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Abstract. We describe present the Monsoon Mission Coupled Forecast System version 2 (MMCFSv2) model, which 

substantially upgrades the present operational MMCFSv1 (version 1) at the India Meteorology Department. The latest 25 

years (1998-2022) of retrospective seasonal coupled hindcast simulations of the Indian Summer Monsoon with April initial 15 

conditions from Coupled Forecast System Reanalysis are discussed. We evaluate MMCFSv2 based on the latest 25 years 

(1998-2022) of retrospective coupled hindcast simulations of the Indian Summer Monsoon with April initial conditions from 

Coupled Forecast System Reanalysis. MMCFSv2 simulates the tropical wind, rainfall, and temperature structure reasonably 

well. MMCFSv2 captures surface winds well and reduces precipitation biases over land, except in over India and North 

America. The dry bias over these regions remained similar tolike MMCFSv1. MMCFSv2 captures significant features of the 20 

Indian monsoon, including the intensity and location of the maximum precipitation centres and the large-scale monsoon 

circulation. MMCFSv2 improves the phase skill (anomaly correlation coefficient) of the interannual variation of ISMR by 

17 % and enhances the amplitude skill (Normalized Root Mean Square Error) by 20 %. MMCFSv2 shows improved 

teleconnections of ISMR with the equatorial Indian and Pacific oceans. This 25-year hindcast dataset will serve as the baseline 

for future sensitivity studies of MMCFSv2. 25 

1. Introduction 
Over a third of the world's population resides in the East Asian and the Indian sub-continent region, most of which depends 

on the natural irrigation from the summer monsoon rainfall for agricultural production (Gadgil, 2006). Indian summer monsoon 

(ISM), which lasts from June to September every year, is a perennial system. It, however, shows interannual and intra-seasonal 

variability (Parthasarthi et al., 1993; Kumar et al., 1999; Munot et al., 2000; Mohan et al., 2000; Gadgil et al., 2003) affecting 30 

the region's agricultural production (Gadgil, 2006). A 10 % deviation from the climatological mean is sufficient to have an 

excess or a deficient monsoon over India (Singh et al., 2015). The standard deviation, variance, and their ratio with mean  of 

June-September (JJAS) mean precipitation (Fig. 1) shows that the location of highest variability is over oceans. In contrast, 

the variability over the Indian landmass is low despite the high mean precipitation. This low variability (having a high impact 

on agricultural production) challenges the models trying to predict it. 35 
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Figure 1: (a)JJAS climatological mean precipitation (shading) and standard deviation (contours) of precipitation (mm/day) 

from 41 years (1981-2021) of GPCP data. (b) Standard deviation (red contour) and standard deviation to mean ratio (shading) 

(c) Variance (red contour) and variance to mean ratio of precipitation (shading) from 41 years (1981-2021) of GPCP data. 40 

The monsoon is an inherently coupled system (Webster et al., 2002; Ramu et al., 2016), and Indian Meteorological 

Department (IMD) has been using the Monsoon Mission Coupled Forecast System version 1 (MMCFSv1) model 

operationally to predict the ISM since 2011 (Benke et al., 2019) Indian Instiute of Tropical Meteorology (IITM) has been 

using MMCFSv1 as a research testbed to study the various facets of ISM rainfall (ISMR) (Ramu et al. , 2016; Krishna et al., 

2019; Srivastava et al., 2021; Pillai et al., 2021; Pradhan et al., 2022; Rao et al., 2019). MMCFSv1 is based on a high-45 

resolution Climate Forecast System model from National Centre for Environmental Prediction (NCEP) (Saha et al., 2014).  

While the NCEP runs the model at a resolution of T126, IITM runs it at T382. Ramu et al., (2016) analyzed both the 

model resolutions (T126 and T382) based on 28 years hindcast to show that the skill of lower resolution model is 0.49 

compared to the skill of 0.55 of the high-resolution model with the February initial conditions. Pillai et al., (2017) have 

shown that the potential predictability of ISMR is 0.7 in MMCFSv1, and the maximum actual skill (with different initial 50 

conditions) of the operational model at IMD (MMCFSv1) is 0.55. Hence, the gap between the potential predictability and 

actual skill is large. Many factors, such as resolution, initial conditions, physics, and dynamics, limit the models' skill. 

Coupled climate models' skill improvement involves efforts from many research groups specializing in a particular sub-

domain (component) of the coupled model. As its components, Tthe MMCFSv1 has a Global Forecast System atmospheric 

model with Eulerian dynamical core (GFS-EL, Moorthi et al., 2001), Modular Ocean model version 4 (MOM4, Griffies et 55 
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al., 2004), and sea-ice model (SIS, Semtner, 1976; Winton, 2000), as its components coupled together using a hard-coded 

coupler. This hard-coded coupler runs on a single core. This presents a computational problem as the models grow in 

complexity and become highly parallelizable. 

With an ever-increasing understanding of our climate system, the above-mentioned individual components of 

MMCFSv1 have seen a lot of improvements independently of each other. MOM6 (Adcroft, 2016) is a significant upgrade 60 

(algorithmically) over the MOM4 (discussed in detail in the next section). The predictability of the medium-range 

atmospheric models has improved with increasing model resolutions. The need for higher atmospheric model resolution 

emphasizes using a Semi-Lagrangian dynamical core in place of the Eulerian one (Staniforth et al., 1991). CICE5 (Bailey 

et al., 2018) is a separate code base designed to be used in coupled models and is highly parallelizable and brings in many 

improvements (see next section) over SIS (Semtner, 1976; Winton, 2000) sea ice model, which is a part of the MOM4 code 65 

base. 

As mentioned above, the components in MMCFSv1 are hard coded to transfer and transform the data from one process 

(model component) to another through a coupler. To make any changes to the individual model component, one must 

understand how these model components are implemented and how the coupler accumulates, transfers, and regrids the 

boundary condition data from one component to another. However, since the coupler is hard coded to interface the individual 70 

model components, there is a lack of modularity in how MMCFSv1 is implemented. 

Realizing this hinders seamless model development in coupled models, many groups across the climate community 

(Black et al., 2009; Craig et al., 2017; Balaji et al., 2004) have been developing the software infrastructure trying to bring 

modularity to the complicated climate model codes. The National Oceanic and Atmospheric Administration (NOAA) 

Environmental Modeling System (NEMS) is one such modelling framework (Black et al., 2009) which is used to streamline 75 

components of the models. NEMS architecture is based on the Earth Modeling System Framework (ESMF, Hill et al., 

2004). ESMF standardizes how the model components interact with each other, thus bringing in modularity. NEMS refines 

the definition of what it means to be a model component and standardizes the initiation, running, and finalizing steps of 

each model component. MMCFSv2 uses the NEMS coupling framework and upgrades all the major individual model 

components of MMCFSv1 (Table 1). Using a NEMS coupler will facilitate easier future upgradation of MMCFSv2 80 

components. 

Systematic biases in MMCFSv1 were well documented (Ramu et al., 2016; Pillai et al., 2017), and the significant 

biases are the cooler SST (especially over the Indian and southern Pacific Ocean), dry bias over land, wet bias over the 

ocean, and weaker monsoon circulations. Hence, in this study, we have investigated the model's ability to simulate the mean 

state and assess the model's skill in predicting the phase and amplitude of ISMR. We have limited our simulations to the 85 

last 25 years (1998-2022) of retrospective hindcasts due to limitations in computational resources. The present paper gives 

details of MMCFSv2 individual component upgrades. We also analyze the simulated mean tropical SST, circulation, mean 

and interannual variability of ISMR and its teleconnection with different oceanic modes. Section 2 discusses model upgrades 

over MMCFSv1. Section 3 describes the experimental design for this study. We then show the simulated results and compare 

them with MMCFSv1 in section 4 before summarizing them in the last section. 90 

Table 1 Major Changes to model components between MMCFSv1 to MMCFSv2 

Component MMCFSv1 (Resolution) MMCFSv2 Reference 

Ocean  MOM4 (0.5°) MOM6 (0.25°) Adcroft (2016) 

 
Ice model 

 
SIS Sea-Ice 

 
CICE5 

 
Hunke et al., (2015) 

 
Atmospheric model 

 

 
GFS-EL (T382) 

 
GFS-SL (T574) 

 
Sela, 2010 

Coupler Hardcoded NEMS Framework Black et al., (2009) 

Model/Comp Atmosphere Ocean Ice model Land Model References Formatted: Left, No widow/orphan control
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onent (resolution) (resolution) 

MMCFSv1 GFS-

EL(T382, 

~38km) 

MOM4p0d 

(0.25 at 10S-

10N) 

SIS sea ice NOAH-LSM Moorthi et, al, 

2001 

Griffies et al., 

2004 

Winton, 2000 

Ek et. Al 

2003 

MMCFSv2 GFS-SL 

(T574, 

~38km) 

MOM6 

(0.125 at 10S-

10N) 

CICE5 NOAH-LSM Sela, 2016 

Adcroft 2016 

Hunke et al., 

2015 

Ek et. Al 

2003 

 

Parameteriza

tions 

Cumulus Ocean vertical 

grids 

Ocean 

physical 

closures 

  

V1 SAS Fixed (B-

stensil) 

Non-scale 

aware 

  

V2 New-SAS Arbitrary 

Lagrangian 

Eulerian (C-

stensil) 

scale-aware 

parameterizati

ons 

  

 

Horizontal 

Grid Size 
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V1 1152x576 720x410 720x410 1152x576  

V2 1 152x576 1440x1080 1440x1080 1152x576  

 

 

2. MMCFSv2 model Details 

We use the NCEP MMCFSv1 (Saha et al., 2014) as the base model to discuss the upgrades MMCFSv2 brings. The 95 

primary individual model components of MMCFSv1, upgraded in MMCFSv2, are tabulated in Table 1 and discussed briefly 

below. The MMCFSv1 uses the spectral model Global Forecast System (GFS) as the atmospheric model (Moorthi et al., 

2001) with the Eulerian dynamical core. MMCFSv2 instead uses a Semi-Lagrangian dynamical core for the GFS (GFS-SL, 

Sela, 2010; Mukhopadhyay et al., 2019). Using a Semi-Lagrangian dynamical core allows us to have higher atmospheric 

model resolutions while keeping the time stepping the same.  100 

2.1 MOM6 Ocean Model 

MMCFSv1 uses the Geophysical Fluid Dynamics Laboratory Modular Ocean Model version 4p0d (MOM4) as the ocean 

model (Griffies et al., 2004). It has been upgraded to MOM6 (Adcroft, 2016) in MMCFSv2. MOM6 is based on generalized 

ocean dynamics which enables variable vertical and hybrid coordinates. Since MOM6 uses vertical Lagrangian remapping 

(Griffies et al., 2020), it can be configured with any vertical co-ordinates among geopotential, isopycnal, terrain-following, or 105 

hybrid (user-defined). Significant improvements brought by MOM6 over MOM4 include using C-grid stencil over B-grid 

stencil. C-grid stencil is preferred for simulations involving an active mesoscale eddy field.  MOM6 uses scale-aware 

parameterizations for mesoscale eddy-permitting regimes is based on Jansen et al.,(2019) and eddy fluxes are parameterized 

based on Jansen et al. (2015). Boundary layer schemes in MOM6 is based on Reichi et al., (2018) and incorporateincorporate 

Langmuir mixing. It also introduces a suite of parameterized mixing from breaking gravity waves. A new method for 110 

performing neutral diffusion is also introduced in MOM6 that prevents the spurious formation of extrema. Complete details of 

MOM6 can be found at https://www.gfdl.noaa.gov/mom-ocean-model/. 

The present configuration of MOM6 used in MMCFSv2 consists of 40 vertical levels with HyCOM-like hybrid 

coordinates. The horizontal grid follows tripolar grid with poles over land and 1440 and 1080 points in x and y directions 

respectively. The resolution of the ocean component in MOM4 is 0.25 degrees between 10° S to 10° N latitude band and 0.5 115 

degrees elsewhere. This has been increased to 0.125o  near the equator and 0.1 degrees near the poles in MOM6. MOM6 is 

compiled with external coupler and a cap code (mom_cap.F90) interfaces the model to NEMS framework. The coupling 

happens every 30 minutes. 

2.2 CICE5.0 Model 

 120 

MMCFSv1 uses a three-layer (one layer of snow and two layers of sea ice) interactive sea ice model (Winton, 2000), which 

is an improvement over the Semtner three-layer model (Semtner, 1976). This component model has been upgraded to the Los 

Alamos CICE5 (Hunke et al., 2015) in MMCFSv2. CICE5 is designed to be used in coupled models and is highly 

parallelizable. The major improvements of CICE5 over the Sea-ice model of MMCFSv1 include ice velocity in atm-ice 

coupling updates and allowing a variable coefficient for the ice-ocean heat flux. 125 

2.3 Coupler 

CICE5 is developed grounds up by LANL to be used in a fully coupled climate models. CICE5.0 has (improved/new) 

parameterizations for form drag, sea-ice biogiochemistry, explicit melt pond, among others. CICE5 has been extensively used 
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in climate simulations by Community Earth System Model (CESM). More details can be found at CICE documentation page 

at (link in data availability section). CICE5 runs at MOM6 resolution of 1440 by 1080 points in the horizontal. Similar to MOM6, 130 

CICE5 code is coupled to NEMS framework using a cap code (cice_cap.F90) and the coupling happens every 30 minutes. 

The hard coded coupler in MMCFSv1 runs on a single processor and transfers surface fluxes (wind stress, and radiative) 

to the ocean model and provides SST to the atmospheric model after every coupling time step of 1800 seconds. This coupler 

has been replaced by NEMS coupler. This coupler is a parallel coupler and is currently running on 144 cores in MMCFSv2. 

More details on the NEMS coupler can be found in Black et al., (2009). 135 

 

2.43 Other Model Components 

As mentioned earlier, atmospheric component is based on GFS with semi-lagrangian dynamical core, Although the four-

layer NOAH land surface model (Ek et al., 2003) remains the same between MMCFSv1 and MMCFSv2, the NEMS framework 

allows us to include newer versions of land models such as NOAH-MP. This will be done in future work. 140 

 

3. Experimental Details and Observational/Reanalysis Data 

The retrospective ensemble prediction (hindcast) runs of the MMCFSv1 have atmospheric horizontal resolutions 

corresponding to triangular truncation of T382L64, while that of MMCFSv2 is T574L64 (horizontal resolution of both 

versions is ∼38km). The atmosphere, land, and ocean initial conditions for these runs are obtained from the NCEP Climate 145 

Forecast System Reanalysis (CFSR) (Saha et al. 2010). The atmospheric component of MMCFSv1 and MMCFSv2 has 64 

sigma-pressure hybrid vertical levels, and the ocean component has 40 vertical layers. The convective parameterization 

scheme used in the atmospheric part of MMCFSv1 and MMCFSv2 is based on the Arakawa-Schubert scheme, with 

orographic gravity wave, drag, and momentum mixing. 

Pillai et al. (2022) showed that the prediction skill for El Niño–Southern Oscillation (ENSO) was lower for MMCFSv1 150 

initialized with February (3 months lead time) initial conditions compared to when it was initialized with April (1 month 

lead time) initial conditions. They showed that models which depend on ENSO teleconnection for ISMR interannual 

variability (MMCFSv1 in their case) have better ISMR prediction skills with April initial conditions. Hence, the MMCFSv2 

experimental setup is based on a 10-member lagged ensemble with April initial conditions (00z01Apr, 12z01Apr, 00z06Apr, 

12z06Apr, 00z11Apr, 12z11Apr, 00z16Apr, 12z16Apr, 00z21Apr, and 12z21Apr) while that of MMCFSv1 is like the one 155 

in Ramu et al. (2016), albeit, for April initial conditions and a total of 12 ensembles (2 additional ensembles corresponding 

to 00 and 12Z of 26th April). Each hindcast run is integrated for six months, from April to September. A total of 25 years of 

hindcasts have been performed from 1998 to 2022. 

For the verification of the model-simulated rainfall, we use the Global Precipitation Climatology Project (GPCP, Adler 

et al. 2003) and 1-degree gridded daily rainfall from IMD (Rajeevan et al. 2006) for the same hindcast period (1998–2022). 160 

It may be noted that IMD uses data from variable rain gauge networks from day to day based on the availability of data 

from gauges. However, GPCP uses data from fixed rain gauge network. Since IMD keeps updating the rain gauge network 

continuously, the seasonal mean values also vary for each update (Pai et al. 2014). Hence, in this study, we use GPCP data 

as a standard product for assessing the skills of the ISMR. For sea surface temperature (SST) validation, we use the Extended 

Reconstructed Sea Surface Temperature (ERSST) version 5 (Huang et al. 2017, 2018, 2019, 2020). In addition, we also use 165 

ERA5 reanalysis products for winds (Hersbach et al. 2020).  Model simulated mixed layer depth (MLD) was compared to 

CMCC Global Ocean Physical Reanalysis System (C-GLORS) MLD. We have used Pearson's test to compute the statistical 

significance of correlation coefficients and Student's t-test to compute the statistical significance of difference. Anomaly 

correlation coefficients (Phase skill) and Normalized Root Mean Square Error (normalized with standard deviation; 
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amplitude skill) are used as a metric to assess the skill of the models in capturing ISMR and other tropical interannual 170 

modes. 

 

3. 4. Results 

We first look at The the ability of MMCFSv2 to simulate the mean tropical climatology of rainfall and surface 

temperature. large-scale circulation is discussed initially to analyze the ability of the models to capture various tropical 175 

modes. We then look at the simulated large-scale circulation and interannual variability of ISMR before examining its 

teleconnections with different interannual modes in the tropics. 

4.1 Climatology 

4.1.1 Mean Rainfall 

Most climate models (Pillai et al., 2018; Sabeerali et al., 2013) have shown that land rainfall is underestimated while 180 

rainfall over oceans is overestimated. Figure 2 shows JJAS mean precipitation from GPCP (observed) and the models. 

GPCP (Fig. 2 (a)) shows maximum rainfall over a band along the tropical Pacific Ocean. Both models simulate this tropical 

rain belt (Fig. 2 (b), (c)) reasonably well. Surprisingly, the dry bias over land, which is normally present in many of the 

climate models, is absent in MMCFSv2, except over the Indian land region. While the rainfall dry bias over west central 

India is increased the bias over northeast and east central India is reduced. MMCFSv1 has significant wet bias over the 185 

North Pacific, Atlantic and EIO regions (Fig. 2 (d)) which is significantly reduced in MMCFSv2 (Fig. 2 (e), (f)). MMCFSv2 

is also closer to GPCP in Africa and south American regions. 

 

Figure 2: JJAS mean Rainfall (a) GPCP(b) MMCFSv1 (c) MMCFSv2, and bias (d) MMCFSv1-GPCP (e) MMCFSv2-GPCP, 

and (f) Difference between MMCFSv1 and MMCFSv2.  190 

Over the ISM region, there are three locations of precipitation maximum, viz, the head Bay of Bengal, the Western 

Ghats, and the southeastern equatorial Indian Ocean (Fig. 2 (a)). Both the models get these precipitation maxima (Fig. 2 (b), 

(c)). There is a strong wet bias over the Indian ocean basins and a dry bias over the northwest Indian landmass in MMCFSv1 

(Fig. 2 (d)). This is significantly reduced in MMCFSv2. The dry bias over Indian landmass seen in both models is consistent 

with previous studies (Goswami et al., 2014; Saha et al., 2014; George et al., 2016; Ramu et al., 2016; Pillai et al., 2018). 195 

A study by Sabeerali et al., (2013) has reported similar precipitation bias in many CMIP5 models. Nevertheless, MMCFSv2 
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improves the dry bias over the Indian landmass over MMCFSv1 (Table 2). From recent CMIP6 models, the majority of the 

models also suffer from similar rainfall biases as MMCFSv1. 

 

4.1.2 Temperature bias 200 

 

Figure 3: JJAS mean Sea surface temperature (0C) (a) ERSST (observed), (b) MMCFSv1 (c) MMCFSv2, and bias (d) 

MMCFSv1-ERSST (e) MMCFSv2-ERSST, and model difference (f) MMCFSv2 - MMCFSv1 over the tropics. 

The spatial distribution of observed (ERSST) and simulated (MMCFS) climatological JJAS mean SST is shown in 

Fig. 3. The presence of equatorial maxima characterizes the observed SST. The SST over the Indo-Pacific region is greater 205 

than 28° C and is known as the Indo-Pacific warm pool region (Fig. 3 (a), ERSST). Both models can simulate the large-scale 

distribution of tropical SST (Fig. 3 (b), (c)). MMCFSv1 shows a cold bias (greater than 0.5° C) over the tropical Indian Ocean 

(IO) and southern Pacific (Fig. 3 (d)). This cold bias has been reported previously by many studies (George et al., 2016; 

Pokhrel et al., 2012; Saha et al., 2014). It is shown to be due to the dry surface atmosphere and an associated increase in 

latent heat flux in MMCFSv1 by Pokhrel et al., (2012). MMCFSv1 also has a strong warm bias (of greater than 0.5-1.5° C) 210 

over the northwestern, southwestern, northeast, and southeast Pacific (Fig. 3 (d)). Zheng et al., (2011) reported that this strong 

warm bias over the northeast and southeast Pacific is due to the misrepresentation of stratus cloud decks and an associated 

increase in incoming short-wave radiation flux. 

The cold SST bias of MMCFSv1 over the Indian Ocean is significantly reduced in MMCFSv2 (Fig. 3 (e)). MMCFSv2 

has a warm bias (greater than 0.5° C) over the entire IO except for extreme southeast IO and Northern Arabian Sea (Fig. 3 215 

(e)). The warm biases are intensified over Pacific region except southeastern Pacific in MMCFSv2 compared with MMCFSv1 

(Fig.3 (f)). Overall, there is a warming of SSTs over tropics in MMCFSv2 compared to MMCFSv1. In fact, the latest CMIP6 

models also have similar warm biases in SST (Farnetti et al., 2022)   
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Figure 4: JJAS mean surface air temperature (K) at 2m (a) ERA5, bias (b) MMCFSv1-ERA5 (c) MMCFSv2-ERA5. 220 

MMCFSv1 underestimates surface air (2 m) temperature (Fig. 7) over most of the land, including Tibetan Plateau, 

except the African region (overestimation by 2-4° C). MMCFSv2 overestimates surface air temperature over most of the tropics 

by more than 3° C.  The warm SST bias in the tropics (Fig. 3) affects the surface air temperatures over oceans, and Fig. 4 

shows the warmer 2m surface air temperature in MMCFSv2 compared to ERA5 and MMCFSv1. The cold bias of MMCFSv1 

surface temperatures over the winter hemisphere (south of 15o S) has disappeared in MMCFSv2. The surface air warming is 225 

much more pronounced over the landmass.  
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Figure 5: JJAS zonal mean temperature (K) (a) ERA5 (b) MMCFSv1 (c) MMCFSv2, bias (d) MMCFSv1-ERA5 (e) 

MMCFSv2-ERA5, and (f) Difference between MMCFSv1 and MMCFSv2. 230 

The zonally averaged tropospheric air temperatures in Fig. 5 show both models simulating the mean observed structure 

consistent with observations (Fig. 5 (a)-(c)). However, we can see that the surface warming seen in Fig. 4 produces warmer 

columns in the MMCFSv2 compared to both observations and MMCFSv1 (Fig. 5 (d)-(f)). The warming, however, is confined 

to the summer hemisphere and MMCFSv2 is closer to observations in the southern hemisphere than MMCFSv1. The most 

significant upgrade from MMCFSv1 to MMCFSv2 is the ocean model. MOM6 has allowed us to use much higher ocean model 235 

resolutions than MOM4. It has also allowed the use of scale-aware parameterizations for mesoscale eddy-permitting regimes.  

Figure 6 shows the difference between simulated mixed layer depth by MMCFS (v1 and v2) and the Qnet into this 

mixed layer.  Except over equatorial Pacific Ocean (EPO), MMCFSv1 simulates deeper mixed layer depths compared to 

observations (C-GLORS). MMCFSv2 improves on this bias of MMCFSv1 with significant reduction in MLD bias (< 10 m), 

except over EPO, where the bias remains similar. Preliminary SST budget analysis showed that the shallower MLDs  compared 240 

to MMCFS1 and similar Qnet results in warmer SSTs in MMCFSv2. Considering the fact that satellite derived SST accuracy is 

around 0.5 degrees (especially AVHRR, Ahmedabadi et al., 2009), a bias of 0.5 to 1 degree can not be considered as significant warm 

bias. 

 

 245 
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Figure 6. a) Mixed Layer Depth from C-GLORS, b) and c) Model bias of MLD from C_GLORS, d) SST difference between 

v2 and v1 (v2-v1) e) MLD difference (v2-v1) f) Qnet contribution to MLD 
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4.1.1 Winds 250 

 

Figure 72: JJAS climatological mean winds (m/s) at 850 hPa (a) ERA5 (b) MMCFSv1 (c) MMCFSv2, bias (d) MMCFSv1-

ERA5 (e) MMCFSv2-ERA5, and (f) Difference between MMCFSv2 and MMCFSv1. 

JJAS mean lower tropospheric (850 hPa) observed (ERA5) and simulated (MMCFSv1 and MMCFSv2) winds in Fig. 

27((a)-(c)) show that both the models can capture the tropical convergence zone over the Pacific and Atlantic oceans well. 255 

Models can also simulate the observed monsoonal circulation (Fig. 72(a)) over the Indian region (60-90°E) reasonably well. 

The difference in 850 hPa winds (Fig. 72 (d), (e)) from ERA5 shows MMCFSv2 closer to it than MMCFSv1 over most of 

the tropics. MMCFSv2 winds are closer to ERA5, especially over the Indian Ocean region. A significant difference in winds 

can be seen between the two models over the Indian Ocean region (Fig. 72 (f)). 

Focusing on the Indian region, a distinct feature of the ISM is the low-level jet (LLJ) over the Arabian Sea seen in 260 

850 hPa winds (Fig. 72 (a)), also popularly known as the Findlater jet (Joseph 1966; Findlater 1969). Both models reproduce 

this low-level circulation (Fig. 72 (b), (c)). The wind bias in Fig. 72((d), (e)) shows that MMCFSv2 simulates the LLJ closer 

to observations than MMCFSv1. MMCFSv1 shows strong northeast/easterly wind bias over the southern Indian region, the 

Arabian Sea, and the Bay of Bengal. Significant westerly wind bias is seen in MMCFSv1 over the entire southern and 

equatorial Indian Ocean (Fig. 72). Figure 72 ((d), (e)) shows both models having a low-level anti-cyclonic circulation bias 265 

over the Indian subcontinent. Compared to MMCFSv1, the low-level anti-cyclonic circulation bias is significantly reduced 

in MMCFSv2 (Fig.72 (e), (f)). MMCFSv1 simulates stronger northeasterly or easterly wind bias compared to MMCFSv2 

(Fig.72 (f)) over the equatorial region. This may be due to the enhanced convection in the eastern equatorial Indian Ocean 

in MMCFSv2 (Fig. 29 discussed later).  
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 270 

Figure 83: JJAS climatological mean winds (m/s) 200 hPa (a) ERA5 (b) MMCFSv1 (c) MMCFSv2, and bias (d) MMCFSv1-

ERA5 (e) MMCFSv2-ERA5, and (f) Difference between MMCFSv2 and MMCFSv1. 

 

Both models simulate the observed upper tropospheric tropical divergence and subtropical jets (in 200 hPa winds, Fig. 

83 (a)-(c)). The monsoonal circulation over the Indian region is also evident in both models. The difference in 200 hPa 275 

winds (Fig. 83 (d), (e)) shows MMCFSv1 winds are closer to ERA5 over the Indian oceanic region (15° S-15° N), and 

MMCFSv2's winds are closer to ERA5 over Asian landmass (north of 15° N). MMCFSv2 simulates a weaker (stronger) 

subtropical jet over the northern (southern) hemisphere compared to MMCFSv1 and is closer to ERA5. Significant 

differences in 200 hPa winds can be seen between the two models over the Indian landmass, Indian Ocean, Southern Pacific, 

and Atlantic oceanic region. The mean upper tropospheric (200 hPa) winds during ISM are characterized by the Tropical 280 

Easterly Jet (TEJ) and Tibetan anticyclone (Fig.83 (a)) (Krishnamurti et al. 1976). Both models can get these upper 

tropospheric circulation features (Fig. 83 (b), (c)). Compared to MMCFSv1, MMCFSv2 has a weaker westerly bias over 

India (Fig. 83 (d)-(f)). 

 



   

 

14 

 

285 

 

Figure 94: JJAS climatological zonal mean wind (m/s) (a) ERA5 (b) MMCFSv1 (c) MMCFSv2, bias (d) MMCFSv1-ERA5 

(e) MMCFSv2-ERA5, and (f) Difference between MMCFSv1 and MMCFSv2. 

Fig. 94 (a) shows the longitudinally (global) averaged zonal (U) winds from ERA5. The models capture the easterly 

jet in the tropical convergence zone and the westerly jets in the mid-latitudes (Fig. 94 (b), (c)). MMCFSv1 simulated wind 290 

bias (Fig. 94 (d)) shows reduced strength of easterlies in the southern tropics and westerlies in the southern mid-latitudes. 
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MMCFSv2 shows (Fig. 94 (e)) a weaker strength in the mid and upper tropospheric region of the tropical easterly jet. A 

weaker westerly jet in MMCFSv2 can be seen at both 50-60N and 60S. The winds in the northern hemisphere are close to 

ERA5 in MMCFSv1.  The tropical surface zonal winds close to ERA5 in MMCFSv2.  

Comparing the two simulated winds with each other (Fig. 94 (f)), we see a slightly reduced strength of the upper-level 295 

westerly jet in the summer hemisphere (45N, 200-500 hPa in Fig. 94 (f)) and increased strength in the winter hemisphere 

(45S, 200-900 hPa) in MMCFSv2 compared to MMCFSv1. Overall, both models reasonably simulate the zonal mean 

tropical winds, with slightly different strengths of tropical and sub-tropical jets. Since ISM is significantly affected by ENSO 

through Hadley cell, we expect significantly different teleconnection patterns between ISMR and ENSO in the two models 

(Fig. 142 discussed later). This also encourages us to look at the wind shear structure simulated by the two models. 300 
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4.1.2 Wind Shear 

 

Figure 105: JJAS seasonal mean easterly wind shear (U850–U200, m/s) in (a) observations (ERA5) (b) MMCFSv1, and (c) 

MMCFSv2. Seasonal mean easterly wind shear biases (model-observation) in (d) MMCFSv1 (e) MMCFSv2. (f) Difference 305 

in simulated seasonal mean easterly wind shear between MMCFSv2 and MMCFSv1 hindcast runs. 
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The vertical wind shear over the Asian Summer monsoon (ASM) region plays an important role in modulating the 

northward propagation of monsoon intraseasonal oscillations (MISO) (Jiang et al. 2004). Figure 510 shows the observed 

and the model-simulated JJAS seasonal mean of easterly wind shear. The wind shear is computed as the difference between 

850 hPa and 200 hPa zonal (U) winds. Large positive wind shear is observed (Fig. 105 (a)) over the South Asian region 310 

(greater than 12 m/s) during the monsoon season. Positive wind shear is also seen over the Sub-Saharan region, the Indian 

Ocean, the West and East Pacific, and Equatorial Atlantic regions. Negative wind shear is observed in central North, South 

Pacific, and North Atlantic oceanic regions. Both models capture these features well (Fig. 105 (b), (c)). The wind shear bias 

(Fig. 105 (d), (e)) shows that MMCFSv2 shear is closer to ERA5 (difference less than 5 m/s) compared to MMCFSv1 

(difference greater than 5 m/s) over most of the tropical regions. MMCFSv1 largely simulates high negative bias over the 315 

Northern hemisphere and positive bias over the Southern hemisphere (Fig. 105 (d)), which has improved significantly in 

MMCFSv2 (Fig. 105 (e)) . The bias in MMCFSv2 is significantly lower compared to MMCFSv1 over Asian and African 

landmass and most of the Pacific and Atlantic oceans. 

ERA5 reanalysis shows a positive wind shear over the ASM domain (Fig. 105 (a)). The wind shear over the ASM 

region is underestimated in MMCFSv1 and MMCFSv2 (Figure 105 (b), (c)), consistent with the weak monsoon winds and 320 

TEJ, as seen in Fig. 7 and 8. However, there is a considerable difference between the two models. Whereas MMCFSv1 

produces a large negative bias over Indian land and a positive bias over the southern Indian ocean compared to observations 

(Fig. 105 (d)), MMCFSv2 bias is positive over Indian land and predominantly negative over the Indian oceanic region. This 

difference between the simulations is much clearer in Fig. 105 (f). Therefore, there will be a considerable difference between 

the northward propagation speeds of the MISOs of MMCFSv1 and MMCFSv2. The difference in MISOs characteristics 325 

will be explored in greater detail in a future study. MMCFSv2 underestimates shear in the western equatorial Indian 

Ocean/Arabian Sea, primarily due to a simulated weak easterly jet at 200 hPa (Fig. 83) 

4.1.3 Temperature bias 

 

Figure 6: JJAS mean Sea surface temperature (0C) (a) ERSST (observed), (b) MMCFSv1 (c) MMCFSv2, and bias (d) 330 

MMCFSv1-ERSST (e) MMCFSv2-ERSST, and model difference (f) MMCFSv2 - MMCFSv1 over the tropics. 
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The spatial distribution of observed (ERSST) and simulated (MMCFS) climatological JJAS mean SST is shown in 

Fig. 6. The presence of equatorial maxima characterizes the observed SST. The SST over the Indo-Pacific region is greater 

than 28° C and is known as the Indo-Pacific warm pool region (Fig. 6 (a), ERSST). Both models can simulate the large-scale 

distribution of tropical SST (Fig. 6 (b), (c)). MMCFSv1 shows a cold bias (greater than 0.5° C) over the tropical Indian Ocean 335 

(IO) and southern Pacific (Fig. 6 (d)). This cold bias has been reported previously by many studies (George et al., 2016; 

Pokhrel et al., 2012; Saha et al., 2014). It is shown to be due to the dry surface atmosphere and an associated increase in 

latent heat flux in MMCFSv1 by Pokhrel et al., (2012). MMCFSv1 also has a strong warm bias (of greater than 0.5-1.5° C) 

over the northwestern, southwestern, northeast, and southeast Pacific (Fig. 6 (d)). Zheng et al., (2011) reported that this strong 

warm bias over the northeast and southeast Pacific is due to the misrepresentation of stratus cloud decks and an associated 340 

increase in incoming short-wave radiation flux. 

The cold SST bias of MMCFSv1 over the Indian Ocean is significantly reduced in MMCFSv2 (Fig. 6 (e)). MMCFSv2 

has a warm bias (greater than 0.5° C) over the entire IO (the Arabian Sea, Bay of Bengal, and equatorial Indian Ocean (EIO)) 

region except for extreme southeast IO and Northern Arabian Sea (Fig. 6 (e)). The warm biases are intensified over Pacific 

region except southeastern Pacific in MMCFSv2 compared with MMCFSv1 (Fig.6 (f)). Overall, there is a warming of SSTs 345 

over tropics in MMCFSv2 compared to MMCFSv1. In fact, the latest CMIP6 models also have similar warm biases in SST 

(Farnetti et al., 2022)   
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Figure 7: JJAS mean surface air temperature (K) at 2m (a) ERA5, bias (b) MMCFSv1-ERA5 (c) MMCFSv2-ERA5. 

MMCFSv1 underestimates surface air (2 m) temperature (Fig. 7) over most of the land, including Tibetan Plateau, 350 

except the African region (overestimation by 2-4° C). MMCFSv2 overestimates surface air temperature over most of the tropics 

by more than 3° C.  The warm SST bias in the tropics (Fig. 6) affects the surface air temperatures over oceans, and Fig. 7 

shows the warmer 2m surface air temperature in MMCFSv2 compared to ERA5 and MMCFSv1. The cold bias of MMCFSv1 

surface temperatures over the winter hemisphere (south of 15o S) has disappeared in MMCFSv2. The surface air warming is 

much more pronounced over the landmass.  355 
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Figure 8: JJAS zonal mean temperature (K) (a) ERA5 (b) MMCFSv1 (c) MMCFSv2, bias (d) MMCFSv1-ERA5 (e) 

MMCFSv2-ERA5, and (f) Difference between MMCFSv1 and MMCFSv2. 

The zonally averaged tropospheric air temperatures in Fig. 8 show both models simulating the mean observed structure 360 

consistent with observations (Fig. 8 (a)-(c)). However, we can see that the surface warming seen in Fig. 7 produces warmer 

columns in the MMCFSv2 compared to both observations and MMCFSv1 (Fig. 8 (d)-(f)). The warming, however, is confined 

to the summer hemisphere and MMCFSv2 is closer to observations in the southern hemisphere than MMCFSv1. The most 

significant upgrade from MMCFSv1 to MMCFSv2 is the ocean model. MOM6 has allowed us to use much higher ocean model 

resolutions than MOM4. It has also allowed the use of scale-aware parameterizations for mesoscale eddy-permitting regimes. 365 

What caused the increased surface temperatures (sea and air) is unclear. This will be explored in a future study. 

4.1.4 Mean Rainfall 

Most climate models (Pillai et al., 2018; Sabeerali et al., 2013) have shown that land rainfall is underestimated while 

rainfall over oceans is overestimated. Figure 9 shows JJAS mean precipitation from GPCP (observed) and the models. 

GPCP (Fig. 9 (a)) shows maximum rainfall over a band along the tropical Pacific Ocean. Both models simulate this tropical 370 

rain belt (Fig. 9 (b), (c)) reasonably well. Surprisingly, the dry bias over land, which is normally present in many of the 

climate models, is absent in MMCFSv2, except over the Indian land region. MMCFSv1 has significant wet bias over the 

North Pacific, Atlantic and EIO regions (Fig. 9 (d)) which is significantly reduced in MMCFSv2 (Fig. 9 (e), (f)). MMCFSv2 

is also closer to GPCP in Africa and south American regions. 
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 375 

Figure 9: JJAS mean Rainfall (a) GPCP(b) MMCFSv1 (c) MMCFSv2, and bias (d) MMCFSv1-GPCP (e) MMCFSv2-GPCP, 

and (f) Difference between MMCFSv1 and MMCFSv2. 

Over the ISM region, there are three locations of precipitation maximum, viz, the head Bay of Bengal, the Western 

Ghats, and the southeastern equatorial Indian Ocean (Fig. 9 (a)). Both the models get these precipitation maxima (Fig. 9 (b), 

(c)). There is a strong wet bias over the Indian ocean basins and a dry bias over the northwest Indian landmass in MMCFSv1 380 

(Fig. 9 (d)). This is significantly reduced in MMCFSv2. The dry bias over Indian landmass seen in both models is consistent 

with previous studies (Goswami et al., 2014; Saha et al., 2014; George et al., 2016; Ramu et al., 2016; Pillai et al., 2018). 

A study by Sabeerali et al., (2013) has reported similar precipitation bias in many CMIP5 models. Nevertheless, MMCFSv2 

improves the dry bias over the Indian landmass over MMCFSv1 (Table 2). 

4.1.5 Interannual variability of ISMR and Potential Skill 385 

The year-to-year variations of the area-averaged JJAS rainfall over the Indian land region are shown in Fig. 10. The 

observed all-India summer monsoon rainfall time series is prepared from the India Meteorological Department (IMD) gridded 

land rainfall and GPCP rainfall data.  Figure 10 shows that both models can capture the recent rainfall deficit years of 2014 

and 2015, as can be seen from GPCP. Out of 25 re-forecast years, MMCFSv2 could capture 20 years correctly, while 

MMCFSv1 could capture 15 years. Failure of the hindcasts in 2019 and 2000 is required to be analyzed in detail. A detailed 390 

analysis is required to understand the performance of the MMCFSv2. 
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Figure 110: Interannual Variability of area averaged rainfall over Indian land mass from model hindcast (MMCFSv2, 395 

MMCFSv1) and different observational datasets (IMD and GPCP). 

Table 2 summarizes the model skill in reproducing interannual variability of observed ISMR during 1998-2022. 

MMCFSv2 shows improvements in producing the mean of JJAS rainfall over MMCFSv1 by reducing the dry bias from 1.32 

to 1.04 mm/day (~4 %) with respect to GPCP. MMCFSv2 captures the phase of interannual variability with a higher skill of 

0.72 over 0.55 of MMCFSv1 when GPCP is considered as observation. Hence, MMCFSv2 improves the phase skill by 17 400 

%.  

Table 2.  Mean ISMR, the standard deviation of ISMR, Bias from observations, Anomaly correlation coefficient (skill), Root mean square error of percentage 

departure, and Normalized (with std. Deviation) RMSE for 1998-2022. Correlation values above 99 % are shown in bold. 

ISMR Characteristics  

Data from Mean (mm/day) STD (mm/day) Bias (mm/day) Skill RMSE NRMSE 

Observations       

       
GPCP 6.99 0.61 
IMD 7.01 0.62 

Models       

MMCFSv2 5.95 0.58     

vs IMD   -1.06 0.63 7.98% 0.92 
vs. GPCP   -1.04 0.72 7.01% 0.82 

       

MMCFSv1 5.67 0.59     

vs. IMD   -1.34 0.58 8.74% 1.0 
vs. GPCP   -1.32 0.55 8.99% 1.06 

       

 

 405 

Figure 12. Scatter plot of ISMR anomaly (percentage) from GPCP (x-axis), and MMCFS (y-axis), left panel is 

MMCFSv1 and right panel is MMCFSv2. 

From the scatter plot it is evident that many observed normal years were predicted as extremes in v1. Hence, we 

calculated the false alarm rates and the hit rates for both the models. We used two criteria for defining normal 
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years, viz 10% and 5% departure from the climatological mean. Table 5 in the supplement  summarizes the false 410 

alarms and hit rates. As seen from the table, MMCFSv1 has a higher false alarm rate and a lower hit rate than 

MMCFSv2.   

 

 

Table 3. Summarizing observed normal, excess, and drought years (first column uses 10% departure from mean, 415 

and third column uses 5% departure from the mean to define extreme years). The second (10%) and the fourth 

column (5%) summarizes hit rates and false alarms from v1 and v2 of MMCFS. 

 

Pillai et al., (2018) compared the seasonal prediction skill of ISMR in MMCFSv1 (T382) with the US National Multi-

Model Ensemble (NMME) project for the simulation years of 1981-2009. They found that MMCFSv1 has better skill in 420 

reproducing interannual variability of ISMR (ACC=0.55) compared to the other NMME models (ACC<0.4) and MMCFSv1 

is better at simulating the observed standard deviation of ISMR. The Taylor diagram (Taylor, 2000) in Fig. 11 compares the 

skill of MMCFS (v1 and v2) in reproducing observed Standard Deviation (SD, normalized), Root Mean Squared Error 

normalized with observed standard deviation (NRMSE), and the ACC of ISMR for the years of 1998-2022, with the NMME 

models for 1998-2021 (as 2022 data is not available for NMME models). Figure 11 only shows the NMME models which 425 

have data from 1998-2021. There are five models which simulate the observed SD reasonably well (normalized SD 

approximately 1.0), viz. MMCFS (v1 and v2), CFSv2, GFDL_FLORA, and FLORB. All the other models have lower 

standard deviations compared to observations. A 10 % deviation from the climatological mean is sufficient to have an excess 

or a drought monsoon over India (Singh et al., 2015). Hence, getting the NRMSE below 1.0 is crucial. Two models which 

stand out in terms of NRMSE are GFDL_Aero (0.69) and MMCFSv2 (0.82). All the other models simulate NRMSE larger 430 

than 0.85. MMCFSv2 reduces the NRMSE from 1.06 of MMCFSv1 to 0.82 with respect to GPCP, which is about 20 %. 

Though GFDL_Aero has the lowest NRMSE, it has lower than observed normalized SD of 0.83 compared to 0.96 of 

MMCFSv2. GFDL_Aero also has lower ACC of 0.46 compared to 0.72 of MMCFSv2. MMCFSv2 has the highest skill in 

capturing the interannual variability of ISMR (ACC=0.72) compared to all the other models. Hence, in terms of SD, NRMSE, 

and the ACC, MMCFSv2 stands out compared to all the other NMME models and the MMCFSv1. 435 

Pillai et al., (2018) compared the seasonal prediction skill of ISMR in MMCFSv1 (T382) with the US National Multi-

Model Ensemble (NMME) project for the simulation years of 1981-2009. They found that MMCFSv1 has better skill in 

reproducing interannual variability of ISMR (ACC=0.55) compared to the other NMME models (ACC<0.4) and MMCFSv1 

is better at simulating the observed standard deviation of ISMR. The Taylor diagram (Taylor, 2000) in Fig. 13 compares the 

skill of MMCFS (v1 and v2), and NMME models in reproducing observed Standard Deviation (SD, normalized), Root Mean 440 

Squared Error normalized with observed standard deviation (NRMSE). Of these NMME models, GFDL_FLORA, 

GFDL_FLORB, and SPISV2 have data for the years of 1998-2021. We found that removal of year 2022 from other models 

does not change the scores significantly. There are five models which simulate the observed SD reasonably well (normalized 



   

 

25 

 

SD approximately 1.0), viz. MMCFSv2, GFDL_Aero, SIPSv2, SPSIC3, GMAO. All the other models have larger or smaller 

standard deviations with respect to observations. A 10 % deviation from the climatological mean is sufficient to have an 445 

excess or a drought monsoon over India (Singh et al., 2015). Hence, getting the NRMSE below 1.0 is crucial. Two models 

which stand out in terms of NRMSE are MMCFSv2 (0.82) and GFDL_Aero (0.85). All the other models simulate NRMSE 

larger than 0.85. MMCFSv2 reduces the NRMSE from 1.04 of MMCFSv1 to 0.82 with respect to GPCP, which is about 20 

%. GFDL_Aero also has lower ACC of 0.53 compared to 0.72 of MMCFSv2. MMCFSv2 has the highest skill in capturing 

the interannual variability of ISMR compared to all the other models. Hence, in terms of SD, NRMSE, and the ACC, 450 

MMCFSv2 stands out compared to all the other NMME models and the MMCFSv1. 
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Figure 131: Taylor diagram showing the Normalized RMSE, pattern correlation coefficients and normalized standard 455 

deviation of the JJAS mean ISMR of MMCFS and NMME models with respect to GPCP observations. NMME Models 

simulation duration is 1998-2021. MMCFS is from 1998-2022. 

The uncertainty in initial conditions is inevitable due to gaps in observational networks and the limitations of data assimilation 

systems. Therefore, it is not possible to know the “true” state of the earth system, which serves as a starting point for the 

seasonal simulations. Ensemble forecasting techniques (such as the one used in this study) are employed to account for the 460 

initial state's uncertainty. If we assume the model is perfect, the uncertainty in initial conditions puts an upper limit to 

predictability. This upper limit is termed as the potential predictability and estimates the maximum skill the “perfect” model 

can achieve. Let us say that the forecast for the variable “x” using the initial condition “i” has a probability distribution P (x|i). 

This forecast reaches an equilibrium state asymptotically with the distribution q(x). The distance between these two 

distributions is a measure of predictability and is termed as the relative entropy (RE) or the Kullback-Leibler distance. If this 465 

forecast distribution is identical to the climatological distribution, there is no predictability. RE can be estimated using the 

following expression, following Kleeman (2002), under the assumption that both the distributions are gaussian:  

𝑅𝐸 =  
1

2
 [ln (

𝜎𝑥
2

𝜎𝑥|𝑖
2 ) + 

𝜎𝑥|𝑖
2
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2

+
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2
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 − 1  ]  

where 𝜎𝑥|𝑖|
2  and 𝜎𝑥

2 are the ensemble (forecast) and climatological variance, respectively. 𝜇𝑥 and 𝜇𝑥|𝑖| are the climatological 

and ensemble mean, respectively. Climatological variance is estimated as the sum of signal and noise variance (Delsole and 470 

Tippett, 2007) as: 
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Average of RE across all ensembles is the Mutual Information (MI). Potential skill is defined as: 

𝑃𝑆 =  √1 − 𝑒(−2 𝑀𝐼) 475 

The actual skill achieved by the model in this paper is computed using the anomaly correlation coefficient. PS for MMCFSv2 

is 0.79 using the above expression, while the actual skill obtained is 0.72 (Table 2). PS and actual skill for MMCFSv1 for 

1981-2017 is 0.72 and 0.38, respectively (Pillai et al., 2018). This indicates that the actual model skill of MMCFSv2 is very 

close to the perfect model skill. Further improvements to the individual model components shall bring the actual skill closer 

to the potential skill. 480 

Recent studies (Ramu et al., 2016; George et al., 2016; Pillai et al., 2016, 2022) have shown that the seasonal prediction 

skill of monsoon in MMCFSv1 is significantly impacted by the ENSO-monsoon relationship. MMCFSv1 also has some 

limitations in representing the relationship between Indian Ocean SST and monsoon. We, therefore, now analyze the 

simulated teleconnections of the observed and simulated ISMR with different oceanic regions over the world. 

4.2 Teleconnections 485 

Earlier studies have found that the year-to-year variability of ISMR is mainly linked to the Pacific ENSO and Indian 

Ocean Dipole (IOD) (Webster et al., 1992; Kumar et al., 1999; Saji et al., 1999; Ashok et al., 2004; Rajeevan et al., 2007a, 

2007b). Atlantic zonal and meridional modes (AZM and AMM) also play a role in modulating ISMR. AZM is the oscillatory 

normal mode (zonal) seen in the principal oscillation pattern analysis of SST (Ding et al., 2010; Zebiak, 1993), while AMM refers 

to the leading maximum covariance analysis mode in the tropical Atlantic. IOD is the difference in sea surface temperature between 490 

western and eastern equatorial Indian ocean. 

 

 Recently, Sabeerali et al., (2019) explored the impact of the Atlantic zonal mode on ISM at inter-annual time scales 

in recent years using CFSv2. Here, we compare the ability of the models to simulate the teleconnections between ISM and 

ENSO, IOD, and the Atlantic modes. Table 43 summarizes the skill of models in simulating the oceanic modes (ENSO, 495 

eastern Indian ocean dipole (EIOD), AMM, and AZM) and their teleconnections with ISMR.  Here, only the eastern pole of 

the IOD is considered, as it is the stationary part of the IOD (Rao et al., 2009). 

 

Table 43:  Teleconnections of ISMR with different oceanic Indices and skill of the models in capturing these modes (95% statistically significant values in 

bold) 500 

Teleconnection  

(with ISMR) 

Nino 3.4 EIOD AMM AZM 

Observations -0.64 -0.04 0.18 0.19 

MMCFSv2 -0.75 0.33 -0.07 0.46 

MMCFSv1 -0.83 0.68 0.35 0.08 

     

SKILL Nino3.4 EIO AMM AZM 

MMCFSv2 0.83 0.42 0.15 0.32 

MMCFSv1 0.82 0.58 0.01 0.13 
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4.2.1 ENSO 
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 505 

Figure 1423: Correlation between JJAS Nino 3.4 (index) SST anomalies and Tropical SST anomalies in (a) Observations 

(ERSST), (b) MMCFSv1, and (c) MMCFSv2. The hatching shows statistical significance at 95 % confidence level. 

Models can capture Nino 3.4 with high skill (Table 43). The spatial distribution of simultaneous correlations between 

Nino 3.4 SST anomalies (index) and tropical SST anomalies in JJAS are shown in Fig. 142. Positive correlations over the 

eastern/central tropical Pacific and western/central Indian Ocean are observed. Moreover, negative correlations are observed 510 

over the western tropical Pacific, eastern equatorial Indian Ocean, and tropical Atlantic Ocean (Fig. 142 (a)). MMCFSv2 

simulates these large-scale teleconnection patterns associated with Nino 3.4 over the tropics with a higher pattern correlation 

of 0.70 than MMCFSv1 (PC=0.63) (Fig. 142 (b), (c)). In MMCFSv1, positive correlations over the Pacific and western Indian 

oceans are weaker than observations. MMCFSv2, on the other hand, captures these teleconnection patterns in the tropical 

Indian Ocean and over the Pacific regions reasonably well; hence pattern correlation is higher for MMCFv2.  515 
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Figure 153: Correlation between JJAS Nino 3.4 (index) SST anomalies and Tropical rainfall anomalies in (a) observations 

(GPCP), (b) MMCFSv1, and (c) MMCFSv2. The hatching shows statistical significant at 95% confidence level. 520 

The spatial plot of the correlation between the boreal summer Nino 3.4 anomaly index and rainfall anomaly over the 

tropical region is shown in Fig. 153. Observations show that the Nino 3.4 SST anomalies are negatively correlated (CC of -

0.64, Fig. 153 (a) and Table 43) with rainfall over the Indian land region (Fig. 153 (a)). Consistent with observations, both 

MMCFSv1 and MMCFSv2 simulate this inverse relationship reasonably well, albeit with an overestimation. Nino 3.4 and 

ISMR teleconnection in MMCFSv2 (-0.75) is closer to observations (-0.64) than in MMCFSv1 (-0.83). Additionally, 525 

observations show a strong positive correlation between the Nino 3.4 SST anomalies and rainfall over the tropical Pacific. 

MMCFSv2 can and MMCFSv1 cannot simulate this positive correlation over the north Pacific region (Fig. 153 (b), (c)). A 

moderate negative correlation is seen over the Atlantic Ocean (Fig. 153 (a)), which is better captured by MMCFSv1. Except 

over the southeast equatorial Pacific and Atlantic Oceans, MMCFSv2 can reproduce the Nino3.4 induced rainfall pattern 

over the Bay of Bengal region and North and equatorial Pacific. Both models can capture the correlations over the Indian 530 

Ocean, with a slightly over-estimated Nino3.4 induced rainfall pattern (Fig. 153 (b), (c)).  
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4.2.2 EIOD and other Tropical modes 
MMCFSv1 has a higher skill of 0.58 in capturing EIOD than MMCFSv2 (0.42, from Table 43). The spatial pattern of 

correlation between ERSST over the EIOD box (10° S to the Equator, 90-110° E) and tropical SSTs anomalies during JJAS 535 

season is shown in Fig. 164. Here, only the eastern pole of the IOD is considered as it is the stationary part of the IOD (Rao 

et al., 2009). Observations show a strong positive correlation between the Indo-Pacific warm pool region and the equatorial 

Atlantic Ocean. Negative correlations exist between the tropical Pacific Ocean and the western tropical Indian Ocean (Fig.  

164 (a)). The pattern correlation of this teleconnection has improved from 0.31 in MMCFSv1 to 0.38 in MMCFSv2. Both 

models capture the positive correlations over the Indo-Pacific warm pool region (Fig.34 (b), (c)). MMCFSv1 simulates a 540 

basin-wide positive correlation over the eastern Indian Ocean (Fig.164 (c)) in contrast to the observed negative correlation 

pattern (Fig.164 (ba)). It is also unable to capture the teleconnection pattern over the northern Pacific. MMCFSv2 captures 

these teleconnection patterns over the tropical Oceans and the eastern Indian Ocean (Fig. 164 (c)).  
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 545 

Figure 164: Correlation between SST over the eastern IOD box (10° S to equator, 90-110° E) and tropical SSTs anomalies 

during JJAS. (a) Observations (ERSST), (b) MMCFSv1, and (c) MMCFSv2. The hatching shows statistically significant at 

95 % confidence level. 

Figure 175 shows the spatial map of the correlation between the SST anomalies over the eastern equatorial Indian 

Ocean and rainfall anomalies over the tropical region. A positive correlation (not significant) in most parts of south/central 550 

India is observed. An expected strong positive correlation exists over the eastern Indian Ocean and north of Australia. Pacific 

and Atlantic Oceanic rainfall has a weak correlation with eastern equatorial Indian Ocean SST anomalies (Fig. 175). 

MMCFSv2 simulates this EIOD-induced rainfall pattern over the central and southern Indian regions. It is, however, the 

opposite of the observed relation over the northern Indian Ocean region (Fig. 175 (b)). MMCFSv1 overestimates this positive 

correlation over the Indian region compared to MMCFSv2. The pattern correlation between these teleconnections (EIOD 555 

SST-rainfall, Fig. 175) has improved from 0.13 in MMCFSv1 to 0.24 in MMCFSv2. The observed teleconnection between 

ISMR and EIOD is -0.04 (Table 43). On the contrary, MMCFSv2 and MMCFSv1 show a strong positive teleconnections 

relationship between ISMR and IOD of 0.33 and 0.68 respectively (Table 43). The strong unrealistic in-phase relation 

between ISMR and EIOD is significantly reduced in MMCFSv2 from 0.68 to 0.33. 
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Figure 175: Correlation between the SST anomalies over the eastern equatorial Indian Ocean (index) and rainfall anomalies 

over the tropical regions. (a) Observations (GPCP), (b) MMCFSv1, and (c) MMCFSv2. The hatching shows statistical 

significance at 95 % confidence level. 

Figure 186 shows the simultaneous correlation between the JJAS ISMR anomaly index and tropical SST anomalies. 565 

Observed ISMR correlates significantly (negatively) with SST anomalies over central-North Pacific (around 0-20° N, 150-

240° E). The correlation is weaker and positive over the northwestern Pacific region. ISMR is significantly (positively) 

correlated with SST anomalies over the North Atlantic region and is weakly correlated with Indian Ocean SST anomalies 

(observations in Fig. 186 (a)). Both models overestimate this correlation over the western north Pacific region compared to 

observations. MMCFSv1 shows stronger teleconnections between ISMR and Pacific Ocean compared to MMCFSv2 570 

(stronger negatives over central and east Pacific, and stronger positives over west Pacific). Northern Atlantic SST anomalies 

are well captured by both models (Fig. 186 (b), (c)). MMCFSv2 can reproduce the observed correlation over the Indian and 

Pacific oceans much better than MMCFSv1. Overall, the pattern correlation between the MMCFSv2 and observed 

teleconnection is much higher (at 0.60) than MMCFSv1 (at 0.38). We further assessed the model in simulating the 

teleconnection between Atlantic meridional and zonal modes and ISMR and found that MMCFSv2 cannot simulate the 575 

observed AZM and AMM teleconnections (Table 43).  
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Figure 186: Correlation between ISMR and global SST anomalies. (a) Observations (ERSST), (b) MMCFSv1, (c) 580 

MMCFSv2. The hatching shows statistically significant at a 95% confidence level. 

 

 

4.3. Summary and Discussion 

A new Monsoon Mission Coupled Forecast System version 2 (MMCFSv2) model has been deployed at IITM to replace the 585 

currently operational MMCFSv1. MMCFSv2 brings in a substantial number of component upgrades over the MMCFSv1. 

These upgrades include the use of the MOM6 ocean model over MOM4. CICE5 model over SIS sea-ice model of 

MMCFSv1, Semi-Lagrangian dynamical core for integrating the GFS atmospheric model over the Eulerian one used 

previously. The coupler in the MMCFSv1 is based on the NEMS framework. This framework allows the model to interface 

with numerous external model components and brings in much-needed modularity for easy future upgradability. Coupled 590 

hindcast simulations with April initial conditions from CFSR have been carried out for 25 years (from 1998 to 2022). This 

dataset will be the baseline for future sensitivity studies using MMCFSv2. 
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We documented the MMCFSv2 model skill (compared to MMCFSv1)improvements in simulating mean tropical SST, 

precipitation, and circulation. We also documented the skills in simulating Indian Summer Monsoon at seasonal time scales, 

mean and inter annual variability of ISMR and its teleconnections with ENSO and IOD, AMM, and AZM. MMCFSv2 595 

captures all the large-scale features during the JJAS season reasonably well. It shows improvements in many large-scale 

meteorological features over MMCFSv1. The wet rainfall bias over the north Pacific is reduced considerably in MMCFSv2 

compared to MMCFSv1. The wind shear bias is reduced considerably in MMCFSv2. Lower tropospheric winds are much 

better simulated in MMCFSv2 compared to MMCFSv1. One of the biggest weaknesses of most climate models in 

simulating the Indian monsoon is the dry bias compared to observations. MMCFSv2 reduced this bias compared to 600 

MMCFSv1. MMCFSv2 much better simulates upper and lower tropospheric winds. Wind shear is also much closer to 

observations over Indian landmass in MMCFSv2 compared to MMCFSv1. 

MMCFSv2 showed improvements in reproducing mean of JJAS rainfall over MMCFSv1 by reducing the bias from 1.32 to 

1.04 (~4 %) with respect to GPCP. MMCFSv2 captured the observed (GPCP) phase of interannual variability with a higher 

skill of 0.72 over 0.55 of MMCFSv1. Hence, MMCFSv2 improved the phase skill by 30 % and amplitude skill by about 20 605 

%. MMCFSv2 reduced the NRMSE from 1.06 of MMCFSv1 to 0.82 with respect to GPCP, which is about 20%. Compared 

to the NMME models, MMCFSv2 has the highest skill in capturing the interannual variability of ISMR (ACC=0.72). 

MMCFSv2 SD is very close to observations (normalized SD = 0.96), and it has one of the least NRMSE values (0.82). 

Further, the MMCFSv2’s actual skill is (0.72) is very close to the potential skill (0.79) and is a large improvement over 

MMCFSv1. MMCFSv2 has also attained the theoretical predictability limit of ~0.7. It was noticed that MMCFSv2 improves 610 

the simulated large-scale teleconnection pattern between Nino 3.4 index and tropical SST with a higher pattern correlation 

of 0.70 compared to 0.63 of MMCFSv1.  The spatial pattern of correlation between ERSST over the eastern Indian ocean 

dipole (EIOD) box (10° S to the Equator, 90-110° E) and tropical SSTs anomalies has improved (pattern correlation of 

teleconnections from 0.31 in MMCFSv1 to 0.38 in MMCFSv2). MMCFSv2 did not reproduce the Nino3.4 induced SST 

patterns over the Atlantic Ocean, whereas it is well captured by MMCFSv1. MMCFSv2 captured the eastern Indian Ocean-615 

induced SST pattern over the Tropical Oceans, which was weaker in MMCFSv1. 

The simultaneous correlation between the JJAS ISMR anomaly index and tropical SST anomalies showed that both 

models overestimated the correlation over the western north Pacific region compared to observations. MMCFSv1 showed 

stronger teleconnections between ISMR and Pacific Ocean compared to MMCFSv2 (stronger negatives over central and 

east Pacific, and stronger positives over west Pacific). MMCFSv2 reproduced the observed correlation patterns with a higher 620 

pattern correlation of 0.60 compared to 0.38 of MMCFSv1. Overall, MMCFSv2 captured the teleconnection between ISMR 

and tropical SST anomalies closer to observations than MMCFSv1. 

One of the potential research areas with coupled climate models in general and MMCFSv2 is the sea surface and air 

temperatures biases compared to observations. The increased surface temperatures in MMCFSv2 resulted in warmer 

tropospheric columns in the summer hemisphere. MMCFSv2, however, simulated temperatures closer to observations in 625 

the winter hemisphere. Given that the use of MOM6 over MOM4 has enabled us to use many more parameterizations, we 

will address this problem in a future study. The present study's focus was to present the climatological characteristics 

simulated by MMCFSv2. 

To summarize, the mean state of the atmosphere has improved in MMCFSv2 (compared to MMCFSv1), both in terms of 

precipitation and circulation (850hPa winds). This has resulted in improved teleconnections (Figure 16). The pattern 630 

correlation between spatial structure of teleconnections in Figure 16 (manuscript) has improved from 0.38 in MMCFSv1 to 

0.60 in MMCFSv2. Hence the interannual variability skill has improved. 

 

MMCFSv2 improves many meteorological fields compared with MMCFSv1 in ISMR hindcasts. However, the NEMS 

coupling framework is the biggest improvement MMCFSv2 brings over MMCFSv1. This is central to making it easier to 635 
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upgrade the individual model components as and when their respective scientific groups improve them. This is very 

important for an operational model. 

 

Code and Data availability 
The current version of MMCFSv2 used for this study is available at https://doi.org/10.5281/zenodo.7905721 (Please check the license 640 

files for individual component model in the repository). The data used for the analysis in this manuscript is available at 

https://zenodo.org/record/7900790#.ZFU-T5FBxcA (DOI : 10.5281/zenodo.7900790 ). The complete (processed) data used to 

initialize and run the MMCFSv2 simulations from 1998-2022 is made available at  

Input data from  1998 to 2000 -  https://doi.org/10.5281/zenodo.7935628, from 2001 to 2003 -  

https://doi.org/10.5281/zenodo.7947318, from 2004 to 2006 -  https://doi.org/10.5281/zenodo.7947974, from 2007 to 2009 -  645 

https://doi.org/10.5281/zenodo.7948155, from 2010 to 2012 - https://doi.org/10.5281/zenodo.7949802, from 2013 to 2015 -  

https://doi.org/10.5281/zenodo.7950855, from 2016-2018 -  https://doi.org/10.5281/zenodo.7949863, from 2019-2021 -  

https://doi.org/10.5281/zenodo.7950964, and for 2022 -  https://doi.org/10.5281/zenodo.7951983 

 

Please note that the original raw data belongs to NCEP (Saha, Suranjana, and Coauthors, 2010: The NCEP Climate Forecast System 650 

Reanalysis. Bull. Amer. Meteor. Soc., 91, 1015�~@~S1057. https://doi.org/10.1175/2010BAMS3001.1).  
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