Preprints
https://doi.org/10.5194/gmd-2023-52
https://doi.org/10.5194/gmd-2023-52
Submitted as: model evaluation paper
 | 
04 Apr 2023
Submitted as: model evaluation paper |  | 04 Apr 2023
Status: this preprint is currently under review for the journal GMD.

Improvements in the Canadian Earth System Model (CanESM) through systematic model analysis: CanESM5.0 and CanESM5.1

Michael Sigmond, James Anstey, Vivek Arora, Ruth Digby, Nathan Gillett, Viatcheslav Kharin, William Merryfield, Catherine Reader, John Scinocca, Neil Swart, John Virgin, Carsten Abraham, Jason Cole, Nicolas Lambert, Woo-Sung Lee, Yongxiao Liang, Elizaveta Malinina, Landon Rieger, Knut von Salzen, Christian Seiler, Clint Seinen, Andrew Shao, Reinel Sospedra-Alfonso, Libo Wang, and Duo Yang

Abstract. The Canadian Earth System Model version 5.0 (CanESM5.0), the most recent major version of the global climate model developed at the Canadian Centre for Climate Modelling and Analysis (CCCma) at Environment and Climate Change Canada (ECCC), has been used extensively in climate research and for providing future climate projections in the context of climate services. Previous studies have shown that CanESM5.0 performs well compared to other models and have revealed several model biases. To address these biases, CCCma has recently initiated the ‘Analysis for Development’ (A4D) activity, a coordinated analysis activity in support of CanESM development. Here we describe the goals and organization of this effort and introduce two variants (``p1'' and ``p2'') of a new CanESM version, CanESM5.1, which features substantial improvements as a result of the A4D activity. These improvements include the elimination of spurious stratospheric temperature spikes and an improved simulation of tropospheric dust. Other climate aspects of the p1 variant of CanESM5.1 are similar to those of CanESM5.0, while the p2 variant of CanESM5.1 features reduced equilibrium climate sensitivity and improved ENSO variability as a result of intentional tuning of the atmospheric component. The A4D activity has also led to the improved understanding of other notable CanESM5.0/5.1 biases, including the overestimation of North Atlantic sea ice, a cold bias over sea ice, biases in the stratospheric circulation and a cold bias over the Himalayas. It provides a potential framework for the broader climate community to contribute to CanESM development, which will facilitate further model improvements and ultimately lead to improved climate change information.

Michael Sigmond et al.

Status: open (until 15 Jun 2023)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on gmd-2023-52', Charles Pelletier, 17 May 2023 reply

Michael Sigmond et al.

Michael Sigmond et al.

Viewed

Total article views: 385 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
282 96 7 385 6 3
  • HTML: 282
  • PDF: 96
  • XML: 7
  • Total: 385
  • BibTeX: 6
  • EndNote: 3
Views and downloads (calculated since 04 Apr 2023)
Cumulative views and downloads (calculated since 04 Apr 2023)

Viewed (geographical distribution)

Total article views: 366 (including HTML, PDF, and XML) Thereof 366 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 05 Jun 2023
Download
Short summary
We present a new activity, which aims to organize the analysis of biases in the Canadian Earth System model (CanESM) in a systematic manner. Results of the first phase of this ‘Analysis for Development’ (A4D) activity includes a new CanESM version, CanESM5.1, which features substantial improvements regarding the simulation of dust and stratospheric temperatures, a second CanESM5.1 variant with reduced climate sensitivity, and insights into potential avenues to reduce various other model biases.