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Abstract. We deseribe-present the Monsoon Mission Coupled Forecast System version 2 (MMCFSv2) model, which
substantially upgrades the present operational MMCFSv1 (version 1) at the India Meteorology Department. The latest 25
years (1998-2022) of retrospective seasonal coupled hindcast simulations of the Indian Summer Monsoon with April initial

condltlons from Coupled Forecast System Reanaly5|s are d|scussed Weuevaluate—MMGl%x%baseeLerethe—latesteZéﬁeaps
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MMCFSVZ snmulates the troplcal wmd ralnfall and temperature structure reasonably
well. MMCFSv2 captures surface winds well and reduces precipitation biases over land, except +#-over India and North
America. The dry bias over these regions remained simiartolike MMCFSv1. MMCFSv2 captures significant features of the
Indian monsoon, including the intensity and location of the maximum precipitation centres and the large-scale monsoon
circulation. MMCFSv2 improves the phase skill (anomaly correlation coefficient) of the interannual variation of ISMR by
17 % and enhances the amplitude skill (Normalized Root Mean Square Error) by 20 %. MMCFSv2 shows improved
teleconnections of ISMR with the equatorial Indian and Pacific oceans. This 25-year hindcast dataset will serve as the baseline
for future sensitivity studies of MMCFSv2.

1. Introduction

Over a third of the world's population resides in the East Asian and the Indian sub-continent region, most of which depends
on the natural irrigation from the summer monsoon rainfall for agricultural production (Gadgil, 2006). Indian summer monsoon
(ISM), which lasts from June to September every year, is a perennial system. It, however, shows interannual and intra-seasonal
variability (Parthasarthi et al., 1993; Kumar et al., 1999; Munot et al., 2000; Mohan et al., 2000; Gadgil et al., 2003) affecting
the region's agricultural production (Gadgil, 2006). A 10 % deviation from the climatological mean is sufficient to have an
excess or a deficient monsoon over India (Singh et al., 2015). The standard deviation, variance, and their ratio with mean -of
June-September (JJAS) mean precipitation (Fig. 1) shows that the location of highest variability is over oceans. In contrast,
the variability over the Indian landmass is low despite the high mean precipitation. This low variability (having a high impact
on agricultural production) challenges the models trying to predict it.
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Figure 1: (a)JJAS climatological mean precipitation (shading) and standard deviation (contours)-ef-precipitation-(mm/day)

from-41-years(1981-2021) of GPCP-data- (b) Standard deviation (red contour) and standard deviation to mean ratio (shading)
(c) Variance (red contour) and variance to mean ratio of precipitation (shading) from 41 years (1981-2021) of GPCP data.

The monsoon is an inherently coupled system (Webster et al., 2002; Ramu et al., 2016), and Indian Meteorological
Department (IMD) has been using the Monsoon Mission Coupled Forecast System version 1 (MMCFSv1) model
operationally to predict the ISM since 2011 (Benke et al., 2019) Indian Instiute of Tropical Meteorology (IITM) has been
using MMCFSv1 as a research testbed to study the various facets of ISM rainfall (ISMR) (Ramu et al., 2016; Krishna et al.,
2019; Srivastava et al., 2021; Pillai et al., 2021; Pradhan et al., 2022; Rao et al., 2019). MMCFSv1 is based on a high-
resolution Climate Forecast System model from National Centre for Environmental Prediction (NCEP) (Saha et al., 2014).

While the NCEP runs the model at a resolution of T126, IITM runs it at T382. Ramu et al., (2016) analyzed both the
model resolutions (T126 and T382) based on 28 years hindcast to show that the skill of lower resolution model is 0.49
compared to the skill of 0.55 of the high-resolution model with the February initial conditions. Pillai et al., (2017) have
shown that the potential predictability of ISMR is 0.7 in MMCFSv1, and the maximum actual skill (with different initial
conditions) of the operational model at IMD (MMCFSv1) is 0.55. Hence, the gap between the potential predictability and
actual skill is large. Many factors, such as resolution, initial conditions, physics, and dynamics, limit the models' skill.
Coupled climate models' skill improvement involves efforts from many research groups specializing in a particular sub-
domain (component) of the coupled model. As its components, Fthe MMCFSv1 has a Global Forecast System atmospheric
model with Eulerian dynamical core (GFS-EL, Moorthi et al., 2001), Modular Ocean model version 4 (MOM4, Griffies et
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al., 2004), and sea-ice model (SIS, Semtner, 1976; Winton, 2000),-as-its-compeonents coupled together using a hard-coded
coupler. This hard-coded coupler runs on a single core. This presents a computational problem as the models grow in
complexity and become highly parallelizable.

With an ever-increasing understanding of our climate system, the above-mentioned individual components of
MMCFSv1 have seen a lot of improvements independently of each other. MOM®6 (Adcroft, 2016) is a significant upgrade
(algorithmically) over the MOM4 (discussed in detail in the next section). The predictability of the medium-range
atmospheric models has improved with increasing model resolutions. The need for higher atmospheric model resolution
emphasizes using a Semi-Lagrangian dynamical core in place of the Eulerian one (Staniforth et al., 1991). CICE5 (Bailey
et al., 2018) is a separate code base designed to be used in coupled models and is highly parallelizable and brings in many
improvements (see next section) over SIS (Semtner, 1976; Winton, 2000) sea ice model, which is a part of the MOM4 code
base.

As mentioned above, the components in MMCFSv1 are hard coded to transfer and transform the data from one process
(model component) to another through a coupler. To make any changes to the individual model component, one must
understand how these model components are implemented and how the coupler accumulates, transfers, and regrids the
boundary condition data from one component to another. However, since the coupler is hard coded to interface the individual
model components, there is a lack of modularity in how MMCFSv1 is implemented.

Realizing this hinders seamless model development in coupled models, many groups across the climate community
(Black et al., 2009; Craig et al., 2017; Balaji et al., 2004) have been developing the software infrastructure trying to bring
modularity to the complicated climate model codes. The National Oceanic and Atmospheric Administration (NOAA)
Environmental Modeling System (NEMS) is one such modelling framework (Black et al., 2009) which is used to streamline
components of the models. NEMS architecture is based on the Earth Modeling System Framework (ESMF, Hill et al.,
2004). ESMF standardizes how the model components interact with each other, thus bringing in modularity. NEMS refines
the definition of what it means to be a model component and standardizes the initiation, running, and finalizing steps of
each model component. MMCFSv2 uses the NEMS coupling framework and upgrades all the major individual model
components of MMCFSv1 (Table 1). Using a NEMS coupler will facilitate easier future upgradation of MMCFSv2
components.

Systematic biases in MMCFSv1 were well documented (Ramu et al., 2016; Pillai et al., 2017), and the significant
biases are the cooler SST (especially over the Indian and southern Pacific Ocean), dry bias over land, wet bias over the
ocean, and weaker monsoon circulations. Hence, in this study, we have investigated the model's ability to simulate the mean
state and assess the model's skill in predicting the phase and amplitude of ISMR. We have limited our simulations to the
last 25 years (1998-2022) of retrospective hindcasts due to limitations in computational resources. The present paper gives
details of MMCFSv2 individual component upgrades. We also analyze the simulated mean tropical SST, circulation, mean
and interannual variability of ISMR and its teleconnection with different oceanic modes. Section 2 discusses model upgrades
over MMCFSv1. Section 3 describes the experimental design for this study. We then show the simulated results and compare
them with MMCFSv1 in section 4 before summarizing them in the last section.

Table 1 Major Changes to model components between MMCFSv1 to MMCFSv2

Component MIMCESVA {Resolution) MMCFSv2 Reference

{ee-model SIS Sea-lee CICES Hunke et ab-—{2015)

Atmospheric-model GFS-EL(T382) GFS-SL(¥574) Sela; 2010

Coupler Hardcoded NEMS Framework Blacketal(2009)
Model/Comp | Atmosphere Ocean Ice model Land Model References | <
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2. MMCFSv2 model Details

We use the NCEP MMCFSv1 (Saha et al., 2014) as the base model to discuss the upgrades MMCFSv2 brings. The
primary individual model components of MMCFSv1, upgraded in MMCFSv2, are tabulated in Table 1 and discussed briefly
below. The MMCFSv1 uses the spectral model Global Forecast System (GFS) as the atmospheric model (Moorthi et al.,
2001) with the Eulerian dynamical core. MMCFSv2 instead uses a Semi-Lagrangian dynamical core for the GFS (GFS-SL,
Sela, 2010; Mukhopadhyay et al., 2019). Using a Semi-Lagrangian dynamical core allows us to have higher atmospheric
model resolutions while keeping the time stepping the same.

2.1 MOMG6 Ocean Model

MMCFSv1 uses the Geophysical Fluid Dynamics Laboratory Modular Ocean Model version 4p0d (MOM4) as the ocean
model (Griffies et al., 2004). It has been upgraded to MOM6 (Adcroft, 2016) in MMCFSv2. MOMG6 is based on generalized
ocean dynamics which enables variable vertical and hybrid coordinates. Since MOMG6 uses vertical Lagrangian remapping
(Griffies et al., 2020), it can be configured with any vertical co-ordinates among geopotential, isopycnal, terrain-following, or
hybrid (user-defined). Significant improvements brought by MOM®6 over MOM4 include using C-grid stencil over B-grid
stencil. C-grid stencil is preferred for simulations involving an active mesoscale eddy field. -MOM®6 uses scale-aware
parameterizations for mesoscale eddy-permitting regimes_is based on Jansen et al.,(2019) and eddy fluxes are parameterized
based on Jansen et al. (2015). Boundary layer schemes in MOMSG is based on Reichi et al., (2018) and incerperateincorporate
Langmuir mixing. It also introduces a suite of parameterized mixing from breaking gravity waves. A new method for
performing neutral diffusion is also introduced in MOMS6 that prevents the spurious formation of extrema. Complete details of
MOMB6 can be found at https://www.gfdl.noaa.gov/mom-ocean-model/.

The present configuration of MOM6 used in MMCESv2 consists of 40 vertical levels with HyCOM-like hybrid
coordinates. The horizontal grid follows tripolar grid with poles over land and 1440 and 1080 points in x and y directions
respectively. The resolution of the ocean component in MOM4 is 0.25 degrees between 10° S to 10° N latitude band and 0.5
degrees elsewhere. This has been increased to 0.125° near the equator-and-0-1-degreesnearthepeles in MOM6. MOMG is

compiled with external coupler and a cap code (mom_cap.F90) interfaces the model to NEMS framework. The coupling
happens every 30 minutes.

2.2 CICE5.0 Model

MMCFSv1 uses a three-layer (one layer of snow and two layers of sea ice) interactive sea ice model (Winton, 2000), which
is an improvement over the Semtner three-layer model (Semtner, 1976). This component model has been upgraded to the Los
Alamos CICE5 (Hunke et al., 2015) in MMCFSv2. CICES is designed to be used in coupled models and is highly
parallelizable. The major improvements of CICES over the Sea-ice model of MMCFSv1 include ice velocity in atm-ice
coupling updates and allowing a variable coefficient for the ice-ocean heat flux.

2.3 Coupler

CICES is developed grounds up by LANL to be used in a fully coupled climate models. CICE5.0 has (improved/new)
parameterizations for form drag, sea-ice biogiochemistry, explicit melt pond, among others. CICES5 has been extensively used
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in climate simulations by Community Earth System Model (CESM). More details can be found at CICE documentation page
at (link in data availability section). CICES5 runs at MOMS6 resolution of 1440 by 1080 points in the horizontal. Similar to MOMS6,

CICES code is coupled to NEMS framework using a cap code (cice_cap.F90) and the coupling happens every 30 minutes.

The hard coded coupler in MMCFSv1 runs on a single processor and transfers surface fluxes (wind stress, and radiative)
to the ocean model and provides SST to the atmospheric model after every coupling time step of 1800 seconds. This coupler

has been replaced by NEMS coupler. This coupler is a parallel coupler and is currently running on 144 cores in MMCFSv2.

More details on the NEMS coupler can be found in Black et al., (2009).

2.43 Other Model Components

As mentioned earlier, atmospheric component is based on GFS with semi-lagrangian dynamical core, Although the four-

layer NOAH land surface model (Ek et al., 2003) remains the same between MMCF Sv1 and MMCFSv2, the NEMS framework

allows us to include newer versions of land models such as NOAH-MP. This will be done in future work.

3. Experimental Details and Observational/Reanalysis Data

The retrospective ensemble prediction (hindcast) runs of the MMCFSv1 have atmospheric horizontal resolutions
corresponding to triangular truncation of T382L64, while that of MMCFSv2 is T574L64 (horizontal resolution of both
versions is ~38km). The atmosphere, land, and ocean initial conditions for these runs are obtained from the NCEP Climate
Forecast System Reanalysis (CFSR) (Saha et al. 2010). The atmospheric component of MMCFSv1 and MMCFSv2 has 64
sigma-pressure hybrid vertical levels, and the ocean component has 40 vertical layers. The convective parameterization
scheme used in the atmospheric part of MMCFSvl and MMCFSv2 is based on the Arakawa-Schubert scheme, with
orographic gravity wave, drag, and momentum mixing.

Pillai et al. (2022) showed that the prediction skill for El Nifio—Southern Oscillation (ENSO) was lower for MMCFSv1
initialized with February (3 months lead time) initial conditions compared to when it was initialized with April (1 month
lead time) initial conditions. They showed that models which depend on ENSO teleconnection for ISMR interannual
variability (MMCFSv1 in their case) have better ISMR prediction skills with April initial conditions. Hence, the MMCFSv2
experimental setup is based on a 10-member lagged ensemble with April initial conditions (00z01Apr, 12z01Apr, 00z06Apr,
12z06Apr, 00z11Apr, 12z11Apr, 00z16Apr, 12z16Apr, 00z21Apr, and 12z21Apr) while that of MMCFSv1 is like the one
in Ramu et al. (2016), albeit, for April initial conditions and a total of 12 ensembles (2 additional ensembles corresponding
to 00 and 12Z of 26" April). Each hindcast run is integrated for six months, from April to September. A total of 25 years of
hindcasts have been performed from 1998 to 2022.

For the verification of the model-simulated rainfall, we use the Global Precipitation Climatology Project (GPCP, Adler
et al. 2003) and 1-degree gridded daily rainfall from IMD (Rajeevan et al. 2006) for the same hindcast period (1998-2022).
It may be noted that IMD uses data from variable rain gauge networks from day to day based on the availability of data
from gauges. However, GPCP uses data from fixed rain gauge network. Since IMD keeps updating the rain gauge network
continuously, the seasonal mean values also vary for each update (Pai et al. 2014). Hence, in this study, we use GPCP data
as a standard product for assessing the skills of the ISMR. For sea surface temperature (SST) validation, we use the Extended
Reconstructed Sea Surface Temperature (ERSST) version 5 (Huang et al. 2017, 2018, 2019, 2020). In addition, we also use
ERAJ5 reanalysis products for winds (Hersbach et al. 2020). Model simulated mixed layer depth (MLD) was compared to
CMCC Global Ocean Physical Reanalysis System (C-GLORS) MLD. We have used Pearson's test to compute the statistical
significance of correlation coefficients and Student's t-test to compute the statistical significance of difference. Anomaly
correlation coefficients (Phase skill) and Normalized Root Mean Square Error (normalized with standard deviation;
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amplitude skill) are used as a metric to assess the skill of the models in capturing ISMR and other tropical interannual
modes.

3. 4. Results

We first look at Fhe the ability of MMCFSv2 to simulate the mean tropical climatology of rainfall and surface
temperature.—a e-circulation-is-discussed-initially to-analyze the ability o od o-capture-various-tropica
moedes: We then look at the simulated large-scale circulation and interannual variability of ISMR before examining its
teleconnections with different interannual modes in the tropics.

4.1 Climatology
4.1.1 Mean Rainfall

Most climate models (Pillai et al., 2018; Sabeerali et al., 2013) have shown that land rainfall is underestimated while
rainfall over oceans is overestimated. Figure 2 shows JJAS mean precipitation from GPCP (observed) and the models.
GPCP (Fig. 2 (a)) shows maximum rainfall over a band along the tropical Pacific Ocean. Both models simulate this tropical
rain belt (Fig. 2 (b), (c)) reasonably well. Surprisingly, the dry bias over land, which is normally present in many of the
climate models, is absent in MMCFSv2, except over the Indian land region, While the rainfall dry bias over west central

« [Formatted: No bullets or numbering
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India is increased the bias over northeast and east central India is reduced. MMCFSv1 has significant wet bias over the
North Pacific, Atlantic and EIO regions (Fig. 2 (d)) which is significantly reduced in MMCFSv2 (Fig. 2 (e), (f)). MMCFSv2
is also closer to GPCP in Africa and south American regions.
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Figure 2: JJAS mean Rainfall (a) GPCP(b) MMCFESv1 (c) MMCFESv2, and bias (d) MMCFSv1-GPCP (¢) MMCFSv2-GPCP,

and (f) Difference between MMCFSv1 and MMCFSv2.

Over the ISM region, there are three locations of precipitation maximum, viz, the head Bay of Bengal, the Western
Ghats, and the southeastern equatorial Indian Ocean (Fig. 2 (a)). Both the models get these precipitation maxima (Fig. 2 (b),
(). There is a strong wet bias over the Indian ocean basins and a dry bias over the northwest Indian landmass in MMCFSv1
(Fig. 2 (d)). This is significantly reduced in MMCFSv2. The dry bias over Indian landmass seen in both models is consistent
with previous studies (Goswami et al., 2014; Saha et al., 2014; George et al., 2016; Ramu et al., 2016; Pillai et al., 2018).
A study by Sabeerali et al., (2013) has reported similar precipitation bias in many CMIP5 models. Nevertheless, MMCFSv2
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improves the dry bias over the Indian landmass over MMCFSv1 (Table 2). From recent CMIP6 models, the majority of the
models also suffer from similar rainfall biases as MMCFESv1.

200 4.1.2 Temperature bias
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Figure 3: JJAS mean Sea surface temperature (°C) (a) ERSST (observed), (b) MMCFSv1 (c) MMCFSv2, and bias (d)
MMCFSvV1-ERSST (e) MMCFSv2-ERSST, and model difference (f) MMCFSv2 - MMCFSv1 over the tropics.

The spatial distribution of observed (ERSST) and simulated (MMCEFS) climatological JJAS mean SST is shown in
Fig. 3. The presence of equatorial maxima characterizes the observed SST. The SST over the Indo-Pacific region is greater
than 28° C and is known as the Indo-Pacific warm pool region (Fig. 3 (a), ERSST). Both models can simulate the large-scale
distribution of tropical SST (Fig. 3 (b), (c)). MMCFSv1 shows a cold bias (greater than 0.5° C) over the tropical Indian Ocean
(10) and southern Pacific (Fig. 3 (d)). This cold bias has been reported previously by many studies (George et al., 2016;
Pokhrel et al., 2012; Saha et al., 2014). It is shown to be due to the dry surface atmosphere and an associated increase in
latent heat flux in MMCFSv1 by Pokhrel et al., (2012). MMCFSv1 also has a strong warm bias (of greater than 0.5-1.5° C)
over the northwestern, southwestern, northeast, and southeast Pacific (Fig. 3 (d)). Zheng et al., (2011) reported that this strong
warm bias over the northeast and southeast Pacific is due to the misrepresentation of stratus cloud decks and an associated
increase in incoming short-wave radiation flux.

The cold SST bias of MMCFSv1 over the Indian Ocean is significantly reduced in MMCFSv2 (Fig. 3 (e)). MMCFESv2
has a warm bias (greater than 0.5° C) over the entire 10 except for extreme southeast 10 and Northern Arabian Sea (Fig. 3
(e)). The warm biases are intensified over Pacific region except southeastern Pacific in MMCFSv2 compared with MMCFSv1
(Fig.3 (f)). Overall, there is a warming of SSTs over tropics in MMCFSv2 compared to MMCFSv1. In fact, the latest CMIP6
models also have similar warm biases in SST (Farnetti et al., 2022)
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MMCFSv1 underestimates surface air (2 m) temperature (Fig. 7) over most of the land, including Tibetan Plateau

except the African region (overestimation by 2-4° C). MMCFSv2 overestimates surface air temperature over most of the tropics

by more than 3° C. The warm SST bias in the tropics (Fig. 3) affects the surface air temperatures over oceans, and Fig. 4

shows the warmer 2m surface air temperature in MMCFSv2 compared to ERA5 and MMCFSv1. The cold bias of MMCFSv1

225 surface temperatures over the winter hemisphere (south of 15°S) has disappeared in MMCFSv2. The surface air warming is
much more pronounced over the landmass.
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MMCFSv2-ERADS, and (f) Difference between MMCFSv1 and MMCFSv2.

The zonally averaged tropospheric air temperatures in Fig. 5 show both models simulating the mean observed structure
consistent with observations (Fig. 5 (a)-(c)). However, we can see that the surface warming seen in Fig. 4 produces warmer
columns in the MMCFSv2 compared to both observations and MMCFSv1 (Fig. 5 (d)-(f)). The warming, however, is confined
to the summer hemisphere and MMCFSv2 is closer to observations in the southern hemisphere than MMCFSv1. The most
significant upgrade from MMCFSv1 to MMCFSV2 is the ocean model. MOMG has allowed us to use much higher ocean model
resolutions than MOMA. It has also allowed the use of scale-aware parameterizations for mesoscale eddy-permitting regimes.

Figure 6, shows the difference between simulated mixed layer depth by MMCEFS (v1 and v2) and the QOnet into this
mixed layer. , Except over equatorial Pacific Ocean, (EPO), MMCFSv1 simulates deeper mixed layer depths compared to
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to MMCFS1 and similar Qnet_results in warmer SSTs in MMCFSv2. Considering the fact that satellite derived SST accuracy is
around 0.5 degrees (especially AVHRR, Ahmedabadi et al., 2009), a bias of 0.5 to 1 degree can not be considered as significant warm
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Figure 72: JJAS climatological mean winds (m/s) at 850 hPa (a) ERAS5 (b) MMCFSv1 (c) MMCFSv2, bias (d) MMCFSv1-
ERAS5 (e) MMCFSv2-ERAGS, and (f) Difference between MMCFSv2 and MMCFSv1.

JJAS mean lower tropospheric (850 hPa) observed (ERA5) and simulated (MMCFSv1 and MMCFSv2) winds in Fig.
255  27((a)-(c)) show that both the models can capture the tropical convergence zone over the Pacific and Atlantic oceans well.
Models can also simulate the observed monsoonal circulation (Fig. 72(a)) over the Indian region (60-90°E) reasonably well.
The difference in 850 hPa winds (Fig. 72 (d), (e)) from ERA5 shows MMCFSv2 closer to it than MMCFSv1 over most of
the tropics. MMCFSv2 winds are closer to ERAS5, especially over the Indian Ocean region. A significant difference in winds
‘ can be seen between the two models over the Indian Ocean region (Fig. 72 (f)).

260 Focusing on the Indian region, a distinct feature of the ISM is the low-level jet (LLJ) over the Arabian Sea seen in

‘ 850 hPa winds (Fig. 72 (a)), also popularly known as the Findlater jet (Joseph 1966; Findlater 1969). Both models reproduce
this low-level circulation (Fig. 72 (b), (c)). The wind bias in Fig. 72((d), (e)) shows that MMCFSv2 simulates the LLJ closer
to observations than MMCFSv1. MMCFSv1 shows strong northeast/easterly wind bias over the southern Indian region, the
Arabian Sea, and the Bay of Bengal. Significant westerly wind bias is seen in MMCFSv1 over the entire southern and

|265  equatorial Indian Ocean (Fig. 72). Figure 72 ((d), (e)) shows both models having a low-level anti-cyclonic circulation bias
over the Indian subcontinent. Compared to MMCFSv1, the low-level anti-cyclonic circulation bias is significantly reduced
in MMCFSv2 (Fig.72 (e), (f)). MMCFSv1 simulates stronger northeasterly or easterly wind bias compared to MMCFSv2
(Fig.72 (f)) over the equatorial region. This may be due to the enhanced convection in the eastern equatorial Indian Ocean
in MMCFSv2 (Fig. 29-discussed-later).
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Figure 83: JJAS climatological mean winds (m/s) 200 hPa (a) ERA5 (b) MMCFSv1 (c) MMCFSv2, and bias (d) MMCFSv1-
ERAS5 (e) MMCFSv2-ERAG5, and (f) Difference between MMCFSv2 and MMCFSv1.

Both models simulate the observed upper tropospheric tropical divergence and subtropical jets (in 200 hPa winds, Fig.
275 83 (a)-(c)). The monsoonal circulation over the Indian region is also evident in both models. The difference in 200 hPa
winds (Fig. 83 (d), (e)) shows MMCFSv1 winds are closer to ERA5 over the Indian oceanic region (15° S-15° N), and
MMCFSv2's winds are closer to ERAS5 over Asian landmass (north of 15° N). MMCFSv2 simulates a weaker (stronger)
subtropical jet over the northern (southern) hemisphere compared to MMCFSv1 and is closer to ERAS5. Significant
differences in 200 hPa winds can be seen between the two models over the Indian landmass, Indian Ocean, Southern Pacific,
280  and Atlantic oceanic region. The mean upper tropospheric (200 hPa) winds during ISM are characterized by the Tropical
Easterly Jet (TEJ) and Tibetan anticyclone (Fig.83 (a)) (Krishnamurti et al. 1976). Both models can get these upper
tropospheric circulation features (Fig. 83 (b), (c)). Compared to MMCFSv1, MMCFSv2 has a weaker westerly bias over

India (Fig. 82 (d)-(f)).
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Figure 94: JJAS climatological zonal mean wind (m/s) (a) ERA5 (b) MMCFSv1 (c) MMCFSv2, bias (d) MMCFSv1-ERA5
(e) MMCFSv2-ERAGS, and (f) Difference between MMCFSv1 and MMCFSv2.
Fig. 94 (a) shows the longitudinally (global) averaged zonal (U) winds from ERA5. The models capture the easterly

jet in the tropical convergence zone and the westerly jets in the mid-latitudes (Fig. 94 (b), (c)). MMCFSv1 simulated wind
bias (Fig. 94 (d)) shows reduced strength of easterlies in the southern tropics and westerlies in the southern mid-latitudes.
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MMCFSv2 shows (Fig. 94 (e)) a weaker strength in the mid and upper tropospheric region of the tropical easterly jet. A
weaker westerly jet in MMCFSv2 can be seen at both 50-60N and 60S. The winds in the northern hemisphere are close to
ERAS in MMCFSv1. The tropical surface zonal winds close to ERAS in MMCFSv2.

Comparing the two simulated winds with each other (Fig. 94 (f)), we see a slightly reduced strength of the upper-level
westerly jet in the summer hemisphere (45N, 200-500 hPa in Fig. 94 (f)) and increased strength in the winter hemisphere
(45S, 200-900 hPa) in MMCFSv2 compared to MMCFSv1. Overall, both models reasonably simulate the zonal mean
tropical winds, with slightly different strengths of tropical and sub-tropical jets. Since ISM is significantly affected by ENSO
through Hadley cell, we expect significantly different teleconnection patterns between ISMR and ENSO in the two models
(Fig. 142 discussed later). This also encourages us to look at the wind shear structure simulated by the two models.
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4.1.2 Wind Shear
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Figure 105: JJAS seasonal mean easterly wind shear (U850-U200, m/s) in (a) observations (ERA5) (b) MMCFSv1, and (c)
305  MMCFSv2. Seasonal mean easterly wind shear biases (model-observation) in (d) MMCFSv1 (e) MMCFSv2. (f) Difference
in simulated seasonal mean easterly wind shear between MMCFSv2 and MMCFSv1 hindcast runs.
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The vertical wind shear over the Asian Summer monsoon (ASM) region plays an important role in modulating the
northward propagation of monsoon intraseasonal oscillations (MISO) (Jiang et al. 2004). Figure 510 shows the observed
and the model-simulated JJAS seasonal mean of easterly wind shear. The wind shear is computed as the difference between
850 hPa and 200 hPa zonal (U) winds. Large positive wind shear is observed (Fig. 105 (a)) over the South Asian region
(greater than 12 m/s) during the monsoon season. Positive wind shear is also seen over the Sub-Saharan region, the Indian
Ocean, the West and East Pacific, and Equatorial Atlantic regions. Negative wind shear is observed in central North, South
Pacific, and North Atlantic oceanic regions. Both models capture these features well (Fig. 105 (b), (c)). The wind shear bias
(Fig. 105 (d), (e)) shows that MMCFSv2 shear is closer to ERAS5 (difference less than 5 m/s) compared to MMCFSv1
(difference greater than 5 m/s) over most of the tropical regions. MMCFSv1 largely simulates high negative bias over the
Northern hemisphere and positive bias over the Southern hemisphere (Fig. 105 (d)), which has improved significantly in
MMCFSv2 (Fig. 105 (e)) . The bias in MMCFSv2 is significantly lower compared to MMCFSv1 over Asian and African
landmass and most of the Pacific and Atlantic oceans.

ERAS5 reanalysis shows a positive wind shear over the ASM domain (Fig. 105 (a)). The wind shear over the ASM
region is underestimated in MMCFSv1 and MMCFSv2 (Figure 105 (b), (c)), consistent with the weak monsoon winds and
TEJ, as seen in Fig. 7 and 8. However, there is a considerable difference between the two models. Whereas MMCFSv1
produces a large negative bias over Indian land and a positive bias over the southern Indian ocean compared to observations
(Fig. 105 (d)), MMCFSv2 bias is positive over Indian land and predominantly negative over the Indian oceanic region. This
difference between the simulations is much clearer in Fig. 105 (f). Therefore, there will be a considerable difference between
the northward propagation speeds of the MISOs of MMCFSv1 and MMCFSv2. The difference in MISOs characteristics
will be explored in greater detail in a future study. MMCFSv2 underestimates shear in the western equatorial Indian
Ocean/Arabian Sea, primarily due to a simulated weak easterly jet at 200 hPa (Fig. 83)
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4.1.5 Interannual variability of ISMR and Potential Skill

The year-to-year variations of the area-averaged JJAS rainfall over the Indian land region are shown in Fig. 10. The
observed all-India summer monsoon rainfall time series is prepared from the India Meteorological Department (IMD) gridded
land rainfall and GPCP rainfall data. Figure 10 shows that both models can capture the recent rainfall deficit years of 2014
and 2015, as can be seen from GPCP. Out of 25 re-forecast years, MMCFSv2 could capture 20 years correctly, while
MMCFSv1 could capture 15 years. Failure of the hindcasts in 2019 and 2000 is required to be analyzed in detail. A detailed
analysis is required to understand the performance of the MMCFSv2.

21



25

20

15

10

Percentage
(=]

Percentage

Inter-annual Variability of ISMR
1 | 1

VD il
EGPCP

[IMMCFSv1
EMMCFSv2

1
1998

1
2002

1 1 1 L 1
2006 2010 2014 2018 2022
Years

Inter-annual Variability of ISMR
T

VD i

EGPCP
MMCFSv1

EMMCFSv2

1998

1
2002

1 1 1
2006 2010 2014 2018 2022
Years

22



395

400

405

Figure 116: Interannual Variability of area averaged rainfall over Indian land mass from model hindcast (MMCFSv2,
MMCFSv1) and different observational datasets (IMD and GPCP).

Table 2 summarizes the model skill in reproducing interannual variability of observed ISMR during 1998-2022.
MMCFSv2 shows improvements in producing the mean of JJAS rainfall over MMCFSv1 by reducing the dry bias from 1.32
to 1.04 mm/day (~4 %) with respect to GPCP. MMCFSv2 captures the phase of interannual variability with a higher skill of
0.72 over 0.55 of MMCFSv1 when GPCP is considered as observation. Hence, MMCFSv2 improves the phase skill by 17

%.

Table 2. Mean ISMR, the standard deviation of ISMR, Bias from observations, Anomaly correlation coefficient (skill), Root mean square error of percentage

departure, and Normalized (with std. Deviation) RMSE for 1998-2022. Correlation values above 99 % are shown in bold.

ISMR Characteristics
Data from Mean (mm/day) STD (mm/day) Bias (mm/day) Skill RMSE NRMSE
Observations
GPCP 6.99 0.61
IMD 7.01 0.62
Models
MMCFSv2 5.95 0.58
vs IMD -1.06 0.63 7.98% 0.92
vs. GPCP -1.04 0.72 7.01% 0.82
MMCFSv1 5.67 0.59
vs. IMD -1.34 0.58 8.74% 1.0
vs. GPCP -1.32 0.55 8.99% 1.06
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Figure 12. Scatter plot of ISMR anomaly (percentage) from GPCP (x-axis), and MMCFS (y-axis), left panel is

MMCFSv1 and right panel is MMCFSv2.

From the scatter plot it is evident that many observed normal years were predicted as extremes in vl. Hence, we

calculated the false alarm rates and the hit rates for both the models. We used two criteria for defining normal
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years, viz 10% and 5% departure from the climatological mean. Table 5 in the supplement summarizes the false

alarms and hit rates. As seen from the table, MMCFSv1 has a higher false alarm rate and a lower hit rate than

MMCFSv2.
GPCP 10% departure GPCP 5% departure
Normal Years V1 False Alarm Normal Years V1 False Alarm
19 7 8 4
Excess Hit Rate Excess Hit Rate
3 2 9 10
Drought V2 False Alarm Drought V2 False Alarm
3 5 8 2
Total Extreme Years Hit Rate Total Extreme Years Hit Rate
6 2 17 14

Table 3. Summarizing observed normal, excess, and drought years (first column uses 10% departure from mean,
and third column uses 5% departure from the mean to define extreme years). The second (10%) and the fourth
column (5%) summarizes hit rates and false alarms from v1 and v2 of MMCFS.

Pillai et al., (2018) compared the seasonal prediction skill of ISMR in MMCFSv1 (T382) with the US National Multi-

Model Ensemble (NMME) project for the simulation years of 1981-2009. They found that MMCFSv1 has better skill in
reproducing interannual variability of ISMR (ACC=0.55) compared to the other NMME models (ACC<0.4) and MMCFSv1
is better at simulating the observed standard deviation of ISMR. The Taylor diagram (Taylor, 2000) in Fig. 13 compares the
skill of MMCEFS (v1 and v2), and NMME models in reproducing observed Standard Deviation (SD, normalized), Root Mean
Squared Error normalized with observed standard deviation (NRMSE). Of these NMME models, GFDL_FLORA,
GFDL_FLORB, and SPISV2 have data for the years of 1998-2021. We found that removal of year 2022 from other models
does not change the scores significantly. There are five models which simulate the observed SD reasonably well (normalized
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SD approximately 1.0), viz. MMCFSv2, GFDL_Aero, SIPSv2, SPSIC3, GMAOQ. All the other models have larger or smaller
standard deviations with respect to observations. A 10 % deviation from the climatological mean is sufficient to have an
excess or a drought monsoon over India (Singh et al., 2015). Hence, getting the NRMSE below 1.0 is crucial. Two models
which stand out in terms of NRMSE are MMCFSv2 (0.82) and GFDL_Aero (0.85). All the other models simulate NRMSE
larger than 0.85. MMCFSv2 reduces the NRMSE from 1.04 of MMCFESv1 to 0.82 with respect to GPCP, which is about 20
%. GFDL_Aero also has lower ACC of 0.53 compared to 0.72 of MMCFSv2. MMCFSv2 has the highest skill in capturing
the interannual variability of ISMR compared to all the other models. Hence, in terms of SD, NRMSE, and the ACC,
MMCESV2 stands out compared to all the other NMME models and the MMCESv1.
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Figure 13%: Taylor diagram showing the Normalized RMSE, pattern correlation coefficients and normalized standard
deviation of the JJAS mean ISMR of MMCFS and NMME models with respect to GPCP observations. NMME Models
simulation duration is 1998-2021. MMCFS is from 1998-2022.

The uncertainty in initial conditions is inevitable due to gaps in observational networks and the limitations of data assimilation
systems. Therefore, it is not possible to know the “true” state of the earth system, which serves as a starting point for the
seasonal simulations. Ensemble forecasting techniques (such as the one used in this study) are employed to account for the
initial state's uncertainty. If we assume the model is perfect, the uncertainty in initial conditions puts an upper limit to
predictability. This upper limit is termed as the potential predictability and estimates the maximum skill the “perfect” model
can achieve. Let us say that the forecast for the variable “x” using the initial condition “i”” has a probability distribution P (X|i).
This forecast reaches an equilibrium state asymptotically with the distribution q(x). The distance between these two
distributions is a measure of predictability and is termed as the relative entropy (RE) or the Kullback-Leibler distance. If this
forecast distribution is identical to the climatological distribution, there is no predictability. RE can be estimated using the

following expression, following Kleeman (2002), under the assumption that both the distributions are gaussian:
N AW N T
XU X[l X
RE = = ln(—f)—}— — -1
2 Oyi 0% 0¥
where a,fm and o7 are the ensemble (forecast) and climatological variance, respectively. 1, and u,; are the climatological

and ensemble mean, respectively. Climatological variance is estimated as the sum of signal and noise variance (Delsole and
Tippett, 2007) as:
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Average of RE across all ensembles is the Mutual Information (MI). Potential skill is defined as:
475 PS= J1— e(-2MD
The actual skill achieved by the model in this paper is computed using the anomaly correlation coefficient. PS for MMCFSv2
is 0.79 using the above expression, while the actual skill obtained is 0.72 (Table 2). PS and actual skill for MMCFSv1 for

1981-2017 is 0.72 and 0.38, respectively (Pillai et al., 2018). This indicates that the actual model skill of MMCFSv2 is very
close to the perfect model skill. Further improvements to the individual model components shall bring the actual skill closer

480 to the potential skill., [ Formatted: English (United States)

Recent studies (Ramu et al., 2016; George et al., 2016; Pillai et al., 2016, 2022) have shown that the seasonal prediction
skill of monsoon in MMCFSv1 is significantly impacted by the ENSO-monsoon relationship. MMCFSv1 also has some
limitations in representing the relationship between Indian Ocean SST and monsoon. We, therefore, now analyze the
simulated teleconnections of the observed and simulated ISMR with different oceanic regions over the world.

485 4.2 Teleconnections

Earlier studies have found that the year-to-year variability of ISMR is mainly linked to the Pacific ENSO and Indian

Ocean Dipole (10D) (Webster et al., 1992; Kumar et al., 1999; Saji et al., 1999; Ashok et al., 2004; Rajeevan et al., 20074,

2007b). Atlantic zonal and meridional modes (AZM and AMM) also play a role in modulating ISMR. AZM is the oscillatory

normal mode (zonal) seen in the principal oscillation pattern analysis of SST (Ding et al., 2010; Zebiak, 1993), while AMM refers

490 to the leading maximum covariance analysis mode in the tropical Atlantic. IOD is the difference in sea surface temperature between
western and eastern equatorial Indian ocean.

Recently, Sabeerali et al., (2019) explored the impact of the Atlantic zonal mode on ISM at inter-annual time scales
in recent years using CFSv2. Here, we compare the ability of the models to simulate the teleconnections between ISM and
495  ENSO, IOD, and the Atlantic modes. Table 43 summarizes the skill of models in simulating the oceanic modes (ENSO,
eastern Indian ocean dipole (EIOD), AMM, and AZM) and their teleconnections with ISMR._Here, only the eastern pole of
the 10D is considered, as it is the stationary part of the 10D (Rao et al., 2009).

Table 43: Teleconnections of ISMR with different oceanic Indices and skill of the models in capturing these modes (95% statistically significant values in
500 bold)

Teleconnection Nino 3.4 EIOD AMM AZM
(with ISMR)
Observations 0.64 -0.04 0.18 0.19 [ Formatted: Font: Bold
MMCFSv2 £0.75 0.33 -0.07 0.46
MMCFSv1 ;£0.83 0.68 0.35 0.08 [ Formatted: Font: Bold
SKILL Nino34 EI0 AMM AZM [ Formatted: Font: Bold
MMCFSv2 0.83 0.42 0.15 0.32 [ Formatted: Font: Bold
MMCFSv1 0.82 0.58 0.01 0.13 [ Formatted: Font: Bold
[ Formatted: Font: Bold

O U )
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Figure 1423: Correlation between JJAS Nino 3.4 (index) SST anomalies and Tropical SST anomalies in (a) Observations
(ERSST), (b) MMCFSv1, and (c) MMCFSv2. The hatching shows statistical significance at 95 % confidence level.

Models can capture Nino 3.4 with high skill (Table 43). The spatial distribution of simultaneous correlations between
Nino 3.4 SST anomalies (index) and tropical SST anomalies in JJAS are shown in Fig. 142. Positive correlations over the
eastern/central tropical Pacific and western/central Indian Ocean are observed. Moreover, negative correlations are observed
over the western tropical Pacific, eastern equatorial Indian Ocean, and tropical Atlantic Ocean (Fig. 142 (a)). MMCFSv2
simulates these large-scale teleconnection patterns associated with Nino 3.4 over the tropics with a higher pattern correlation
of 0.70 than MMCFSv1 (PC=0.63) (Fig. 142 (b), (c)). In MMCFSv1, positive correlations over the Pacific and western Indian
oceans are weaker than observations. MMCFSv2, on the other hand, captures these teleconnection patterns in the tropical
Indian Ocean and over the Pacific regions reasonably well; hence pattern correlation is higher for MMCFv2.
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Figure 153: Correlation between JJAS Nino 3.4 (index) SST anomalies and Tropical rainfall anomalies in (a) observations
(GPCP), (b) MMCFSv1, and (c) MMCFSv2. The hatching shows statistical significant at 95% confidence level.

The spatial plot of the correlation between the boreal summer Nino 3.4 anomaly index and rainfall anomaly over the
tropical region is shown in Fig. 153. Observations show that the Nino 3.4 SST anomalies are negatively correlated (CC of -
0.64, Fig. 153 (a) and Table 43) with rainfall over the Indian land region (Fig. 153 (a)). Consistent with observations, both
MMCFSv1 and MMCFSv2 simulate this inverse relationship reasonably well, albeit with an overestimation. Nino 3.4 and
ISMR teleconnection in MMCFSv2 (-0.75) is closer to observations (-0.64) than in MMCFSv1 (-0.83). Additionally,
observations show a strong positive correlation between the Nino 3.4 SST anomalies and rainfall over the tropical Pacific.
MMCFSv2 can and MMCFSv1 cannot simulate this positive correlation over the north Pacific region (Fig. 153 (b), (c)). A
moderate negative correlation is seen over the Atlantic Ocean (Fig. 153 (a)), which is better captured by MMCFSv1. Except
over the southeast equatorial Pacific and Atlantic Oceans, MMCFSv2 can reproduce the Nino3.4 induced rainfall pattern
over the Bay of Bengal region and North and equatorial Pacific. Both models can capture the correlations over the Indian

Ocean, with a slightly over-estimated Nino3.4 induced rainfall pattern (Fig. 153 (b), (c)).
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4.2.2 EIOD and other Tropical modes

MMCFSv1 has a higher skill of 0.58 in capturing EIOD than MMCFSv2 (0.42, from Table 43). The spatial pattern of
correlation between ERSST over the EIOD box (10° S to the Equator, 90-110° E) and tropical SSTs anomalies during JJAS
season is shown in Fig. 164. Here, only the eastern pole of the 10D is considered as it is the stationary part of the 10D (Rao
et al., 2009). Observations show a strong positive correlation between the Indo-Pacific warm pool region and the equatorial
Atlantic Ocean. Negative correlations exist between the tropical Pacific Ocean and the western tropical Indian Ocean (Fig.
164 (a)). The pattern correlation of this teleconnection has improved from 0.31 in MMCFSv1 to 0.38 in MMCFSv2. Both
models capture the positive correlations over the Indo-Pacific warm pool region (Fig.34 (b), (c)). MMCFSv1 simulates a
basin-wide positive correlation over the eastern Indian Ocean (Fig.164 (c)) in contrast to the observed negative correlation
pattern (Fig.164 (ba)). It is also unable to capture the teleconnection pattern over the northern Pacific. MMCFSv2 captures
these teleconnection patterns over the tropical Oceans and the eastern Indian Ocean (Fig. 164 (c)).
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Figure 164: Correlation between SST over the eastern 10D box (10° S to equator, 90-110° E) and tropical SSTs anomalies
during JJAS. (a) Observations (ERSST), (b) MMCFSv1, and (c) MMCFSv2. The hatching shows statistically significant at
95 % confidence level.

Figure 175 shows the spatial map of the correlation between the SST anomalies over the eastern equatorial Indian
Ocean and rainfall anomalies over the tropical region. A positive correlation (not significant) in most parts of south/central
India is observed. An expected strong positive correlation exists over the eastern Indian Ocean and north of Australia. Pacific
and Atlantic Oceanic rainfall has a weak correlation with eastern equatorial Indian Ocean SST anomalies (Fig. 175).
MMCFSv2 simulates this EIOD-induced rainfall pattern over the central and southern Indian regions. It is, however, the
opposite of the observed relation over the northern Indian Ocean region (Fig. 175 (b)). MMCFSv1 overestimates this positive
correlation over the Indian region compared to MMCFSv2. The pattern correlation between these teleconnections (EIOD
SST-rainfall, Fig. 175) has improved from 0.13 in MMCFSv1 to 0.24 in MMCFSv2. The observed teleconnection between
ISMR and EIOD is -0.04 (Table 43). On the contrary, MMCFSv2 and MMCFSv1 show a strong positive teleconnections
relationship between ISMR and 10D of 0.33 and 0.68 respectively (Table 43). The strong unrealistic in-phase relation
between ISMR and EIOD is significantly reduced in MMCFSv2 from 0.68 to 0.33.
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Figure 175: Correlation between the SST anomalies over the eastern equatorial Indian Ocean (index) and rainfall anomalies
over the tropical regions. (a) Observations (GPCP), (b) MMCFSv1, and (c) MMCFSv2. The hatching shows statistical

significance at 95 % confidence level.

Figure 186 shows the simultaneous correlation between the JJAS ISMR anomaly index and tropical SST anomalies.
Observed ISMR correlates significantly (negatively) with SST anomalies over central-North Pacific (around 0-20° N, 150-
240° E). The correlation is weaker and positive over the northwestern Pacific region. ISMR is significantly (positively)
correlated with SST anomalies over the North Atlantic region and is weakly correlated with Indian Ocean SST anomalies
(observations in Fig. 186 (a)). Both models overestimate this correlation over the western north Pacific region compared to
observations. MMCFSv1 shows stronger teleconnections between ISMR and Pacific Ocean compared to MMCFSv2
(stronger negatives over central and east Pacific, and stronger positives over west Pacific). Northern Atlantic SST anomalies
are well captured by both models (Fig. 186 (b), (c)). MMCFSv2 can reproduce the observed correlation over the Indian and
Pacific oceans much better than MMCFSv1. Overall, the pattern correlation between the MMCFSv2 and observed
teleconnection is much higher (at 0.60) than MMCFSv1 (at 0.38). We further assessed the model in simulating the
teleconnection between Atlantic meridional and zonal modes and ISMR and found that MMCFSv2 cannot simulate the
observed AZM and AMM teleconnections (Table 43).
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Figure 186: Correlation between ISMR and global SST anomalies. (a) Observations (ERSST), (b)) MMCFSv1, (c)
MMCFSv2. The hatching shows statistically significant at a 95% confidence level.

4.3. Summary and Discussion

A new Monsoon Mission Coupled Forecast System version 2 (MMCFSv2) model has been deployed at [ITM to replace the
currently operational MMCFSv1. MMCFSv2 brings in a substantial number of component upgrades over the MMCFSv1.
These upgrades include the use of the MOM®6 ocean model over MOM4. CICE5 model over SIS sea-ice model of
MMCFSv1, Semi-Lagrangian dynamical core for integrating the GFS atmospheric model over the Eulerian one used
previously. The coupler in the MMCFSv1 is based on the NEMS framework. This framework allows the model to interface
with numerous external model components and brings in much-needed modularity for easy future upgradability. Coupled
hindcast simulations with April initial conditions from CFSR have been carried out for 25 years (from 1998 to 2022). This
dataset will be the baseline for future sensitivity studies using MMCFSv2.
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We documented the MMCFSv2 model skill (compared to MMCFSv1)imprevements in simulating mean tropical SST,
precipitation, and circulation. We also documented the skills in simulating Indian Summer Monsoon at seasonal time scales,
mean and inter annual variability of ISMR and its teleconnections with ENSO and 10D, AMM, and AZM. MMCFSv2
captures all the large-scale features during the JJAS season reasonably well. It shows improvements in many large-scale
meteorological features over MMCFSv1. The wet rainfall bias over the north Pacific is reduced considerably in MMCFSv2
compared to MMCFSv1. The wind shear bias is reduced considerably in MMCFSv2. Lower tropospheric winds are much
better simulated in MMCFSv2 compared to MMCFSv1. One of the biggest weaknesses of most climate models in
simulating the Indian monsoon is the dry bias compared to observations. MMCFSv2 reduced this bias compared to
MMCFSv1. MMCFSv2 much better simulates upper and lower tropospheric winds. Wind shear is also much closer to
observations over Indian landmass in MMCFSv2 compared to MMCFSv1.

MMCFSv2 showed improvements in reproducing mean of JJAS rainfall over MMCFSv1 by reducing the bias from 1.32 to
1.04 (~4 %) with respect to GPCP. MMCFSv2 captured the observed (GPCP) phase of interannual variability with a higher
skill of 0.72 over 0.55 of MMCFSv1. Hence, MMCFSv2 improved the phase skill by 30 % and amplitude skill by about 20
%. MMCFSv2 reduced the NRMSE from 1.06 of MMCFSv1 to 0.82 with respect to GPCP, which is about 20%. Compared
to the NMME models, MMCFSv2 has the highest skill in capturing the interannual variability of ISMR (ACC=0.72).
MMCFSv2 SD is very close to observations (normalized SD = 0.96), and it has one of the least NRMSE values (0.82).
Further, the MMCFSv2’s actual skill is (0.72) is very close to the potential skill (0.79) and is a large improvement over
MMCFSv1. MMCFSv2 has also attained the theoretical predictability limit of ~0.7. It was noticed that MMCFSv2 improves
the simulated large-scale teleconnection pattern between Nino 3.4 index and tropical SST with a higher pattern correlation
of 0.70 compared to 0.63 of MMCFSv1. The spatial pattern of correlation between ERSST over the eastern Indian ocean
dipole (EIOD) box (10° S to the Equator, 90-110° E) and tropical SSTs anomalies has improved (pattern correlation of
teleconnections from 0.31 in MMCFSv1 to 0.38 in MMCFSv2). MMCFSv2 did not reproduce the Nino3.4 induced SST
patterns over the Atlantic Ocean, whereas it is well captured by MMCFSv1l. MMCFSv2 captured the eastern Indian Ocean-
induced SST pattern over the Tropical Oceans, which was weaker in MMCFSv1.

The simultaneous correlation between the JJAS ISMR anomaly index and tropical SST anomalies showed that both
models overestimated the correlation over the western north Pacific region compared to observations. MMCFSv1 showed
stronger teleconnections between ISMR and Pacific Ocean compared to MMCFSv2 (stronger negatives over central and
east Pacific, and stronger positives over west Pacific). MMCFSv2 reproduced the observed correlation patterns with a higher
pattern correlation of 0.60 compared to 0.38 of MMCFSv1. Overall, MMCFSv2 captured the teleconnection between ISMR
and tropical SST anomalies closer to observations than MMCFSv1.

One of the potential research areas with coupled climate models in general and MMCFSV2 is the sea surface and air
temperatures biases compared to observations. The increased surface temperatures in MMCFSv2 resulted in warmer
tropospheric columns in the summer hemisphere. MMCFSv2, however, simulated temperatures closer to observations in
the winter hemisphere. Given that the use of MOM6 over MOM4 has enabled us to use many more parameterizations, we
will address this problem in a future study. The present study's focus was to present the climatological characteristics
simulated by MMCFSv2,

Jo summarize, the mean state of the atmosphere has improved in MMCFSv2 (compared to MMCFSv1), both in terms of

precipitation and circulation (850hPa winds). This has resulted in improved teleconnections (Figure 16). The pattern
correlation between spatial structure of teleconnections in Figure 16 (manuscript) has improved from 0.38 in MMCFSv1 to

0.60 in MMCFSv2. Hence the interannual variability skill has improved.

MMCFSv2 improves many meteorological fields compared with MMCFSv1 in ISMR hindcasts. However, the NEMS
coupling framework is the biggest improvement MMCFSv2 brings over MMCFSv1. This is central to making it easier to
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upgrade the individual model components as and when their respective scientific groups improve them. This is very
important for an operational model.

Code and Data availability

The current version of MMCFSv2 used for this study is available at https://doi.org/10.5281/zenodo.7905721 (Please check the license<—{ Formatted: Space Before: 0.05 pt, Line spacing: Multiple
files for individual component model in the repository). The data used for the analysis in this manuscript is available at 1.08 i

https://zenodo.org/record/7900790#.ZFU-T5FBxcA (DOI : 10.5281/zenodo0.7900790 ). The complete (processed) data used to
initialize and run the MMCFSv2 simulations from 1998-2022 is made available at

Input data  from 1998 to 2000 - https://doi.org/10.5281/zen0do.7935628, from 2001 to 2003
https://doi.org/10.5281/zenodo0.7947318, from 2004 to 2006 - https://doi.org/10.5281/zenodo.7947974, from 2007 to 2009 -
https://doi.org/10.5281/zenodo0.7948155, from 2010 to 2012 - https://doi.org/10.5281/zen0do.7949802, from 2013 to 2015 -
https://doi.org/10.5281/zenodo0.7950855, from 2016-2018 - https://doi.org/10.5281/zen0odo.7949863, from 2019-2021 -
https://doi.org/10.5281/zenodo.7950964, and for 2022 - https://doi.org/10.5281/zenodo.7951983

Please note that the original raw data belongs to NCEP (Saha, Suranjana, and Coauthors, 2010: The NCEP Climate Forecast System
Reanalysis. Bull. Amer. Meteor. Soc., 91, 1015€~@~S1057. https://doi.org/10.1175/2010BAMS3001.1).
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