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Abstract. An ensemble of three-dimensional ensemble-variational (En-3DEnVar) data assimilations is demonstrated with the

Joint Effort for Data assimilation Integration (JEDI) with the Model for Prediction Across Scales – Atmosphere (MPAS-A)

(i.e., JEDI-MPAS). Basic software building blocks are reused from previously presented deterministic 3DEnVar functionality,

and combined with a formal experimental workflow manager in MPAS-Workflow. En-3DEnVar is used to produce an 80-

member ensemble of analyses, which are cycled with ensemble forecasts in a 1-month experiment. The ensemble forecasts5

approximate a purely flow-dependent background error covariance (BEC) at each analysis time. The En-3DEnVar BECs and

prior ensemble mean forecast errors are compared to those produced by a similar experiment that uses the Data Assimilation

Research Testbed (DART) Ensemble Adjustment Kalman Filter (EAKF). The experiment using En-3DEnVar produces similar

ensemble spread to and slightly smaller errors than the EAKF. The ensemble forecasts initialized from En-3DEnVar and EAKF

analyses are used as BECs in deterministic cycling 3DEnVar experiments, which are compared to a control experiment that uses10

20-member MPAS-A forecasts initialized from Global Ensemble Forecast System (GEFS) initial conditions. The experimental

ensembles achieve mostly equivalent or better performance than the off-the-shelf ensemble system in this deterministic cycling

setting; although, there are many obvious differences in configuration between GEFS and the two MPAS ensemble systems.

An additional experiment that uses hybrid 3DEnVar, which combines the En-3DEnVar ensemble BEC with a climatological

BEC, increases tropospheric forecast quality compared to the corresponding pure 3DEnVar experiment. The JEDI-MPAS En-15
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3DEnVar is technically working and useful for future research studies. Tuning of observation errors and spread is needed to

improve performance and several algorithmic advancements are needed to improve computational efficiency for larger-scale

applications.

1 Introduction

Liu et al. (2022) introduced a new data assimilation (DA) system for the Model for Prediction Across Scales - Atmosphere20

(MPAS-A; Skamarock et al., 2012) that is built on the Joint Effort for Data assimilation Integration (JEDI; Trémolet and

Auligné, 2020) software framework, called JEDI-MPAS. Liu et al. (2022) demonstrated JEDI-MPAS for global three-dimensional

ensemble variational (3DEnVar) DA to produce a deterministic (single state) analysis of the atmosphere. When approximating

flow-dependent background error covariances (BEC) in 3DEnVar, they used 20-member ensembles of MPAS-A forecasts that

were initialized from initial conditions used by the National Centers for Environmental Prediction (NCEP) Global Ensemble25

Forecast System (GEFS) (Zhou et al., 2017).

It would be preferable for a myriad of research applications that the ensemble used in the DA be generated by JEDI-MPAS

itself, so that it is consistent with the details–such as the characteristics of the observing network–of a given application.

Here we evaluate using an ensemble of data assimilations (EDA), implemented generically in JEDI and available for any

forecast model with JEDI interfaces, to generate ensemble initial conditions for JEDI-MPAS. Our first EDA implementation30

is for an ensemble of 3DEnVars (En-3DEnVar), because it requires very few modifications to the EnVar algorithm previously

described by Liu et al. (2022). A major attraction of EDA based on variational algorithms is that most technical or algorithmic

improvements targeted for deterministic DA will directly translate to the ensemble system.

The technique that we term EDA involves conducting an ensemble of independent analysis and forecast steps in each

cycle. Each member ingests perturbed versions of the available observations during its assimilation step. This technique was35

proposed and tested by Houtekamer and Derome (1995), who called the approach “OSSE-MC." Subsequent studies employed

EDA (under other names) to generate analysis ensembles for ensemble forecasting systems (Houtekamer et al., 1996; Hamill

et al., 2000), or for estimating forecast-error statistics for DA covariance modeling (Fisher, 2003; Zagar et al., 2005; Berre

et al., 2006), or in "stochastic" ensemble Kalman filters (EnKF) (Houtekamer and Mitchell, 1998; Burgers et al., 1998, and

many subsequent papers).40

Variational-based EDA was first implemented operationally as an ensemble of four-dimensional variational (En-4DVar) min-

imizations at Météo-France (Berre et al., 2007; Desroziers et al., 2008; Berre and Desroziers, 2010), and then at the European

Centre for Medium-Range Weather Forecasts (Isaksen et al., 2010). The UK Met Office later replaced its Local Ensemble

Transform Kalman Filter (LETKF) with an ensemble of hybrid 4DEnVar’s (En-4DEnVar) in their ensemble prediction system

through extensive efforts (Bowler et al., 2017a, b; Lorenc et al., 2017) and following multiple motivations: code maintenance is45

reduced via shared software with their deterministic 4DVar; there is an improved capability to use more advanced model-space

localization techniques (i.e., Lorenc, 2017); the En-4DEnVar produced faster and more realistic ensemble spread growth in

forecasts than LETKF (Bowler et al., 2017b); En-4DEnVar perturbations used as flow-dependent BECs improved forecasts in
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their deterministic hybrid 4DVar system compared to LETKF perturbations (Bowler et al., 2017a); and En-4DEnVar is cheaper

than an alternative En-4DVar. On the topic of model-space localization, multiple authors have documented its use with EnKF50

since 2017 (Bishop et al., 2017; Lei et al., 2018).

There are numerous techniques besides variational-based EDA for generating ensembles of initial conditions, including 4D

ensemble Kalman Smoothers (Evensen, 2003). In particular, a relatively mature EnKF for MPAS exists (Ha et al., 2017),

which is based on the Data Assimilation Research Testbed (DART; Anderson et al., 2009); we will call this system MPAS-

DART. Although not a focus of this paper, MPAS-DART EnKF is a useful benchmark for initial evaluations of the JEDI-MPAS55

En-3DEnVar and we present companion results from MPAS-DART for many aspects of JEDI-MPAS performance.

While variational-based EDA poses a large potential benefit of increased skill via re-use of 4D algorithms, it also incurs

more computational overhead per member than many EnKF algorithms. There are numerous EDA algorithm advances in

previous works to alleviate some of the added cost compared to EnKF, such as separating the update of the ensemble mean

and perturbations and using simpler, cheaper configurations for the perturbation update (Buehner et al., 2017; Lorenc et al.,60

2017), block minimization methods (Mercier et al., 2018), and advanced in-memory storage and communication strategies for

the numerous ensemble perturbations (Arbogast et al., 2017). We do not consider such enhancements in this paper, though they

may certainly be helpful in the future.

The outline of the paper is as follows. In Sect. 2 we briefly describe the JEDI-MPAS En-3DEnVar implementation and the

MPAS-DART EnKF, both of which are used in our experiments. In Sect. 4, we compare the 6 h ensemble forecast statistics65

produced with the JEDI-MPAS En-3DEnVar and MPAS-DART EnKF across one month of cycling on the MPAS-A quasi-

uniform 60 km mesh. Although we do not present a general comparison of EnKF and EDA, there are very few comparisons in

literature (e.g., Hamrud et al., 2015; Bonavita et al., 2015), and this work gives another data point. In Sect. 5, we use the 6 h

forecasts initialized from MPAS-DART EnKF and JEDI-MPAS EDA analyses as ensemble BECs in several dual-mesh "30km-

60km" (i.e., 30 km outer loop and 60 km inner loops) 3DEnVar deterministic cycling experiments to show the utility of the70

EDA in producing flow-dependent BECs. Finally we finish with conclusions and a future outlook for JEDI-MPAS ensemble

DA in Sect. 6.

2 Ensemble data assimilation

2.1 JEDI-MPAS EDA

Liu et al. (2022) described the 3DEnVar algorithm implemented in JEDI, and thus JEDI-MPAS, following Lorenc (2003) and75

Buehner (2005). We utilize the same algorithm and software implementation in the En-3DEnVar and in subsequent determin-

istic 3DEnVar experiments. In the EDA there are Ne independent cost functions, where the ith EDA cost function is evaluated

at the ith background state xb,i,

Ji(x) =
1

2
(x−xb,i)

TB−1
i (x−xb,i)+

1

2
[h(x)−y− ϵi]

TR−1[h(x)−y− ϵi]. (1)
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The vectors ϵi are realizations of the random observation error ϵ∼N(0,R), where R is the observation error covariance80

matrix and the ensemble mean of the realizations is removed so that
∑

ϵi = 0. Removing the perturbation bias is standard

practice to avoid biasing the posterior, although doing so alters the distribution of the perturbations. The observation operator,

h, simulates model-equivalent observations given the state, x. In each outer iteration of a truncated Gauss-Newton minimization

(Lawless et al., 2005), an inner loop minimization uses a linear approximation of Eq. 1 to determine the analysis increment.

The increment is added to the current guess of x, beginning at xb,i in the first outer iteration.85

As described by Liu et al. (2022), the ith BEC, Bi in Eq. 1, is a weighted sum of the climatological background error

covariance Bc and the member-specific sample ensemble covariance Be,i, i.e.,

Bi = βcBc +βeL ◦Be,i, (2)

where βc and βe are scalar weights with βc +βe = 1. βc, βe, and Bc are identical for all EDA members. L ◦Be,i denotes

the Schur product (element-by-element) of the localization matrix L and Be,i. The member-specific Be,i allows for self-90

exclusion, described in Sect. 2.1.1. Note that L is a correlation matrix with diagonal elements being 1 and off-diagonal elements

smaller than 1 that reduce to zero for a certain distance between two model grid points. Therefore, the localization matrix

reduces spurious correlations in Be,i caused by sampling errors associated with a limited ensemble size. The only difference

between the description above for EDA cycling and deterministic cycling is that the latter only has one background state, the

observations are not perturbed, and the BEC only has one realization based on all Ne members.95

As described by Liu et al. (2022), the analysis variables are temperature (T ), horizontal wind components (U , V ), surface

pressure (Ps), and specific humidity (Qv). One difference from Liu et al. (2022) is that the hydrostatic balance constraint in

the analysis increment stage is no longer applied directly to the full analysis variables. Instead, an incremental form of the

hypsometric equation is used to approximate the dry air density (ρd) and 3-d pressure (P ) increments from the increments in

T , Ps, and Qv . The hypsometric equation is linearized around a hydrostatic state constructed using the previous outer iteration100

analysis, xi, of T , Ps, and Qv . After the DA minimization is complete, the analysis state is transformed to the MPAS-A

prognostic variables during the model initialization before the model’s time integration.

The ensemble BEC, Be, is represented by prior perturbations (before assimilation) in those same analysis variables with

respect to the prior ensemble mean. As described in Jung and et al. (2023), Bc is constructed by applying linear transformations

that yield the analysis variables from stream function, velocity potential, and the "unbalanced" contributions to temperature and105

surface pressure, together with the assumption that background errors in those underlying variables are mutually independent

and have known, isotropic covariances (Derber and Bouttier, 1999). Bc is implemented via generic JEDI interfaces to the

Background error on Unstructured Mesh Package (BUMP; Ménétrier, 2020).

2.1.1 Self-exclusion

As first shown by Houtekamer and Mitchell (1998), updating an ensemble of forecasts using an assimilation scheme based110

on the sample covariances of that same ensemble, as in En3DEnVar for example, leads to an analysis ensemble with too little

spread when compared to the errors of the analysis mean. To counteract this systematic bias in the update, they proposed
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splitting the ensemble into subsets and updating members in a given subset using the sample covariance from members in the

other subsets.

In the limit that the subsets contain a single member, each member i in the EDA will use in the cost function (1) a different,115

flow-dependent BEC Be,i, obtained by omitting δxi = xi− x̄b, the ith ensemble perturbation, from the computation of Be,i,

where x̄b is the ensemble mean. Sacher and Bartello (2008) and Mitchell and Houtekamer (2009) showed with small toy

problems that this approach causes the posterior ensemble spread to overestimate the the root-mean-square error (RMSE) of

the posterior ensemble mean.

Bowler et al. (2017b) called the removal of δxi from Be,i "self-exclusion", applying it to an En-4DEnVar, while Buehner120

(2020) called it "cross-validation", applying it to an LETKF. Bowler et al. (2017b) and Buehner (2020) both found that self-

exclusion reduced the spread reduction that occurred during the DA procedure going from background ensemble to the analysis

ensemble. Even so, Bowler et al. (2017b) found that applying self-exclusion necessitated the use of more relaxation than when

not using self-exclusion (see Sect. 2.1.2 for a definition of relaxation). Self-exclusion is applied in the JEDI-MPAS EDA

experiment described in Sect. 4.125

2.1.2 Ensemble spread tuning

The EDA update described above will systematically underestimate the analysis uncertainty to some degree, despite employ-

ing multiple techniques to reduce the detrimental effects of sampling error: covariance localization in the ensemble BEC,

hybridization with a static BEC, and self-exclusion. More important, the ensemble forecasts in JEDI-MPAS do not at present

account for model error, so even if the analysis ensemble is perfectly representative of the statistics of analysis error the en-130

semble forecast will be underdispersive. Both effects will also accumulate over successive forecast-analysis cycles. For these

reasons, it is essential that JEDI-MPAS include some method for tuning the overall ensemble spread.

There are many approaches for tuning ensemble spread to ensure stable cycling of the ensemble-dependent DA and forecast

system. In the Relaxation to Prior Perturbations (RTPP; Zhang et al., 2004) method, the analysis perturbation for member i,

δxa,i, is replaced by a weighted sum of δxa,i and δxb,i with a scalar weight αRTPP, i.e.,135

δxa,i← (1−αRTPP)δxa,i +αRTPPδxb,i. (3)

Thus, the relaxed ensemble perturbations take on some of the observationally constrained analysis perturbations, δxa,i, and

the forecast model-driven background perturbations, δxb,i. In JEDI-MPAS, RTPP is carried out via a stand-alone executable,

one which inherits from a generic implementation in the JEDI Object-Oriented Prediction System (OOPS) for the RTPP

application.140

Whitaker and Hamill (2012) proposed an alternative to RTPP called Relaxation to Prior Spread (RTPS), which relaxes the

spread of the analysis ensemble toward the background ensemble spread, instead of relaxing the perturbations. The under-

pinning of RTPS is the spread change ratio, s, whose jth element, associated with a given grid cell and analysis variable, is

calculated as

sj =
σb,j −σa,j

σa,j
, (4)145
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where σb,j and σa,j are the prior and posterior ensemble sample standard deviations (spreads). RTPS operates independently

for each j using a Schur product,

δxa,i← δxa,i ◦ (αRTPSs+1), (5)

It is common practice to combine RTPP with RTPS (e.g., Bowler et al., 2017b), or with multiplicative inflation, or to adapt α at

each DA cycle (e.g., Kotsuki et al., 2017). Here we only use RTPP with a fixed global α throughout all DA cycles as a means150

of providing an initial JEDI-MPAS EDA functionality to the community. There remain many opportunities for improving

ensemble spread in future work.

2.1.3 Implementation

In the EDA experiment presented here, each member is treated with a fully independent execution of the JEDI-MPAS Varia-

tional application (https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/inside/jedi-components/155

oops/applications/variational.html). OOPS contains implementations for generic model-independent applications in JEDI. The

generic OOPS Variational application can be used to conduct 3DVar, 3DEnVar, 4DEnVar, and 4DVar (for models with lin-

earized tangent and adjoint descriptions), as well as applicable hybrid variants thereof. Only 3DVar, 3DEnVar, 4DEnVar, and

hybrid variants are enabled in the JEDI-MPAS model-specific Variational executable at this time. Self-exclusion is achieved

in En-3DEnVar simply by removing each members’ own background state from a list of ensemble members in the Variational160

application configuration.

The ensemble forecasts and EDA are conducted via our open-source MPAS-Workflow (https://github.com/NCAR/MPAS-Workflow),

which uses the Cylc general purpose workflow manager (Oliver et al., 2019) v7.8.3 to orchestrate tasks written in a combination

of c-shell and python scripts. MPAS-Workflow automatically constructs Variational application configuration files in YAML

format for each cycle. At the time of writing, MPAS-Workflow only operates on the Cheyenne HPC managed by NCAR’s165

Computational and Information Systems Laboratory (CISL). MPAS-Workflow handles a small set of use-cases specific to the

NCAR Microscale and Mesoscale Meteorology (MMM) Laboratory. Although it is not yet designed for general purpose use,

this open-source repository might serve to instruct others on how to run JEDI-MPAS and MPAS-A together.

The source code used for our experiments are provided in the JEDI-MPAS 2.0.0-beta release version, as described in the

code availability section.170

2.2 EAKF in MPAS-DART

To assess the credibility of our newly developed JEDI-MPAS EDA system, an ensemble adjustment Kalman filter (EAKF;

Anderson, 2001, 2003; Anderson and Collins, 2007) implemented within the "Manhattan" version of DART (Anderson et al.,

2009) is also used to produce analyses. DART is a mature software platform for ensemble-based DA and has been inter-

faced with MPAS-A (Ha et al., 2017). DART can perform both stochastic and deterministic EnKF algorithms, where only the175

former perturbs observations. When background and observation error distributions are near Gaussian, the use of perturbed

observations is known to degrade the quality of the ensemble-mean analysis relative to that produced by deterministic filters
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(Anderson, 2001; Whitaker and Hamill, 2002) and a theoretically similar deterministic variational-based EDA (Bowler et al.,

2012). On the other hand, as the forecast model and observation operators become increasingly nonlinear, there is evidence

that an EDA with perturbed observations avoids some pathological behaviors that appear in deterministic EnKFs (Lawson and180

Hansen, 2004; Anderson, 2010; Lei et al., 2010; Anderson, 2020).

As a deterministic square-root variant of the EnKF, the EAKF has many differences from the EDA algorithm described in

Sect. 2.1. The primary difference is that EAKF does not perturb observations; all members assimilate an identical realization

of a given observation (i.e., the measured observation). Another technical difference is that the EAKF assimilates observa-

tions one-at-a-time, whereas variational minimizations assimilate all observations simultaneously. Moreover, while 3DEnVar185

applies covariance localization in model space, the EAKF applies localization to observation-observation and observation-state

covariances, which may be suboptimal for assimilation of radiance observations (Campbell et al., 2010; Lei et al., 2018). Ad-

ditionally, the EAKF does not employ self-exclusion (Sect. 2.1.1) to compute unique BECs for each ensemble member, and

there are also differences regarding posterior relaxation between EDA and the EAKF (described in Sect. 4.1). Finally, MPAS’s

interface with DART does not use a hydrostatic pressure constraint on analysis increments, unlike JEDI-MPAS’s variational190

algorithm (Sect. 2.1).

There are clearly many differences between the En-3DEnVar implemented in JEDI-MPAS and the EAKF in MPAS-DART.

Moreover, neither system has been thoroughly tuned and DART has many capabilities that we do not exercise, including

sophisticated inflation and localization options. We therefore do not attempt to attribute differences between their performances

to specific settings or parameters. Instead, we view MPAS-DART as a convenient baseline against which to compare the195

robustness and validity of our newly developed EDA implementation within JEDI-MPAS.

3 Model and observation configurations

3.1 MPAS-A model

MPAS-A is a non-hydrostatic model discretized on an unstructured centroidal Voronoi mesh in the horizontal with C-grid

staggering of the state variables, and works for both global and regional applications (Skamarock et al., 2012, 2018). Herein we200

present results using two different MPAS-A quasi-uniform meshes, 60 km (163,842 horizontal columns) and 30 km (655,362

columns). All time integrations for the 60 km mesh use a 360 s time step, while those for the 30 km mesh use a 180 s time

step. Additional sensitivity experiments are described that utilized the quasi-uniform 120 km mesh (40,962 columns) with a

720 s time step. All meshes utilize 55 vertical levels with a 30 km model top and the "mesoscale reference" physics suite, as

described by Liu et al. (2022).205

In almost all respects, the same modified version of MPAS-A version 7.1 that was used by Liu et al. (2022) is used here.

Some minor code modifications are included in the JEDI-MPAS 2.0.0-beta release version, as described in the code availability

section.
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3.2 Observations

All experiments assimilate the same set of observations. We convert netCDF-formatted observation diagnostic files from the210

Gridpoint Statistical Interpolation (GSI; Shao et al., 2016) system (i.e., "GSI-ncdiag") to a format that can be read by the

JEDI Interface for Observation Data Access (IODA; Honeyager et al., 2020). For in situ observations, we assimilate sondes

(temperature, virtual temperature, zonal and meridional wind components, specific humidity), aircraft (temperature, zonal and

meridional wind components, specific humidity), and surface pressure. For non-radiance remote observations, we assimilate

satellite atmospheric motion vectors (AMV, zonal and meridional wind components) and Global Navigation Satellite System215

and Global Positioning System Radio Occultation (collectively referred to as GNSSRO herein) refractivity.

We assimilate clear-sky microwave radiances as brightness temperature from 6 Advanced Microwave Sounding Unit-A

(AMSU-A) sensors aboard NOAA-15, NOAA-18, NOAA-19, AQUA, METOP-A, and METOP-B. We only assimilate chan-

nels 5 to 9, because higher peaking channels are sensitive to stratospheric regions that are above the 30 km model top, and

thus cannot be simulated correctly. Additionally, some AMSU-A channels are removed following sensitivity experiments that220

showed larger RMSEs or lower quality in 6 h forecasts: NOAA-19 channel 8; AQUA channels 5, 6, and 7; METOP-A channels

7 and 8; and METOP-B channels 5, 6, and 7.

The GSI-ncdiag files include brightness temperature bias correction, which is calculated using variational bias correction

(VarBC) in GSI to correct for fluctuations in instrument bias. We add those pre-computed bias corrections directly to the

observed brightness temperature before reading the IODA-formatted observations into JEDI-MPAS. Similarly, observation225

error standard deviations (square-root of diagonal of R) come directly from the GSI-ncdiag files for most observation types.

The only exceptions are for GNSSRO and satellite AMVs. The GNSSRO refractivity errors are calculated online within the

JEDI Unified Forward Operator (UFO; Honeyager et al., 2020) using a height-dependent parameterization ported from GSI.

In early sensitivity experiments, we determined that the observation errors for AMVs provided in GSI-ncdiag files were

much larger than the RMSE of JEDI-MPAS background innovations, dj = hj(xb)− yj , and that the observations were much230

denser than either of the 30 km or 60 km meshes. We opt to reduce the correlations between dense observations by thinning

them horizontally. Both AMVs and radiances are thinned on a 145 km global Gaussian mesh. Also, we opt to decrease the

prescribed AMV observation errors according to the pressure-dependent values shown in Table 1, with linear interpolation

between the pressures shown, and following the same parameterization as an early JCSDA near-real-time prototype (personal

communications with Greg Thompson). As will be discussed in the context of the results, there are many opportunities yet to235

optimize the observation errors for the JEDI-MPAS cycling system, but that is not the major focus of this work.

We use a quality control (QC) check for all observations that allows for maximum "PreQC" quality flags (as provided in

the GSI-ncdiag files) of 0 and 3 for radiance and non-radiance instruments, respectively. PreQC includes various checks for

raw data quality, as well as background innovation checks from GSI based on its own background state. We additionally

filter observation locations and variables that exceed a 3σo background check (i.e., the observation-error normalized absolute240

innovation must satisfy |d|
σo
≤ 3 to be assimilated). Surface pressure locations are removed when the model elevation and
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observing station elevation differ by more than 200 m. Also, the surface pressure forward operator includes a height correction

following the appendix of Ingleby (2013).

4 Ensemble cycling

4.1 Setup245

We conduct two ensemble cycling experiments with nearly identical settings. One experiment uses the JEDI-MPAS EDA

(EDA) and the other experiment uses the MPAS-DART EAKF (DART). Both experiments use 80 initial ensemble backgrounds

generated by integrating 4 sets of 20 MPAS-A forecasts. The 4 forecast sets are initialized from 20-member GEFS initial

conditions (i.e., 0 h forecasts) valid at 00:00 UTC, 06:00 UTC, 12:00 UTC, and 18:00 UTC 14 April 2018. Thus the first cycle

background ensemble at 00:00 UTC 15 April 2018 is comprised of 24 h, 18 h, 12 h, and 6 h forecasts on the 60 km mesh.250

Both ensemble experiments alternate between data assimilation and an ensemble of 6 h forecasts at each cycle until 18:00

UTC 14 May 2018, ending with a final forecast valid at 00:00 UTC 15 May 2018. This 1-month experimental period is too

short to draw broad conclusions, but is sufficient to demonstrate the new En-3DEnVar capability. The results that follow in

Sect. 4.2 reflect statistics calculated from 00:00 UTC 17 April 2018 to 18:00 UTC 14 May 2018 (inclusive) to allow 2 days for

spin-up of characteristic errors. The unique aspects of the EDA and DART experiments follow.255

Each EDA variational minimization uses a single outer loop iteration and 60 inner loop iterations. The ensemble BEC local-

ization uses fixed length scales of 1200 km and 6 km in horizontal and vertical dimensions, respectively. Prior to conducting

the 60 km experiments presented here, we carried out 1-month EDA sensitivity experiments on the 120 km mesh to deter-

mine the impacts of self-exclusion and RTPP. We found that using self-exclusion increased background ensemble spread for a

fixed αRTPP and improved forecast verification scores compared to not using self-exclusion. Therefore, we use self-exclusion260

without further sensitivity study in the 60 km EDA experiment.

Among selected αRTPP, varying from 0.5 to 0.95 in 0.05 steps, we found that αRTPP = 0.80 yielded the best 1-to-10-

day forecasts in 120 km sensitivity tests with 20 ensemble members. Those forecasts were initialized by the mean of the

20-member analysis ensembles at 00:00 UTC and 12:00 UTC from 15 April 2018 to 4 May 2018. We also generally found

improvement when increasing ensemble size from 20 members to 80 members while using αRTPP = 0.80, with some saturation265

of forecast quality seen with only 40 members. As Bowler et al. (2017b) described, αRTPP can be decreased when increasing

ensemble size, because sampling error is reduced. Similarly, inflationary measures can be reduced when decreasing mesh

spacing, because sub-grid-scale model error is reduced and resolved physics are more active, mitigating under-dispersiveness

in ensemble forecasts. Therefore we executed two different 20-member 10-day EDA experiments on the 60 km mesh with

αRTPP = 0.4 and αRTPP = 0.7. Their mean background RMSE was much less sensitive to the relaxation coefficient than270

were the 20-member experiments on the 120 km mesh. Therefore, we chose αRTPP = 0.7 for the 80-member 60 km EDA

experiment, even if it may not be an optimal setting.

The DART experiment is identical to the EDA experiment in terms of initialization, cycling period (6 hours), and cycling

duration. In addition, the EAKF uses the same 1200 km horizontal and 6 km vertical localization lengths scales as EDA,
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although localization in DART is in observation-space rather than model-space (see Sect. 2.2). Although Greybush et al. (2011)275

found that optimal observation-space localization lengths ought to be shorter than those in model-space, careful tuning of the

DART experiment was not our focus. DART uses RTPS with αRTPS = 1.0 to maintain ensemble spread throughout cycling.

For observations, DART uses the JEDI-MPAS model-specific implementation of the OOPS HofX3D application (https://

jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/inside/jedi-components/oops/applications/hofx.

html) to apply forward operators for each ensemble member, assign observation errors, and perform quality control and ob-280

servation thinning. The output of HofX3D is then ingested into MPAS-DART, bypassing DART’s own forward operators and

observation processing capabilities.

Given the coupling of HofX3D to MPAS-DART, both EDA and DART utilize identical observations possessing and identical

observation errors (Sect. 3.2). However, there is one subtle difference regarding observation QC filtering. The background

check for all members in DART is based on the prior ensemble mean, whereas the background check in EDA is applied285

independently to each ensemble member before the observations are perturbed. That difference, coupled with differences in

algorithm, localization, and inflationary measures between EDA and DART (Sect. 2), mean that throughout the month of cycling

the two experiments assimilate slightly different observations, because different observations could fail the background check

between experiments. Nonetheless, any differences in assimilated observations reflect differences in the assimilation algorithms

and their particular settings rather than the observation rejection.290

Throughout this section and Sect. 5, comparisons are made to initial conditions (referred to herein as "analyses") used in the

NCEP Global Forecasting System (GFS). The GFS analyses are transformed to the same mesh used to produce forecasts (e.g.,

60-km or 30-km) via MPAS-A’s initialization procedures. GFS is a well-tuned operational forecast system initialized from a

deterministic analysis produced by NCEP’s Global Data Assimilation System (GDAS) hybrid 4DEnVar (Kleist and Ide, 2015).

Thus, we expect GFS analyses to be more accurate than the analyses produced in our own experiments.295

4.2 Results

If GFS analyses are considered as truth, and the MPAS ensemble background states are unbiased relative to that truth, then

the optimal background ensemble spread (σxb
) is equal to the RMSE of differences between the prior ensemble mean and

GFS analyses (i.e., rms(δxGFSa)), averaged over a sufficient number of valid times. The MPAS ensemble background is not

unbiased with respect to GFS analyses, especially near the model top for temperature (T ), zonal wind (U ), and pressure (P )300

(not shown). Although the operational GFS analyses are undoubtedly more accurate than the JEDI-MPAS ensemble mean

backgrounds, they are still not equal to the truth. RMSEs of longer duration ensemble forecast mean states with respect to

independent analyses are useful for diagnosing spread growth characteristics (e.g., Bowler et al., 2017b), but such measures at

a 6-hour forecast length should be considered qualitative.

With those caveats in mind, Fig. 1 shows rms(σxb
) and rms(δxGFSa) for DART and EDA, aggregated over all horizontal305

columns and varying with model level. There is a strong indication that the background ensemble spreads are too small or the

RMSE is too large, especially near the top of the model and near the surface for T . Since we have not employed any measures
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to account for model uncertainty (see Sect. 2.1.2), we expect that the ensemble forecasts will be under-dispersive. Overall,

DART and EDA produce similar ensemble spreads and ensemble mean RMSEs at most model levels.

Figure 2 dissects the same quantities for model simulated Ps, varying with latitude. There are obvious zonal differences310

between the two ensemble cycling experiments. DART produces slightly larger Ps spread than EDA in the tropics and smaller

spread elsewhere. Those spread variations do not correlate directly with RMSE, since EDA produces a smaller RMSE at all

latitudes. In separate diagnostics that further narrow down the Ps spread and RMSE on a world map (not shown), we found

that DART’s larger local spread correlates with lower RMSE in the western tropical Pacific Ocean and EDA’s smaller local

spread correlates with lower RMSE in the tropical Atlantic Ocean and southeastern Pacific Ocean. Those correlations could315

be associated with the relative availabilities of local Ps observations, with there being slightly more available in the western

Pacific.

The DART experiment has diminishing U and V ensemble spread in the tropical free troposphere as the cycling progresses

(not shown). That spread loss could be caused by previously documented characteristics of RTPS, which Bowler et al. (2017b)

found to produce inflation at much smaller scales than RTPP. Thus, that behavior is not indicative of relative performances of320

EAKF and EDA algorithms. The full investigation is reserved for future work, since the DART experiment is not the target

of our current effort. However, the differences in U and V ensemble spread between DART and EDA have a non-negligible

impact on the deterministic results presented in Sect. 5.2.

In fact, the ensemble spread decrease is likely the cause for differences in innovation RMSE for satellite AMVs between

EDA and DART above 650 hPa (Fig. 3). Also shown are the total spread (Andersson et al., 2003; Desroziers et al., 2005)325

for both experiments. From Fig. 3, one might conclude that the observation error and/or the ensemble spread are too small

to account for the ensemble mean RMSE. After running all of the experiments in this study, we found that GSI assigns

unique observation errors for each satellite AMV data source (e.g., Geostationary Operational Environmental Satellite (GOES),

European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), Japan Meteorological Agency (JMA))

and instrument band (e.g., infrared window, infrared water vapor, visible). Therefore the single vertical error distribution330

assigned in Table 1 for all AMVs needs to be revisited.

All things considered, the EDA and DART experiments produce remarkably similar behaviors. Those similarities are at-

tributable to their commonalities in settings used for observation processing and lack of tuning. There are yet many opportuni-

ties to reduce the prior ensemble mean RMSE for both experiments, including observation error tuning, fixing known issues in

GNSSRO assimilation (see Sect. 6), and assimilating more observation types. There are also many opportunities to increase the335

ensemble spread such that the consistency between spread and RMSE is improved, including accounting for model uncertainty,

tuning the relaxation mechanism(s), and applying additive and prior inflation.
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5 Deterministic cycling

5.1 Setup

Both the EDA and DART ensemble cycling experiments successfully cycled for an entire month, independent of a higher res-340

olution centered EnVar state (i.e., such as that conducted by Liu et al. (2022)). EDA and DART exhibit nearly stable spread

characteristics, even if the spread tends to be too narrow relative to ensemble mean RMSEs. Therefore, their respective back-

ground ensemble forecasts might be effective to use as Be in deterministic 3DEnVar cycling experiments. We conduct four

deterministic dual-mesh 30km-60km 3DEnVar cycling experiments following the same approach as Liu et al. (2022), where the

30km mesh is used in the DA outer loop and in forecasts, and the 60 km mesh is used for analysis increments in the DA inner345

loop. In the experiments presented, "dual-mesh" is wholly equivalent to a traditional dual-resolution incremental variational

minimization. However, it is also possible to use variable resolution meshes in either the inner or outer loop in JEDI-MPAS

such that there may be many more than 2 mesh spacings (resolutions). EDA was limited to 1 outer iteration and 60 inner

iterations for cost savings, but many more iterations are cheap in deterministic cycling. We apply 2 outer iterations, each with

60 inner iterations, to improve convergence toward observations with nonlinear operators. The same 1200 km horizontal and 6350

km vertical localization lengths scales are applied as in the two ensemble experiments.

The only difference between the four deterministic experiments is the choice of BEC, which is summarized in Table 2. There

are three pure 3DEnVar experiments, gefs100, dart100, and eda100, that use 100% ensemble BECs based on 20-member GEFS,

80-member DART, and 80-member EDA, respectively. gefs100 is equivalent to the clrama experiment from Liu et al. (2022).

There is one hybrid 3DEnVar experiment, eda75c25, that uses a mixture of 75% EDA ensemble and 25% climatological355

BEC. The climatological BEC, Bc is identical to the one described by Jung and et al. (2023). Bc is trained using the National

Meteorological Center (NMC) method (Parrish and Derber, 1992) with 366 samples of 48 h minus 24 h GFS forecast differ-

ences. The standard deviation of the trained Bc is scaled by 1/3, which was determined to be a quasi-optimal tuning justified

by the need to match the 24 h forecast statistics to the 6 h background forecast duration. The horizontal length scales of stream

function and unbalanced velocity potential (see Sect. 2.1 for more description) are scaled by 1/2 to account for differences360

between the sampled correlation vs. separation distance relationship and the Gaspari-Cohn fitting function used in BUMP.

More details can be found in Jung and et al. (2023).

All four experiments are initialized with a 6 h forecast initialized from a GFS analysis valid at 18:00 UTC 14 April 2018,

which was transformed to the MPAS-A 30 km mesh. The results that follow in Sect. 5.2 reflect statistics aggregated across 27

10 d forecasts initialized from 00:00 UTC analyses valid from 18 April 2018 to 14 May 2018. When error bars are shown,365

they indicate 95% confidence intervals of those differences, tabulated via bootstrap resampling. Each of the binned RMSE

differences from the 27 forecasts is treated as an independent and identically distributed sample, and they are re-sampled

10,000 times with replacement. The 95% confidence intervals are then obtained by selecting the sample values at the 2.5th and

97.5th quantiles, referred to as the "percentile method" by Gilleland et al. (2018). It should be noted that the number of samples

used here is small, and does not account for seasonal variation in forecast quality. A more robust approach is needed when370

deploying an operational system.

12



5.2 Results

First we present results for the three pure 3DEnVar experiments to evaluate the efficacy of EDA ensemble BECs. Our goal is

to interrogate the EDA ensemble to determine its utility for future investigations, and not to claim anything about its quality

relative to the other data sources. A low water mark is for forecasts initialized from eda100 analyses to yield equivalent or375

better skill than those initialized from gefs100 analyses. dart100 is included to demonstrate how small differences between

EDA and DART affect deterministic cycling performance. As we described in Sect. 4.2, those differences are not necessarily

related to the ensemble DA algorithms.

Although GEFS was only available as a 20-member product during the period of experimentation presented herein, GEFS

now provides 30-member ensemble forecasts (Zhou et al., 2022). In either case, the GEFS initial conditions are actually 6 h380

forecasts initialized from analyses drawn from the 80-member GDAS (Zhou et al., 2017). Therefore, they benefit from being

produced by an 80-member EnKF. Additionally, GEFS initial conditions are expected to have added value over JEDI-MPAS’s

own ensemble, because they benefit from GDAS’s EnKF assimilating many more observation types, having operational-quality

observation error and inflation tuning, applying stochastic schemes to ensemble forecasts to treat model error, and being

operated at a higher resolution.385

Figure 4 shows the dart100 and eda100 percent difference of RMSE with respect to GFS analyses compared to the RMSE

of the control experiment, gefs100, in 0 to 10 day forecasts. eda100 performs better than gefs100 with 95% confidence for

T , U , and V . The relative performance of dart100 with respect to gefs100 follows similar trends for T , U , and V , slightly

outperforming eda100 for T and slightly underperforming eda100 for U and V . eda100 produces a nearly neutral impact

for Qv , although there is some degradation near the model top that dominates these vertically aggregated errors around390

day 5.
:::
The

::::::
neutral

:::
Qv:::::::

impact
::
in

:::
this

::::::::
globally-

::::
and

::::::::::::::::::
vertically-aggregated

:::::
metric

::
is
::::::

likely
:::
due

::
to
::::

the
::::::
limited

::::::::::
assimilation

:::
of

:::::::::::::::
moisture-sensitive

::::::::::
observations

:::::
(only

::::::
sondes

:::
and

::::::::
aircraft).

::::::::::
Assimilating

::::::::
radiances

:::::
from

:::::
water

:::::
vapor

:::::::
channels

::
in

::::::
all-sky

::::::
scenes

:::::::::::::::::
(i.e., Liu et al., 2022)

:::::
would

:::::
better

::::::
reveal

:::
the

:::
Qv ::::::

impacts
:::
of

::::
these

:::::::::::
experimental

:::::::::
ensembles.

:

Figure 5 delves deeper into the largest source of wind observations to impact the DA analyses and subsequent forecasts,

satellite AMVs. Although the verification against GFS analyses indicated improvement for both experiments, here the impact395

of the EDA ensemble in eda100 is nearly neutral for 1 to 3 day forecasts, and the DART ensemble has negative impacts, up to

5% for U at 100 hPa, that are largely limited to tropical latitudes. As described in Sect. 4.2, the observation errors for satellite

AMVs have much room for improvement, and the DART ensemble has decreasing transient U and V ensemble spread in the

tropical free troposphere. More work remains to tune both the observation errors (e.g., following Desroziers et al. (2005)) and

BEC (either through spread tuning or covariance and localization improvements) in both the dart100 and eda100 experiments,400

which may explain some of the poor wind forecast quality.

One observation that is generally consistent with the GFS analyses are sonde T and U in the northern hemisphere (Fig. 6).

Both dart100 and eda100 achieve up to a 5% positive impact above 50 hPa at day 1 for T and U , which slightly decreases at

day 2. That positive T impact is collocated with a large cold bias that the non-GEFS BECs improve upon but do not remove

entirely. Neither experiment gives statistically significant improvement in the troposphere compared to gefs100. Since the405
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positive impact to sonde U is largely above 100 hPa, it is not surprising that is not reflected in the AMV verification, since

satellite AMVs are located at 100 hPa and below.

That vertical distribution of T and U impacts is corroborated in model-space via 2 d forecast verification versus GFS

analyses (Fig. 7). dart100 and eda100 yield their largest improvements to T and U (more than 30% locally) in the southern

polar stratosphere (approximately above levels 35 to 40). Modest positive impacts are seen at most latitudes in the stratosphere,410

consistently across both experiments. However, the tropical degradation in tropospheric T and U for dart100 is more obvious

in this model-space verification. Also, eda100 has degradation in the northern polar troposphere. The vertical
:::
and

:::::::::
latitudinal

distribution of T impacts in dart100 and eda100 largely align with the impacts to GNSSRO refractivity.

GNSSRO refractivity, which is sensitive to T and Qv , observations indicate a positive tropospheric impact from both sets of

80-member BECs, although mostly limited to 40◦S and poleward. Figure 8 shows the zonally aggregated dart100 and eda100415

percent difference of RMSE with respect to refractivity compared to RMSE of gefs100 for 90◦S to 30◦S. Both sensitivity

experiments give a two-peak statistically significant positive impact centered near 15 km and 22 km altitudes, with a dip near

the tropopause that might be explained by its mis-representation in DA background states. eda100 and dart100 achieve at

least a 15% positive impact at some stratosphere altitudes out to day 3. In the troposphere, both experiments give comparable

positive impacts, over 10% at day 1 and declining slightly with lead time. All positive impacts in the southern hemisphere are420

above the planetary boundary layer. Although not shown in Fig. 8, the stratospheric impact of the 80-member BECs persists

out to day 5.

It is useful to further explore the impacts of using a hybrid BEC, because that algorithmic enhancement is readily adaptable

to future EDA applications. Therefore, we first compare eda75c25 to eda100 to demonstrate the benefits of additionally ac-

counting for climatological BECs, and then to gefs100 to show the total impact of developments herein and in Jung and et al.425

(2023).

Adding the 25% climatological BEC component and scaling the 80-member ensemble BEC component by 75% adds sig-

nificant value across a wide range of observation- and model-space verification metrics. Figure 9 shows the T , Qv , U , and

V RMSE with respect to GFS analyses at 2 d lead time for eda100 and the corresponding percent differences in RMSE for

eda75c25. Most of the positive impacts for T are limited to the troposphere (below model levels 35-40), and reach up to 14%430

above the North Pole. Since the EDA ensemble caused some degradation near the North Pole, and did not cause much improve-

ment outside the southern extratropical to polar free troposphere and stratosphere, this is a welcome benefit. The eda75c25 2

d forecast moisture also aligns better with GFS analyses than eda100, although this also makes up for some degradation in

stratospheric Qv between eda100 and gefs100. Overall, eda75c25 consistently improves the 2 d wind forecasts throughout the

troposphere. It is clear that the climatological BEC makes up for information that is lacking in the completely flow-dependent435

ensemble BEC.

Finally, we consider a metric which incorporates information from multiple variables. According to Krishnamurti et al.

(2003), a 500 hPa geopotential height anomaly correlation coefficient (ACC) "...greater than 0.6 generally implies that troughs

and ridges at 500 hPa are beginning to be properly placed in that forecast." We calculate anomalies with respect to the clima-

tology derived from the 1980-2010 NCEP/NCAR reanalysis products (Kalnay et al., 1996). We conduct cold-start forecasts440
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initialized from GFS analyses as a reference. The cold-start forecast anomalies are compared to those of GFS analyses. For

the eda75c25 and gefs100 experiments, their forecast anomalies are compared to those of their respective analyses. Figure 10

shows the 1-to-7 day forecast ACC scores for eda75c25, gefs100, and the cold-start forecasts. The gefs100 forecasts are ap-

proximately 0.6 days behind the GFS analyses at 0.7< ACC < 0.9. eda75c25 provides approximately 0.1 to 0.2 days enhanced

predictability for for 4 to 6 day forecasts globally.445

The EDA ensemble-based BEC and the climatological BEC contribute complementary information in the deterministic

cycling. Although there are still many avenues for future improvements, these BECs are ready for the non-developer user base.

On the basis of this work, JEDI-MPAS has the means to produce an ensemble of forecasts without relying on an external

analysis system at each cycle.

6 Conclusions and future outlook450

This paper has documented the implementation of En-3DEnVar for JEDI-MPAS, and demonstrated its use in both ensemble

cycling and in experiments in which a previously computed EDA ensemble provides the BEC for cycling EnVar.

Our cycling DA experiments previously required ensembles of initial conditions from an external system (GEFS) (Liu et al.,

2022). Using EDA gives ensemble initial conditions that are consistent with the configuration of MPAS (for example, including

a set of hydrometeors consistent with the chosen microphysical scheme) and with the observing network used. The EDA also455

performs better in most scores relative to our previous approach, though with increased computational cost. As a further

check on the implementation of EDA, we compared against an experiment using MPAS-DART, a more mature ensemble data-

assimilation system, for ensemble BEC generation and found comparable performance in terms of ensemble spread, ensemble

mean background RMSE, and subsequent deterministic cycling forecast quality.

A further refinement, which improves relative to using the EDA in EnVar alone, and across almost all latitudes and heights,460

is the use of a hybrid BEC that is a weighted sum of the ensemble covariances and the static covariances of Jung and et al.

(2023). With this refinement, the system is ready to produce research-quality ensembles for future sensitivity studies that aim

to enhance JEDI-MPAS.

A non-standard element of our experiments is the use of self-exclusion, as in Bowler et al. (2017a) and Buehner (2020). In

the update for a given member, the ensemble covariance in the BEC is based on the remaining members, with the own member465

"excluded." Self-exclusion improves the EDA results because it significantly reduces the EDA bias toward underestimating the

analysis spread. We defer further analysis of self-exclusion to a separate paper.

The largest improvements from EDA relative to using GEFS-based BECs are found in temperature and wind in the strato-

sphere and throughout the southern hemisphere. The improvements in the stratosphere come despite the EDA ensemble being

underdispersive there and despite substantial stratospheric temperature biases in both the analyses and forecasts. Sensitivity470

tests conducted after this study was complete indicate that GNSSRO assimilation needs to be interrogated and improved,

especially in the stratosphere. Better use of those observations should reduce
::
We

:::::
have

:::::
since

:::::::::
conducted

:::::::
multiple

:::::::::
sensitivity

::::
tests

:::::
where

:::
we

:::::::::
assimilate

::::::::
GNSSRO

:::::::
bending

:::::
angle

:::::::
instead

::
of

::::::::::
refractivity,

::::
and

:::::::
carefully

:::::
tune

:::
the

:::::::
bending

:::::
angle

::::::::::
observation
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:::::
errors.

::::::
Those

::::::::::
experiments

::::::
reduce

:::
the stratospheric temperature bias and potentially also yield better correspondence between

the ensemble spread and rms errors
:::::::::::
significantly,

:::
and

::::::::
additional

:::::::::
corrective

::::::::
measures

:::
are

:::
still

:::::
under

:::::::::::
investigation.475

There are several paths to further improvements in the short-range ensemble forecasts produced by the JEDI-MPAS En-

3DEnVar. In all ensemble and deterministic experiments, most of the settings for observation error (R) and QC are taken

directly from operational-center-specific implementations either in UFO or in GSI and they reflect the characteristic behavior

of a different cycling system. Now that full deterministic and ensemble cycling functionality has been demonstrated with

JEDI-MPAS, those settings can be robustly analyzed and tuned (e.g., Desroziers et al., 2005). Accounting for model error in480

the ensemble-forecast step is also a top priority. Finally, additional improvements could be achieved in EDA by using at least 2

outer iterations with more total inner iterations or by enabling an En-4DEnVar, both with corresponding increases in cost.

Previous studies (e.g., Lorenc et al., 2017; Buehner et al., 2017) have pointed out the significantly greater computational

expense of EDA based on EnVar compared to an EnKF. The same is true here: the EDA algorithm was roughly 4 times more

expensive than the DART EAKF algorithm, both with 80 members. The primary drivers of EDA cost are the (1) reading485

and storing of 80 ensemble background states by each of those independent Variational members, and then (2) performing

localization and multiplication for the 80 perturbations in each inner loop iteration; together those account for 2
3 of the total

cost of the DA step. While recent model-space localization techniques hold promise for maintaining analysis covariance quality

with fewer EDA members (i.e., Lorenc, 2017), we did not exercise those here. However, the total number of members strongly

impacts both the EnKF and EDA costs.490

A solution to problem (1) using parallelization strategies across minimization members was proposed by Arbogast et al.

(2017). A number of techniques also exist to address problem (2). The multi-mesh minimizations used in deterministic ex-

periments in Sect. 5 can be extended to the EDA. "Mean-Pert" methods (Lorenc et al., 2017; Buehner et al., 2017) reduce

computational costs by simplifying the update of ensemble perturbations as compared to that of the ensemble mean. Bowler

et al. (2017b) used a Mean–Pert algorithm to realize a factor of 3 cost reduction in their En-4DEnVar (Lorenc et al., 2017).495

Block EDA algorithms (Mercier et al., 2018) also hold promise for reducing inner iteration count, which Gas (2021) demon-

strated in JEDI. Finally, because JEDI is relatively immature, there also remain many opportunities for basic computational

optimization of JEDI-MPAS. For example, after completing the EDA and DART experiments, a single-precision in-core mem-

ory and computation capability was added for JEDI-MPAS states (e.g., xb, xa) and increments (e.g. δx). This development

reduces the cost for the DA step of the EDA experiment by 25%500

The progress demonstrated herein is a testament to the fact that innovations introduced into JEDI by one contributor (e.g.,

JCSDA, NOAA, NASA, U.S. Navy, U.S. Air Force, UK Met Office, NCAR) are more easily leveraged by partners than

was previously possible with separate DA software frameworks. Together with Liu et al. (2022) and Jung and et al. (2023),

the demonstration of EDA for JEDI-MPAS provides a foundation for more complex endeavors. In particular, variable mesh

resolution is one of the main motivations for MPAS-A and has been demonstrated to produce more realistic forecasts than505

a nested domain near regions of mesh refinement (Park et al., 2014). Work is already under way to demonstrate variable

resolution and regional mesh capabilities in JEDI-MPAS.
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Figure 1. Root-mean-square (rms) of ensemble mean background difference to GFS analyses (δxGFSa) and background ensemble standard

deviation (σxb ) for model simulated (a) temperature (T ), (b) water vapor mixing ratio (Qv), and (c) zonal (U ) and (d) meridional (V ) wind

components, all versus model level. Statistics are tabulated across all grid columns for DART and EDA experiments from every 6 h ensemble

backgrounds between 00:00 UTC 17 April 2018 and 00:00 UTC 14 May 2018.
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Figure 2. Same as Fig. 1, except for model simulated surface pressure (Ps) versus latitude.
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Figure 3. Root-mean-square (rms) of ensemble mean background innovation (d) and background ensemble total spread for satellite AMV

(a) zonal and (b) meridional wind components, versus pressure. Statistics are tabulated globally for DART and EDA experiments from every

6 h ensemble backgrounds between 00:00 UTC 17 April 2018 and 00:00 UTC 14 May 2018.
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Figure 4. Percent difference in rms(δxGFSa) of dart100 and eda100 with respect to rms(δxGFSa) of gefs100 (i.e., 100 ·

[rms(δxGFSa)|eda100 − rms(δxGFSa)] |gefs100/rms(δxGFSa)|gefs100). Values greater than zero indicate degradation relative to

gefs100, while values less than zero indicate improvement. Error statistics are aggregated for all model grid columns and levels as a function

of forecast lead time (0 to 10 d) for simulated (a) temperature, (b) specific humidity, and (c) zonal and (d) meridional wind components, and

pertain to 27 forecasts initialized from 00:00 UTC analyses from 18 April to 14 May 2018. Error bars indicate 95% confidence intervals

determined via bootstrap resampling (see text for description).
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Figure 5. Percent difference in rms(O-F) of dart100 and eda100 with respect to rms(O-F) of gefs100 for satellite AMVs. Error statistics

are aggregated for individual pressure bins and as a function of forecast lead time (1 to 3 d) for (a-c) zonal and (d-f) meridional wind

components, and pertain to 27 forecasts initialized from 00:00 UTC from 18 April to 14 May 2018. Error bars indicate 95% confidence

intervals determined via bootstrap resampling (see text for description).
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Figure 6. Same as Fig. 5, except for 1 to 2 d forecasts of sonde (a-b) temperature and (c-d) zonal wind component between 30◦N and 90◦N.
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Figure 7. (a,d) Reference rms(δxGFSa) for gefs100 and percent difference of rms(δxGFSa) for (b,e) dart100 and (c,f) eda100 at 2 d lead

time. Statistics are binned in groups of ∼5 model levels and 11◦ latitude bands for simulated (a,b,c) temperature and (d,e,f) zonal wind

component, and pertain to 27 forecasts initialized from 00:00 UTC from 18 April to 14 May 2018. Inset black rectangles in individual bins

indicate that the difference of rms between experiments is nonzero with at least 95% confidence, as determined via bootstrap resampling (see

text for description).
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Figure 8. Same as Fig. 5, except for GNSSRO refractivity versus altitude between 90◦S and 30◦S. Error bars indicate 95% confidence

intervals determined via bootstrap resampling (see text for description).
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Figure 9. Same as Fig. 7, except that the (a,c,e,g) reference rms is for eda100 and (b,d,f,h) percent difference is shown for eda75c25. Statistics

are tabulated for simulated (a,b) temperature, (c,d) water vapor mixing ratio, and (e,f) zonal and (g,h) meridional wind components.
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Figure 10. 1 to 7 d Anomaly Correlation Coefficient (ACC) of 500 hPa geopotential height for gefs100, eda75c25, and cold-start forecasts

initialized from GFS analyses (Cold). Statistics are tabulated over all grid cells and pertain to 17 forecasts initialized from 00:00 UTC from

18 April to 4 May 2018.
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Table 1. Observation error standard deviation versus pressure for satellite AMVs.

P (hPa) 1000 950 800 650 600 550 500 450 400 350 300 250 200 150 100

σo (m s−1) 1.4 1.5 1.6 1.8 1.9 2.0 2.1 2.3 2.6 2.8 3.0 3.2 2.7 2.4 2.1
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Table 2. Deterministic 3DEnVar experiments

Experiment BEC

gefs100 100% 20-member ensemble; 6 h 60 km MPAS-A forecasts from GEFS analyses

dart100 100% 80-member ensemble; DART background forecasts

eda100 100% 80-member ensemble; EDA background forecasts

eda75c25 75% EDA background forecasts, 25% climatological
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