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Abstract 30 
The Multi-Scale Infrastructure for Chemistry and Aerosols Version 0 (MUSICAv0) is a new 31 
community modeling infrastructure that enables the study of atmospheric composition and 32 
chemistry across all relevant scales. We develop a MUSICAv0 grid with Africa refinement (~28 33 
km ´ 28 km over Africa). We evaluate the MUSICAv0 simulation for 2017 with in situ 34 
observations and compare the model results to satellite products over Africa. A simulation from 35 
the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), a regional 36 
model that is widely used in Africa studies, is also included in the analyses as a reference. Overall, 37 
the performance of MUSICAv0 is comparable to WRF-Chem. Both models underestimate carbon 38 
monoxide (CO) compared to in situ observations and satellite CO column retrievals from the 39 
Measurements of Pollution in the Troposphere (MOPITT) satellite instrument. MUSICAv0 tends 40 
to overestimate ozone (O3), likely due to overestimated stratosphere-to-troposphere flux of ozone. 41 
Both models significantly underestimate fine particulate matter (PM2.5) at two surface sites in East 42 
Africa. The MUSICAv0 simulation agrees better with aerosol optical depth (AOD) retrievals from 43 
the Moderate Resolution Imaging Spectroradiometer (MODIS) and tropospheric nitrogen dioxide 44 
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(NO2) column retrievals from the Ozone Monitoring Instrument (OMI) than WRF-Chem. 45 
MUSICAv0 has a consistently lower tropospheric formaldehyde (HCHO) column than OMI 46 
retrievals. Based on model-satellite discrepancies between MUSICAv0 and WRF-Chem and 47 
MOPITT CO, MODIS AOD, and OMI tropospheric NO2, we find that future field campaign(s) 48 
and more in situ observations in an East African region (30°E – 45°E, 5°S – 5°N) could 49 
substantially improve the predictive skill of atmospheric chemistry model(s). This suggested focus 50 
region exhibits the largest model-in situ observation discrepancies, as well as targets for high 51 
population density, land cover variability, and anthropogenic pollution sources. 52 
 53 
1. Introduction 54 

As one of the most dramatically changing continents, Africa is experiencing myriad 55 
environmental sustainability issues (e.g., Davidson et al., 2003; Washington et al., 2006; Ziervogel 56 
et al., 2014; Boone et al., 2016; Swilling et al., 2016; Baudoin et al., 2017; Güneralp et al., 2017; 57 
Nicholson 2019; Fisher et al., 2021; Langerman et al., 2023). These environmental issues are 58 
causing vast losses in lives and in African economies, and are coupled with poverty and under-59 
development (Washington et al., 2006; Fisher et al., 2021). Some of these environmental 60 
challenges are particularly severe in Africa compared to many other regions of the world (e.g., 61 
droughts, floods, high temperatures, land degradation, and fires; Washington et al., 2006; Nka et 62 
al., 2015; van der Werf et al., 2017; Haile et al., 2019). However, even though Africa is the second 63 
largest continent, in land area and population, attention and research on environmental challenges 64 
in Africa are very limited, leading to a deficit of knowledge and solutions (e.g., De Longueville et 65 
al., 2010). Intergovernmental Panel on Climate Change (IPCC) computes a human vulnerability 66 
metric from existing challenges such as poverty, access to health care plus expected mortality for 67 
climate hazards such as heat, drought, flood, fires and constraints to adaptation like funding, and 68 
government infrastructure (Moss et al., 2001). Many regions in Africa exhibit the most extreme 69 
values for this metric. 70 

Degraded air quality is an example of a severe environmental challenge with growing 71 
importance in Africa (e.g., Kinney et al., 2011; Naiker et al., 2012; Liousse et al., 2014; Thompson 72 
et al., 2014; Amegah et al., 2017; Heft-Neal et al., 2018; Fisher et al., 2021; Okure et al., 2022; 73 
Vohra et al., 2022). A previous study found that air pollution across Africa caused ~1.1 million 74 
deaths in 2019 (Fisher et al., 2021). However, the study of air quality in Africa is hindered by the 75 
scarcity of ground-based observations (e.g., Paton-Walsh et al., 2022; Kalisa et al., 2023), 76 
modelling capability and the use of satellite observations. In this paper, we will focus on air quality 77 
analyses over Africa with the new model Multi-Scale Infrastructure for Chemistry and Aerosols 78 
(MUSICA; Pfister et al., 2020).  79 

Atmospheric chemistry modeling is a useful tool to provide air quality forecasts and to 80 
understand chemical processes. Various models have been applied to study atmospheric chemistry 81 
and air quality in Africa such as the Weather Research and Forecasting (WRF) model coupled with 82 
Chemistry (WRF-Chem) (e.g., Kuik et al., 2015; Kumar et al., 2022; Jenkins and Gueye, 2022), 83 
the GEOS-Chem chemical transport model (e.g., Marais et al., 2012, 2019; Lacey et al., 2018), the 84 
CHIMERE chemical transport model (e.g., Menut et al., 2018; Mazzeo et al., 2022), and the U.K. 85 
Earth System Model (UKESM1) (Brown et al., 2022), and GEOS5 (Bauer et al., 2019). 86 
 MUSICA is a new state-of-the-art community modeling infrastructure that enables the 87 
study of atmospheric composition and chemistry across all relevant scales (Pfister et al., 2020). 88 
The newly developed MUSICA Version 0 (MUSICAv0) is a global chemistry-climate model that 89 
allows global simulations with regional refinement down to a few kilometers spatial resolution 90 
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(Schwantes et al., 2022). The coupling with other components of the Earth system (e.g., land, 91 
ocean, and sea ice) can also be performed at multiple scales. MUSICAv0 has various advantages 92 
and is particularly suitable for research applications over Africa. For example, MUSICAv0 can be 93 
used to study the interactions between atmospheric chemistry and other components of the Earth 94 
system and climate. MUSICA also includes the whole atmosphere (from the surface to 95 
thermosphere), and therefore can also be used to study the stratosphere and above and interactions 96 
between the stratosphere and troposphere. This is critical because some of the environmental issues 97 
are coupled (e.g., the ozone–climate penalty; Brown et al., 2022). In addition, as a global model, 98 
MUSICAv0 does not require boundary conditions to study a region at high resolution. Global 99 
impacts and interactions can be simulated in a consistent and coherent way. This feature is 100 
important as inflow from other continents and oceans significantly impacts air quality in Africa. 101 
MUSICAv0 has been evaluated over North America (Schwantes et al., 2022, Tang et al., 2022) 102 
and is also being developed and tested in other regions around the globe 103 
(https://wiki.ucar.edu/display/MUSICA/Available+Grids). 104 
 This paper serves as the basis for the future application of MUSICAv0 in Africa. In this 105 
study, we develop a MUSICAv0 model grid with regional refinement over Africa. Because 106 
MUSICAv0 with Africa refinement is newly developed while WRF-Chem has been previously 107 
used for African atmospheric chemistry and air quality studies, here we include results from WRF-108 
Chem to assess the ability of MUSICAv0 in reproducing the regional features of atmospheric 109 
composition as simulated by WRF-Chem. We conduct the MUSICAv0 simulation for the year 110 
2017 to compare with a previous WRF-Chem simulation (Kumar et al., 2022). MUSICAv0 and 111 
the WRF-Chem simulation and the observational data used in this study are described in Section 112 
2. The MUSICAv0 model simulation results are evaluated against in situ observations and 113 
compared with satellite retrievals in Section 3. In Section 4, we provide an example application of 114 
MUSICAv0 over Africa – identifying key potential regions in Africa for future in situ observations 115 
and field campaign(s).  116 
 117 
2. Model and data 118 
2.1 MUSICAv0 119 

MUSICA is a newly developed framework for simulations of large-scale atmospheric 120 
phenomena in a global modeling framework, while still resolving chemistry at emission- and 121 
exposure-relevant scales (Pfister et al., 2020). MUSICA version 0 (MUSICAv0) is a configuration 122 
of the Community Earth System Model (CESM). It is also known as the Community Atmospheric 123 
Model with chemistry (CAM-chem) (Tilmes et al., 2019; Emmons et al., 2020) with regional 124 
refinement (RR) down to a few kilometers (Lauritzen et al., 2018; Schwantes et al., 2022). CAM-125 
chem, and thus MUSICAv0, includes several choices of chemical mechanisms of varying 126 
complexity. This study uses the default MOZART-TS1 chemical mechanism for gas phase 127 
chemistry (including comprehensive tropospheric and stratospheric chemistry; Emmons et al., 128 
2020) and the four-mode version of the Modal Aerosol Module (MAM4; Liu et al., 2016) for the 129 
aerosol scheme. The generation of desert dust particles in MUSICAv0 is calculated based on the 130 
Dust Entrainment and Deposition Model (Mahowald et al., 2006; Yoshioka et al., 2017). Dust 131 
emissions calculation is sensitive to the model surface wind speed. The dust aerosol processes in 132 
the MUSICAv0 simulation are simulated based on the MAM4 model (Liu et al., 2016). MAM4 133 
has 4 modes – Aitken, accumulation coarse, and primary carbon modes. Dust is mostly in the 134 
accumulation and coarse modes. The MUSICAv0 model source code and the model 135 
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documentation can be downloaded through 136 
https://wiki.ucar.edu/display/MUSICA/MUSICA+Home (last access: 3 April 2023). 137 

The MUSICAv0 users have the option to create their own model grid. MUSICAv0 is 138 
currently being developed and tested for applications over various regions globally 139 
(https://wiki.ucar.edu/display/MUSICA/Available+Grids), including North America, India, East 140 
Asia, South America, Australia, and Korea, among others. (e.g., Schwantes et al., 2022; Tang et 141 
al., 2022; Jo et al., 2023). In this study, we develop a model grid for applications in Africa 142 
(ne0np4.africa_v5.ne30x4). As shown in Figure 1a, the horizontal resolution is ~111 km ´ 111 km 143 
(i.e., 1° latitude ´ 1° equatorial longitude) globally, and ~28 km ´ 28 km (i.e., 0.25° latitude ´ 144 
0.25° equatorial longitude) within the region over Africa. Our simulation uses the default option 145 
for vertical layers (i.e., 32 layers from the surface to ~3.64 hPa). 146 

Here we run MUSICAv0 with the model grid for Africa for the year 2017, saving 3-hourly 147 
output. We use the Copernicus Atmosphere Monitoring Service Global Anthropogenic emissions, 148 
(CAMS-GLOB-ANTH) version 5.1 (Soulie et al., 2023) for anthropogenic emissions and the 149 
Quick Fire Emissions Dataset (QFED) for fire emissions (Darmenov and da Silva, 2013). CAMS-150 
GLOB-ANTH version 5.1 emissions can be found at https://eccad3.sedoo.fr/data (last access: 3 151 
April 2023). QFED emissions can be found at 152 
https://portal.nccs.nasa.gov/datashare/iesa/aerosol/emissions/QFED/ (last access: 3 April 2023). 153 
CAMS-GLOB-ANT version 5.1 (Soulie et al., 2023) is one of the most widely used global 154 
inventories for anthropogenic emissions. CAMS-GLOB-ANT version 5.1 has been implemented 155 
in MUSICAv0, and evaluated in our previous studies (Tang et al., 2022, 2023; Jo et al., 2023). 156 
CAMS-GLOB-ANT version 5.1 does not include information from the Dynamics-Aerosol-157 
Chemistry-Cloud Interactions in West Africa (DACCIWA) project, however, a future version of 158 
CAMS-GLOB-ANT is expected to include DACCIWA for Africa. In future work on this topic, 159 
we plan to make use of regional emissions inventories, such as the DACCIWA emission inventory. 160 
Plume rise climatology is applied to fire emissions following Tang et al. (2022). In addition, we 161 
also include open waste burning (https://www.acom.ucar.edu/Data/fire/; Wiedinmyer et al., 2014) 162 
emissions in the simulation. The model has the option of a free-running atmosphere or nudging to 163 
external meteorological reanalysis. In this simulation, only wind and temperature are nudged to 164 
the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2; 165 
Gelaro et al., 2017) with a relaxation time of 12 hours. MERRA-2 data can be found at 166 
https://disc.gsfc.nasa.gov/datasets?project=MERRA-2 (last access: 3 April 2023). 167 

We also added carbon monoxide (CO) tracers in the simulation to understand the source 168 
and transport of air pollution. CO tracers in CAM-chem/MUSICAv0 are described in detail by 169 
Tang et al. (2019). In this study we include tracers for 6 regions (North Africa, West Africa, East 170 
Africa, Central Africa, Southern Africa, and the rest of the world) and 3 emission sources 171 
separately (anthropogenic emissions, fire emissions, and open waste burning emissions). In total, 172 
there are 18 tagged CO tracers. 173 
 174 
2.2 WRF-Chem 175 
 The Weather Research and Forecasting (WRF) model coupled with Chemistry (WRF-176 
Chem) is a regional chemical transport model. It has been widely used for air quality studies in 177 
Africa. In this study we use model results from a WRF-Chem simulation described by Kumar et 178 
al. (2022). The WRF-Chem simulation has a grid spacing of 20 km, slightly higher than the 179 
MUSICAv0 simulation, and the model domain is highlighted in Figure 1a. The simulation has 36 180 
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vertical levels from the surface to ~50 hPa. The WRF-Chem simulation uses the Model for Ozone 181 
and Related Tracers-4 (MOZART-4) chemical mechanism (Emmons et al., 2010) for tropospheric 182 
gas phase chemistry, and the Goddard Global Ozone Chemistry Aerosol Radiation and Transport 183 
(GOCART) model (Chin et al., 2002) for aerosol processes. The dust aerosol processes in the 184 
WRF-Chem simulation are simulated based on the Goddard Global Ozone Chemistry Aerosol 185 
Radiation and Transport (GOCART) model (Chin et al., 2002). Specifically, the dust emission 186 
scheme is following the GOCART emission treatment (Ginoux et al., 2001), which is a function 187 
of 10-m wind speed, soil moisture, and soil erosion capability. The atmospheric processes of dust 188 
are simulated based on the mass mixing ratio and size distribution that has been divided into 5 size 189 
bins with effective radii of 0.73, 1.4, 2.4, 4.5 and 8.0 μm. The dust dry and wet depositions are 190 
also treated following the GOCART scheme (Chin et al., 2002). The European Centre for Medium 191 
Range Weather Forecasts (ECMWF) global reanalysis (ERA-Interim) fields are used for initial 192 
and boundary meteorology conditions, while another CAM-chem simulation is used for initial and 193 
boundary chemical conditions (Kumar et al., 2022). The WRF-Chem simulation used the global 194 
Emission Database for Atmospheric Research developed for Hemispheric Transport of Air 195 
Pollution (EDGAR-HTAP v2) for anthropogenic emissions and the Fire Inventory from NCAR 196 
version 1.5 (FINNv1.5) (Wiedinmyer et al., 2011) for fire emissions. The WRF-Chem output is 197 
saved hourly, however we only use 3-hourly output to match the MUSICAv0 simulation.  198 
 199 
2.3 ATom 200 
 The Atmospheric Tomography mission (ATom; Thompson et al. 2022) was designed to 201 
study the impact of human-produced air pollution on greenhouse gases, chemically reactive gases, 202 
and aerosols in remote ocean air masses. ATom data (Wofsy et al., 2021) are available at 203 
https://espoarchive.nasa.gov/archive/browse/atom (last access: 3 April 2023). During the project, 204 
the DC-8 aircraft sampled the remote troposphere with continuous vertical profiles. There were 205 
four seasonal deployments from the summer of 2016 through the spring of 2018. Here we compare 206 
the MUSICAv0 simulation with observations from ATom-2 (January–February 2017) and ATom-207 
3 (September–October 2017). Since the ATom flight tracks were mostly outside the WRF-Chem 208 
domain (Figure 1a), we do not compare the WRF-Chem simulation with ATom data. However, 209 
we compare chemical species from the MUSICAv0 simulation to the 2-minute merged ATom 210 
measurements globally to obtain a benchmark and broader understanding of MUSICAv0 211 
performance both within and outside the refined region. The model output is saved along the ATom 212 
aircraft flight tracks and with respect to the observational times at run time. Nitric oxide (NO) and 213 
ozone (O3) measurements from the NOAA Nitrogen Oxides and Ozone (NOyO3) instrument 214 
(Bourgeois et al., 2020, 2021) and the merged CO data (from Quantum Cascade Laser System and 215 
NOAA Picarro CO measurements) are used. As we use 2-minute merged ATom measurements, 216 
there are 2796 data points in ATom-2 (January–February 2017) and 3369 data points in ATom-3 217 
(September–October 2017). 218 
 219 
2.4 IAGOS 220 

The In-service Aircraft for a Global Observing System (IAGOS) is a European research 221 
infrastructure, and was developed for operations on commercial aircraft to monitor atmospheric 222 
composition (Petzold et al., 2015). IAGOS data are available at https://www.iagos.org/iagos-data/ 223 
(last access: 3 April 2023). The IAGOS instrument package 1 measures CO, O3, air temperature, 224 
and water vapor (https://www.iagos.org/iagos-core-instruments/package1/). CO is measured by 225 
infrared absorption using the gas filter correlation technique (Precision: ±5%, Accuracy: ±5 ppb) 226 
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while O3 is measured by UV absorption at 253.7 nm (Precision: ±2%, Accuracy: ±2 ppb). We use 227 
airborne measurements of CO, O3, air temperature, and water vapor from IAGOS for model 228 
evaluation. The locations of the IAGOS flight tracks over Africa are shown in Figure 1b. The 229 
model results and IAGOS data comparisons are conducted separately for five African sub-regions 230 
(defined in Figure 1b). The IAGOS instruments are onboard commercial airliners and the sampling 231 
may not be representative of the whole sub-regions. For example, IAGOS data over southern 232 
Africa only covers the west part of southern Africa. 233 
 234 
2.5 Ozonesondes 235 

The ozonesonde is a balloon-borne instrument that measures atmospheric O3 profiles 236 
through the electrochemical concentration cell using iodine/iodide electrode reactions (Thompson 237 
et al., 2017), with records of temperature, pressure, and relative humidity from standard 238 
radiosondes. NASA/GSFC SHADOZ data are available at https://tropo.gsfc.nasa.gov/shadoz/ (last 239 
access: 3 April 2023). We use ozonesonde data from Southern Hemisphere ADditional 240 
OZonesondes (NASA/GSFC SHADOZ; Thompson et al., 2017; Witte et al., 2017, 2018). 241 
Specifically, ozonesonde data from four sites are used (Figure 1b): Ascension (Ascension Island, 242 
U.K.), Nairobi (Kenya), Irene (South Africa), and La Reunion (La Réunion Island, France). The 243 
average O3 measurement uncertainty ranged from 5–9% for the ozonsonde data used in this study.  244 
 245 
2.6 WDCGG 246 
 Monthly surface CO measurements from the World Data Center for Greenhouse Gases 247 
(WDCGG; operated by the Japan Meteorological Agency in collaboration with the World 248 
Meteorological Organization) are used for model evaluation. WDCGG data are available at 249 
https://gaw.kishou.go.jp/ (last access: 3 April 2023). Data from six sites are used (Figure 1b), 250 
namely (Ascension Island, U.K.), Assekrem (Algeria; remote site located in Saharan desert), 251 
Gobabeb (Namibia; located at the base of a linear sand dune, next to an interdune plain), Cape 252 
Point (South Africa; site exposed to the sea on top of a cliff 230 meters above sea level), Izana 253 
(Tenerife, Spain; located on the Island that is ~300 km west of the African coast), and Mare 254 
(Seychelles; near an international airport). 255 
 256 
2.7 Surface PM2.5 257 

At the U.S. embassies, regulatory-grade monitoring data are collected with Beta 258 
Attenuation Monitors (BAMs), using a federal equivalent monitoring method, with an accuracy 259 
within 10% of federal reference methods (Watson et al., 1998; U.S. EPA, 2016). These instruments 260 
are operated by the U.S. State Department and the U.S. EPA, and data are available through 261 
AirNow (https://www.airnow.gov/international/us-embassies-and-consulates/). We use the 262 
measurements at the U.S. embassy locations in Addis Ababa Central (Ethiopia, 9.06° N, 38.76° E) 263 
and Kampala (Uganda, 0.30° N, 32.59° E) for the year 2017 as references (Malings et al., 2020) 264 
to match our simulations. The raw data are made available hourly and for this study we use daily 265 
mean PM2.5 for comparison with model simulations. Djossou et al. (2018) presented PM2.5 266 
measurements from Feb 2015 to March 2017 at two cities in West Africa – Abidjan and Cotonou 267 
(Figure 1b). In Abidjan, there were three sites that are representative of traffic, waste burning at 268 
landfill, and domestic fires. The site in Cotonou is close to traffic emissions. The concentrations 269 
of PM2.5 particles were measured at a weekly time step by the ambient air pumping technique 270 
(Djossou et al., 2018). We compare model results with the weekly PM2.5 measurements from the 271 
sites in Abidjan and Cotonou for January–March 2017. 272 
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 273 
2.8 MOPITT 274 

The Measurements of Pollution in the Troposphere (MOPITT) instrument on board the 275 
NASA Terra satellite provides both thermal-infrared (TIR) and near-infrared (NIR) radiance 276 
measurements since March 2000. MOPITT CO data can be accessed through 277 
https://search.earthdata.nasa.gov/search (last access: 3 April 2023). Retrievals of CO column 278 
density and vertical profiles are provided in a multispectral TIR–NIR joint product which has 279 
sensitivity to near-surface as well as free tropospheric CO (Deeter et al., 2011; Worden et al., 280 
2010). Here we use the MOPITT Version 9 Level 2 CO column product (Deeter et al., 2022) over 281 
Africa to evaluate the MUSICAv0 and WRF-Chem simulations. MOPITT Version 9 has 282 
significant updates to the cloud detection algorithm and NIR calibration scheme. The MOPITT 283 
satellite pixel size is ~22 km ´ 22 km, and the overpass time is ~10:30 am local time in 2017. 284 
When comparing model outputs to MOPITT the recommended data quality filter is applied and 285 
model outputs are interpolated to the MOPITT retrievals in space and time. To perform 286 
quantitative comparisons, the MOPITT averaging kernel and a priori are used to transform the 287 
model CO profiles to derive model column amounts.  288 

  289 
2.9 OMI NO2 (QA4ECV) 290 

Tropospheric column NO2 from the Ozone Monitoring Instrument (OMI) on board Aura 291 
is compared to the model in this study. Specifically, the NO2 product from the quality assurance 292 
for the essential climate variables (QA4ECV) project is used (Boersma et al., 2017a; Compernolle 293 
et al., 2020). OMI NO2 data are available at https://www.temis.nl/qa4ecv/no2.html (last access: 3 294 
April 2023). The satellite pixel size is ~13 km ´ 25 km, and the overpass time is ~1:40 pm local 295 
time in 2017. A data quality filter was applied following the Product Specification Document 296 
(Boersma et al., 2017b; processing_error_flag = 0, solar_zenith_angle < 80, snow_ice_flag < 10 297 
or snow_ice_flag = 255, amf_trop/amf_geo > 0.2, and cloud_radiance_fraction_no20 <= 0.5). 298 
Model profiles were transformed using the provided tropospheric air mass factor (AMF) and 299 
averaging kernels. 300 
 301 
2.10 OMI HCHO (QA4ECV) 302 

We also use tropospheric column HCHO from OMI in this study. Similar to OMI NO2, we 303 
also use OMI HCHO product from QA4ECV (De Smedt et al., 2017a). OMI HCHO data are 304 
available at https://www.temis.nl/qa4ecv/hcho.html (last access: 3 April 2023). A data quality 305 
filter was applied following the Product User Guide (De Smedt et al., 2017b; processing_error_flag 306 
= 0 and processing_quality_flag = 0). Model profiles were transformed using provided averaging 307 
kernels. We note that HCHO retrievals are subject to relatively large uncertainties compared to 308 
other satellite products used in this study. Therefore, the comparisons between model results and 309 
the OMI HCHO product only indicate the model-satellite discrepancies rather than determining 310 
model deficiencies. In addition, the WRF-Chem simulation from Kumar et al. (2022) does not 311 
include HCHO in the output and hence will not be compared.  312 
 313 
2.11 MODIS AOD 314 
 The aerosol optical depth (AOD) product (550 nm) from the Moderate Resolution Imaging 315 
Spectroradiometer (MODIS) on board Terra NASA Terra satellite is used. MODIS AOD data can 316 
be accessed through https://search.earthdata.nasa.gov/search (last access: 3 April 2023). 317 
Specifically, we used the MODIS Level 2 Collection 6.1 product (MOD04_L2; Levy et al., 2017). 318 

https://search.earthdata.nasa.gov/search
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Deep Blue Aerosol retrievals are used (Hsu et al., 2013; Levy et al., 2013) to include retrievals 319 
over the desert. The MODIS satellite pixel size is ~1 km ´ 1 km, and the overpass time is ~10:30 320 
am local time. East and Southern Africa have complex terrain due to mountains and rift valleys. 321 
This may lead to some uncertainties in MODIS AOD retrievals. 322 
 323 
2.12 AERONET AOD 324 
 We use AOD measurements from the AErosol RObotic NETwork (AERONET; Holben et 325 
al., 1998, 2001). AERONET data can be accessed through https://aeronet.gsfc.nasa.gov/. We use 326 
Level 2 daily data (quality assured), with pre-field and post-field calibration applied and has been 327 
automatically cloud cleared and manually inspected. AOD at 675 nm from AERONET data are 328 
converted to AOD at 550 nm using provided Angstrom exponent to compare with modeled AOD 329 
at 550 nm. 330 
 331 
2.13 SAAQIS 332 
 We also compare model results with PM2.5, CO, NO2, and O3 measurements from South 333 
Africa Air Quality Information System (SAAQIS; Gwaze et al., 2018; Tshehla et al., 2019). 334 
SAAQIS is available at http://saaqis.environment.gov.za/. The data are hourly and we calculate 335 
daily average values before compare with model results. Similar to Zhang et al. (2021), we 336 
removed negative values and only calculate daily averages when 75% or more of the hourly data 337 
are available. 338 
 339 
3. Model comparisons with satellite data and evaluation with in situ observations 340 
 Africa includes a wide range of environments and emissions source. Therefore, in this 341 
section we separate the continent in five sub-regions for analysis following Kumar et al. (2022). 342 
CO is a good tracer of anthropogenic and biomass burning emissions and modeled CO tracers are 343 
used in this section to understand sources. CO is a commonly used tracer in models with only one 344 
photochemical sink and an intermediate lifetime (e.g., Tang et al., 2019). CO tracers also allow 345 
clear identification of simulated anthropogenic and biomass burning contributions. Therefore, 346 
tagging CO is computationally efficient and tagged CO is relatively reliable as a tracer in models. 347 
Meteorology has a significant impact on the distributions of pollutants across the regions (e.g., 348 
Gordon et al., 2023). The CO tracers in the model go through the same model processes (e.g., 349 
transport) as CO. Therefore, the source contribution shown by the CO tracers is a result of both 350 
emissions and transport. Figure 2 shows the seasonal averages of CO column distributions over 351 
Africa from MOPITT along with the MUSICAv0 and WRF-Chem biases. The highest levels of 352 
CO in these maps are primarily associated with biomass burning, which moves around the 353 
continent with season. Both MUSICAv0 and WRF-Chem simulations underestimate the CO 354 
column compared to MOPITT (Figures 3a and 3b). Overall, MUSICAv0 agrees better with the 355 
OMI tropospheric NO2 column (Figure 3c) and MODIS AOD (Figure 3e) than WRF-Chem 356 
(Figures 3d and 3f). The MUSICAv0 simulation overall has lower tropospheric HCHO column 357 
than OMI in all regions and seasons (Figure 3g). Spatial distributions of model biases against the 358 
OMI tropospheric NO2 column, MODIS AOD, and OMI tropospheric HCHO column are included 359 
in Figures 4 and Figures S1–S2. In this section we compare the model results with satellite data 360 
and in situ observations over sub-regions in Africa and oceans near Africa (Figure 1b). AERONET 361 
data are overlayed with MODIS data in Figure 4. Overall, MODIS and AERONET AOD are 362 
consistent.  363 
 364 

https://aeronet.gsfc.nasa.gov/
http://saaqis.environment.gov.za/
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3.1 North Africa 365 
 Over North Africa, both MUSICAv0 and WRF-Chem simulations underestimate the CO 366 
column during 2017 (Figures 2 and 3). As shown by the tagged model CO tracers (Figure 5), CO 367 
over North Africa is mainly driven by transport of CO from outside the continent and 368 
anthropogenic emissions. The model underestimation compared to the MOPITT CO column is 369 
consistent with the results of the comparisons with surface CO observations from WDCGG at the 370 
two sites located in North Africa (Assekrem and Izana; Figures 6a and 6c). At the two surface 371 
sites, the composition of source types and source regions are close to the composition of source 372 
types and source regions of the column average over North Africa (Figure 5 and Figures S3 and 373 
S4), hence the two sites are representative of the background conditions of North Africa. 374 
Compared to MODIS AOD, WRF-Chem has a mean bias of 0.36 whereas MUSICAv0’s mean 375 
bias is 0.17 for 2017. The model AOD biases over North Africa are likely driven by dust. No 376 
comparison is made with IAGOS O3 in North Africa due to data availability. 377 
 378 
3.2 West Africa 379 

Over West Africa, fire and anthropogenic emissions are both important for CO pollutant 380 
and fire impacts peak in DJF (December, January, and February). Compared to the MOPITT CO 381 
column, the mean bias of MUSICAv0 and WRF-Chem for West Africa peak around February – 382 
the dry season of the Northern Hemisphere (Figure 3). In February, the MUSICAv0 mean bias is 383 
-1.1´1018 molecules/cm2 and WRF-Chem mean bias is -7.5´1017 molecules/cm2, which are likely 384 
driven by fire emission sources (Figure 5). Model comparisons with IAGOS CO also show a 385 
similar bias – both model simulations underestimate CO at all vertical levels. The underestimation 386 
peaks during DJF and below 600 hPa (Figure 7). As for MODIS AOD, WRF-Chem has the mean 387 
bias 0.69 whereas MUSICAv0’s mean bias is 0.15, respectively. Similar to North Africa, the model 388 
biases in AOD over West Africa are also likely driven by dust and biomass burning. We also 389 
compare modeled O3 with IAGOS O3 observations (Figure 8).  390 

Over West Africa, both models agree well with the IAGOS O3 observations below 800 hPa 391 
(mean bias ranges from -1 to -4 ppb). Above 800 hPa over West Africa, WRF-Chem 392 
underestimates O3 while MUSICAv0 overestimates O3. Overall, MUSICAv0 consistently 393 
overestimates O3 above 800 hPa in all seasons while the direction of WRF-Chem bias changes 394 
with seasons (Figure 8). When MUSICAv0 overestimates O3, the bias is in general larger at the 395 
higher altitude of the troposphere. The concentration of the model stratospheric ozone tracer, O3S, 396 
is also larger at the higher altitude in DJF (Figure 10). The correlation of modeled O3 and O3S is 397 
0.54, and the correlations of O3S and model O3 bias (modeled O3 minus IAGOS O3) is 0.35 over 398 
West Africa, implying the overestimation of O3 in the upper troposphere could be partially driven 399 
by too strong stratosphere-to-troposphere flux of ozone. Previous studies also found impacts of 400 
stratosphere-to-troposphere flux of ozone over West Africa (e.g., Oluleye et al., 2013). Lightning 401 
NO emissions can also impact O3 in the upper troposphere. The MUSICAv0 simulation has 402 
somewhat (~3 times) higher lightning NO emissions (Figure S5) compared to a standard CAM-403 
chem simulation (not shown), therefore the high ozone in the upper troposphere may be due to an 404 
over-estimate of lightning NO. We also compared our modeled lightning NO emissions with a 405 
multi-year average climatology (2008-2015) from Maseko et al. (2021) over South Africa, and 406 
found that the seasonal cycle from MUSICAv0 and standard CAM-chem are consistent with the 407 
climatology. The magnitude of MUSICAv0 lightning NO emissions overall agree better with the 408 
climatology compared to that from standard CAM-chem simulation. Impacts of lightning NO 409 
emissions on upper troposphere O3 in MUSICAv0 will be investigated and evaluated further in the 410 



 10 

future. A brief comparison with IAGOS measurements of air temperature and water vapor profiles 411 
over West Africa as well as other sub-regions shows that MUSICAv0 overall agrees well with 412 
these meteorological variables (Figure S6). 413 

We compare the models with weekly PM2.5 measurements at 3 sites in Abidjan 414 
(representing domestic fires emissions, waste burning at landfill, and traffic) and 1 site in Cotonou 415 
representing traffic emissions (Figure S7). Overall, both models underestimate PM2.5 at the three 416 
Abidjan sites, especially near the domestic fire emissions where measured PM2.5 exceeded 400 417 
µg/m3. We include open burning emissions in the MUSICAv0 simulation however the significant 418 
underestimation point to the possibility of missing emissions. Moreover, these three sites in 419 
Abidjan are within the same city and near strong emission sources and hence are challenging for 420 
both models to resolve. In fact, they fall into the same model grids and therefore model values at 421 
the three sites are the same for both models. This demonstrates the need of higher model resolution 422 
to resolve variabilities of air quality in a city. 423 
 424 
3.3 Central Africa 425 
 Compared to MOPITT CO column, the mean bias of MUSICAv0 and WRF-Chem for 426 
Central Africa varies with seasons (Figure 3) but peaks during the dry season in September 427 
(MUSICAv0 mean bias of -1.0´1018 molecules/cm2; WRF-Chem mean bias of -1.2´1018 428 
molecules/cm2). The tagged model CO tracers show that in September, local fire emissions are the 429 
dominant driver of CO in Central Africa (Figure 5). Compared to the IAGOS CO profiles (Figure 430 
7), both models have the largest bias over Central Africa among the sub-regions in Africa – mean 431 
bias of MUSICAv0 and WRF-Chem are -46 ppb and -36 ppb, respectively. The high bias over 432 
Central Africa mainly occurs during the fire season. In central Africa, both models also 433 
underestimate NO2 (mean biases of MUSICAv0 and WRF-Chem are -1.5´1014 and -5.5´1014 434 
molecules/cm2, respectively). The underestimations in both CO and NO2 by the two model 435 
simulations are likely driven by the underestimation in fire emissions. Indeed, the emission 436 
estimates from the newest version of FINN (FINNv2.5; Wiedinmyer et al., 2023) are higher 437 
compared to both QFED (used in the MUSICAv0 simulation) and FINNv1.5 (used in the WRF-438 
Chem simulation) in this region. 439 

Model mean bias of HCHO (-1.3´1016 molecules/cm2 for the whole 2017) over Central 440 
Africa is the largest among the five regions (Figure 3). The spatial distribution of HCHO bias 441 
(Figure S2) largely co-locates with the vegetation (Figure 9). Over the barren or sparsely vegetated 442 
area in North Africa, HCHO biases are relatively small while over the vegetated area HCHO bias 443 
are relatively large. Over North Africa, the mean bias is -0.66´1016 molecules/cm2 for the whole 444 
2017 whereas over the other four regions, the mean bias ranges from -0.93´1016 molecules/cm2 to 445 
-1.31´1016 molecules/cm2 for the whole 2017. This indicates that the negative bias in MUSICAv0 446 
HCHO could be due to underestimated biogenic emissions in the model. In addition, the 447 
underestimation of HCHO in Central Africa (Figure S2) co-locates with the underestimation of 448 
CO in time and space (Figure S1), implying that fire emissions that contributed to model CO biases 449 
may also contribute to the HCHO underestimation in MUSICAv0 during fire season. It is 450 
important to note that the uncertainty of OMI tropospheric HCHO column is relatively large 451 
compared to other satellite products. Here the averaged retrieval uncertainty (random and 452 
systematic) is ~120%. 453 

When compared to the IAGOS O3 profiles over Central Africa (Figure 8), both models 454 
agree well with the IAGOS O3 observations below 800 hPa (mean bias ranges from -1 to -4 ppb). 455 
Above 800 hPa, WRF-Chem underestimates O3 while MUSICAv0 overestimates O3. The 456 
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correlation of modeled O3 and O3S is 0.67, and the correlations of O3S and model O3 bias is 0.50 457 
over Central Africa, indicating O3 overestimation in Central Africa are more likely to be impacted 458 
by stratosphere-to-troposphere flux of ozone than that in West Africa. 459 
 460 
3.4 East Africa 461 
 CO over East Africa is dominated by local emissions and inflow from outside the continent. 462 
Fire and anthropogenic emissions contribute approximately the same to CO over East Africa 463 
(Figure 5). Both MUSICAv0 and WRF-Chem simulations underestimate the CO column 464 
compared to MOPITT (Figure 3), and the WRF-Chem simulation also underestimate the 465 
tropospheric NO2 column compared to OMI. The biases in CO column and tropospheric NO2 466 
column peak in September. One possible driver could be fire emissions from other regions (Figure 467 
5), however, further studies will be needed to address this. 468 
 Compared to IAGOS O3 profiles over East Africa, biases of MUSICAv0 below 600 hPa 469 
has a seasonal variation while over 600 hPa are consistently positive (Figure 8). The correlations 470 
of O3S and model O3 bias against IAGOS data is 0.50 in the region. The correlations between O3S 471 
and model O3 bias are highest over Central and East Africa compared to other regions, indicating 472 
stratosphere influence are strongest in these two regions among the sub-regions. Central and East 473 
Africa are relatively more mountainous therefore topography driven stratospheric intrusions might 474 
be expected. The Nairobi ozonesonde site is located in East Africa (Figure 1b). When comparing 475 
to the O3 profiles from ozonesondes (Figure 10), MUSICAv0 overall overestimates O3 in the 476 
troposphere at the four sites while WRF-Chem tends to underestimate O3 in the free troposphere 477 
(below 200 hPa). The Nairobi site is an exception where both MUSICAv0 and WRF-Chem 478 
simulations significantly overestimate O3 in all seasons (mean bias of MUSICAv0 and WRF-479 
Chem below 200 hPa are 27 ppb and 20 ppb, respectively). Among the four ozonesonde sites, 480 
correlations of model bias of O3 and O3S are highest at the Nairobi site (0.74) where the model 481 
significantly overestimates O3. The results of model-ozonesonde comparisons are consistent with 482 
the results of model-IAGOS comparisons and indicate a potential issue in modeled stratosphere-483 
to-troposphere flux of ozone. 484 

We compare the model results with PM2.5 measurements from two surface sites in East 485 
Africa (Addis Ababa and Kampala; Figure 1b). Despite using different aerosol methods and 486 
emission inventories, both MUSICAv0 and WRF-Chem underestimate surface PM2.5 when 487 
compared to observations at the two sites (Figure 11). The errors in PM2.5 concentrations at the 488 
U.S. Embassy in Kampala are especially prominent. However, both models approximate the 489 
variation of the PM2.5 in both locations. Many factors contribute to the inconsistency in the 490 
magnitude of modeled PM2.5 concentrations. For instance, emission inventories in this region 491 
require additional improvement. In Uganda, increasing motor vehicle ownership and burning 492 
biomass for domestic energy use contribute to ambient PM2.5 levels (Clarke et al., 2022; Petkova 493 
et al., 2013; Kinney et al., 2011). Detailed PM2.5 composition measurements would also help to 494 
pinpoint the cause of inaccuracies (Kalisa et al., 2018). Model resolutions could also be a potential 495 
reason for the underestimation. Over Kampala, high spatial variability of PM2.5 over the urban 496 
environment can contribute to model bias (Atuhaire et al., 2022), as also shown by the AirQo low-497 
cost air quality monitors (Sserunjogi et al., 2022; Okure et al., 2022). 498 
 499 
3.5 Southern Africa 500 

Among the five regions, MUSICAv0 has the lowest mean bias in CO (-3.2´1017 501 
molecules/cm2 annually) over Southern Africa (Figure 3). WRF-Chem also has low mean bias and 502 

https://doi.org/10.3390/atmos13081169
https://doi.org/10.1007/s11869-013-0199-6
https://doi.org/10.1007/s11869-013-0199-6
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RMSE in CO over Southern Africa except for the months of September, October, and November 503 
(SON) period where WRF-Chem has larger CO mean bias (-6.2´1017 molecules/cm2) than 504 
MUSICAv0. Tagged model CO tracers indicate that CO over Southern Africa is significantly 505 
impacted by CO emissions from Central Africa, East Africa, Southern Africa, and inflow from 506 
outside the continent. As for the source types, anthropogenic and fire emissions are both important 507 
and fire impacts peak in September (e.g., Archibald et al., 2009, 2010; Archibald 2016). There are 508 
two WDCGG sites located in Southern Africa (Figure 1b; Gobabeb and Cape Point). When 509 
compared to surface CO observations from WDCGG, both models consistently underestimate CO 510 
by up to 40% at most sites. The Cape Point site in Southern Africa is an exception (Figure 6) where 511 
MUSICAv0 overestimates CO by 40 ppb (annual mean; and up to 78 ppb in May 2017). CO tracers 512 
in the model (Figures S3 and S4) show that the simulated CO at Cape Point is mainly driven by 513 
anthropogenic CO emissions from Southern Africa. Therefore, the overestimation of CO at Cape 514 
Point by MUSICAv0 may be due to an overestimation of emissions in South Africa. Note that the 515 
Cape Point measurement site is located on the tip of southern Africa and has a strong impact from 516 
clean marine air (Labuschagne et al., 2018), which the model likely cannot represent accurately. 517 

As for NO2, WRF-Chem underestimates tropospheric NO2 column in most regions except 518 
for Southern Africa (Figure 3). Over Southern Africa, WRF-Chem overestimates NO2 especially 519 
during June, July, and August (JJA). MUSICAv0 also tends to overestimates NO2 at the same 520 
location in JJA however the bias is not as large as for WRF-Chem.  521 

MUSICAv0 simulation overall has a lower mean bias (0.14 annually) than the WRF-Chem 522 
simulation (mean bias of 0.31 annually) compared to MODIS AOD with Southern Africa being 523 
the only exception (Figure 3). Over Southern Africa, MUSICAv0 overestimates AOD by ~0.21 524 
annually (Figure 3) and the bias peaks in January (mean bias=0.45). This overestimation in AOD 525 
over Southern Africa is not seen in WRF-Chem. It is likely that the MUSICAv0 overestimation in 526 
AOD over Southern Africa is also due to biases in modeled dust as the AOD bias is co-located 527 
with the only barren or sparsely vegetated area in Southern Africa (Figure 9 and Figure S2). 528 

Over Southern Africa, MUSICAv0 tends to overestimate O3 compared to IAGOS at all 529 
levels at all seasons in 2017 (Figure 8). The MUSICAv0 O3 bias is 5-10 ppb below 800 hPa for 530 
the four seasons and 23-39 ppb at 225 hPa. The concentration of O3S over Southern Africa is 531 
higher than those over other regions. However, the correlation of O3S and model O3 bias is lower 532 
than other regions (0.13) indicating stratosphere-to-troposphere flux of ozone may not be the main 533 
driver of O3 bias over Southern Africa even though stratosphere-to-troposphere flux of ozone are 534 
relatively strong in the region (e.g., Leclair De Bellevue et al., 2006; Clain et al., 2009; Mkololo 535 
et al., 2020). The Irene ozonesonde site is located in Southern Africa (Figure 1b). Compared to the 536 
ozonesonde O3 profiles at the Irene site, however, the sign of MUSICAv0 has a seasonal variation 537 
(Figure 10e-10h). For example, at 675–725 hPa, MUSICAv0 O3 bias in MAM and JJA is 3-9 ppb 538 
whereas in SON and DJF it is -2 to -6 ppb. The IAGOS measurements and the Irene ozonesonde 539 
site are not co-located, so the difference is expected due to the different sampling locations and 540 
environment. Compared to other ozonesonde sites, the correlation of O3S and model O3 bias over 541 
Southern Africa is lower (0.14) and MUSICAv0 agrees relatively well with observations, which 542 
is consistent with the comparison results with IAGOS data (Figure 8). 543 

We further compare MUSICAv0 and WRF-Chem results with surface PM2.5, CO, NO2, 544 
and O3 measurements from SAAQIS in South Africa (Figures S8-S11). Overall, the performance 545 
of MUSICAv0 and WRF-Chem compared to SAAQIS data are similar. Both models underestimate 546 
surface CO in most sites (consistent with the comparisons with satellites) with exceptions near 547 
Gauteng (industrialized and urbanized region). Compared to SAAQIS sites near Cape Point, 548 
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MUSICAv0 does not show overestimation which is opposite to the overestimation compared to 549 
WDCGG Cape Point site. The maximum value of monthly CO observations from WDCGG Cape 550 
Point site in 2017 is ~150 ppb whereas the seasonal mean values of SAAQIS CO measurements 551 
near Cape Point site can be up to 600 ppb. SAAQIS CO measurements near Cape Point shows 552 
relatively large spatial variability, indicating (1) that there may be a wide range of emission sources 553 
that are poorly captured by the model and (2) a large role of local sources and potentially complex 554 
meteorology. In addition, uncertainties in observations could also contribute to the difference. Both 555 
models tend to overestimate NO2 near Gauteng, which may be related to local emissions. Both 556 
models can either overestimate or underestimate PM2.5 and/or O3 at different SAAQIS sites. The 557 
model bias in PM2.5 and O3 shows large spatial variability especially near Gauteng. Higher model 558 
resolution is needed to address the highly complex and diverse environment in the region. Lastly, 559 
it is worth pointing out that in South Africa, both models have evident bias in PM2.5 near Gauteng 560 
(Figure S11) however modeled AOD from both models agree relatively well with MODIS and 561 
AERONET (Figure 4). More studies are needed to understand this feature. 562 
 563 
3.6 Oceans near Africa 564 

We compare the CO, NO, and O3 from the MUSICAv0 simulation with measurements 565 
from ATom-2 and ATom-3 in 2017 (Figure 1a) to provide a global benchmark. Measurements 566 
made over the Atlantic Ocean and Pacific Ocean, and in January-February (Jan-Feb) and 567 
September-October (Sep-Oct) are compared separately (Figures 11 and 12). The comparison was 568 
made with data averaged into 10° latitude and 200 hPa bins. Overall, the model consistently 569 
underestimates CO globally in both seasons. The underestimation of CO is a common issue in 570 
atmospheric chemistry models and could be due to various reasons, including emissions, 571 
deposition, and chemistry (e.g., Fisher et al., 2017; Shindell et al., 2006; Stein et al., 2014; Tilmes 572 
et al., 2015; Tang et al., 2018; Gaubert et al., 2020). Specifically for our MUSICAv0 simulation 573 
in this study, the model bias in CO is relatively large (up to 52 ppb) over the Northern Hemisphere 574 
(especially at high latitude and near the surface) and small over the Southern Hemisphere (Figures 575 
11 and 12). Over the Atlantic Ocean, the bias in CO is larger in September-October than Jan-Feb 576 
in both the Northern Hemisphere (-30 ppb in Jan-Feb versus -34 ppb in Sep-Oct) and Southern 577 
Hemisphere (-11 ppb in Jan-Feb versus -14 ppb in Sep-Oct). Over the Pacific Ocean, however, the 578 
CO bias is similar for both time periods in the Northern Hemisphere (-30 ppb) while in the 579 
Southern Hemisphere, the CO bias changes significantly from -8 ppb in Jan-Feb to -16 ppb in Sep-580 
Oct. The changes in CO bias over the Southern Hemisphere are likely due to seasonal change in 581 
fire emissions. Overall, the mean biases (Figures 11 and 12) suggest that the simulation agrees 582 
better with ATom observations in the Southern Hemisphere than in the Northern Hemisphere, and 583 
in Jan-Feb than in Sep-Oct (Figures 11 and 12), consistent with Gaubert et al. (2016). 584 

In both seasons and both hemispheres, the model in general overestimates O3 in the 585 
stratosphere/UTLS (upper troposphere and lower stratosphere) by up to 38 ppb (above 200 hPa). 586 
In the troposphere (below 200 hPa), the model overall agrees well with the ATom data over the 587 
Pacific Ocean in the Southern Hemisphere (in most cases the bias is less than ±5 ppb). However, 588 
over the Atlantic Ocean in the Southern Hemisphere, MUSICAv0 tends to overestimate O3, 589 
especially in Jan-Feb. In the troposphere of the Northern Hemisphere, MUSICAv0 consistently 590 
overestimates O3 over both oceans and both seasons. The positive bias in O3 decreases from the 591 
upper troposphere towards the surface, indicating that the overestimation of O3 in the troposphere 592 
may be due to stratosphere-to-troposphere flux of ozone. This was also noted for other global 593 
models (Bourgeois et al. 2021). Thompson et al. (2014) found O3 at the Irene site is also influenced 594 
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by long-range transport of growing pollution in the Southern Hemisphere, which could also 595 
contribute to the model bias. As for NO, the model tends to overestimate NO above 200 hPa 596 
(approximately the stratosphere and Upper Troposphere-Lower Stratosphere; UTLS) by up to 50 597 
ppt. Overall, the NO biases can be either positive or negative depending on location and season. 598 
The distributions of NO bias (Figures 11 and 12) do not show an overall spatial pattern, unlike 599 
those for CO (which changes monotonically with latitude) or O3 (which changes monotonically 600 
with altitude).  601 

 602 

4. Model application: identifying key regions in Africa for future in situ observations and 603 
field campaign(s) 604 
 As a demonstration of the application of MUSICAv0, here we use the results of model-605 
satellite comparisons to identify potential regions where the atmospheric chemistry models need 606 
to be improved substantially. More field campaigns and more in situ observations would not only 607 
provide observational benchmark dataset to understand and improve the modeling capability in 608 
the region, but would be also useful for the validation and calibration of satellite products. Here 609 
we use Taylor score to quantify model-satellite discrepancies. Taylor score (Taylor, 2001) is 610 
defined by 611 

     S = !(#$%)
('(!$#/'(!)"(#$%#)

      612 

where σ$*  is the ratio of σ*  (standard deviation of the model) and σ+  (standard deviation of 613 
observations), R is correlation between model and observations, and R,  is the maximum 614 
potentially realizable correlation (=1 in this study). Taylor score ranges from 0 to 1 and a higher 615 
Taylor score indicates better satellite-model agreement. To identify potential locations, we 616 
separate the Africa continent into 5° ´ 5° (latitude ´ longitude) pixels as shown in Figure 14. And 617 
for each pixel, we calculate Taylor scores of MUSICAv0 compared to the three satellite Level 2 618 
products (e.g., MOPITT CO column retrievals, OMI tropospheric NO2 column retrievals, and 619 
MODIS AOD) separately. Then three Taylor scores are summed up to obtain the total Taylor score 620 
for MUSICAv0 (ranges from 0 to 3) as shown in Figures 13a-13e. A similar calculation is 621 
conducted for WRF-Chem (Figures 13f-13j). Note that we did not include Taylor scores for HCHO 622 
in the total Taylor score due to that (1) WRF-Chem simulations did not save HCHO output, and 623 
(2) the HCHO retrievals have relatively high uncertainties (Taylor scores of MUSICAv0 compared 624 
to OMI tropospheric HCHO column retrievals are provided separately in Figure S12). 625 
 Overall, both MUSICAv0 and WRF-Chem have low total Taylor scores in the 30°E – 45°E, 626 
5°S – 5°N region in East Africa (a region of 15° longitude ´ 10° latitude) during MAM (March, 627 
April, and May), JJA (June, July, and August), and SON (September, October, and November), as 628 
highlighted in Figure 14, indicating relatively large model-satellite discrepancies in the region. 629 
Besides the 30°E – 45°E, 5°S – 5°N region highlighted in Figure 14, there are a few other regions 630 
with low Taylor scores for both MUSICAv0 and WRF-Chem such as 10°E – 20°E, -30°S – -20°N 631 
region and the east of Madagascar. 632 

The 30°E – 45°E, 5°S – 5°N region (a sub-region in East Africa) is also the region where 633 
the Nairobi ozonesonde site and the Kampala surface PM2.5 site are located (Figure 1b). As 634 
discussed above, both MUSICAv0 and WRF-Chem significantly overestimate O3 (Figure 10) and 635 
largely underestimate PM2.5 (Figure 11) in the region. More in situ observations or future field 636 
campaigns in the region can substantially help in the understanding model-satellite and model-in 637 
situ observation discrepancies and improving model performance.  638 
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The 30°E – 45°E, 5°S – 5°N region (a sub-region in East Africa) is potentially a favorable 639 
location for future field campaign(s) not only because of the large model-satellite and model-in 640 
situ observation discrepancies, but also due to that the population density is high and landcover 641 
are diverse in the region (Figure 9). The relatively high population density in the region indicates 642 
that improved air quality modeling in the region can benefit a large population. A diverse landcover 643 
indicates more processes/environments can be sampled. CO tracers in the model (Figure 15) show 644 
that CO over the region is mainly driven by both anthropogenic and fire emissions. Anthropogenic 645 
emissions play a more important role in the 30°E – 45°E, 5°S – 5°N region compared to East 646 
Africa in general (Figures 4 and 14). In terms of source regions, emissions from East Africa and 647 
inflow from outside the continent are the dominant source, with some contributions from Central 648 
Africa. Note that the source analyses using model tracers may be subject to uncertainties in the 649 
emission inventories, in this case CAMSv5.1, QFED, and the waste burning inventory used here. 650 
As discussed above (e.g., Section 3.4), there might be missing sources in the region. In addition, 651 
emission factors used in many emission inventories are based on measurements outside the 652 
continent of Africa (e.g., Lamarque et al. 2010; Klimont et al., 2013; Pokhrel et al. 2021). It is not 653 
clear so far if these emission factors are applicable to emissions in Africa (e.g., Keita et al., 2018). 654 
Therefore, a field campaign in the region can help address these issues. 655 

We would like to point out that in this analysis, the key area is selected using 3 satellite 656 
products/chemical species and two models. The Taylor score is a comprehensive measure of model 657 
performance that accounts for variance and correlation, however, other models and types of 658 
comparisons may provide different answers. 659 

 660 
5. Conclusions 661 

Africa is one of the most rapidly changing regions in the world and air pollution is a 662 
growing issue at multiple scales over the continent. MUSICAv0 is a new community modeling 663 
infrastructure that enables the study of atmospheric composition and chemistry across all relevant 664 
scales. We developed a MUSICAv0 grid with Africa refinement (~28 km ´ 28 km over Africa and 665 
~110 km ´ 110 km for the rest of the world) and conducted the simulation for the year 2017. We 666 
evaluated the model with in situ observations including ATom-2 and ATom-3 airborne 667 
measurements of CO, NO, and O3, IAGOS airborne measurements of CO and O3, O3 profiles from 668 
ozonesondes, surface CO observations from WDGCC, and surface PM2.5 observations from two 669 
U.S. Embassy locations. We then compare MUSICAv0 with satellite products over Africa, namely 670 
MOPITT CO column, MODIS AOD, OMI tropospheric NO2 column, and OMI tropospheric 671 
HCHO column. Results from a WRF-Chem simulation were also included in the evaluations and 672 
comparisons as a reference. Lastly, as an application of the model, we identified potential African 673 
regions for in situ observations and field campaign(s) based on model-satellite discrepancies 674 
(quantified by Taylor score), with regard to model-in situ observation discrepancies, source 675 
analyses, population, and land cover. The main conclusions are as follows. 676 

(1) When comparing to ATom-2 and ATom-3, MUSICAv0 consistently underestimates 677 
CO globally. Overall, the negative model bias increases with latitude from the Southern 678 
Hemisphere to the Northern Hemisphere. MUSICAv0 also tends to overestimate O3 in the 679 
stratosphere/UTLS, and the positive model bias overall decreases with altitude. 680 
(2) The MUSICAv0 biases in O3 when compared to ATom, IAGOS, and ozonesondes are 681 
likely driven by stratosphere-to-troposphere fluxes of O3 and lightning NO emissions. 682 
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(3) Overall, the performance of MUSICAv0 and WRF-Chem are similar when compared 683 
to the surface CO observations from six WDCGG sites in Africa.  684 
(4) Both models have negative bias compared to the MOPITT CO column, especially over 685 
Central Africa in September, which is likely driven by fires. 686 
(5) Overall, MUSICAv0 agrees better with OMI tropospheric NO2 column than WRF-687 
Chem. 688 
(6) MUSICAv0 overall has a lower tropospheric HCHO column than OMI retrievals in all 689 
regions and seasons. Biogenic and fire emissions are likely to be the main driver of this 690 
disagreement. 691 
(7) Over Africa, the MUSICAv0 simulation has smaller mean bias and RMSE compared 692 
to MODIS AOD than the WRF-Chem simulation. 693 
(8) The 30°E – 45°E, 5°S – 5°N region in East Africa is potentially a favorable location for 694 
future field campaign(s) not only because of the large model-satellite and model-in situ 695 
observation discrepancies, but also due to the population density, landcover, and pollution 696 
source in this region. 697 

 Overall, the performance of MUSICAv0 is comparable to WRF-Chem. The 698 
underestimation of CO is a common issue in atmospheric chemistry models such as MUSICAv0 699 
and WRF-Chem. The overestimation of O3 in MUSICAv0 is likely driven by too strong of 700 
stratosphere-to-troposphere fluxes of O3 and perhaps an over-estimate of lightning NO emissions, 701 
however, future studies are needed to confirm and solve this issue. The significant underestimation 702 
in surface PM2.5 at two sites in East Africa and the overall overestimation in AOD in Africa 703 
compared to MODIS imply missing local sources and an overestimation of dust emissions, and 704 
require further study. In addition, lack of data could also contribute to disagreement in model and 705 
in situ observations as one site in a city is not representative of the full city. Field campaigns and 706 
more in situ observations in 30°E–45°E, 5°S–5°N region in East Africa (as well as other regions 707 
in Africa) are necessary for the improvement of atmospheric chemistry model(s) as shown by the 708 
MUSICAv0 and WRF-Chem simulations.  709 

Fire and dust are important sources of air pollution in Africa. The performance of 710 
MUSICAv0 is degraded during fire season and over dust regions. Uncertainties in emission 711 
estimates of fire and dust and in the model representation of atmospheric processes could 712 
potentially contribute to the model biases. Future studies on fire and dust in Africa are needed to 713 
address these uncertainties and air quality modeling over Africa. 714 

Here we divided the continent into five sub-regions to show the overall performance of 715 
MUSICAv0 over sub-regions of Africa. This accounted for the diversity in atmospheric chemistry 716 
environment to some degree. However, each sub-region is not homogeneous. In fact, different 717 
cities in the same sub-region may have different emission characteristics. In the future when 718 
specific scientific questions are studied with MUSICAv0, we will use higher resolution to address 719 
the highly complex and diverse environment. We plan to conduct a model simulation for multiple 720 
years and develop additional model grids with potentially higher resolution in Africa sub-regions 721 
based on the current MUSICAv0 Africa grid. Higher resolution will benefit the comparisons of 722 
model and in situ observations. The future simulation will be conducted for years after 2017 as 723 
there are more in situ observations available in recent years.  724 

 725 
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Code and data availability 726 
The model code used here can be accessed through https://doi.org/10.5281/zenodo.8051435. The 727 
data produced by this study can be accessed through https://doi.org/10.5281/zenodo.8051443. 728 
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 1188 
Figure 1. Model grid, in situ observations used in this study, and sub-regions in Africa. (a) 1189 
MUSICAv0 model grid developed for Africa in this study (black), domain boundary of the WRF-1190 
Chem simulation compared in this study (shown by green box), observations from the 1191 
Atmospheric Tomography Mission (ATom) field campaign 2 (ATom-2; 2017 Jan to 2017 Feb; 1192 
pink) and ATom-3 (2017 Sep to 2017 Oct; yellow). (b) Sub-regions in Africa are shown, namely 1193 
North Africa (green), West Africa (pink), East Africa (orange), Central Africa (blue), and Southern 1194 
Africa (yellow). Location of in situ observations are labeled on the map. Flight tracks of the In-1195 
service Aircraft for a Global Observing System (IAGOS) are shown with black lines. Four 1196 
ozonesonde sites are shown by pentagrams (Ascension, Irene, Nairobi, and La Reunion); six sites 1197 
from the World Data Centre for Greenhouse Gases are shown by triangles (Assekrem, Cape Point, 1198 
Izana, Gobabeb, Mare, and Ascension); surface sites for PM2.5 are shown by squares (Addis Ababa 1199 
and Kampala in East Africa; Abidjan and Cotonou in West Africa); AErosol RObotic NETwork 1200 
(AERONET) sites are shown with diamond; South Africa Air Quality Information System 1201 
(SAAQIS) sites are shown with blue circles. 1202 
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 1206 

 1207 
Figure 2. Comparisons of MUSICAv0 and WRF-Chem simulations to MOPITT CO column 1208 
(molecules/cm2) for each season of 2017. (a-d) Averaged MOPITT CO column: MAM (March, 1209 
April, and May), JJA (June, July, and August), SON (September, October, and November), and 1210 
DJF (December, January, and February). (e-h) MUSICAv0 model biases against MOPITT CO 1211 
column for MAM, JJA, SON, and DJF. (i-l) is the same as (e-h) but for WRF-Chem. All data are 1212 
gridded to 0.25 degree ´ 0.25 degree for plotting. 1213 
 1214 

 1215 
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 1216 
 1217 
Figure 3. Mean bias of MUSICAv0 and WRF-Chem simulations from satellite data. Monthly 1218 
timeseries of mean bias of (a) MUSICAv0 and (b) WRF-Chem against MOPITT CO column 1219 
(molecules/cm2) in 2017 over Africa (black), North Africa (green), West Africa (pink), East Africa 1220 
(orange), Central Africa (blue), and Southern Africa (yellow). (c-d) are same as (a-b) but for mean 1221 
bias against OMI tropospheric NO2 column (molecules/cm2). (e-f) are same as (a-b) but for mean 1222 
bias against with MODIS (Terra) Aerosol Optical Depth (AOD). (g) is the same as (a) but for mean 1223 
bias against OMI tropospheric HCHO column (molecules/cm2). 1224 
 1225 
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 1226 
 1227 
Figure 4. Comparisons of MUSICAv0 and WRF-Chem simulations and MODIS and AERONET 1228 
AOD at 550 nm in 2017. (a-d) Averaged MODIS and AERONET AOD in MAM (March, April, 1229 
and May), JJA (June, July, and August), SON (September, October, and November), and DJF 1230 
(December, January, and February). (e-h) MUSICAv0 model biases against MODIS and 1231 
AERONET AOD in MAM, JJA, SON, and DJF. (i-l) is the same as (e-h) but for WRF-Chem. All 1232 
data are gridded to 0.25 degree ´ 0.25 degree for plotting. AERONET AOD in (a-d) and model 1233 
bias against AERONET AOD in (e-l) are shown by the circles overlayed on the map. 1234 
 1235 
 1236 
 1237 
 1238 
 1239 
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 1240 
Figure 5. Monthly time series of column-averaged CO tracers in North Africa, West Africa, East 1241 
Africa, Central Africa, and Southern Africa. Top panels show CO tracers of emissions from North 1242 
Africa (green), West Africa (pink), East Africa (orange), Central Africa (blue), Southern Africa 1243 
(yellow), and the rest of the world (grey). Bottom panels show CO tracers of fire emissions (red), 1244 
anthropogenic emissions (green), and waste burning emissions (yellow).   1245 
 1246 
 1247 

 1248 
Figure 6. Monthly mean CO (ppb) from in situ observations (black), MUSICAv0 (red), and WRF-1249 
Chem (blue) during 2017 at (a) Assekrem, (b) Cape Point, (c) Izana, (d) Gobabeb, (e) Mare and 1250 
(f) Ascension (see Figure 1b for locations). Monthly means are calculated from 3-hourly data. The 1251 
range for each data point shows the variation of the 3-hourly data on that day (25% quantile to 1252 
75% quantile). Observational data are from World Data Centre for Greenhouse Gases (WDCGG). 1253 
  1254 
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 1257 
Figure 7. Vertical profiles of CO (ppb) from the In-service Aircraft for a Global Observing System 1258 
(IAGOS) measurements (black) and corresponding model output from MUSICAv0 (red), and 1259 
WRF-Chem (blue) during different seasons in 2017 over West Africa, Central Africa, East Africa, 1260 
and Southern Africa. North Africa is not shown due to data availability. Seasonal mean profiles 1261 
with the variation of the data in the pressure layer (25% quantile to 75% quantile) in MAM (March, 1262 
April, and May), JJA (June, July, and August), SON (September, October, and November), and 1263 
DJF (December, January, and February) are shown.  1264 
 1265 
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 1266 
Figure 8. Vertical profiles of O3 (ppb) from the In-service Aircraft for a Global Observing System 1267 
(IAGOS) measurements (black) and corresponding model output from MUSICAv0 (red), and 1268 
WRF-Chem (blue) during different seasons in 2017 over West Africa, Central Africa, East Africa, 1269 
and Southern Africa. North Africa is not shown due to data availability Seasonal mean profiles 1270 
with the variation of the data in the pressure layer (25% quantile to 75% quantile) in MAM (March, 1271 
April, and May), JJA (June, July, and August), SON (September, October, and November), and 1272 
DJF (December, January, and February) are shown. The dash red lines represent O3S 1273 
(stratospheric ozone tracer) from the MUSICAv0 simulation. 1274 
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 1275 
Figure 9. (a) Land cover in 2017 and (b) population density (persons/km2) in 2020 over Africa. 1276 
Land cover data is from MODIS/Terra+Aqua Land Cover Type Yearly L3 Global product 1277 
(resolution: 0.05 degree) (Friedl et al., 2022). Cropland/Natural Vegetation Mosaics means 1278 
Mosaics of small-scale cultivation (40-60%) with natural tree, shrub, or herbaceous vegetation. 1279 
Population density data is from the Gridded Population of the World, Version 4 (GPWv4), 1280 
Revision 11 (CIESIN, 2018). 1281 
 1282 
 1283 
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 1284 
Figure 10. Vertical profiles of O3 (ppb) from Ozonesondes (black) and corresponding model 1285 
output from MUSICAv0 (red), and WRF-Chem (blue) for each season of 2017. The thick lines 1286 
denote the seasonal mean profiles and the thin lines denote the individual profiles. The dash red 1287 
lines represent O3S (stratospheric ozone tracer) from the MUSICAv0 simulation. Ozonesonde data 1288 
at Ascension in (a) MAM (March, April, and May), (b) JJA (June, July, and August), (c) SON 1289 
(September, October, and November), and (d) DJF (December, January, and February) are shown. 1290 
(e-h), (i-l), and (m-p) are the same as (a-d), except for Irene, La Reunion, and Nairobi, respectively. 1291 
Locations of the sites are shown in Figure 1b. 1292 
 1293 
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 1294 
 1295 
Figure 11. Daily mean PM2.5 from in situ observations (black), MUSICAv0 (red), and WRF-Chem 1296 
(blue) during 2017 at (a) Addis Ababa and (b) Kampala. Daily means are calculated from 3-hourly 1297 
data. The shown range for each data point shows the variation on that day (25% quantile to 75% 1298 
quantile). Locations of the sites are shown in Figure 1b. 1299 
 1300 
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 1301 
Figure 12. Observations of (a) CO (ppb), (b) O3 (ppb), and (c) NO (ppt) over Atlantic Ocean 1302 
during ATom-2 and ATom-3 (d-f). (g-l) corresponding model biases against ATOM observations. 1303 
The ATom airborne measurements and corresponding MUSICAv0 model results are binned to 10-1304 
degree latitude and 200-hPa pressure bins. The values of mean biases for each latitude and pressure 1305 
bin are labeled in the figure.  1306 
 1307 
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 1308 
Figure 13. Same as Figure 9 but for over the Pacific Ocean. 1309 
 1310 
 1311 
 1312 
 1313 
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 1314 
Figure 14. Spatial distribution of total Taylor score of MUSICAv0 and (f-j) WRF-Chem compared 1315 
to satellite retrievals. In each 5° ´ 5° (latitude ´ longitude) pixel, Taylor scores of the model 1316 
compared to three satellite products (e.g., MOPITT CO column retrievals, OMI tropospheric NO2 1317 
column retrievals, and MODIS AOD) are calculated separately (as shown in Figure S12). Taylor 1318 
score against each satellite product ranges from 0 to 1. And then three Taylor scores are summed 1319 
up to obtain the shown total Taylor score (ranges from 0 to 3). Total Taylor score of MUSICAv0 1320 
for (a) 2017, (b) MAM (March, April, and May), (c) JJA (June, July, and August), (d) SON 1321 
(September, October, and November), and (e) DJF (December, January, and February) are shown. 1322 
The blue box highlights a potential region for future field campaigns and/or in situ observations. 1323 
(f-j) are similar to (a-e) except for WRF-Chem. 1324 
 1325 
 1326 
 1327 
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 1328 
Figure 15. Monthly time series of column-averaged CO tracers in the 30°E – 45°E, -5°S – 5°N 1329 
region in East Africa. (a) CO tracers of emissions from North Africa (green), West Africa (pink), 1330 
East Africa (orange), Central Africa (blue), Southern Africa (yellow), and the rest of the world 1331 
(grey). (b) CO tracers of fire emissions (red), anthropogenic emissions (green), and waste burning 1332 
emissions (yellow).   1333 

 1334 


