 Prior to assimilating the AMSU-A observations into DART, the AMSU-A observations should be passed through a 148 

preprocessing stage. Figure 1 shows the flowchart of the preprocessing stage for the AMSU-A observations as well as the 149 

DART assimilation step. In the preprocessing, three main steps are included: quality control, spatial thinning, and bias 150 

correction. Quality control consists of two sub-processes: outlier test and channel selection depending on the cloud condition 151 

and surface type. If the difference between the observed AMSU-A brightness temperature and the forward-modeled brightness 152 

temperature derived from the model background (6-h forecast) is larger than three times the square root of the sum of the 153 

observation error variance and the prior background error variance, the AMSU-A observation is not assimilated (called outlier 154 

test). As the prior background error variance is based on the ensemble spread, the larger the ensemble spread of the 6-h forecast, 155 

the more the AMSU-A observations are assimilated. More detailed information on the channel selection, spatial thinning, and 156 

bias correction process is described in sections 4.1, 4.2, and 4.3, respectively. 157 

4.1 Channel selection for the cloud condition and surface type 158 

 As each AMSU-A channel has distinct spectral characteristics, it is necessary to carefully choose the channels to be 159 

assimilated in the DART data assimilation system. First, the three AMSU-A channels at 23.8, 31.4, and 89 GHz (i.e., channels 160 

1, 2, and 15), distributed over the window region of the microwave spectrum, are not assimilated. These three window channels 161 

are mostly affected by the emitted radiances from the surface under clear-sky conditions, so there is almost no information 162 

about the atmosphere. However, AMSU-A channels 1 (23.8 GHz) and 2 (31.4 GHz) are highly sensitive to clouds, so they are 163 

used for the quality control in which clouds are detected. In addition, even though the AMSU-A channels 3 (50.3 GHz) and 4 164 

(52.8 GHz) are located over the O2 absorption band used for the temperature sounding, they have a strong sensitivity to the 165 

surface, so they are not used in DART. Considering that the upper parts of the weighting function of AMSU-A channels 12 166 

(57.29±0.322±0.022 GHz), 13 (57.29±0.322±0.010 GHz), and 14 (57.29±0.3222±0.0045 GHz) are above the top of the 167 

atmosphere (i.e., 3.6 hPa) in the CAM6, these three channels are also removed to prevent vertical interpolation errors that may 168 

occur in the forward modeling using the RTM. This leaves channels 5-11 (53.596±0.115, 54.4, 54.94, 55.5, 57.29, 57.29±0.217, 169 

and 57.29±0.322±0.048 GHz) as the ones which may be assimilated. 170 

 As this study aims to assimilate the AMSU-A observations under the clear-sky condition, the cloud-affected channels 171 

are filtered out in the quality control step. In other words, the tropospheric channels (channels 5–7) whose peak of the weighting 172 

function is below 200 hPa are rejected if the AMSU-A pixel is determined to be a cloud-affected pixel. To determine this, we 173 

calculate the cloud liquid water (CLW) derived from observations of AMSU-A channels 1 and 2 over the ocean, using the 174 

retrieval methodology suggested by Grody et al. (2001). The CLW is defined as follows: 175 

 176 

CLW = cosθ [D0 + 0.754 ln(285.0 – BT23) – 2.265 ln(285.0 – BT31)]   (1) 177 

 178 

 D0= 8.240 – (2.622 – 1.846 cosθ) cosθ       (2) 179 

 180 

where θ is the satellite viewing zenith angle. BT23 and BT31 are the brightness temperature of AMSU-A channels 1 and 2, 181 

respectively. If the retrieved CLW is larger than 0.2 mm, the AMSU-A pixel is judged to be cloud-contaminated, then the three 182 

tropospheric channels (channels 5–7) are rejected. 183 

In this study, seven candidate AMSU-A channels (i.e., channels 5–11) are assimilated differently, depending on the 184 

surface type. Channels 5, 6, and 7 are the main tropospheric channels. Their weighting functions peak below 200 hPa, but also 185 

have a bit of sensitivity to the surface because of the broad vertical shape of the weighting functions. Thus, the quality of the 186 

analysis can be degraded by assimilating the three tropospheric channels over the land and sea-ice types whose surface 187 
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information (e.g., surface temperature and surface spectral emissivity) is uncertain. For this reason, AMSU-A channels 5–7 are 188 

not assimilated over the land and sea ice. To identify sea-ice area, the sea-ice index (SII) is retrieved from observations of 189 

AMSU-A channels 1 and 3 over the high latitude region (poleward of 50 degrees), using the retrieval algorithm suggested by 190 

Grody et al. (1999). The SII is derived as follows: 191 

 192 

SII = 2.85 + 0.20 BT23 – 0.028 BT50       (3) 193 

 194 

where BT50 is the brightness temperature of AMSU-A channel 3. Three tropospheric channels are turned off if the SII is larger 195 

than 0.1 in the latitudes beyond 50 degrees. However, as the surface information over the ocean is relatively reliable, seven 196 

candidate AMSU-A channels are assimilated under the clear-sky condition. The AMSU-A channel list for DART is summarized 197 

in Table 1.  198 

 199 

Table 1. AMSU-A channel list for the DART data assimilation. 200 

Satellite 
platform Type CH5 CH6 CH7 CH8 CH9 CH10 CH11 

Aqua 
Land/Sea-ice 

N/A* 
X 

N/A 
O O O O 

Ocean O O O O O 
Cloud X O O O O 

NOAA-19 
Land/Sea-ice X X X 

N/A 
O O O 

Ocean O O O O O O 
Cloud X X X O O O 

MetOp-A 
Land/Sea-ice X X 

N/A N/A 
O O O 

Ocean O O O O O 
Cloud X X O O O 

MetOp-B 
Land/Sea-ice X X X O O O O 

Ocean O O O O O O O 
Cloud X X X O O O O 

*N/A: not available due to the malfunction in August and September 2014. O: assimilated. X: excluded. 201 
 202 

As an example, Figure 2a and b presents the spatial distribution of the CLW and the SII retrieved from AMSU-A on 203 

board NOAA-19 on 12 August 2014. It is found that many regions over the ocean are covered by cloud-related systems (CLW 204 

> 0.2 mm) and also sea-ice (SII > 0.1) exists near the north and south pole regions. Observations of AMSU-A channel 5 over 205 

the cloud region and sea-ice areas are rejected (Fig. 2c). The channel selection process is also applied to the other two AMSU-206 

A channels (channels 6 and 7) which are likely affected by clouds and sea ice. In the pre-trial runs, it was found that the analysis 207 

quality is degraded if the AMSU-A observations are assimilated over Antarctica during the Southern Hemisphere winter season. 208 

It seems to be due to the complex topography of the Antarctic continent, extreme cold weather conditions, and large errors in 209 

the numerical model. Thus, AMSU-A observations are not used over the high latitude region (> 60°S) during the Southern 210 

Hemisphere winter season, in order to prevent the degradation of the analysis quality. 211 



 7 

 212 
Figure 2. Spatial distribution of (a) cloud liquid water (CLW, mm), (b) sea-ice index (SII) retrieved from AMSU-A observations, and (c) 213 
quality flag of AMSU-A channel 5 (53.6 GHz) from NOAA-19 on 12 August 2014. 214 

4.2 Spatial thinning 215 

 In addition to the inter-channel error correlation (refer to section 5), spatial error correlation between the observations 216 

at a close distance also exists due to different representativeness of the observed radiances and the model state, and the 217 

uncertain quality control process such as cloud detection (Ochotta et al., 2005; Bormann and Bauer, 2010). Thus, the analysis 218 

is likely to be sub-optimized if highly dense observations are assimilated without considering the spatial error correlations. A 219 

common treatment to counteract the spatial error correlation is spatial thinning which is widely used in data assimilation 220 

systems operated by the NWP centers. To choose the optimal spatial thinning distance, we performed four extra assimilation 221 

runs in which different spatial thinning distance (i.e., 96 km, 192 km, 288 km and 384 km) was applied. Except for the spatial 222 

thinning distance, these pre-trial runs were set up with the same assimilation factors, i.e., the estimated bias correction 223 

coefficients (refer to section 4.3), the estimated observation errors (refer to section 5), and the localization half-width of 0.075 224 

(refer to section 6). These distances are multiples of the AMSU-A field of view (FOV) footprint size (~48 km in nadir). The 225 
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thinning interval of 288 km resulted in the largest analysis impact, so that distance was used to thin the observations in this 226 

study. 227 

4.3 Bias correction 228 

 The biases mainly come from systematic errors: instrument calibration errors, inaccuracies of the RTM, and 229 

uncertain preprocessing (e.g. cloud detection errors). The biases tend to depend on time-of-day and on the season as well as 230 

the instrument scan angle and air mass. While random errors are considered by defining the observation errors used in the 231 

assimilation process, the biases should be removed before assimilating the satellite observations. In these experiments, the 232 

biases are estimated using the time averaged departures between the observed radiances and the simulated radiances from the 233 

spatiotemporally collocated model field (background), because of the absence of reference data suitable to compare the satellite 234 

observations (Scheck et al., 2018). The use of the simulated radiances from the model background (i.e., 6-h forecast) may be 235 

questionable because the model background could be biased. However, it is effectively impossible to find sufficient reference 236 

observations for comparing with these satellite observations, so the biases are made using the departures between the observed 237 

radiances and the model simulated radiances. To estimate the systematic biases coming from diverse error sources, in this study, 238 

two bias correction processes are performed separately: scan-bias correction and air-mass-bias correction, using the statistical 239 

bias correction methods suggested by Harris and Kelly (2002). 240 

 241 

 242 
Figure 3. (a) Globally averaged, residual scan bias of AMSU-A channels 5–11 and (b) the regionally averaged, residual scan bias depending 243 
on 13 latitude bands for AMSU-A channel 6 on board MetOp-B during the period from 11 August to 25 August 2014. 244 
 245 

As a cross-track microwave sounder, the AMSU-A scans 30 FOVs per scan line, which are distributed symmetrically 246 

about the nadir. The scan angles of 30 FOVs range between ±48.33°. Thus, the observed radiance varies depending on the scan 247 

angle even though the observation point is the same. The variation of AMSU-A radiance is due to the change in the optical 248 
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path length between the earth and the satellite instrument, called the limb effect. The variation of radiance along with the scan 249 

angle can be simulated in the RTTOV embedded in DART. However, the mean first-guess departures between the AMSU-A 250 

observed radiances and forward-modeled radiances still increase with an increasing scan angle on the center of two near-nadir 251 

FOVs (15 and 16) (Fig. 3a), meaning that the residual scan-angle-dependent biases exist for each AMSU-A channel. Thus, the 252 

scan-bias correction is required to correct the residual scan bias for each AMSU-A channel. In this study, the scan-bias 253 

correction is performed using the pre-computed residual scan bias for each AMSU-A channel. There are two steps to estimate 254 

the residual scan bias for AMSU-A channels assimilated. First, the mean bias of the departure between the AMSU-A observed 255 

radiances and forward-modeled radiances for each FOV is made with the data assimilation results derived from the pre-trial 256 

run. The pre-trial run was set up with the spatial thinning of 96 km (refer to section 4.2) and the default localization half-width 257 

(0.15, refer to section 6). The instrument noise errors were used as the observation errors within DART. Second, as the scan 258 

bias derived from the departures between the observed radiances and forward-modeled radiances likely includes the air-mass 259 

bias, the averaged residual scan bias is obtained by removing the mean bias of two near-nadir FOVs (15 and 16) from the bias 260 

for each FOV (1–30). In addition, as shown in Fig. 3b, it is also found that the residual scan biases have different patterns 261 

depending on the latitude band for AMSU-A channel 6 (not shown for other channels), suggesting that the use of globally 262 

averaged scan bias is likely to deteriorate the quality of AMSU-A data assimilation. Thus, the residual scan (𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) bias for 263 

each AMSU-A channel is subdivided into 14 latitude bands as follows: 264 

 265 

𝑏𝑏i
scan(𝜃𝜃,𝜙𝜙)= [𝑦𝑦 − 𝐻𝐻(𝑥𝑥b)]𝑖𝑖(𝜃𝜃,𝜙𝜙) − [𝑦𝑦 − 𝐻𝐻(𝑥𝑥b)]𝑖𝑖(𝜃𝜃 = 0,𝜙𝜙)   (4) 266 

 267 

where the subscript i denotes the AMSU-A channel number (i=1, 2, . . . , 15), θ is the satellite scan angle, ϕ is the latitude band 268 

at an interval of 10 degrees in the latitudes below 60 degrees and 30 degrees in the latitudes beyond 60 degrees, y is the AMSU-269 

A radiance, xb is the background model state, and H is the observation operator. Prior to the air-mass-bias correction, the 270 

observed brightness temperatures of each AMSU-A channel are corrected using the estimated scan bias coefficients. 271 

The air-mass bias (𝑏𝑏𝑠𝑠𝑖𝑖𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠) is predicted using the multivariate regression method. The biases are mainly due to 272 

uncertainties in the RTM, which tend to vary with the air mass and surface characteristics. The predictors, used in the regression 273 

method, come from the model variables (i.e., 1000–300 hPa thickness, 200–50 hPa thickness, and surface temperature) that 274 

include information on air mass and surface characteristics. The predictors regress to the first-guess departure between the 275 

satellite radiances and forward-modeled radiances as follows: 276 

 277 

𝑏𝑏𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠 =  𝛽𝛽𝑖𝑖,0 + ∑ 𝛽𝛽𝑖𝑖,𝑗𝑗𝑝𝑝𝑖𝑖,𝑗𝑗𝑁𝑁
𝑗𝑗=1       (5) 278 

 279 

where βi,0 indicates the constant component of bias bi, and βi,j are the bias correction coefficients of the predictor pi,j. The 280 

subscripts i and j denote the AMSU-A channel number and the predictor number (i.e., j = 1,2…N), respectively. 281 

For the tropospheric AMSU-A channels (channels 5–7), the air mass bias is estimated with two model variables (i.e., 282 

1000–300 hPa thickness and surface temperature), because the peak of the channel weighting function is positioned below the 283 

200 hPa pressure level, and these channels have a bit of sensitivity to the surface. However, 200–50 hPa thickness is only 284 

employed for other upper-tropospheric and stratospheric AMSU-A channels (channels 8–11) whose peak of the weighting 285 

function is above 200 hPa. As the biases fluctuate with time, it is reasonable to update the regression coefficients and an 286 

intercept point periodically, rather than using the climatological-based coefficients that are estimated using the long-term model 287 

outputs. In this study, at each data assimilation cycle, the regression coefficients and an intercept point for each AMSU-A 288 

channel are computed using DART outputs for the last four cycles and then used to predict the air-mass biases. As shown in 289 

Fig. 4, the histograms of the first-guess departures of the MetOp-B channels 5–11 show a positive bias and a Gaussian 290 
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distribution if the AMSU-A observations are not bias-corrected. In particular, channels 5 and 6 have a large positive bias of 291 

1.0–1.5K. However, the positive biases are almost removed through the bias correction process, meaning that the bias 292 

correction scheme works well (Table 2). 293 

 294 

 295 
Figure 4. Histogram of the first-guess departures between the observations of the MetOp-B AMSU-A channels 5–11 and the corresponding 296 
model background (6-h forecast). Colors indicate the results before the bias correction (hatched blue) and after the bias correction (red), 297 
respectively. 298 
 299 

Table 2. Mean biases and standard deviations of the first-guess departures (O-B) for MetOp-B AMSU-A channels before and after the bias 300 
correction. 301 

O-B Bias correction CH5 CH6 CH7 CH8 CH9 CH10 CH11 

Bias 
X 1.518 1.181 0.514 0.937 0.514 0.590 0.612 

O 0.0005 0.002 0.003 0.014 0.033 0.028 0.010 

STDDEV 
X 0.677 0.489 0.521 0.572 0.639 0.688 1.052 

O 0.627 0.482 0.494 0.554 0.580 0.642 0.966 

5 AMSU-A observation errors 302 

 As well as the model background error, the observation errors play an important role in determining the weight of 303 

the observations in the data assimilation system. Thus, it is an important step to define the observation errors so that the 304 

observations are suitably blended with the model background, which is a 6-hour forecast derived from the CAM6, in order to 305 

provide the optimal initial condition to the numerical model. In this study, a diagonal observation error covariance matrix is 306 

used for the AMSU-A channels, meaning that the inter-channel error correlation is not considered. In fact, the use of the 307 

diagonal observation error covariance matrix may be problematic because the inter-channel error correlation definitely exists 308 

for the infrared and microwave sounders (Bormann and Bauer, 2010; Stewart et al., 2014; Weston et al., 2014; Campbell et al., 309 
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2017). Unfortunately, the recent version of DART (version 9.11.13) does not support the use of a full observation error 310 

covariance matrix in which the diagonal and off-diagonal components are fully defined. For this reason, the diagonal 311 

observation errors are empirically inflated to counteract the effect of error correlation between different AMSU-A channels. In 312 

other words, the inflated diagonal observation errors take account of the inter-channel error correlation as well. 313 

 314 

 315 
Figure 5. Estimated observation errors (K) for AMSU-A channels on board Aqua (black: circle), NOAA-19 (red: square), MetOp-A (blue: 316 
diamond), and MetOp-B (green: triangle) satellite platforms. Black asterisks indicate the instrument noise errors for AMSU-A channels. 317 
 318 

 To estimate the diagonal components (called variances) of the observation error covariance matrix (R) for AMSU-A 319 

channels, we use a diagnostic procedure suggested by Desroziers et al. (2005) in which the error variances are made with two 320 

departures, i.e., the background innovation (O-B) between the observation (y) and the model background (xb) and the analysis 321 

innovation (O-A) between the observation and the model analysis (xa), using the expression in Eq. (6). 322 

 323 

𝑅𝑅 = 𝐸𝐸[{𝑦𝑦 − 𝐻𝐻(𝑥𝑥b)} {𝑦𝑦 − 𝐻𝐻(𝑥𝑥a)}T]     (6) 324 

 325 

where E is the statistical expectation operator and the superscript “T” indicates the matrix transpose. To compute the 326 

observation error variances of AMSU-A channels on board four satellite platforms (i.e., Aqua, NOAA-19, MetOp-A, and 327 

MetOp-B), the background and analysis innovations were derived from the pre-trial run that was conducted from 25 August 328 

to 30 September 2014. In the pre-trial run, instrument noise errors were simply used as the observation errors. The pre-trial 329 

run was set up with the default localization half-width (0.15, refer to section 6), the spatial thinning of 96 km (refer to section 330 

4.2), and the bias correction scheme (refer to section 4.3). Then, the observation error variances were estimated using the Eq. 331 

(6). 332 

As the surface-sensitive channels and upper-stratospheric channels are not assimilated in this study (see section 4.1), 333 

Figure 5 shows the observation errors of seven AMSU-A channels (channels 5–11) as well as the instrument noise errors 334 

employed in the pre-trial run. As some channels (i.e., channels 5 and 7 for Aqua, channel 8 for NOAA-19, and channels 7 and 335 

8 for MetOp-A) malfunctioned during the trial period (11 August – 30 September 2014), the errors for these channels were not 336 

needed or estimated. The estimated errors are larger than the instrument noise errors because various error sources (e.g., the 337 

radiative transfer modeling errors, representative errors, and systematic errors) are considered as well as the instrument noise 338 

errors. The estimated errors for the tropospheric and upper-tropospheric channels (channels 5–9) are smaller than the errors 339 

for the stratospheric channels (channels 10–11). This error pattern is also presented for the instrument noise errors. As 340 

aforementioned, the estimated observation errors were inflated by a factor of two that was empirically estimated by the multiple 341 
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pre-trial runs, in order to counteract the inter-channel error correlation. Then, the inflated observation errors, two times the 342 

estimated observation errors, were employed for the trial experiments aiming at assessing the analysis impact of assimilating 343 

the AMSU-A observations. 344 

6 Trial experiment design 345 

 To diagnose the analysis impact of assimilating the AMSU-A observations into the DART global data assimilation 346 

system, two assimilation experiments were conducted: (a) a control run (CNTL) where the conventional observations (i.e., 347 

ground-based observations and satellite-derived winds) were assimilated, and (b) “AMSU-A run”, where the AMSU-A 348 

observations from four LEO satellite platforms (i.e., Aqua, NOAA-19, MetOp-A, and MetOp-B) were assimilated as well as 349 

the conventional data that were assimilated in the CNTL run. For the AMSU-A run, the developed preprocessing steps (e.g., 350 

channel selection, thinning, and bias correction) were applied to the AMSU-A observed radiances and then the pre-computed 351 

AMSU-A observation errors were employed in the DART data assimilation process. 352 

For two trial runs, available observation data were assimilated within a 6-h assimilation window from -3 to +3 h 353 

centered at the nominal analysis time (0000, 0600, 1200, and 1800 UTC). All trial runs were carried out four times a day for 354 

the trial period from 0000UTC 11 August to 1800UTC 30 September 2014. The CAM6 forecast model was run with a nominal 355 

1° horizontal resolution (1.25° in longitude and 0.95° in latitude) and 32 vertical levels. The initial ensembles that are available 356 

at the NCAR RDA (https://rda.ucar.edu/ datasets/ds345.0/) were obtained from the DART reanalysis. To adjust the effect of 357 

initial ensembles, a two-week spin-up period (0000UTC 11 August to 1800UTC 24 August 2014) was included in the trial 358 

period. In this study, the ensemble adjustment Kalman filter (EAKF) is applied, which is a variation of the EnKF (Anderson, 359 

2001). Twenty ensemble members were integrated to compute the flow-dependent background error covariance and the 360 

correlation between the DART state variables and observations.  361 

All EnKF-based assimilation techniques have the sampling error that is induced by the limited size of the ensemble. 362 

In particular, the sampling error is likely to be large when the absolute value of correlation between the DART state variables 363 

and the observations is small. To remove the spurious correlation induced by limited ensemble size in DART, the correlation 364 

is multiplied by a localization factor that decreases from 1 to 0 with the physical distance between the model state variables 365 

and the observations. In DART, the localization half-width can be user-defined, which is half of the distance to where the 366 

localization factor is zero. To determine the localization half-width, three extra assimilation experiments were run with different 367 

half-widths (i.e., 0.15, 0.075, and 0.0375). Except for the localization half-width, the assimilation experiments were set up 368 

with the spatial thinning of 96 km (refer to section 4.2), the bias correction scheme (refer to section 4.3), and the estimated 369 

observation errors (refer to section 5). As the largest analysis impact was made with the half-width of 0.075, the 370 

horizontal/vertical localization half-width of 0.075 radians was employed to prevent the use of erroneous correlation. However, 371 

as the model top height is quite lower than the Earth’s horizontal scale, the localization half-width in the vertical is normalized 372 

by the user-defined scale height, which is equivalent to one radian. In DART, the difference in scale height between the model 373 

top (360 Pa) and the standard surface pressure (101325 Pa) is 5.73. In this study, the normalization scale height of 1.5, a default 374 

value in DART, was used, which is assumed to be equal to one radian. Thus, the localization half-width of 0.075 radians is 375 

converted into the scale height of 0.11, meaning that the localization cutoff can be an ellipsoid that is flat horizontally. In 376 

addition to the reduction of localization half-width (compared to the default value of 0.15), the sampling error correction 377 

algorithm was applied, which uses pre-defined information about the correlation between the model state variables and the 378 

observations as a function of ensemble size. Detailed information on the sampling error correction algorithm is described in 379 

Anderson (2012). 380 

 The EnKF technique has a risk of underestimation of the ensemble spread, meaning that the ensemble estimates are 381 

too confident. If the ensemble spread becomes too small, the observation data are ignored in the data assimilation process, 382 
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resulting in an ensemble collapse (Anderson et al., 2009; El Gharamti et al., 2019). To mitigate the underestimation issue of 383 

the ensemble spread, the uncertainty in the ensemble estimate is inflated by linearly moving each ensemble member away 384 

from the ensemble mean. It means that the standard deviation of the ensemble spread increases by applying the inflation value 385 

in a way that the ensemble mean is unchanged. In DART, the ensemble spread varies spatiotemporally, as a function of the 386 

evolving observation network and the chosen inflation algorithm. These experiments use a spatiotemporally varying inflation 387 

algorithm with a Gaussian distribution. More detailed information on the inflation algorithm adopted in DART is presented in 388 

El Gharamti et al. (2019). 389 

7 Results 390 

7.1 Assessment of first-guess departure and analysis departure 391 

 As the same conventional radiosonde measurements were assimilated in the two trial runs (i.e., CNTL and AMSU-392 

A), the first-guess departure statistics between the radiosonde measurements and the spatiotemporally-collocated background 393 

states (6-h forecast) can be used to assess the impact of the AMSU-A observations to the short-range forecast. Figure 6 shows 394 

the vertical structure of the standard deviation (STDDEV) of the first-guess departure from the radiosonde temperature, zonal 395 

wind, and meridional wind as well as the number of the radiosonde measurements used. 396 

 397 

 398 
Figure 6. The standard deviation (STDDEV) of the first-guess departures for the radiosonde (a) temperature, (b) zonal wind, and (c) 399 
meridional wind for the control (CNTL run: circle symbol and black line) and experiment (AMSU-A run: square symbol and red line) runs. 400 
Solid and dashed lines indicate the STDDEV and the number (top axis) of radiosonde measurements assimilated, respectively. The 99% 401 
confidence intervals are indicated by the horizontal black lines. 402 
 403 

For the temperature, the first-guess departure errors are significantly reduced below 300 hPa for the AMSU-A runs 404 

as compared with the errors for the CNTL run (Fig. 6a). Because the AMSU-A channels provide vertical information about 405 

the air temperature, the temperature error reduction is the direct impact derived by assimilating the AMSU-A observations in 406 

the AMSU-A run. In addition to the radiosonde temperature, the first-guess departure errors decrease for the two wind 407 

components (i.e., zonal and meridional winds) (Fig. 6b and c). In particular, the STDDEVs of the two winds at the 300 hPa 408 

level are reduced by up to about 4.7m/s in the AMSU-A run, compared to the error of about 5.1m/s for the CNTL run. As the 409 
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model background error covariance includes the multivariate correlation between different model parameters (e.g., temperature 410 

and winds), a change in one model parameter can change another model parameter in the assimilation process. In addition, 411 

model parameters are linked in the governing equations and the physical parameterizations, which are embedded in the CAM6. 412 

That is, the change in one parameter results in the adjustment of another parameter in the model time integration. Thus, the 413 

error reduction of the wind components is the indirect impact of the improved temperature field by assimilating the AMSU-A 414 

observations. 415 

 In addition to the first-guess departure analysis of radiosonde, the assimilation impact of the AMSU-A observations 416 

can be diagnosed by comparing the first-guess departures of the AMSU-A with the analysis departures between the AMSU-A 417 

observations and the model analysis state. In general, if the observations are successfully assimilated, the STDDEV of the 418 

analysis departure is smaller than that of the first-guess departure, because the background fields are improved by assimilating 419 

the observations. As shown in Fig. 7, the STDDEVs of the analysis departure are significantly smaller than that of the first-420 

guess departure for AMSU-A assimilated channels (channels 5–11) regardless of the satellite platforms, meaning that the 421 

AMSU-A observations have a positive analysis impact. In particular, the gap between the STDDEVs of two departures is large 422 

for the stratospheric AMSU-A channels (channels 9–11). 423 

 424 

 425 
Figure 7. The standard deviations (STDDEVs) of the first-guess departure (unfilled symbols) and analysis departure (filled symbols) for 426 
AMSU-A channels on board Aqua (black: circle), NOAA-19 (red: square), MetOp-A (blue: diamond), and MetOp-B (green: triangle) 427 
satellites. 428 

7.2 Analysis impact of AMSU-A observations  429 

 To assess the impact of the AMSU-A observations on the analysis derived from the DART data assimilation system, 430 

the analysis errors are computed between the DART analysis and the European Centre for Medium-Range Weather Forecasts 431 

(ECMWF) reanalysis version 5 (ERA5) as the reference data. As the ERA5 is made through the assimilation of all available 432 

observation data in the ECMWF data assimilation system and provides consistent maps without spatial gaps, the ERA5 is 433 

employed to assess the model-derived output. For four primary atmospheric parameters (i.e., 500 hPa geopotential height, 434 

temperature, zonal wind, and meridional wind), the departures between the DART ensemble-mean analysis and the ERA5 are 435 

computed. Then bias and standard deviation are derived from the long-term departures. In particular, the error of 500 hPa 436 

geopotential height is widely used to assess the overall performance of the model-derived output, because large-scale 437 

atmospheric motion in the middle troposphere (500 hPa) is closely linked with lower-level atmospheric motion. 438 

Figure 8 describes the mean bias and STDDEV of 500 hPa geopotential height for the CNTL and AMSU-A run, 439 
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depending on the latitudinal regions. Detailed error values are described in Table 3. For two trial runs, overall negative mean 440 

bias occurs, reaching up to about -18m. However, the bias difference varies depending on the latitudinal regions. Over the 441 

Northern Hemisphere (30°N–90°N), the AMSU-A run has a larger negative bias than the bias for the CNTL run. However, 442 

over the tropics (30°S–30°N) and Southern Hemisphere (30°S–90°S), the CNTL run has a larger negative bias than the bias 443 

for the AMSU-A run. Thus, similar global mean bias (about -18m) for two trial runs is caused by the offsetting between 444 

regionally different bias patterns. 445 

 446 
Figure 8. (a) Mean bias and (b) standard deviation (STDDEV) of the analysis of 500 hPa geopotential height over the global (grey), Northern 447 
Hemisphere (NH: blue), tropics (TR: green), and Southern Hemisphere (SH: red), derived against the ERA5 reanalysis. Filled and hatched 448 
bars indicate the results for the control (CNTL) and experiment (AMSU-A) run, respectively. The 99% confidence intervals are indicated by 449 
the vertical black lines. 450 
 451 

Considering that the geopotential height is a primary function of the average air temperature between the surface 452 

and the pressure level, we assumed that the model temperature has a cold bias at least below the 500 hPa pressure level. As 453 

expected, it is found that a negative bias is presented in the temperature field for both two trial runs (not shown). In addition, 454 

as shown in Fig. 9, the first-guess departure of the radiosonde temperature for the two trial runs has large positive values, 455 

implying that a cold bias exists in the model temperature fields (6-h forecast). In Raeder et al. (2021), it was noted that the 456 

CAM6/DART-derived reanalysis has a cold bias in the troposphere. However, it is still unclear the reason why the CAM6-457 

based temperature fields have a cold bias. The bias issue in CAM6 will be an interesting study in future work. 458 

 459 

Table 3. Error statistics of 500 hPa geopotential height (m) for the control (CNTL run) and experiment (AMSU-A run) run. Better values 460 
are bolded. In parentheses, error statistics are shown over the mid-latitude region (30°S-60°S and 30°N-60°N) in the Northern and Southern 461 
Hemisphere. 462 

Trial  
Name 

Bias STDDEV 

Global NH TR SH Global NH TR SH 

CNTL -18.70 -13.90 
(-18.43) -19.05 -27.45 

(-19.84) 48.82 48.02 
(26.71) 13.55 62.54 

(38.55) 

AMSU-A -18.59 -17.39 
(-16.95) -17.73 -25.51 

(-19.54) 42.42 31.55 
(20.24) 12.41 58.29 

(33.49) 
 463 

the te Even though the AMSU-A observations, including mperature information, are additionally assimilated in the 464 

AMSU-A run, the AMSU-A run has a negative temperature bias that occurs in the CNTL run. It is related to the bias correction 465 

applied to the AMSU-A observations in DART. As mentioned in section 4.3, the AMSU-A radiances are corrected by 466 

eliminating the biases based on the departure between the observed radiances and the forward-simulated radiances from the 467 

model background field. In addition, in this study, the bias correction coefficients were even updated at each cycle, using the 468 

DART outputs from the last four cycles. Thus, the information on the model bias is included in the biases derived from the 469 

correction scheme, which gradually fits the observations to the model background over the sequent assimilation cycles. As a 470 
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result, the model bias still exists in the AMSU-A run as well as the CNTL run. 471 

However, the global-mean STDDEV of 500 hPa geopotential height for the AMSU-A run is reduced to about 42 m 472 

as compared with the STDDEV (about 49 m) for the CNTL run, meaning that the 500 hPa geopotential height predictions are 473 

improved by assimilating the AMSU-A observations (Table 3). In particular, the error is largely reduced over the Northern 474 

Hemisphere. That is, the analysis impact is more significant in the Northern Hemisphere. It is inconsistent with the consensus 475 

that the assimilation impact of satellite observations is larger in the Southern Hemisphere, where the conventional data are 476 

sparse (Terasaki and Miyoshi, 2017; Yamazaki et al., 2023). As shown in Fig. 10a and b, a positive impact mainly occurs in 477 

the high-latitude region (> 60°N). In contrast, over the tropics and Southern Hemisphere, the error reduction is relatively 478 

smaller than over the Northern Hemisphere. In the tropics, the analysis error (about 14 m) is quite small for the CNTL run, as 479 

compared with the large errors of about 48 m and 63 m in the Northern Hemisphere and Southern Hemisphere, respectively. 480 

Following Judt (2020), it was demonstrated that the tropical atmosphere has longer predictability than the extratropical 481 

atmosphere. Thus, the AMSU-A observations are conservatively assimilated in the tropics due to the small forecast errors, 482 

leading to less analysis impact. 483 

 484 
Figure 9. Mean bias of the first-guess departure for the radiosonde temperature measurements for the control (CNTL run: circle symbol and 485 
black line) and experiment (AMSU-A run: square symbol and red line) runs. Horizontal lines indicate 99% confidence intervals. 486 
 487 

It is noted that the AMSU-A assimilation impact is neutral in the high-latitude region (> 60°S) over the Southern 488 

Hemisphere. In contrast, in the high-latitude region (> 60°N) over the Northern Hemisphere, the assimilation impact is 489 

significant. It is because the AMSU-A observations were not assimilated in the high latitude region (> 60°S) over the Southern 490 

Hemisphere during the Southern Hemisphere winter season when the trial runs were conducted (mentioned in section 4.1), 491 

resulting in the neutral analysis impact. Thus, if the high-latitude regions (i.e., 60°S-90°S and 60°N-90°N) are extracted in the 492 

error computation over both hemispheres, the analysis impact is still significant, but the difference in the analysis impact 493 

between both hemispheres considerably decreases (Table 3). It is still a challenging issue to assimilate the satellite radiances 494 

over the Antarctic continent, because of the complex topography, extreme weather condition, and large errors in the numerical 495 

model. In particular, as the conventional observations are quite sparse in the high latitude region, the forecast errors are 496 
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relatively larger than the other latitudinal regions (i.e., the tropics and mid-latitude region, shown in Fig. 10a). In addition, the 497 

trial period (11 August – 30 September 2014) is the Southern Hemisphere winter season when the Antarctic continent was 498 

under extremely cold weather conditions. In fact, in the pre-trial run, we found that the analysis field was degraded near the 499 

Antarctic continent by assimilating the AMSU-A observations. Thus, to prevent the analysis degradation, the AMSU-A 500 

observations were rejected over the high latitude region (> 60°S) in the Southern Hemisphere. The assimilation of the AMSU-501 

A observation in the Antarctic region will be handled in future work. 502 

 503 

 504 
Figure 10. Spatial distribution of the standard deviation (STDDEV) of the analysis of 500 hPa geopotential height for the (a) control run 505 
(CNTL) and (b) experiment (AMSU-A) runs, derived against the ERA5 reanalysis. 506 
 507 

 Figure 11 shows the normalized difference of STDDEV of temperature, zonal wind, and meridional wind between 508 

the AMSU-A run and CNTL run, depending on the latitudinal regions (i.e., global, Northern/Southern Hemispheres, and 509 

tropics). The STDDEV difference is normalized by the STDDEV for the CNTL run. A negative value means that assimilating 510 

the AMSU-A observations provide analysis benefit. In contrast, a positive value indicates that the analysis error increases for 511 

the AMSU-A run compared with the error for the CNTL run, implying a negative analysis impact of the AMSU-A observations. 512 

 For the temperature, the global-mean analysis errors are significantly reduced in the whole troposphere and lower 513 

stratosphere for the AMSU-A run, as compared with the CNTL run. Large error reduction occurs in the lower stratosphere (-514 

28% and -21% in 100 hPa and 200 hPa, respectively), which is consistent with the large gap between the STDDEVs of the 515 

first-guess departure and the analysis departure for the stratospheric AMSU-A channels (channels 9–11) whose peak of the 516 

weighting function is above 200 hPa (shown in Fig. 7). Similar to the results of the 500 hPa geopotential height, a strong error 517 

reduction mainly occurs in the Northern Hemisphere where the error reduces up to about 28% in the 500 hPa pressure level 518 

(Fig. 11a). The error decrease trends are consistent with the trends of the first-guess departure errors of the radiosonde 519 



 18 

temperature measurements in which a significant error decrease occurs in the 500 hPa layer (Fig. 6a). However, in the lower 520 

stratosphere (100 hPa pressure level), the analysis error decreases up to about 45% in the Southern Hemisphere. 521 

 For two wind components (i.e., zonal and meridional winds), similar to the results of the temperature, the global-522 

mean analysis errors for the AMSU-A run overall decrease in the whole troposphere and lower stratosphere (Fig. 11b and c). 523 

It is noted that the magnitude of the error decrease tends to increase with height, reaching about -13% in the 100 hPa for the 524 

zonal and meridional wind. Moreover, most analysis impact is made in the Northern Hemisphere, except in the 100 hPa where 525 

the maximum error decrease occurs in the Southern Hemisphere. However, over the Southern Hemisphere, the analysis errors 526 

for the AMSU-A runs are larger than the errors for the CNTL run in the middle and lower troposphere. For the spatial pattern 527 

of the STDDEV of two wind components (not shown), it is found that the error increment mainly occurs in the high latitude 528 

region (> 60°S) where the AMSU-A data were not assimilated for the AMSU-A run. Considering that the temperature fields 529 

above the latitude of 60°S were only updated by the AMSU-A assimilation, the analysis degradation is possibly due to the 530 

discontinuity of the latitudinal temperature gradient near the latitude of 60°S. 531 

In the model humidity field, a positive analysis impact only occurs in the Northern Hemisphere (not shown), but is 532 

not as significant as the abovementioned parameters (i.e., 500 hPa geopotential height, temperature, and winds). As a further 533 

study, we plan to assimilate the Microwave Humidity Sounder (MHS) providing information on the vertical structure of 534 

humidity so that the initial condition of model humidity is improved. 535 

 536 

 537 
Figure 11. Normalized difference of the standard deviation (STDDEV) of the analysis of (a) temperature, (b) zonal wind, and (c) meridional 538 
wind between the experiment (AMSU-A) run and the control (CNTL) run, derived against the ERA5 reanalysis. Hatched colors indicate the 539 
latitude regions (global: grey, Northern Hemisphere: blue, tropics: green, and Southern Hemisphere: red). Horizontal lines indicate 99% 540 
confidence intervals. 541 

8 Summary 542 

 In this study, we attempted to assimilate the AMSU-A observations using the global data assimilation system 543 

consisting of DART and CESM. To make the AMSU-A data available to be assimilated, preprocessing steps were developed, 544 

which include quality control (i.e., outlier test and channel selection), spatial thinning, and bias correction (i.e., scan-bias 545 

correction and air-mass-bias correction). In addition, the observation error covariance matrix was estimated, but only its 546 

diagonal components were employed in DART because the inter-channel error correlation is not considered in the current 547 

version of DART. To counteract the inter-channel error correlation, the diagonal components were inflated.  548 
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To assess the impact of the AMSU-A observations on the DART-derived analysis, trial experiments were conducted 549 

from 11 August to 30 September 2014. The derived analysis fields were verified using the ERA5 as the reference. For the 550 

primary atmospheric parameters (i.e., 500 hPa geopotential height, temperature, zonal wind, and meridional wind), an 551 

additional analysis benefit is provided by assimilating the AMSU-A observations on top of the DART data assimilation system 552 

which already makes use of the conventional ground-based observations. In particular, a large analysis impact is shown in the 553 

Northern Hemisphere where the analysis errors of the temperature and two wind components are significantly reduced in the 554 

whole troposphere. However, in the tropics, the analysis impact is relatively small due to the small forecast errors. Compared 555 

with the Northern Hemisphere, less analysis impact in the Southern Hemisphere seems to be due to the reduction in the number 556 

of assimilated AMSU-A observations. The AMSU-A observations are rejected in the high latitude regions (> 60°S) during the 557 

Southern Hemisphere winter season, because assimilating these observations worsens the analysis quality. 558 

 559 

Code and data availability.  560 

DART version 9.11.13 was obtained from https://github.com/NCAR/DART. CESM version 2.1.0 is released at 561 

https://github.com/ESCOMP/CESM/tree/release-cesm2.1.0. Atmospheric initial conditions and the baseline observations at 562 

the BUFR format were obtained from the NCAR RDA (https://rda.ucar.edu/datasets/ds337.0 or https://doi.org/10.5065/Z83F-563 

N512). AMSU-A Level-1B version 5 data from the Aqua satellite, including the calibrated brightness temperatures, were 564 

downloaded from the NASA Goddard Earth Sciences Data and Information Services Center 565 

(https://www.earthdata.nasa.gov/eosdis/daacs/gesdisc). In addition, AMSU-A Level-1B from NOAA-19, MetOp-A, and 566 

MetOp-B satellites were downloaded from the atmosphere product section in the EUMETSAT product navigator 567 

(https://navigator.eumetsat.int). The ECMWF ERA5 hourly data on pressure levels were acquired from the Copernicus Climate 568 

Change Service (C3S) Climate Data Store (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels). 569 

As well as the software codes, the model outputs are available at https://doi.org/10.5281/zenodo.7714755 and 570 

https://doi.org/10.5281/zenodo.7983459. 571 
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