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Abstract.  12 

Poor representations of aerosols, clouds and aerosol-cloud interactions (ACI) in Earth System Models 13 
(ESMs) have long been the largest uncertainties in predicting global climate change. Huge efforts have 14 
been made to improve the representation of these processes in ESMs, and key to these efforts is 15 
evaluation of ESM simulations with observations. Most well-established ESM diagnostics packages focus 16 
on the climatological features; however, they are lacking process-level understanding and representations 17 
of aerosols, clouds, and ACI. In this study, we developed an ESM aerosol-cloud diagnostics package 18 
(ESMAC Diags) to facilitate routine evaluation of aerosols, clouds and aerosol-cloud interactions 19 
simulated by the Department of Energy’s (DOE) Energy Exascale Earth System Model (E3SM). This 20 
paper documents its version 2 functionality (ESMAC Diags v2), which has substantial updates from its 21 
version 1 (Tang et al., 2022a). The simulated aerosol and cloud properties have been extensively 22 
compared with in-situ and remote-sensing measurements from aircraft, ship, surface and satellite 23 
platforms in ESMAC Diags v2. It currently includes six field campaigns and two permanent sites 24 
covering four geographical regions: Eastern North Atlantic, Central U.S., Northeastern Pacific and 25 
Southern Ocean, where frequent liquid or mixed-phase clouds are present and extensive measurements 26 
are available from the DOE Atmospheric Radiation Measurement user facility and other agencies. 27 
ESMAC Diags v2 generates various types of single-variable and multi-variable diagnostics, including 28 
percentiles, histograms, joint histograms and heatmaps, to evaluate model representation of aerosols, 29 
clouds, and ACI. Select examples highlighting ESMAC Diags capabilities are shown using E3SM version 30 
2 (E3SMv2). E3SMv2 in general can reasonably reproduces many observed aerosol and cloud properties, 31 
with biases in some variables such as aerosol particle and cloud droplet sizes and number concentrations. 32 
The coupling of aerosol and cloud number concentrations may be too strong in E3SMv2, possibly 33 
indicating a bias in processes that control aerosol activation. Furthermore, the liquid water path response 34 
to perturbed cloud droplet number concentration behaves differently in E3SMv2 and observations, which 35 
warrants a further study to improve the cloud microphysics parameterizations in E3SMv2. 36 

  37 
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1. Introduction 38 

Poor representations of aerosols, clouds and aerosol-cloud interactions (ACI) in Earth System Models 39 
(ESMs) have long been the largest uncertainties in predicting global climate change (Ipcc, 2021). 40 
Challenges come from several aspects: first, there are many aerosol properties (e.g., number, size, phase, 41 
shape, composition) and cloud micro- and macro-physical properties (e.g., fraction, water content, 42 
number and size of liquid and ice hydrometeors) that affect Earth’s climate. Coincident measurements of 43 
these properties remain largely under-sampled due to substantial spatiotemporal variability and logistical 44 
difficulties for making such measurements. Second, there are complex interactive processes between 45 
aerosols, clouds, and ambient meteorological conditions, many of which are not fully understood, but are 46 
critical to properly interpreting relationships between observable properties. Third, many ACI processes 47 
are nonlinear, multi-scale processes that involve feedbacks depending on cloud types and meteorological 48 
regimes, which also shift in space and time, presenting challenges for assessing causal effect and 49 
representing such processes in ESMs. 50 

Huge efforts have been made to improve the representation of aerosols, clouds and ACI in ESMs. Key to 51 
these efforts is evaluation of ESM simulations with observations. Many modeling centers have developed 52 
standardized diagnostics packages to document ESM performance. For aerosol and cloud properties, most 53 
diagnostic packages rely heavily on satellite measurements as evaluation data (e.g., Amwg, 2021; E3sm, 54 
2021; Eyring et al., 2016; Gleckler et al., 2016; Maloney et al., 2019; Myhre et al., 2013; Schulz et al., 55 
2006). Satellite remote sensing measurements have global or near global coverage but limited spatial and 56 
temporal resolution. They are also facing many challenges to retrieve some variables, especially for 57 
aerosol properties such as number concentration, size distribution, chemical composition etc. Some recent 58 
studies (e.g., Choudhury and Tesche, 2022) have retrieved cloud condensation nuclei (CCN) number 59 
concentration from satellite measurements, which provides a great addition to investigate ACI in global 60 
scale. However, large uncertainties exist in satellite retrievals, even for more sophisticated retrieved cloud 61 
microphysical properties such as droplet number concentration (e.g., Grosvenor et al., 2018). This limits 62 
their application to robustly quantify aerosols, clouds and ACI processes. In-situ measurements from 63 
ground, aircraft or ship platforms from field campaigns are also used in a few projects to evaluate ESMs 64 
(e.g., Reddington et al., 2017; Watson-Parris et al., 2019; Tang et al., 2022a; Zhang et al., 2020). Some of 65 
these field campaigns were conducted over remote or poorly sampled locations, which are highly valuable 66 
for model evaluation despite limited spatial coverage and time periods. Moreover, the U.S. Department of 67 
Energy (DOE) Atmospheric Radiation Measurement (ARM) user facility has conducted continuous field 68 
measurements at a few sites for multiple years. These long-term high-resolution field measurements have 69 
also been demonstrated to be valuable for evaluating ESMs (e.g., Zhang et al., 2020). 70 

In response to the need for more ESM diagnostics for evaluating ACI processes, Tang et al. (2022a) 71 
developed an ESM aerosol-cloud diagnostics package (ESMAC Diags) to facilitate the routine evaluation 72 
of aerosols, clouds and ACI simulated by the Department of Energy’s (DOE) Energy Exascale Earth 73 
System Model (E3SM, Golaz et al., 2019). It includes diagnostics that leverage in-situ measurements 74 
from multiple platforms during six field campaigns since 2013, which are not included in previous 75 
diagnostics tools (e.g., Reddington et al., 2017). Version 1 of ESMAC Diags (ESMAC Diags v1, Tang et 76 
al., 2022a) mainly focuses on aerosol properties. We present here version 2 of ESMAC Diags (ESMAC 77 
Diags v2) that is a direct extension of ESMAC Diags v1 with two major additions:  78 



3 
 

1. measurements from satellite and long-term diagnostics at the ARM Southern Great Plains 79 
(SGP) and Eastern North Atlantic (ENA) sites. 80 

 2. diagnostics for cloud properties and aerosol-cloud interactions. 81 

The new measurements, as well as major data quality controls are introduced in Section 2. Additional 82 
discussions on retrieval uncertainties of cloud microphysical properties are performed in Section 3. 83 
Details of the code structure of ESMAC Diags v2, which is substantially changed since version 1, are 84 
described in Section 4. Section 5 provides selected examples of single-variable and multi-variable 85 
diagnostics using ESMAC Diags v2 to highlight its capabilities. Lastly, Section 6 provides a summary. 86 

2. Aerosol and cloud measurements from ground, aircraft, ship and satellite platforms 87 

Following the initial development in version 1, ESMAC Diags v2 continues to focus on six field 88 
campaigns conducted in four geographical regions: the Central U.S. (CUS, where the ARM Southern 89 
Great Plains (SGP) site is located), Eastern North Atlantic (ENA), Northeastern Pacific (NEP), and 90 
Southern Ocean (SO). Information on the six field campaigns is shown in Table 1 and their locations are 91 
shown in Figure 1, each reproduced from Table 1 and Figure 3 in Tang et al. (2022a).  92 

 93 

 94 

Figure 1. Aircraft (black) and ship (red) tracks for the six field campaigns. Red stars in 95 
the enlarged map indicate two ARM fixed sites: SGP and ENA, that have long-term 96 
measurements available for model diagnostics. Overlaid is aerosol optical depth at 550nm 97 
averaged from 2014 to 2018 simulated in E3SMv1. (Reproduced from Figure 3 in Tang et 98 
al., 2022a) 99 

Table 1. Descriptions of the field campaigns used in this study. (Reproduced from Table 1 100 
in Tang et al., 2022a) 101 

Campaign* Period Platform Typical Conditions Reference 

MARCUS

CSET

SOCRATES

MAGIC

SGP

ENA

— aircraft
— ship

surface

AOD@550nm
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HI-SCALE IOP1: 24 Apr – 21 
May 2016 
IOP2: 28 Aug – 24 
Sep 2016 

Ground, aircraft 
(IOP1: 17 flights, 
IOP2: 21 flights) 

Continental cumulus with 
high aerosol loading 

(Fast et al., 2019) 

ACE-ENA IOP1: 21 Jun – 20 
Jul 2017 
IOP2: 15 Jan – 18 
Feb 2018 

Ground, aircraft 
(IOP1: 20 flights, 
IOP2: 19 flights) 

Marine stratocumulus 
with low aerosol loading 

(Wang et al., 
2021) 

MAGIC Oct 2012 – Sep 
2013 

Ship (18 legs) Marine stratocumulus to 
cumulus transition with 
low aerosol loading 

(Lewis and 
Teixeira, 2015; 
Zhou et al., 2015) 

CSET 1 Jul – 15 Aug 2015 Aircraft (16 flights) Same as above (Albrecht et al., 
2019) 

MARCUS Oct 2017 – Apr 
2018 

Ship (4 legs) Marine liquid and mixed 
phase clouds with low 
aerosol loading 

(Mcfarquhar et 
al., 2021) 

SOCRATES 15 Jan – 24 Feb, 
2018 

Aircraft (14 flights) Same as above (Mcfarquhar et 
al., 2021) 

* Full names of the listed field campaigns: 102 
HI-SCALE: Holistic Interactions of Shallow Clouds, Aerosols and Land Ecosystems 103 
ACE-ENA: Aerosol and Cloud Experiments in the Eastern North Atlantic 104 
MAGIC: Marine ARM GCSS Pacific Cross-section Intercomparison (GPCI) Investigation of Clouds 105 
CSET: Cloud System Evolution in the Trades 106 
MARCUS: Measurements of Aerosols, Radiation and Clouds over the Southern Ocean 107 
SOCRATES: Southern Ocean Cloud Radiation and Aerosol Transport Experimental Study 108 
 109 

The collection and processing of observations are the most time-consuming part of developing ESMAC 110 
Diags, which also impacts the reliability of conclusions drawn from the model diagnostics. In this section, 111 
we introduce the data used in ESMAC Diags v2, existing quality issues in some datasets, and treatments 112 
to address these quality issues. Some variables are difficult to directly measure or have limited in-situ 113 
sampling and thus must be derived from remote sensing measurements using retrieval algorithms. In 114 
Section 3, we further discuss the uncertainty and reliability of some cloud retrieval products via 115 
comparisons with in-situ aircraft measurements. 116 

2.1. Data availability 117 

All measurements, instruments, and data products used in the six field campaigns and two long-term sites 118 
in ESMAC Diags v2 are shown in Table 2. Further details of the measurements, data product names, and 119 
DOIs are given in Tables S1 to S6 (for field campaigns) and Tables S7 and S8 (for SGP and ENA sites) in 120 
the supplementary material. To allow maximum overlapping of key measurements while also ensuring a 121 
long enough period for statistical evaluation, we select the periods of 1 Jan 2011 – 31 Dec 2020 for SGP 122 
and 1 Jan 2016 – 31 Dec 2018 for ENA for long-term analyses. In addition to the aerosol measurements 123 
discussed in Tang et al. (2022a), we incorporate more cloud and radiation measurements, as well as 124 
geostationary satellite retrievals using Visible Infrared Solar-Infrared Split Window Technique (VISST) 125 
(Minnis et al., 2008; Minnis et al., 2011) algorithm. The VISST products archived by ARM cover 126 
approximately 10° by 10° regions in 0.5° by 0.5° resolution centered over ARM sites. Moreover, ARM 127 
recently released products consisting of merged aerosol particle and cloud droplet size distributions from 128 
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aircraft measurements for HI-SCALE and ACE-ENA campaigns. These data are now used in ESMAC 129 
Diags v2.  130 

Table 2: List of instruments and measurements used in ESMAC Diags v2. 131 

Platform Measurements Instruments / data products Available 
campaigns 

Ground Surface temperature, 
relative humidity, wind, 
pressure, precipitation; 
upper-level temperature, 
relative humidity, wind 

Surface meteorological station (MET), ARM best 
estimate (ARMBE) products 

HI-SCALE, ACE-
ENA, SGP, ENA 

Longwave and shortwave 
radiation, cloud fraction 

ARM best estimate (ARMBE) products HI-SCALE, ACE-
ENA, SGP, ENA 

Aerosol number 
concentration 

Condensation particle counter (CPC), Condensation 
particle counter – fine (CPCF), Condensation particle 
counter – ultrafine (CPCU), Ultra-high sensitivity 
aerosol spectrometer (UHSAS), Scanning mobility 
particle sizer (SMPS) 

HI-SCALE, ACE-
ENA, SGP, ENA 

Aerosol size distribution Ultra-high sensitivity aerosol spectrometer (UHSAS), 
Scanning mobility particle sizer (SMPS), Nano 
scanning mobility particle sizer (nanoSMPS) 

HI-SCALE, ACE-
ENA, SGP, ENA 

Aerosol composition Aerosol chemical speciation monitor (ACSM) HI-SCALE, ACE-
ENA, SGP, ENA 

CCN number 
concentration 

Cloud condensation nuclei (CCN) counter HI-SCALE, ACE-
ENA, SGP, ENA 

Cloud optical depth  Multifilter rotating shadowband radiometer (MFRSR) HI-SCALE, ACE-
ENA, SGP, ENA 

Cloud droplet number 
concentration  

Cloud droplet number concentration retrieval (Ndrop), 
cloud retrieval from Wu et al. (2020) 

HI-SCALE, ACE-
ENA, SGP, ENA 

Cloud droplet effective 
radius 

Multifilter rotating shadowband radiometer (MFRSR), 
cloud retrieval from Wu et al. (2020) 

HI-SCALE, ACE-
ENA, SGP, ENA 

Cloud liquid water path Microwave radiometer (MWR), ARM best estimate 
(ARMBE) products 

HI-SCALE, ACE-
ENA, SGP, ENA 

Cloud base height, cloud 
top height 

Active remote sensing of clouds (ARSCL) HI-SCALE, ACE-
ENA, SGP, ENA 

Satellite TOA shortwave and 
longwave radiation 

Geostationary satellite-based retrievals using Visible 
Infrared Solar-Infrared Split Window Technique 
(VISST) algorithm 

HI-SCALE, ACE-
ENA, MAGIC, 
MARCUS, SGP, 
ENA 

cloud fraction; height, 
pressure and temperature 
at cloud top 

Geostationary satellite-based retrievals using Visible 
Infrared Solar-Infrared Split Window Technique 
(VISST) algorithm 

HI-SCALE, ACE-
ENA, MAGIC, 
MARCUS, SGP, 
ENA 

liquid water path; cloud 
optical depth; droplet 
effective radius 

Geostationary satellite-based retrievals using Visible 
Infrared Solar-Infrared Split Window Technique 
(VISST) algorithm 

HI-SCALE, ACE-
ENA, MAGIC, 
MARCUS, SGP, 
ENA 

Cloud droplet number 
concentration  

Retrieved from VISST data using the algorithm in 
Bennartz (2007) 

HI-SCALE, ACE-
ENA, MAGIC, 
MARCUS, SGP, 
ENA 

Aircraft Navigation information 
and meteorological 
parameters 

Interagency working group for airborne data and 
telemetry systems (IWG) 

HI-SCALE, ACE-
ENA 

Aerosol number 
concentration 

Condensation particle counter (CPC), Condensation 
particle counter – ultrafine (CPCU), Condensation 
nuclei counter (CNC), Ultra-high sensitivity aerosol 
spectrometer (UHSAS), Passive cavity aerosol 
spectrometer (PCASP) 

HI-SCALE, ACE-
ENA, CSET, 
SOCRATES  
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Aerosol size distribution Ultra-high sensitivity aerosol spectrometer (UHSAS), 
Fast integrated mobility spectrometer (FIMS), Passive 
cavity aerosol spectrometer (PCASP), Best estimate 
aerosol size distribution (BEASD) 

HI-SCALE, ACE-
ENA, CSET, 
SOCRATES  

Aerosol composition High-resolution time-of-flight aerosol mass 
spectrometer (AMS) 

HI-SCALE, ACE-
ENA 

CCN number 
concentration 

Cloud condensation nuclei (CCN) counter HI-SCALE, ACE-
ENA, SOCRATES  

Cloud liquid water 
content 

Water content measuring system (WCM), PMS-King 
Liquid Water Content (LWC) 

HI-SCALE, ACE-
ENA, CSET, 
SOCRATES  

Cloud droplet number 
size distribution 

1DC, 2DC, 2DS, CDP, Cloud probe merged size 
distribution (mergedSD) 

HI-SCALE, ACE-
ENA, CSET, 
SOCRATES  

Ship Navigation information 
and meteorological 
parameters 

Meteorological station (MET) MAGIC, MARCUS 

Aerosol number 
concentration 

Condensation particle counter (CPC), Ultra-high 
sensitivity aerosol spectrometer (UHSAS) 

MAGIC, MARCUS 

Aerosol size distribution Ultra-high sensitivity aerosol spectrometer (UHSAS) MAGIC, MARCUS 
CCN number 
concentration 

Cloud condensation nuclei (CCN) counter MAGIC, MARCUS 

Cloud liquid water path Microwave radiometer (MWR) MAGIC, MARCUS 
Cloud droplet number 
concentration, cloud 
effective radius 

Cloud retrieval from Wu et al. (2020) MAGIC 

 132 

All the observational data are quality controlled with their time resolution re-scaled to that suitable for 133 
evaluating E3SM, and the rescale resolution can be adjusted to fit for different model output frequencies. 134 
Currently, ground, ship and satellite measurements are re-scaled to a 1-hour frequency to be consistent 135 
with current E3SM output frequency. Rescaling consists of computing either the median, mean or 136 
interpolated value depending on the original data frequency and variable properties. For most aerosol and 137 
cloud microphysics measurements, the median value is computed to remove occasional spikes or zeros 138 
resulting from data contamination or measurement error. For some bulk cloud properties (e.g., cloud 139 
fraction, liquid water path (LWP)), the mean value is computed to be consistent with grid-mean E3SM 140 
output. Interpolation is only used when the input frequency is equal to or coarser than the frequency of 141 
model output. For aircraft measurements, 1-minute resolution is used to retain high variability and allow 142 
matching samples of aerosol and cloud at the same time. To compare with high-frequency aircraft data, 143 
E3SM output is interpolated to the same resolution using the nearest grid cell and time slice. Although the 144 
current 1-hour, 1-degree E3SM output could not capture the high variability of the aircraft measurements, 145 
we are targeting the exascale E3SM version planned in the next few years. In kilometer scale resolution 146 
ESM simulations, the high variability in aircraft measurements will be better captured. In the current 147 
diagnostics we only focus on the statistics for the entire campaign. As seen later in Section 5.1, coarse-148 
resolution model outputs show similar percentile ranges with the high-resolution aircraft measurements, 149 
indicating that for simple percentiles, large-scale variabilities dominate over subgrid variabilities over 150 
month-long field campaign periods. Further analysis is needed to understand the importance of other 151 
statistics (variance, covariance, etc.) of subgrid scale variabilities. . All processed data are saved in a 152 
standardized NetCDF format (Netcdf, 2022) and available for downloading (see data availability section) 153 
and direct use. 154 

2.2 Data quality issues and treatments 155 
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Many observation datasets used in ESMAC Diags are ARM level-b (quality-controlled) or level-c (value-156 
added) products, which include quality control (QC) flags to indicate data quality issues. For most 157 
datasets, a QC treatment is applied to remove all data with questionable flags. However, there are certain 158 
datasets or circumstances in which a QC flag is overly strict (too many good data are removed) or not 159 
strict enough (some bad data are not removed). Here we document some of these situations and how we 160 
handle them in our data processing. 161 

2.2.1 ARM Condensation Particle Counter (CPC) measurements 162 

ARM CPC data have several QC values representing failure of different quality checks. One of them 163 
checks if the concentration is greater than a maximum allowable value, which is set to 8,000 cm-3 for 164 
model 3010 (CPC, size detection limit 10 nm), 10,000 cm-3 for model 3772 (CPCF, size detection limit 10 165 
nm), and 50,000 cm-3 for model 3776 (CPCU, size detection limit 3 nm). At SGP, new particle formation 166 
(NPF) events occur frequently when CPC and CPCF measurements can exceed 30,000 cm-3. This is much 167 
higher than the maximum allowable value but physically reasonable. Simply removing these large values 168 
results in an underestimation of aerosol number concentration and produces unrealistic diurnal cycle since 169 
they usually occur during the daytime (Tang et al., 2022a). By consulting with the ARM instrument 170 
mentor, we only remove data with critical QC flags, but keep data with this QC flag that is overly 171 
restrictive. 172 

2.2.2 NCAR research flight aerosol number concentration (CN) measurements 173 

NCAR research flight (RF) data used in ESMAC Diags do not include QC flags but occasionally show 174 
suspiciously large or negative aerosol counts. The following minimum and maximum thresholds are 175 
applied to remove suspicious data: 176 

• Total CN from a Condensation Nucleation Counter (CNC, reported as CONCN): minimum = 0, 177 
maximum = 25,000 cm-3. 178 

• Total CN from an Ultra-High-Sensitivity Aerosol Spectrometer (UHSAS, reported as 179 
UHSAS100): minimum = 0, maximum = 5,000 cm-3. 180 

• Aerosol number size distribution from an UHSAS (reported as CUHSAS_RWOOU or 181 
CUHSAS_LWII): minimum = 0, maximum = 500 cm-3 per size bin. 182 

2.2.3 Ship-measured aerosol properties 183 

Aerosol instruments on ships are occasionally contaminated by ship emissions, which present as large 184 
spikes in aerosol and CCN number concentrations. For ARM MARCUS measurements, Humphries 185 
(2020) published reprocessed CN and CCN data to remove ship exhaust contamination using method 186 
described in Humphries et al. (2019). This data is used in this diagnostics package. For MAGIC, we could 187 
not find any ship exhaust contamination information. By visually examining the dataset, a simple 188 
maximum threshold (25,000 cm-3 for CPC, 5,000 cm-3 for UHSAS100, 2,000 cm-3 for CCN at 0.1% 189 
supersaturation and 4,000 cm-3 for CCN at 0.5% supersaturation) is applied to remove likely 190 
contamination from ship emissions. 191 

2.2.4 CCN measurements 192 
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There are different supersaturation (SS) setting strategies for CCN measurements. Some aircraft 193 
campaigns measured CCN with constant SS (ACE-ENA, HI-SCALE). Some other campaigns measured 194 
CCN with time-varying (scanning) SS (SOCRATES, surface CCN counters at SGP and ENA). However, 195 
the actual SS in a scanning strategy has fluctuations that are different than the target SS. For the latter, 196 
CCN for each SS (0.1%, 0.2%, 0.3% and 0.5%) are obtained by selecting CCN measured within ± 0.05% 197 
of the SS target. 198 

For long-term measurements at SGP and ENA, near-hourly CCN spectra data are available, and a 199 
quadratic polynomial is fit to the spectra such that CCN number concentration can be estimated at any SS 200 
between the measured minimum and maximum SS values. We calculate and output CCN number 201 
concentration from these fits at three target supersaturations (0.1%, 0.2% and 0.5%). The fitted spectra 202 
data provides CCN number concentration at the exact target supersaturations, but the sample number is 203 
slightly smaller due to occasional failure of polynomial fitting. 204 

2.2.5 Contaminated surface aerosol measurements at ENA 205 

The ARM ENA site is located at a local airport. Aerosol measurements at ENA are sometimes 206 
contaminated by aircraft and vehicle emissions, rendering the measurements not representative of the 207 
background environment. Gallo et al. (2020) identified periods when CPC measurements were likely 208 
contaminated from localized emissions (Figure 2a). Their aerosol mask data has 1-min resolution. When 209 
we rescale the data to 1-hr resolution and apply the mask on other coarse time-resolution aerosol 210 
measurements (e.g., ACSM, Figure 2c), we mask hours in which more than half of the hour is flagged by 211 
the aerosol mask. The masking slightly increases the occurrence fraction of small values due to removing 212 
many large values, but it does not change the overall distribution (Figure 2b and 2d). A sensitivity 213 
analysis was performed, showing that 50% is a reasonable threshold to balance removal of contamination 214 
with keeping reasonable data (not shown). 215 

 216 

Figure 2: (a) CPC-measured CN from 10 to 15 October 2017 (1-minute resolution) with 217 
local contamination flagged by Gallo et al. (2020). (b) histogram of CPC-measured CN for 218 
all data from 2016-2018. (c) ACSM measured total organic matter from 10 to 15 October 219 
2017 (1-hour resolution). Hours with more than half or the hour flagged in 1-minute CPC 220 



9 
 

data are masked as contaminated. (d) histogram of ACSM-measured total organic matter 221 
for all data from 2016-2018. 222 

3. Verification of cloud retrievals with in-situ measurements  223 

Cloud microphysical properties such as droplet number concentration (𝑁𝑁𝑑𝑑) and effective radius (𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒) are 224 
important variables that connect clouds to other aspects in the climate system such as aerosols and 225 
radiation. Except in field campaigns where in-situ aircraft measurements are available, remote sensing 226 
retrieval algorithms are usually needed to derive these quantities. Several cloud retrieval products from 227 
ground and satellite measurements with different algorithms are used in ESMAC Diags v2. This section 228 
compares these cloud retrievals with in-situ aircraft measurements to assess retrieval limitation, 229 
uncertainty, and utility. 𝑁𝑁𝑑𝑑 and 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 from aircraft measurements taken during HI-SCALE and ACE-ENA 230 
field campaigns are calculated from merged cloud droplet number size distributions (mergedSD) from 231 
three different cloud probes with different size ranges. The mergedSD covers the size range from 1.5 µm 232 
to 9075 µm, covering the entire E3SM cloud droplet size distribution range and extending to rain droplet 233 
size range (> 100 µm). For field campaigns used in this study, the aircraft only flied through non-234 
precipitating or drizzling clouds, in which the airborne measurements usually measure rain droplet 235 
number 3 to 5 orders of magnitude smaller than cloud droplet number. Therefore, the inclusion of rain 236 
droplet size range has ignorable impact on the aircraft-estimated 𝑁𝑁𝑑𝑑 and 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 . 237 

Table 3 lists 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 and  𝑁𝑁𝑑𝑑 retrieval products used in ESMAC Diags v2. We retrieved Nd_sat with input 238 
data from VISST products using the algorithms described in Bennartz (2007), but assuming a ratio of the 239 
drop volume mean radius to 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 (commonly referred to as k) of 0.74 and a cloud adiabaticity of 80% 240 
(Varble et al., 2023). Other datasets are all available as released products. All retrievals assume a 241 
horizontally homogeneous single-layer liquid phase cloud with constant 𝑁𝑁𝑑𝑑 throughout the cloud layer. 242 
However, retrieval algorithms are usually run for all conditions whenever they return valid values. When 243 
assumptions are not satisfied, retrieved properties may contain large errors and likely alter statistics such 244 
as increasing the occurrence frequency of small 𝑁𝑁𝑑𝑑 as will be shown next. 245 

Table 3: Cloud droplet effective radius 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 and number concentration 𝑁𝑁𝑑𝑑 retrievals 246 

Variable Dataset Platform Campaign/site Retrieved from Reference 

𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 MFRSRCLDOD Ground  HI-SCALE, ACE-
ENA, SGP, ENA 

SW diffuse flux, 
LWP 

(Min and Harrison, 
1996; Turner et al., 
2021) 

VISST Satellite HI-SCALE, ACE-
ENA, MAGIC, 
MARCUS, SGP, ENA 

Brightness 
temperature 

(Minnis et al., 2011) 

Wu_etal Ground  ACE-ENA, MAGIC, 
ENA 

Radar reflectivity, 
LWP 

(Wu et al., 2020) 

 𝑁𝑁𝑑𝑑 Ndrop Ground  HI-SCALE, ACE-
ENA, SGP, ENA 

LWP, COD, cloud 
height 

(Riihimaki et al., 
2021; Lim et al., 
2016) 

Nd_sat 
(calculated from 
VISST) 

Satellite HI-SCALE, ACE-
ENA, MAGIC, 
MARCUS, SGP, ENA 

LWP, COD, CTT (Bennartz, 2007) 
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Wu_etal Ground  ACE-ENA, MAGIC, 
ENA 

Radar reflectivity, 
LWP 

(Wu et al., 2020) 

MFRSRCLDOD: Cloud Optical Properties from the MultiFilter Shadowband Radiometer (MFRSR) 247 
SW: shortwave 248 
COD: cloud optical depth 249 
CTT: cloud top temperature 250 
 251 

Figures 3 shows the occurrence fraction histograms of 𝑁𝑁𝑑𝑑 retrievals with aircraft measurements for HI-252 
SCALE and ACE-ENA field campaigns, with the comparison of original temporal resolution versus 30-253 
minute mean, and the use of all available samples and samples that are filtered as overcast (cloud 254 
fraction > 90%) low-level (cloud top height < 4 km) clouds. Figure 4 shows similar plots but for 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒. 255 
We also selected two cases with single-layer boundary layer stratus or stratocumulus clouds and plotted 256 
their timeseries of original-resolution and 30-min averaged 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑁𝑁𝑑𝑑 in Figure S1. The high-frequency 257 
aircraft measurements and MFRSR/Ndrop retrievals exhibit much larger variability than coarse-frequency 258 
retrievals of Wu_etal and VISST. They frequently sample cloud edges or cloud top/base (for aircraft), 259 
where 𝑁𝑁𝑑𝑑 is typically less than further into the cloud. This causes large occurrence fractions in the lowest 260 
few bins in the 𝑁𝑁𝑑𝑑 histograms (Figure 3a and 3d). The 30-min VISST products also show large 261 
occurrence fraction in the lowest 𝑁𝑁𝑑𝑑 bin for HI-SCALE (Figure 3a), likely due to high frequency of 262 
partial cloudy condition over continental U.S. Filtering conditions to only include overcast low-level 263 
clouds (Figure 3b, e) and averaging into a coarser resolution (Figure 3c, f) both contribute to the reduction 264 
of occurrence fraction in small-𝑁𝑁𝑑𝑑 bins, and make the measurements from different instruments more 265 
comparable.  266 

 267 

 268 

Figure 3: Histogram of 𝑁𝑁𝑑𝑑 from different measurements/retrievals in (top) HI-SCALE and 269 
(bottom) ACE-ENA field campaigns, with total sample numbers in the parentheses. (a) and 270 
(d) use data samples in their original resolution (1 s for aircraft measurements, 20 s for 271 
Ndrop data, 5 min for Wu_etal data, and 30 min for VISST data). (b) and (e) include only 272 
overcast low-cloud situations. For aircraft data, this means 𝑁𝑁𝑑𝑑 is > 1 cm-3 for 5 s before 273 
and after the sampling time; for Ndrop and VISST data, it means cloud fraction > 90% and 274 
cloud top height < 4km. (c) and (f) include only overcast low-cloud situations, and 275 
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average into 30-min resolution. For all the plots, VISST data with solar zenith angle > 65° 276 
are removed to avoid artifact from sunlight. 277 

 278 

 279 

Figure 4: similar as in Figure 3 but for 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒. 280 

Overall, the remote sensing retrievals and aircraft measurements produce reasonable ranges of 𝑁𝑁𝑑𝑑 and 281 
𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒. Marine clouds (ACE-ENA) have smaller 𝑁𝑁𝑑𝑑 (Figure 3) and larger 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 (Figure 4) than continental 282 
clouds (HI-SCALE). Different retrievals are more consistent with each other for marine clouds than 283 
continental clouds. Even after rescaling to the same temporal resolution, aircraft and Ndrop data exhibit 284 
broader 𝑁𝑁𝑑𝑑 distributions than satellite retrieval, likely due to their high sampling frequency that may 285 
capture more extreme conditions with very high or low 𝑁𝑁𝑑𝑑. Moreover, the assumption of a fixed 286 
adiabaticity (0.8) in satellite retrieval will also narrow 𝑁𝑁𝑑𝑑 distribution. For 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒, we do not expect 287 
different datasets to be perfectly agree with each other, as cloud droplet size grows with height in the 288 
cloud. All remote sensing retrievals have larger 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 values than aircraft measurements, potentially 289 
because remote sensors weight more towards the upper cloud where droplet size and liquid water content 290 
(LWC) are larger. Wu_etal retrieves vertical profiles of 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒, and a median value of the 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 profile is 291 
used to represent the entire cloud. This makes Wu_etal retrieval weight less toward large droplets thus its 292 
𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 is less than MFRSR and VISST. VISST data have the largest 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 values, likely because satellite 293 
retrievals reflect conditions at the cloud top. Given the spread in retrieved cloud properties, the limitations 294 
and uncertainties of cloud microphysics retrievals clearly need to be considered when they are used to 295 
evaluate model performances. 296 

4. Structure of diagnostics package 297 

Figure 5 shows the directory structure of ESMAC Diags v2. It is substantially changed from ESMAC 298 
Diags v1 (Tang et al., 2022a). First, we save all data separately as raw_data, which stores all input 299 
datasets collected from field campaigns, and prep_data, which stores preprocessed data with standardized 300 
time resolution and quality controls as described in Section 2. The structure is still designed to be flexible 301 
for future extension with additional measurements and/or functionality. Second, the diagnostics functions 302 
now give users more freedom to modify analyses, such as selecting different time periods, performing 303 
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additional data filtering or treatments, and examining ACI relationships in specified variable 304 
combinations (for scatter plots, joint histograms or heatmaps). We provide a set of example scripts to 305 
assist users design their own diagnostics based on their needs. We also provide the source code of data 306 
preparation for observations and model output, and a detailed instruction on how to run the code. Users 307 
can revise the code to process their own observational data or model output. All the information is 308 
available in the ESMAC Diags github repository.  309 

 310 

Figure 5: Directory structure of ESMAC Diags v2. Blue boxes describe the functions of 311 
the directory. Asterisks represent boxes that follow the same format as those shown in 312 
parallel. 313 

ESMAC Diags v1 included diagnostics of aerosol mean statistics (mean, bias, RMSE, correlation), 314 
timeseries, diurnal cycle, vertical profiles, mean particle number size distribution, percentiles by 315 
height/latitude, and pie/bar charts (Tang et al., 2022a). ESMAC Diags v2 now includes the following new 316 
diagnostics that include cloud variables: 317 

- 5th, 25th, 50th, 75th and 95th percentiles, 318 
- Seasonal cycle at SGP and ENA, 319 
- Histograms for individual variables, 320 
- Scatter plots, 321 
- Joint histograms of two variables, and 322 
- Heatmaps of three variables (mean of one variable binned by two other variables). 323 
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The inclusion of two-variable scatter plots, joint histograms, and three-variable heatmaps provides the 324 
functionality to study ACI-related relationships. We present a few examples in the next section to 325 
demonstrate these new diagnostics. 326 

 327 
5. Diagnostics Examples 328 

In this section, we show some examples of diagnostics applied to E3SM version 2 (E3SMv2) (Golaz et 329 
al., 2022). Compared to the aerosol and cloud parameterizations in E3SMv1 (Rasch et al., 2019; Golaz et 330 
al., 2019), E3SMv2 updated the treatments on dust particles, incorporated recalibration of parameters (Ma 331 
et al., 2022), changed the call order and refactored the code of the Cloud Layers Unified By Binormals 332 
(CLUBB) parameterization, and retuned some parameters (Golaz et al., 2022). We constrain the model 333 
simulations by nudging the horizontal winds towards the 3-hourly Modern-Era Retrospective analysis for 334 
Research and Applications, Version 2 (MERRA-2, Gelaro et al., 2017) with a nudging time scale of 6 335 
hour. Previous studies have shown that with nudging, E3SM can well simulate the large-scale circulations 336 
in reanalyses (Sun et al., 2019; Zhang et al., 2022). The model was run for individual field campaigns 337 
(Table 1) and from 2010 to 2020 for long-term diagnostics at SGP and ENA sites, with hourly model 338 
output saved over the field campaign regions for detail evaluation. As described in Section 2, all 339 
diagnostics for ground and ship campaigns are in 1-hour resolution while diagnostics for aircraft 340 
campaigns are in 1-minute resolution. For aerosol and cloud variables, model raw output variables (not 341 
from instrument simulators) are used in this paper to reveal the intrinsic ACI relationships in E3SM. 342 
However, as can be seen later in this section, instrument simulators can be better used in some diagnostics 343 
to ensure more consistent comparison. Users may choose whether or not to use simulators in their 344 
diagnostics depending on their purpose.  345 

5.1. Single-variable diagnostics 346 

Figures 6 and 7 show mean and percentile values of aerosol and cloud properties measured from field 347 
campaigns in the four geographical regions: CUS, ENA, NEP and SO. Figure 6 is for aircraft platforms 348 
and Figure 7 is for ground or ship platforms with satellite data included when available. Note that the 349 
aircraft and ground/ship campaigns may cover different time periods (Table 1), thus some differences 350 
seen between aircraft and ship measurements may be caused by seasonal variation. As cloud 351 
microphysical properties are usually retrieved with assumptions (Section 3), for ground/ship/satellite data, 352 
we only focus on overcast low-level liquid cloud condition here (cloud fraction > 90%, cloud top height < 353 
4 km and ice water path < 0.01 mm). E3SM does not output cloud top height, which is derived using a 354 
weighting integration method as described in Varble et al. (2023). 355 

From both aircraft and ground/ship data, HI-SCALE has much larger aerosol and cloud droplet number 356 
concentrations with smaller droplet sizes compared to other campaigns, which is expected for a 357 
continental environment compared to a marine environment. The cloud optical depth is also greater for 358 
HI-SCALE than other campaigns, which is driven by smaller droplet sizes rather than LWP differences. 359 
Satellite retrievals generally produce smaller 𝑁𝑁𝑑𝑑, LWP, and cloud optical depth with greater 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 than 360 
surface retrievals. As discussed in Section 3, retrieval uncertainties need to be kept in mind when these 361 
retrieved microphysical properties are used to evaluate models.  362 
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E3SMv2 overestimates CN (> 10 nm) over CUS, ENA and NEP. Larger particle concentration (CN > 100 363 
nm) is generally underestimated over CUS and overestimated over ENA and NEP. Over SO, E3SMv2 364 
produces fewer small aerosol particles (CN > 10 nm) and about the same number of large aerosol 365 
particles (CN > 100 nm) compared to the observations. These results are confirmed by both aircraft and 366 
ground/ship campaigns, except for the HI-SCALE aircraft campaign where small particles from local 367 
emissions were occasionally observed but unable to be simulated. These results are consistent with our 368 
previous diagnostics for E3SMv1 (Tang et al., 2022a). E3SMv2 also underestimates 𝑁𝑁𝑑𝑑 over CUS and 369 
SO, which corresponds with the underestimation of accumulation mode (> 100 nm) CN over CUS but 370 
underestimation of Aitken mode (> 10 nm) CN over SO. It is possible that over very clean regions such as 371 
SO, small particles are more important in cloud formation than over continental regions such as CUS. 372 
Simulated LWP (LWC) is generally consistent with satellite (aircraft) measurements, but smaller than 373 
ground/ship measurements, which may be partly caused by rain contamination of ground/ship retrievals. 374 
𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 evaluation is less certain given large discrepancies between satellite and ground retrievals.  375 
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  376 

Figure 6: Box-whisker plots of (a) CN for size > 10 nm, (b) CN for size > 100 nm, (c) in-377 
cloud 𝑁𝑁𝑑𝑑, (d) LWC for all data from aircraft field campaigns at CUS, ENA, NEP and SO 378 
regions from left to right. Boxes denote 25th and 75th percentiles, whiskers denote 5th and 379 
95th percentiles, the white horizontal line represents median values, and the white dot 380 
represents mean values. For aerosol number concentrations, the y axes for HI-SCALE are 381 
separated from other field campaigns for better visualization. The top whiskers that are 382 
out of the y-axis range are: (a) HI-SCALE obs: 13681. ACE-ENA E3SMv2: 2061. 383 
SOCRATES obs: 2745. (b): ACE-ENA E3SMv2: 304. CSET obs: 305. CSET E3SMv2: 384 
400. (c): HI-SCALE obs: 397. 385 
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  386 

Figure 7: Box-whisker plots of (a) CN for size > 10 nm, (b) CN for size > 100 nm, (c) 387 
layer-mean 𝑁𝑁𝑑𝑑, (d) LWP, (e) 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒, (f) cloud optical depth for overcast low-level liquid 388 
cloud conditions (cloud top height < 4 km, cloud fraction > 90% and ice water path < 0.01 389 
mm) in ground and ship field campaigns at CUS, ENA, NEP and SO regions from left to 390 
right. Boxes denote 25th and 75th percentiles, whiskers denote 5th and 95th percentiles, the 391 
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white horizontal line represents median values, and the white dot represents mean values. 392 
For aerosol number concentrations, the y axes for HI-SCALE are separated from other 393 
field campaigns for better visualization. The top whiskers that are out of the y-axis range 394 
are: (a) HI-SCALE E3SMv2: 6102. ACE-ENA E3SMv2: 7575. MAGIC obs: 3330. MAGIC 395 
E3SMv2: 3771. (b): ACE-ENA obs: 304.7. ACE-ENA E3SMv2: 328.3. MAGIC obs: 377.7. 396 
MAGIC E3SMv2: 577.8. (c): HI-SCALE obs: 670.9. 397 
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  398 

Figure 8: histogram of (from top to bottom) surface CCN number concentration, layer-399 
mean 𝑁𝑁𝑑𝑑, 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒, cloud optical depth and total cloud fraction at (left) SGP from 2011 to 400 
2020 and (right) ENA from 2016 to 2018. Surface CCN and total cloud fraction are using 401 
all-condition samples while 𝑁𝑁𝑑𝑑, 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒, cloud optical depth data are filtered for overcast 402 

SGP ENA
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low-level liquid clouds (cloud top height < 4 km, cloud fraction > 90%, ice water path < 403 
0.01 mm). 404 

Figure 8 shows histograms of surface CCN number concentration in 0.2% supersaturation, cloud layer 405 
mean 𝑁𝑁𝑑𝑑, 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒, cloud optical depth and total cloud fraction for long-term diagnostics at SGP (year 2011-406 
2020) and ENA (year 2016-2018) sites. E3SMv2 fails to reproduce the long tail of large values in CCN 407 
and 𝑁𝑁𝑑𝑑, especially over SGP. This is consistent with the underestimation of CN (> 100 nm) during the 408 
HI-SCALE field campaign shown in Figures 6 and 7. Compared with ground retrievals, E3SMv2 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 is 409 
larger at SGP but smaller at ENA. However, satellite-retrieved 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 has larger values than E3SMv2 at 410 
SGP. As discussed before, discrepancies between satellite and ground retrievals can be substantial for 411 
some locations and variables, and considering both in evaluating model performance gives a sense for 412 
how uncertain comparisons are. E3SMv2 generally captures the histograms of cloud optical depth and 413 
total cloud fraction, although it underestimates the frequency of partial-cloudy conditions and 414 
overestimates the frequency of clear-sky and overcast conditions.  415 

 416 

 417 

Figure 9: (top) Diurnal cycle, (middle) seasonal cycle, and (bottom) occurrence frequency 418 
of vertical cloud fraction at (left) SGP from 2011 to 2020 and (right) ENA from 2016 to 419 
2018. 420 

ENASGP
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Figure 9 shows the long-term diagnostics of mean diurnal cycles, seasonal cycles and histograms of cloud 421 
fraction by height at SGP and ENA sites. Overall, the mean fraction of high clouds looks overestimated in 422 
E3SMv2. Similar results has been reported in many previous studies in the Community Earth System 423 
Model (CESM)-E3SM model family (e.g., Song et al., 2012; Cheng and Xu, 2013; Xu and Cheng, 2013b, 424 
a; Tang et al., 2016; Zhang et al., 2020). However, this is not an apple-to-apple comparison, as cloud 425 
fraction in ESMs includes clouds that are optically very thin that cannot be detected by satellite passive 426 
sensors or cloud radars. The comparison of high cloud fraction from simulators with the corresponding 427 
satellite observations showed that E3SM slightly underestimates high clouds over most tropical deep 428 
convection regions (Zhang et al., 2019; Xie et al., 2018; Rasch et al., 2019). Unfortunately, ground-based 429 
radar simulator of cloud vertical profiles is not available in the current model, which prevents a direct 430 
apple-to-apple comparison. Thus, caution should be taken when comparing magnitude of cloud fraction 431 
from direct model output and radar measurements. Here we focus on the temporal variabilities (diurnal 432 
and seasonal cycles) and the occurrence frequency distribution of cloud fraction, which are less relevant 433 
to the detection threshold of cloud radars. 434 

At SGP, observations show formation of low clouds in the afternoon and in late winter through 435 
springtime. High clouds peak overnight into the early morning and in the spring to summer, 436 
corresponding to nocturnal deep convective systems common over SGP (Tang et al., 2022b; Tang et al., 437 
2021; Jiang et al., 2006). These features are reasonably well represented in E3SMv2, although low-level 438 
cloud deepening in the afternoon is not well predicted, and high-level clouds peak in the late rather than 439 
early morning. At ENA, marine stratus or stratocumulus clouds occur in any month and at any time of the 440 
day, but with less frequency in late summer and in afternoon. High clouds are more frequent in winter 441 
months than in summer months and occur throughout the diurnal cycle with a slight mid-day minimum. 442 
These features are well captured by E3SMv2. At both sites, high clouds usually occur with high fraction 443 
(> 95%) while low clouds are more likely associated with small fraction (< 5%) (bottom row). At SGP, 444 
high occurrence of low cloud fraction extends vertically up to the tropopause, representing frequently 445 
occurring deep convection. At ENA, low clouds have less vertical extension but are more likely to expand 446 
to greater fraction. E3SMv2 reproduces these cloud features in occurrence frequency.  447 

5.2.  Multi-variable relationships related to ACI 448 

The effective radiative forcing due to ACI processes are complex, nonlinear, and highly uncertain despite 449 
their significant impact on climate. ACI studies are usually conducted by examining relationships 450 
between aerosols, clouds, and radiation variables that are known to interact with one another. Given so 451 
many variable combinations related to ACI, ESMAC Diags v2 provides a framework for users to examine 452 
relationships between the variables they choose with joint histograms, scatter plots and heatmaps. Here 453 
we show a few examples to assess relationships between CCN, 𝑁𝑁𝑑𝑑, LWP, and top of atmosphere (TOA) 454 
albedo. ESMAC Diags v2 calculate layer-mean 𝑁𝑁𝑑𝑑 from three sources: integrated vertically from native 455 
model output, retrieved using Ndrop algorithm and using Nd_sat algorithm, as shown in Table 3. In this 456 
study we only show the ACI diagnostics using native model output, as it reveals the “true” ACI relations 457 
in the model. Users can choose to use the retrieved 𝑁𝑁𝑑𝑑 in their studies for their purposes. 458 

The dependence of TOA albedo on CCN number concentration for stratiform warm clouds can be 459 
decomposed (e.g., following Quaas et al. (2008)) as:  460 
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) and “LWP adjustment” (𝑑𝑑𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

) associated 462 

with specific ACI processes. Here we use joint histograms and heatmaps to evaluate each component, 463 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
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 based on long-term ground and satellite measurements at SGP (2011-464 

2020) and ENA (2016-2018) sites. The analysis in this section (except Figure 11) is limited to overcast 465 
(cloud fraction > 90%), low-level (cloud top height < 4 km) liquid (ice water path < 0.01 mm) clouds. 466 
Since there is no direct measurement of cloud base CCN concentration from remote sensors, surface CCN 467 
concentration is used in this study and only clouds that are most likely to be affected by surface 468 
conditions are examined. These clouds are identified as having cloud base potential temperature minus 469 
surface potential temperature smaller than 2 K. For satellite measurements, samples with solar zenith 470 
angle greater than 65° are removed to avoid 𝑁𝑁𝑑𝑑 retrieval biases (Grosvenor et al., 2018). The sample 471 
number of (ground, satellite, E3SM) for overcast low-level liquid clouds are (1766, 1217, 6369) at SGP 472 
and (3450, 1345, 2884) at ENA, respectively. To increase sample size for more robust statistics, satellite 473 
retrievals and E3SM outputs over a 5°×5° domain centered on SGP and ENA sites are included. This 474 
increases the sample number to (1766, 71942, 15231) at SGP and (3450, 104260, 28184) at ENA. 475 
Analyses of all-sky conditions and overcast low-level liquid clouds for a single grid point over each site 476 
are shown in Figures S2-S7 in the supplementary material. Increasing sample domain for satellite and 477 
E3SM data does not change the overall statistics shown here. 478 

The change of 𝑁𝑁𝑑𝑑 in response to a change of surface CCN number concentration ( 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

) is heavily 479 
influenced by processes such as aerosol activation. Figure 10 shows the joint probability density function 480 
(PDF)of 𝑁𝑁𝑑𝑑 and surface CCN number concentration at 0.1% supersaturation normalized within each CCN 481 
bin. Ground and satellite observations show similar linear fit of 𝑙𝑙𝑙𝑙𝑁𝑁𝑑𝑑 – 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁 relation, although ground-482 
based plots have much smaller sample number. E3SMv2 shows more sensitive 𝑁𝑁𝑑𝑑 – CCN relationships 483 
than observations at both SGP and ENA sites, with the relationship tighter at ENA and more scattered at 484 
SGP. As a cross validation, Figure 11 shows the 𝑁𝑁𝑑𝑑 – CCN relationships from short-term aircraft 485 
campaign during HI-SCALE and ACE-ENA. The comparison with in-situ aircraft measurements 486 
confirms that E3SMv2 has more sensitive 𝑁𝑁𝑑𝑑 to CCN relationship than observations. These results 487 
indicate that aerosol activation in E3SMv2 may be too weak in low CCN conditions and too strong in 488 
high CCN conditions, which may be related to the differences in simulated and observed updraft velocity 489 
and supersaturation. Note that E3SMv2 produces a significant number of small 𝑁𝑁𝑑𝑑 (< 20 cm-3) samples 490 
(Figure 11). This feature is reported in Golaz et al. (2022) and is partially removed by setting a minimum 491 
threshold of 𝑁𝑁𝑑𝑑 = 10 cm-3. However, as seen in Figure 11, there are still a large number of 𝑁𝑁𝑑𝑑 between 10 492 
and 20 cm-3. Further investigation is underway to diagnose the causes of the abundant low-𝑁𝑁𝑑𝑑 values. The 493 
diagnostics shown here indicate that a more physical method should be applied to improve the simulated 494 
𝑁𝑁𝑑𝑑. 495 
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 496 

 497 

Figure 10: Joint histogram of layer-mean 𝑁𝑁𝑑𝑑 versus surface CCN number concentration at 498 
0.1% supersaturation, normalized within each CCN number concentration bin (PDF of 499 
CCN shown in the bottom of each panel). Samples are constrained to likely surface-500 
coupled, overcast low-level liquid clouds (cloud top height < 4 km, cloud fraction > 90%, 501 
ice water path < 0.01 mm and potential temperature difference between cloud base and 502 
surface < 2 K). Available samples within a 5°×5° region centered on SGP (top) and ENA 503 
(bottom) for satellite and E3SMv2 datasets are included. Linear fits and R values are 504 
shown in red. 505 
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 506 

Figure 11: Scatter plots for 𝑁𝑁𝑑𝑑 versus CCN along the flight tracks from (top) HI-SCALE 507 
and (bottom) ACE-ENA campaigns. Note that CCN number concentration measurements 508 
are taken under ~0.2% supersaturation for HI-SCALE and under ~0.1% supersaturation for 509 
ACE-ENA. Linear fits and R values are shown in each panel. R = 0.34 (SGP) and 0.74 510 
(ENA) for E3SMv2 if a minimum Nd = 20 cm-3 is applied. 511 

 512 

The term 𝑑𝑑𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 is commonly interpreted as the response of LWP to a perturbation in 𝑁𝑁𝑑𝑑 tied to 513 

suppression of precipitation (increase LWP) or enhancement of evaporation (decrease LWP) (e.g., 514 
Glassmeier et al., 2019). Gryspeerdt et al. (2019) show that the satellite retrieved LWP over ocean 515 
increases with 𝑁𝑁𝑑𝑑 when 𝑁𝑁𝑑𝑑 < ~30 𝑐𝑐𝑐𝑐−3 and decreases when 𝑁𝑁𝑑𝑑 > ~30 𝑐𝑐𝑐𝑐−3. This relation is also seen 516 
in satellite retrievals at ENA (Figure 12) when using a higher threshold 𝑁𝑁𝑑𝑑 = 50 𝑐𝑐𝑐𝑐−3 to perform linear 517 
fits (black dashed lines). The linear fit is insignificant for 𝑁𝑁𝑑𝑑 < 50 𝑐𝑐𝑐𝑐−3 in surface retrievals at both 518 
sites, partly due to small sample number, and also potentially related to drizzle contamination of LWP. 519 
The slope of the LWP – 𝑁𝑁𝑑𝑑 relation in satellite retrievals at SGP is positive for both 𝑁𝑁𝑑𝑑 ranges. This is 520 
opposed to the slope from the ground retrievals and satellite retrievals at ENA. This result reveals a few 521 
difficulties on LWP susceptibility studies based on observations. First, limitations of instruments and their 522 
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platforms (from space or from ground) employed in these observations as well as assumptions and 523 
simplifications in their retrieval algorithms, may introduce biases and uncertainties into the retrieved 524 
cloud microphysical properties. These biases and uncertainties can be amplified when studying ACI 525 
relationships between multiple variables. Second, the robustness of ACI studies is also dependent on 526 
geographical locations and cloud types, with environmental dynamic conditions influencing the analytical 527 
outcomes. Despite our efforts to constrain meteorology and cloud situations, it is essential to 528 
acknowledge the existence of many other factor, such as cloud adiabaticity and solar zenith angle as 529 
discussed in Varble et al. (2023)), which can impact cloud susceptibility. Given these limitations and 530 
uncertainties, researchers should use caution when using observational data to study ACI relationships. 531 
slope shown in the ground retrievals and indicates that retrieval biases may cause opposite results in ACI 532 
studies. The reason why satellite retrievals show positive LWP – 𝑁𝑁𝑑𝑑 relation at SGP is subject to further 533 
investigation. 534 

The E3SMv2 simulated LWP – 𝑁𝑁𝑑𝑑 relation is quite different from satellite retrievals at both sites. At 535 
SGP, it generates a positive slope for 𝑁𝑁𝑑𝑑 < 50 𝑐𝑐𝑐𝑐−3, and a negative slope for 𝑁𝑁𝑑𝑑 > 50 𝑐𝑐𝑐𝑐−3. At ENA, it 536 
shows an opposite relation, with LWP decreases for small 𝑁𝑁𝑑𝑑 and increases for large 𝑁𝑁𝑑𝑑. The overall 537 
LWP susceptibility in E3SMv2 is negative, which is consistent with observations and but differs from 538 
most ESMs that produce a positive value (Quaas et al., 2009; Gryspeerdt et al., 2020). However, the 539 
observed inverted “V” relation of LWP to Nd is oppositely seen in E3SMv2. We examined a few other 540 
oceanic regions with frequent stratus or stratocumulus clouds in E3SMv2 and saw similar behavior (not 541 
shown). This indicates possible different mechanisms of LWP susceptibility in E3SM than in 542 
observations. However, LWP – 𝑁𝑁𝑑𝑑 relation in E3SMv1 performs quite differently, as shown in . The 543 
causes of the different LWP – 𝑁𝑁𝑑𝑑 relation behaviors in E3SM are under further investigation.  discussed 544 
potential physical mechanisms that may affect the different LWP responses to 𝑁𝑁𝑑𝑑 in observation and 545 
simulation, such as different atmospheric states in E3SM and observations. Our user-friendly diagnostics 546 
package allows these analyses to be routinely performed for the purpose of better understanding critical 547 
model behaviors at process- and mechanistic-levels, providing observational constraints to facilitate 548 
model development efforts. 549 
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 550 

 551 

Figure 12: Following Figure 10, but for the 𝑁𝑁𝑑𝑑 bin-normalized joint histogram of LWP 552 
versus 𝑁𝑁𝑑𝑑. Red lines and equations are linear fits for all data samples and black dashed 553 
lines are linear fits for 𝑁𝑁𝑑𝑑 < 50 𝑐𝑐𝑐𝑐−3 and 𝑁𝑁𝑑𝑑 > 50 𝑐𝑐𝑐𝑐−3 when the fits are statistically 554 
significant (p < 0.01). 555 
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 556 

Figure 13: Heatmaps of mean TOA albedo versus LWP and 𝑁𝑁𝑑𝑑 for likely surface-coupled, 557 
overcast low-level liquid clouds (cloud top height < 4 km, cloud fraction > 90%, ice water 558 
path < 0.01 mm and potential temperature difference between cloud base and surface < 2 559 
K). Data include samples within a 5°×5° region centered on SGP (top) and ENA (bottom). 560 
Valid sample number is shown in black contour lines. Grids with valid sample number < 561 
10 are not filled. Ground data is not included, since the TOA albedo is not available. 562 

Figure 13 shows heatmaps of mean TOA albedo with respect to LWP and 𝑁𝑁𝑑𝑑 from which 𝜕𝜕𝑑𝑑
𝜕𝜕𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 and 563 
𝜕𝜕𝑑𝑑

𝜕𝜕𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕𝜕𝜕
 can be derived. At both ENA and SGP, TOA albedo generally increases with increases of LWP 564 

and 𝑁𝑁𝑑𝑑, except at SGP when LWP is small. The increasing albedo in small LWP may be due to retrieval 565 
artifact as uncertainty becomes large when LWP is small (e.g., < 20 g/m2), solar zenith angle is large 566 
(e.g., > 55°), or cloud optical depth is small (e.g., <5) (Grosvenor et al., 2018). In most LWP-𝑁𝑁𝑑𝑑 bins, 567 
TOA albedo at SGP is generally higher than at ENA, which is expected for clouds with smaller droplet 568 
sizes. Increasing TOA albedo with increases of LWP is also seen in E3SMv2, but the dependence with 𝑁𝑁𝑑𝑑 569 
is weak. This can be impacted by correlation between solar zenith angle and 𝑁𝑁𝑑𝑑 in E3SM simulation, as 570 
discussed in Varble et al. (2023). For a given LWP and 𝑁𝑁𝑑𝑑, TOA albedo is generally higher in E3SMv2 571 
than in satellite observations, indicating that shallow clouds may be too reflective in the model, possibly 572 
due to smaller cloud 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 (Figure 8).  573 

The above illustration of single-variable and multi-variable diagnostics present examples to demonstrate 574 
the capability of ESMAC Diags v2. More analyses, such as selecting other variables, performing 575 
additional data filtering or treatments, and examining ACI relationships with other variable combinations, 576 
can be conducted through user-specified settings. A detailed user guide and a collection of example 577 
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scripts are included in the diagnostics package to assist users design customized diagnostics suited to their 578 
specific needs. 579 

5. Summary 580 

We developed the Earth System Model aerosol-cloud diagnostics package (ESMAC Diags) to facilitate 581 
routine evaluation of aerosols, clouds and ACI in the U.S. DOE’s E3SM model using multiple platforms 582 
of observations. As an updated version of ESMAC Diags v1 (Tang et al., 2022a) which mainly focuses on 583 
aerosol properties, this paper described ESMAC Diags v2 that focuses on both aerosols, clouds, as well as 584 
their interactions. In addition to the short-term field campaigns included in ESMAC Diags v1, long-term 585 
diagnostics from two permanent ARM sites (SGP and ENA, each represents continental and maritime 586 
conditions, respectively) are now conducted to provide more robust evaluation. The newly added multi-587 
variable joint histograms, scatter plots and heatmaps allow users to examine correlations between 588 
variables that are relevant to the study of ACI.  589 

Ground- and ship-based aerosol measurements are frequently impacted by local-scale emissions sources 590 
such as those from airport or ship exhaust. These local sources are not resolved by coarse-resolution 591 
ESMs, which usually represent an environment averaged within a region of tens to hundreds of kilometers 592 
in size. In ESMAC Diags, we used available contamination-removed aerosol data, such as those from 593 
Gallo et al. (2020) for ENA, and Humphries (2020) for MARCUS, and applied data filtering for other 594 
field campaigns. The observations are harmonized into a uniform data format and temporal resolution that 595 
are comparable with ESMs. Aircraft measurements retain higher resolution (currently 1-min) to preserve 596 
high spatiotemporal variability, although ESMs have to be downscaled for evaluation with aircraft 597 
measurements. This limitation of scale mismatch must be accepted to perform evaluation in current 598 
coarse-resolution ESMs. Nevertheless, as ESM grid spacing approaches a few kilometers via regional 599 
refinement (Tang et al., 2019) or global convection-permitting configuration (Caldwell et al., 2021), the 600 
scale inconsistency between models and observations is reduced. ESMAC Diags can easily adjust the 601 
preprocessing output resolution to facilitate the evaluation of high-resolution model output. 602 

Cloud microphysical properties heavily rely on remote sensing measurements to achieve more robust 603 
sampling, with imperfect retrieval algorithms needed to estimate these variables. Microphysical retrievals 604 
are more uncertain than typical atmospheric state measurements due to the need for many assumptions 605 
related to cloud dynamical and physical processes. We have shown (in Section 3) that ground- and 606 
satellite-based retrievals of 𝑁𝑁𝑑𝑑 and 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 are overall consistent with each other and with in-situ aircraft 607 
measurements, with some systematic differences such as smaller 𝑁𝑁𝑑𝑑 and larger 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 in satellite retrievals. 608 
The discrepancies between different retrievals can be larger for individual days (e.g., Figure S1) but can 609 
be mitigated to some degrees when considering broader statistics (Figures 3 and 4). The usage of multiple 610 
retrieval datasets is critical to understand the robustness of evaluation results, as the spread between 611 
different datasets indicates how robust model-observation differences are and guides interpretations of 612 
model biases to support model development. 613 

Finally, this paper presents a few examples of how well E3SMv2 simulates aerosols, clouds and ACI. We 614 
showed that ESMAC Diags can be used to target further investigation into specific parameterization 615 
components. For example, the analysis of 𝑁𝑁𝑑𝑑 – CCN correlation indicates that E3SMv2 may exhibit too 616 
weak aerosol activation in low CCN conditions and too strong in high CCN conditions; the analysis of 617 
LWP – 𝑁𝑁𝑑𝑑 correlation indicates that either the precipitation suppression and cloud evaporation 618 
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mechanisms are not well represented, or there are other mechanisms dominating LWP – 𝑁𝑁𝑑𝑑 correlation in 619 
E3SMv2. These diagnostic analyses provide insights into areas in aerosols, clouds and ACI that warrant 620 
special attention in future model development efforts. As ESMs continuously improve its physical 621 
parameterizations, resolution, and numerical schemes, ESMAC Diags offers a valuable tool for 622 
systematically evaluating the performance of the newer versions of a model in simulating aerosol, clouds 623 
and ACI.  624 
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