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Abstract 30 
The Multi-Scale Infrastructure for Chemistry and Aerosols Version 0 (MUSICAv0) is a new 31 
community modeling infrastructure that enables the study of atmospheric composition and 32 
chemistry across all relevant scales. We develop a MUSICAv0 grid with Africa refinement (~28 33 
km ´ 28 km over Africa). We evaluate the MUSICAv0 simulation for 2017 with in situ 34 
observations and compare the model results to satellite products over Africa. A simulation from 35 
the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), a regional 36 
model that is widely used in Africa studies, is also included in the analyses as a reference. Overall, 37 
the performance of MUSICAv0 is comparable to WRF-Chem. Both models underestimate carbon 38 
monoxide (CO) compared to in situ observations and satellite CO column retrievals from the 39 
Measurements of Pollution in the Troposphere (MOPITT) satellite instrument. MUSICAv0 tends 40 
to overestimate ozone (O3), likely due to overestimated stratosphere-to-troposphere flux of ozone. 41 
Both models significantly underestimate fine particulate matter (PM2.5) at two surface sites in East 42 
Africa. The MUSICAv0 simulation agrees better with aerosol optical depth (AOD) retrievals from 43 
the Moderate Resolution Imaging Spectroradiometer (MODIS) and tropospheric nitrogen dioxide 44 
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(NO2) column retrievals from the Ozone Monitoring Instrument (OMI) than WRF-Chem. 45 
MUSICAv0 has a consistently lower tropospheric formaldehyde (HCHO) column than OMI 46 
retrievals. Based on model-satellite discrepancies between MUSICAv0 and WRF-Chem and 47 
MOPITT CO, MODIS AOD, and OMI tropospheric NO2, we find that future field campaign(s) 48 
and more in situ observations in an East African region (30°E – 45°E, 5°S – 5°N) could 49 
substantially improve the predictive skill of atmospheric chemistry model(s). This suggested focus 50 
region exhibits the largest model-in situ observation discrepancies, as well as targets for high 51 
population density, land cover variability, and anthropogenic pollution sources. 52 
 53 
1. Introduction 54 

As one of the most dramatically changing continents, Africa is experiencing myriad 55 
environmental sustainability issues (e.g., Washington et al., 2006; Ziervogel et al., 2014; Boone et 56 
al., 2016; Baudoin et al., 2017; Güneralp et al., 2017; Nicholson 2019; Fisher et al., 2021; Kumar 57 
et al., 2022). These environmental issues are causing vast losses in lives and in African economies, 58 
and are coupled with poverty and under-development (Washington et al., 2006; Fisher et al., 2021). 59 
Some of these environmental challenges are particularly severe in Africa compared to many other 60 
regions of the world (e.g., famine, droughts, floods, high temperatures, land degradation, and fires; 61 
Washington et al., 2006; van der Werf et al., 2017). However, even though Africa is the second 62 
largest continent, in land area and population, attention and research on environmental challenges 63 
in Africa are very limited, leading to a deficit of knowledge and solutions (e.g., De Longueville et 64 
al., 2010). Degraded air quality is an example of a severe environmental challenge with growing 65 
importance in Africa (e.g., Liousse et al., 2014; Thompson et al., 2014; Heft-Neal et al., 2018; 66 
Fisher et al., 2021; Vohra et al., 2022). A previous study found that air pollution across Africa 67 
caused ~1.1 million deaths in 2019 (Fisher et al., 2021). However, the study of air quality in Africa 68 
is hindered by the scarcity of ground-based observations (e.g., Paton-Walsh et al., 2022), 69 
modelling capability and the use of satellite observations. In this paper, we will focus on air quality 70 
analyses over Africa with the new model Multi-Scale Infrastructure for Chemistry and Aerosols 71 
(MUSICA; Pfister et al., 2020).  72 

Atmospheric chemistry modeling is a useful tool to perform research on air quality 73 
conditions and evolution. Various models have been applied to study atmospheric chemistry and 74 
air quality in Africa such as the Weather Research and Forecasting (WRF) model coupled with 75 
Chemistry (WRF-Chem) (e.g., Kuik et al., 2015; Kumar et al., 2022), the GEOS-Chem chemical 76 
transport model (e.g., Marais et al., 2012, 2019; Lacey et al., 2018), the CHIMERE chemical 77 
transport model (e.g., Menut et al., 2018; Mazzeo et al., 2022), and the U.K. Earth System Model 78 
(UKESM1) (Brown et al., 2022), and GEOS5 (Bauer et al., 2019). 79 
 MUSICA is a new state-of-the-art community modeling infrastructure that enables the 80 
study of atmospheric composition and chemistry across all relevant scales (Pfister et al., 2020). 81 
The newly developed MUSICA Version 0 (MUSICAv0) is a global chemistry-climate model that 82 
allows global simulations with regional refinement down to a few kilometers spatial resolution 83 
(Schwantes et al., 2022). The coupling with other components of the Earth system (e.g., land, 84 
ocean, and sea ice) can also be performed at multiple scales. MUSICAv0 has various advantages 85 
and is particularly suitable for research applications over Africa. For example, MUSICAv0 can be 86 
used to study the interactions between atmospheric chemistry and other components of the Earth 87 
system and climate. MUSICA also includes the whole atmosphere (from the surface to 88 
thermosphere), and therefore can also be used to study the stratosphere and above and interactions 89 
between the stratosphere and troposphere. This is critical because some of the environmental issues 90 
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in Africa are coupled (e.g., the ozone–climate penalty; Brown et al., 2022). In addition, as a global 91 
model, MUSICAv0 does not require boundary conditions to study a region at high resolution. 92 
Global impacts and interactions can be simulated in a consistent and coherent way. This feature is 93 
important as inflow from other continents and oceans significantly impacts air quality in Africa. 94 
MUSICAv0 has been evaluated over North America (Schwantes et al., 2022, Tang et al., 2022) 95 
and is also being developed and tested in other regions around the globe 96 
(https://wiki.ucar.edu/display/MUSICA/Available+Grids). 97 
 This paper serves as the basis for the future application of MUSICAv0 in Africa. In this 98 
study, we develop a MUSICAv0 model grid with regional refinement over Africa. Because 99 
MUSICAv0 with Africa refinement is newly developed while WRF-Chem has been previously 100 
used for African atmospheric chemistry and air quality studies, here we include results from WRF-101 
Chem to assess the ability of MUSICAv0 in reproducing the regional features of atmospheric 102 
composition as simulated by WRF-Chem. We conduct the MUSICAv0 simulation for the year 103 
2017 to compare with a previous WRF-Chem simulation (Kumar et al., 2022). MUSICAv0 and 104 
the WRF-Chem simulation and the observational data used in this study are described in Section 105 
2. The MUSICAv0 model simulation results are evaluated against in situ observations and 106 
compared with satellite retrievals in Section 3. In Section 4, we provide an example application of 107 
MUSICAv0 over Africa – identifying key potential regions in Africa for future in situ observations 108 
and field campaign(s).  109 
 110 
2. Model and data 111 
2.1 MUSICAv0 112 

MUSICA is a newly developed framework for simulations of large-scale atmospheric 113 
phenomena in a global modeling framework, while still resolving chemistry at emission- and 114 
exposure-relevant scales (Pfister et al., 2020). MUSICA version 0 (MUSICAv0) is a configuration 115 
of the Community Earth System Model (CESM). It is also known as the Community Atmospheric 116 
Model with chemistry (CAM-chem) (Tilmes et al., 2019; Emmons et al., 2020) with regional 117 
refinement (RR) down to a few kilometers (Lauritzen et al., 2018; Schwantes et al., 2022). CAM-118 
chem, and thus MUSICAv0, includes several choices of chemical mechanisms of varying 119 
complexity. This study uses the default MOZART-TS1 chemical mechanism for gas phase 120 
chemistry (including comprehensive tropospheric and stratospheric chemistry; Emmons et al., 121 
2020) and the four-mode version of the Modal Aerosol Module (MAM4; Liu et al., 2016) for the 122 
aerosol scheme. 123 

The MUSICAv0 users have the option to create their own model grid. MUSICAv0 is 124 
currently being developed and tested for applications over various regions globally 125 
(https://wiki.ucar.edu/display/MUSICA/Available+Grids), including North America, India, East 126 
Asia, South America, Australia, and Korea, among others. (e.g., Schwantes et al., 2022; Tang et 127 
al., 2022; Jo et al., 2023). In this study, we develop a model grid for applications in Africa 128 
(ne0np4.africa_v5.ne30x4). As shown in Figure 1a, the horizontal resolution is ~111 km ´ 111 km 129 
(i.e., 1° latitude ´ 1° equatorial longitude) globally, and ~28 km ´ 28 km (i.e., 0.25° latitude ´ 130 
0.25° equatorial longitude) within the region over Africa. Our simulation uses the default option 131 
for vertical layers (i.e., 32 layers from the surface to ~3.64 hPa). 132 

Here we run MUSICAv0 with the model grid for Africa for the year 2017, saving 3-hourly 133 
output. We use the Copernicus Atmosphere Monitoring Service Global Anthropogenic emissions, 134 
(CAMS-GLOB-ANTH) version 5.1 (Soulie et al., 2023) for anthropogenic emissions and the 135 
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Quick Fire Emissions Dataset (QFED) for fire emissions (Darmenov and da Silva, 2013). Plume 136 
rise climatology is applied to fire emissions following Tang et al. (2022). In addition, we also 137 
include open waste burning (https://www.acom.ucar.edu/Data/fire/; Wiedinmyer et al., 2014) 138 
emissions in the simulation. The model has the option of a free-running atmosphere or nudging to 139 
external meteorological reanalysis. In this simulation, only wind and temperature are nudged to 140 
the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2; 141 
Gelaro et al., 2017) with a relaxation time of 12 hours.  142 

We also added carbon monoxide (CO) tracers in the simulation to understand the source 143 
and transport of air pollution. CO tracers in CAM-chem/MUSICAv0 are described in detail by 144 
Tang et al. (2019). In this study we include tracers for 6 regions (North Africa, West Africa, East 145 
Africa, Central Africa, Southern Africa, and the rest of the world) and 3 emission sources 146 
separately (anthropogenic emissions, fire emissions, and open waste burning emissions). In total, 147 
there are 18 tagged CO tracers. 148 
 149 
2.2 WRF-Chem 150 
 The Weather Research and Forecasting (WRF) model coupled with Chemistry (WRF-151 
Chem) is a regional chemical transport model. It has been widely used for air quality studies in 152 
Africa. In this study we use model results from a WRF-Chem simulation described by Kumar et 153 
al. (2022). The WRF-Chem simulation has a grid spacing of 20 km, slightly higher than the 154 
MUSICAv0 simulation, and the model domain is highlighted in Figure 1a. The simulation has 36 155 
vertical levels from the surface to ~50 hPa. The WRF-Chem simulation uses the Model for Ozone 156 
and Related Tracers-4 (MOZART-4) chemical mechanism (Emmons et al., 2010) for tropospheric 157 
gas phase chemistry, and the Goddard Global Ozone Chemistry Aerosol Radiation and Transport 158 
(GOCART) model (Chin et al., 2002) for aerosol processes. The European Centre for Medium 159 
Range Weather Forecasts (ECMWF) global reanalysis (ERA-Interim) fields are used for initial 160 
and boundary meteorology conditions, while another CAM-chem simulation is used for initial and 161 
boundary chemical conditions (Kumar et al., 2022). The WRF-Chem simulation used the global 162 
Emission Database for Atmospheric Research developed for Hemispheric Transport of Air 163 
Pollution (EDGAR-HTAP v2) for anthropogenic emissions and the Fire Inventory from NCAR 164 
version 1.5 (FINNv1.5) (Wiedinmyer et al., 2011) for fire emissions. The WRF-Chem output is 165 
saved hourly, however we only use 3-hourly output to match the MUSICAv0 simulation.  166 
 167 
2.3 ATom 168 
 The Atmospheric Tomography mission (ATom; Thompson et al. 2022) was designed to 169 
study the impact of human-produced air pollution on greenhouse gases, chemically reactive gases, 170 
and aerosols in remote ocean air masses. During the project, the DC-8 aircraft sampled the remote 171 
troposphere with continuous vertical profiles. There were four seasonal deployments from the 172 
summer of 2016 through the spring of 2018. Here we compare the MUSICAv0 simulation with 173 
observations from ATom-2 (January–February 2017) and ATom-3 (September–October 2017). 174 
Since the ATom flight tracks were mostly outside the WRF-Chem domain (Figure 1a), we do not 175 
compare the WRF-Chem simulation with ATom data. However, we compare chemical species 176 
from the MUSICAv0 simulation to the 2-minute merged ATom measurements globally to obtain 177 
a benchmark and broader understanding of MUSICAv0 performance both within and outside the 178 
refined region. The model output is saved along the ATom aircraft flight tracks and with respect 179 
to the observational times at run time. Nitric oxide (NO) and ozone (O3) measurements from the 180 
NOAA Nitrogen Oxides and Ozone (NOyO3) instrument (Bourgeois et al., 2020, 2021) and the 181 
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merged CO data (from Quantum Cascade Laser System and NOAA Picarro CO measurements) 182 
are used. 183 
 184 
2.4 IAGOS 185 

The In-service Aircraft for a Global Observing System (IAGOS) is a European research 186 
infrastructure, and was developed for operations on commercial aircraft to monitor atmospheric 187 
composition (Petzold et al., 2015). The IAGOS instrument package 1 measures CO, O3, air 188 
temperature, and water vapor (https://www.iagos.org/iagos-core-instruments/package1/). CO is 189 
measured by infrared absorption using the gas filter correlation technique (Precision: ±5%, 190 
Accuracy: ±5 ppb) while O3 is measured by UV absorption at 253.7 nm (Precision: ±2%, 191 
Accuracy: ±2 ppb). We use airborne measurements of CO, O3, air temperature, and water vapor 192 
from IAGOS for model evaluation. The locations of the IAGOS flight tracks over Africa are shown 193 
in Figure 1b. The model results and IAGOS data comparisons are conducted separately for five 194 
African sub-regions (defined in Figure 1b). 195 
 196 
2.5 Ozonesondes 197 

The ozonesonde is a balloon-borne instrument that measures atmospheric O3 profiles 198 
through the electrochemical concentration cell using iodine/iodide electrode reactions (Thompson 199 
et al., 2017), with records of temperature, pressure, and relative humidity from standard 200 
radiosondes. We use ozonesonde data from Southern Hemisphere ADditional OZonesondes 201 
(NASA/GSFC SHADOZ; Thompson et al., 2017; Witte et al., 2017, 2018). Specifically, 202 
ozonesonde data from four sites are used (Figure 1b): Ascension (Ascension Island, U.K.), Nairobi 203 
(Kenya), Irene (South Africa), and La Reunion (La Réunion Island, France). The average O3 204 
measurement uncertainty ranged from 5–9% for the ozonsonde data used in this study.  205 
 206 
2.6 WDCGG 207 
 Monthly surface CO measurements from the World Data Center for Greenhouse Gases 208 
(WDCGG; operated by the Japan Meteorological Agency in collaboration with the World 209 
Meteorological Organization) are used for model evaluation. Data from six sites are used (Figure 210 
1b), namely (Ascension Island, U.K.), Assekrem (Algeria; remote site located in Saharan desert), 211 
Gobabeb (Namibia; located at the base of a linear sand dune, next to an interdune plain), Cape 212 
Point (South Africa; site exposed to the sea on top of a cliff 230 meters above sea level), Izana 213 
(Tenerife, Spain; located on the Island that is ~300 km west of the African coast), and Mare 214 
(Seychelles; near an international airport). 215 
 216 
2.7 Surface PM2.5 217 

At the U.S. embassies, regulatory-grade monitoring data are collected with Beta 218 
Attenuation Monitors (BAMs), using a federal equivalent monitoring method, with an accuracy 219 
within 10% of federal reference methods (Watson et al., 1998; U.S. EPA, 2016). These instruments 220 
are operated by the U.S. State Department and the U.S. EPA, and data are available through 221 
AirNow (https://www.airnow.gov/international/us-embassies-and-consulates/). We use the 222 
measurements at the U.S. embassy locations in Addis Ababa Central (Ethiopia, 9.06° N, 38.76° E) 223 
and Kampala (Uganda, 0.30° N, 32.59° E) for the year 2017 as references (Malings et al., 2020) 224 
to match our simulations. The raw data are made available hourly and for this study we use daily 225 
mean PM2.5 for comparison with model simulations. 226 
 227 
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2.8 MOPITT 228 
The Measurements of Pollution in the Troposphere (MOPITT) instrument on board the 229 

NASA Terra satellite provides both thermal-infrared (TIR) and near-infrared (NIR) radiance 230 
measurements since March 2000. Retrievals of CO column density and vertical profiles are 231 
provided in a multispectral TIR–NIR joint product which has sensitivity to near-surface as well as 232 
free tropospheric CO (Deeter et al., 2011; Worden et al., 2010). Here we use the MOPITT Version 233 
9 Level 2 CO column product (Deeter et al., 2022) over Africa to evaluate the MUSICAv0 and 234 
WRF-Chem simulations. MOPITT Version 9 has significant updates to the cloud detection 235 
algorithm and NIR calibration scheme. The MOPITT satellite pixel size is ~22 km ´ 22 km, and 236 
the overpass time is ~10:30 am local time in 2017. When comparing model outputs to MOPITT 237 
the recommended data quality filter is applied and model outputs are interpolated to the MOPITT 238 
retrievals in space and time. To perform quantitative comparisons, the MOPITT averaging kernel 239 
and a priori are used to transform the model CO profiles to derive model column amounts.  240 

  241 
2.9 OMI NO2 (QA4ECV) 242 

Tropospheric column NO2 from the Ozone Monitoring Instrument (OMI) on board Aura 243 
is compared to the model in this study. Specifically, the NO2 product from the quality assurance 244 
for the essential climate variables (QA4ECV) project is used (Boersma et al., 2017a; Compernolle 245 
et al., 2020). The satellite pixel size is ~13 km ´ 25 km, and the overpass time is ~1:40 pm local 246 
time in 2017. A data quality filter was applied following the Product Specification Document 247 
(Boersma et al., 2017b; processing_error_flag = 0, solar_zenith_angle < 80, snow_ice_flag < 10 248 
or snow_ice_flag = 255, amf_trop/amf_geo > 0.2, and cloud_radiance_fraction_no20 <= 0.5). 249 
Model profiles were transformed using the provided tropospheric air mass factor (AMF) and 250 
averaging kernels. 251 
 252 
2.10 OMI HCHO (QA4ECV) 253 

We also use tropospheric column HCHO from OMI in this study. Similar to OMI NO2, we 254 
also use OMI HCHO product from QA4ECV (De Smedt et al., 2017a). A data quality filter was 255 
applied following the Product User Guide (De Smedt et al., 2017b; processing_error_flag = 0 and 256 
processing_quality_flag = 0). Model profiles were transformed using provided averaging kernels. 257 
We note that HCHO retrievals are subject to relatively large uncertainties compared to other 258 
satellite products used in this study. Therefore, the comparisons between model results and the 259 
OMI HCHO product only indicate the model-satellite discrepancies rather than determining model 260 
deficiencies. In addition, the WRF-Chem simulation from Kumar et al. (2022) does not include 261 
HCHO in the output and hence will not be compared.  262 
 263 
2.11 MODIS AOD 264 
 The aerosol optical depth (AOD) product (550 nm) from the Moderate Resolution Imaging 265 
Spectroradiometer (MODIS) on board Terra NASA Terra satellite is used. Specifically, we used 266 
the MODIS Level 2 Collection 6.1 product (MOD04_L2; Levy et al., 2017). Deep Blue Aerosol 267 
retrievals are used (Hsu et al., 2013; Levy et al., 2013) to include retrievals over the desert. The 268 
MODIS satellite pixel size is ~1 km ´ 1 km, and the overpass time is ~10:30 am local time.  269 
 270 
3. Model comparisons with satellite data and evaluation with in situ observations 271 
 Africa includes a wide range of environments and emissions source. Therefore, in this 272 
section we separate the continent in five sub-regions for analysis following Kumar et al. (2022). 273 
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CO is a good tracer of anthropogenic and biomass burning emissions and modeled CO tracers are 274 
used in this section to understand sources. Figure 2 shows the seasonal averages of CO column 275 
distributions over Africa from MOPITT along with the MUSICAv0 and WRF-Chem biases. The 276 
highest levels of CO in these maps are primarily associated with biomass burning, which moves 277 
around the continent with season. Both MUSICAv0 and WRF-Chem simulations underestimate 278 
the CO column compared to MOPITT (Figures 3a and 3b). Overall, MUSICAv0 agrees better with 279 
the OMI tropospheric NO2 column (Figure 3c) and MODIS AOD (Figure 3e) than WRF-Chem 280 
(Figures 3d and 3f). The MUSICAv0 simulation overall has lower tropospheric HCHO column 281 
than OMI in all regions and seasons (Figure 3g). Spatial distributions of model biases against the 282 
OMI tropospheric NO2 column, MODIS AOD, and OMI tropospheric HCHO column are included 283 
in Figures S1–S3. In this section we compare the model results with satellite data and in situ 284 
observations over sub-regions in Africa and oceans near Africa (Figure 1b). 285 
 286 
3.1 North Africa 287 
 Over North Africa, both MUSICAv0 and WRF-Chem simulations underestimate the CO 288 
column during 2017 (Figures 2 and 3). As shown by the tagged model CO tracers (Figure 4), CO 289 
over North Africa is mainly driven by transport of CO from outside the continent and 290 
anthropogenic emissions. The model underestimation compared to the MOPITT CO column is 291 
consistent with the results of the comparisons with surface CO observations from WDCGG at the 292 
two sites located in North Africa (Assekrem and Izana; Figures 5a and 5c). At the two surface 293 
sites, the composition of source types and source regions are close to the composition of source 294 
types and source regions of the column average over North Africa (Figure 4 and Figures S4 and 295 
S5), hence the two sites are representative of the background conditions of North Africa. 296 
Compared to MODIS AOD, WRF-Chem has a mean bias of 0.36 whereas MUSICAv0’s mean 297 
bias is 0.17 for 2017. The model AOD biases over North Africa are likely driven by dust. No 298 
comparison is made with IAGOS O3 in North Africa due to data availability. 299 
 300 
3.2 West Africa 301 

Over West Africa, fire and anthropogenic emissions are both important for CO pollutant 302 
and fire impacts peak in DJF (December, January, and February). Compared to the MOPITT CO 303 
column, the mean bias of MUSICAv0 and WRF-Chem for West Africa peak around February – 304 
the dry season of the Northern Hemisphere (Figure 3). In February, the MUSICAv0 mean bias is 305 
-1.1´1018 molecules/cm2 and WRF-Chem mean bias is -7.5´1017 molecules/cm2, which are likely 306 
driven by fire emission sources (Figure 4). Model comparisons with IAGOS CO also show a 307 
similar bias – both model simulations underestimate CO at all vertical levels. The underestimation 308 
peaks during DJF and below 600 hPa (Figure 6). As for MODIS AOD, WRF-Chem has the mean 309 
bias 0.69 whereas MUSICAv0’s mean bias is 0.15, respectively. Similar to North Africa, the model 310 
biases in AOD over West Africa are also likely driven by dust and biomass burning. We also 311 
compare modeled O3 with IAGOS O3 observations (Figure 7).  312 

Over West Africa, both models agree well with the IAGOS O3 observations below 800 hPa 313 
(mean bias ranges from -1 to -4 ppb). Above 800 hPa over West Africa, WRF-Chem 314 
underestimates O3 while MUSICAv0 overestimates O3. Overall, MUSICAv0 consistently 315 
overestimates O3 above 800 hPa in all seasons while the direction of WRF-Chem bias changes 316 
with seasons (Figure 7). When MUSICAv0 overestimates O3, the bias is in general larger at the 317 
higher altitude of the troposphere. The concentration of the model stratospheric ozone tracer, O3S, 318 
is also larger at the higher altitude in DJF (Figure 9). The correlation of modeled O3 and O3S is 319 
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0.54, and the correlations of O3S and model O3 bias (modeled O3 minus IAGOS O3) is 0.35 over 320 
West Africa, implying the overestimation of O3 in the upper troposphere could be partially driven 321 
by too strong stratosphere-to-troposphere flux of ozone. Lightning NO emissions can also impact 322 
O3 in the upper troposphere. The MUSICAv0 simulation has somewhat (~3 times) higher lightning 323 
NO emissions (Figure S6) compared to a standard CAM-chem simulation (not shown), therefore 324 
the high ozone in the upper troposphere may be due to an over-estimate of lightning NO. Impacts 325 
of lightning NO emissions on upper troposphere O3 in MUSICAv0 will be investigated and 326 
evaluated further in the future. A brief comparison with IAGOS measurements of air temperature 327 
and water vapor profiles over West Africa as well as other sub-regions shows that MUSICAv0 328 
overall agrees well with these meteorological variables (Figure S7). 329 
 330 
3.3 Central Africa 331 
 Compared to MOPITT CO column, the mean bias of MUSICAv0 and WRF-Chem for 332 
Central Africa varies with seasons (Figure 3) but peaks during the dry season in September 333 
(MUSICAv0 mean bias of -1.0´1018 molecules/cm2; WRF-Chem mean bias of -1.2´1018 334 
molecules/cm2). The tagged model CO tracers show that in September, local fire emissions are the 335 
dominant driver of CO in Central Africa (Figure 4). Compared to the IAGOS CO profiles (Figure 336 
6), both models have the largest bias over Central Africa among the sub-regions in Africa – mean 337 
bias of MUSICAv0 and WRF-Chem are -46 ppb and -36 ppb, respectively. The high bias over 338 
Central Africa mainly occurs during the fire season. In central Africa, both models also 339 
underestimate NO2 (mean biases of MUSICAv0 and WRF-Chem are -1.5´1014 and -5.5´1014 340 
molecules/cm2, respectively). The underestimations in both CO and NO2 by the two model 341 
simulations are likely driven by the underestimation in fire emissions. Indeed, the emission 342 
estimates from the newest version of FINN (FINNv2.5; Wiedinmyer et al., 2023) are higher 343 
compared to both QFED (used in the MUSICAv0 simulation) and FINNv1.5 (used in the WRF-344 
Chem simulation) in this region. 345 

Model mean bias of HCHO (-1.3´1016 molecules/cm2 for the whole 2017) over Central 346 
Africa is the largest among the five regions (Figure 3). The spatial distribution of HCHO bias 347 
(Figure S4) largely co-locates with the vegetation (Figure 8). Over the barren or sparsely vegetated 348 
area in North Africa and along the west coast of Southern Africa, HCHO biases are relatively small 349 
while over the vegetated area HCHO bias are relatively large. Over North Africa, the mean bias is 350 
-0.66´1016 molecules/cm2 for the whole 2017 whereas over the other four regions, the mean bias 351 
ranges from -0.93´1016 molecules/cm2 to -1.31´1016 molecules/cm2 for the whole 2017. This 352 
indicates that the negative bias in MUSICAv0 HCHO could be due to underestimated biogenic 353 
emissions in the model. In addition, the underestimation of HCHO in Central Africa (Figure S4) 354 
co-locates with the underestimation of CO during fire season (Figure S1), implying that fire 355 
emissions may also contribute to the HCHO underestimation in MUSICAv0. It is important to 356 
note that the uncertainty of OMI tropospheric HCHO column is relatively large compared to other 357 
satellite products. Here the averaged retrieval uncertainty (random and systematic) is ~120%. 358 

When compared to the IAGOS O3 profiles over Central Africa (Figure 7), both models 359 
agree well with the IAGOS O3 observations below 800 hPa (mean bias ranges from -1 to -4 ppb). 360 
Above 800 hPa, WRF-Chem underestimates O3 while MUSICAv0 overestimates O3. The 361 
correlation of modeled O3 and O3S is 0.67, and the correlations of O3S and model O3 bias is 0.50 362 
over Central Africa, indicating O3 overestimation in Central Africa are more likely to be impacted 363 
by stratosphere-to-troposphere flux of ozone than that in West Africa. 364 
 365 
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3.4 East Africa 366 
 CO over East Africa is dominated by local emissions and inflow from outside the continent. 367 
Fire and anthropogenic emissions contribute approximately the same to CO over East Africa 368 
(Figure 4). Both MUSICAv0 and WRF-Chem simulations underestimate the CO column 369 
compared to MOPITT (Figure 3), and the WRF-Chem simulation also underestimate the 370 
tropospheric NO2 column compared to OMI. The biases in CO column and tropospheric NO2 371 
column peak in September, likely driven by fire emissions (Figure 4). 372 
 Compared to IAGOS O3 profiles over East Africa, biases of MUSICAv0 below 600 hPa 373 
has a seasonal variation while over 600 hPa are consistently positive (Figure 7). The correlations 374 
of O3S and model O3 bias against IAGOS data is 0.50 in the region. The correlations between O3S 375 
and model O3 bias are highest over Central and East Africa compared to other regions, indicating 376 
stratosphere influence are strongest in these two regions among the sub-regions. Central and East 377 
Africa are relatively more mountainous therefore topography driven stratospheric intrusions might 378 
be expected. The Nairobi ozonesonde site is located in East Africa (Figure 1b). When comparing 379 
to the O3 profiles from ozonesondes (Figure 9), MUSICAv0 overall overestimates O3 in the 380 
troposphere at the four sites while WRF-Chem tends to underestimate O3 in the free troposphere 381 
(below 200 hPa). The Nairobi site is an exception where both MUSICAv0 and WRF-Chem 382 
simulations significantly overestimate O3 in all seasons (mean bias of MUSICAv0 and WRF-383 
Chem below 200 hPa are 27 ppb and 20 ppb, respectively). Among the four ozonesonde sites, 384 
correlations of model bias of O3 and O3S are highest at the Nairobi site (0.74) where the model 385 
significantly overestimates O3. The results of model-ozonesonde comparisons are consistent with 386 
the results of model-IAGOS comparisons and indicate a potential issue in modeled stratosphere-387 
to-troposphere flux of ozone. 388 

There are two surface PM2.5 sites in East Africa (Addis Ababa and Kampala; Figure 1b). 389 
Despite using different aerosol methods and emission inventories, both MUSICAv0 and WRF-390 
Chem underestimate surface PM2.5 when compared to observations at the two sites (Figure 10). 391 
The errors in PM2.5 concentrations at the U.S. Embassy in Kampala are especially prominent. 392 
However, both models approximate the variation of the PM2.5 in both locations. Many factors 393 
contribute to the inconsistency in the magnitude of modeled PM2.5 concentrations. For instance, 394 
emission inventories in this region require additional improvement. In Uganda, increasing motor 395 
vehicle ownership and burning biomass for domestic energy use contribute to ambient PM2.5 levels 396 
(Clarke et al., 2022; Petkova et al., 2013). Detailed PM2.5 composition measurements would also 397 
help to pinpoint the cause of inaccuracies. In addition, model resolutions could also be a potential 398 
reason for the underestimation. 399 
 400 
3.5 Southern Africa 401 

Among the five regions, MUSICAv0 has the lowest mean bias (-3.2´1017 molecules/cm2 402 
annually) over Southern Africa (Figure 3). WRF-Chem also has low mean bias and RMSE over 403 
Southern Africa except for the months of September, October, and November (SON) period where 404 
WRF-Chem has larger CO mean bias (-6.2´1017 molecules/cm2) than MUSICAv0. Tagged model 405 
CO tracers indicate that CO over Southern Africa is significantly impacted by CO emissions from 406 
Central Africa, East Africa, Southern Africa, and inflow from outside the continent. As for the 407 
source types, anthropogenic and fire emissions are both important and fire impacts peak in 408 
September. There are two WDCGG sites located in Southern Africa (Figure 1b; Gobabeb and Cape 409 
Point). When compared to surface CO observations from WDCGG, both models consistently 410 
underestimate CO by up to 40% at most sites. The Cape Point site in Southern Africa is an 411 
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exception (Figure 5) where MUSICAv0 overestimates CO by 40 ppb (annual mean; and up to 78 412 
ppb in May 2017). CO tracers in the model (Figures S4 and S5) show that CO at Cape Point is 413 
mainly driven by anthropogenic CO emissions from Southern Africa. Therefore, the 414 
overestimation of CO by MUSICAv0 should be due to the overestimation of anthropogenic 415 
emissions from Southern Africa used in the model. As for NO2, WRF-Chem underestimates 416 
tropospheric NO2 column in most regions except for Southern Africa (Figure 3). Over Southern 417 
Africa, WRF-Chem overestimates NO2 especially during June, July, and August (JJA). 418 
MUSICAv0 also tends to overestimates NO2 at the same location in JJA however the bias is not 419 
as large as for WRF-Chem.  420 

MUSICAv0 simulation overall has a lower mean bias (0.14 annually) than the WRF-Chem 421 
simulation (mean bias of 0.31 annually) compared to MODIS AOD with Southern Africa being 422 
the only exception (Figure 3). Over Southern Africa, MUSICAv0 overestimates AOD by ~0.21 423 
annually (Figure 3) and the bias peaks in January (mean bias=0.45). This overestimation in AOD 424 
over Southern Africa is not seen in WRF-Chem. It is likely that the MUSICAv0 overestimation in 425 
AOD over Southern Africa is also due to biases in modeled dust as the AOD bias is co-located 426 
with the only barren or sparsely vegetated area in Southern Africa (Figure 8 and Figure S3). 427 

Over Southern Africa, MUSICAv0 tends to overestimate O3 compared to IAGOS at all 428 
levels at all seasons in 2017 (Figure 7). The concentration of O3S over Southern Africa is higher 429 
than those over other regions. However, the correlation of O3S and model O3 bias is lower than 430 
other regions (0.13) indicating stratosphere-to-troposphere flux of ozone may not be the main 431 
driver of O3 bias over Southern Africa even though stratosphere-to-troposphere flux of ozone are 432 
relatively strong in the region. The Irene ozonesonde site is located in Southern Africa (Figure 1b). 433 
Compared to the ozonesonde O3 profiles at the Irene site, however, the MUSICAv0 performance 434 
has a seasonal variation (Figure 9e-9h). Compared to other ozonesonde sites, the correlation of 435 
O3S and model O3 bias over Southern Africa is lower (0.14) and MUSICAv0 agrees relatively well 436 
with observations, which is consistent with the comparison results with IAGOS data (Figure 7). 437 
 438 
3.6 Oceans near Africa 439 

We compare the CO, NO, and O3 from the MUSICAv0 simulation with measurements 440 
from ATom-2 and ATom-3 in 2017 (Figure 1a) to provide a global benchmark. Measurements 441 
made over the Atlantic Ocean and Pacific Ocean, and in January-February (Jan-Feb) and 442 
September-October (Sep-Oct) are compared separately (Figures 11 and 12). The comparison was 443 
made with data averaged into 10° latitude and 200 hPa bins. Overall, the model consistently 444 
underestimates CO globally in both seasons. The underestimation of CO is a common issue in 445 
atmospheric chemistry models and could be due to various reasons, including emissions, 446 
deposition, and chemistry (e.g., Fisher et al., 2017; Shindell et al., 2006; Stein et al., 2014; Tilmes 447 
et al., 2015; Tang et al., 2018; Gaubert et al., 2020). Specifically for our MUSICAv0 simulation 448 
in this study, the model bias in CO is relatively large (up to 52 ppb) over the Northern Hemisphere 449 
(especially at high latitude and near the surface) and small over the Southern Hemisphere (Figures 450 
11 and 12). Over the Atlantic Ocean, the bias in CO is larger in September-October than Jan-Feb 451 
in both the Northern Hemisphere (-30 ppb in Jan-Feb versus -34 ppb in Sep-Oct) and Southern 452 
Hemisphere (-11 ppb in Jan-Feb versus -14 ppb in Sep-Oct). Over the Pacific Ocean, however, the 453 
CO bias is similar for both time periods in the Northern Hemisphere (-30 ppb) while in the 454 
Southern Hemisphere, the CO bias changes significantly from -8 ppb in Jan-Feb to -16 ppb in Sep-455 
Oct. The changes in CO bias over the Southern Hemisphere are likely due to seasonal change in 456 
fire emissions. Overall, the mean biases (Figures 11 and 12) suggest that the simulation agrees 457 

https://doi.org/10.5194/gmd-2023-50
Preprint. Discussion started: 4 May 2023
c© Author(s) 2023. CC BY 4.0 License.

Rev
Highlight
Papers on the characterization of this site should be read to see that this site is influenced by marine and anthropogenic air masses (e.g. https://www.tandfonline.com/doi/abs/10.1080/0035919X.2018.1477854?journalCode=ttrs20). I am not questioning what the tracer says, but rather that this conclusion is not necessarily a true reflection of the impacts at this site. It could help to highlight here that Cape Point is not a really representative site for southern Africa, as it is on the far tip of southern Africa and has such strong impact from clean marine. It is a GAW site, so it is understood why it was included, but still, it does have limitations and these should be noted. This is another reason why it is puzzling why other measurements in South Africa were not also included when they are available. This is a gap in the manuscript that I strongly recommend is addressed

Rev
Highlight
It is hard to tell if the differences across the season are the same or different between IAGIOS (which seems to have been just Cape Town) and Irene looking at the figures. It would help if this could be more explicitly stated or quantified in the text. These are very different sites, so it would not be surprising to see differences. The ozone at the Irene site has been very well characterized and explained going back to the SAFARI campaigns. 

Rev
Highlight
With a larger bias during the burning season it seems. From this a points above where there are issues in simulated during the burning season, it seems that this very key source is still not well-represented. I would recommend adding this to the discussions and conclusion - as for Africa, this is a key source. As noted above, dust, too. 



 11 

better with ATom observations in the Southern Hemisphere than in the Northern Hemisphere, and 458 
in Jan-Feb than in Sep-Oct (Figures 11 and 12), consistent with Gaubert et al. (2016). 459 

In both seasons and both hemispheres, the model in general overestimates O3 in the 460 
stratosphere/UTLS (upper troposphere and lower stratosphere) by up to 38 ppb (above 200 hPa). 461 
In the troposphere (below 200 hPa), the model overall agrees well with the ATom data over the 462 
Pacific Ocean in the Southern Hemisphere (in most cases the bias is less than ±5 ppb). However, 463 
over the Atlantic Ocean in the Southern Hemisphere, MUSICAv0 tends to overestimate O3, 464 
especially in Jan-Feb. In the troposphere of the Northern Hemisphere, MUSICAv0 consistently 465 
overestimates O3 over both oceans and both seasons. The positive bias in O3 decreases from the 466 
upper troposphere towards the surface, indicating that the overestimation of O3 in the troposphere 467 
may be due to stratosphere-to-troposphere flux of ozone. This was also noted for other global 468 
models (Bourgeois et al. 2021). As for NO, the model tends to overestimate NO above 200 hPa 469 
(approximately the stratosphere and Upper Troposphere-Lower Stratosphere; UTLS) by up to 50 470 
ppt. Overall, the NO biases can be either positive or negative depending on location and season. 471 
The distributions of NO bias (Figures 11 and 12) do not show an overall spatial pattern, unlike 472 
those for CO (which changes monotonically with latitude) or O3 (which changes monotonically 473 
with altitude).  474 

 475 

4. Model application: identifying key regions in Africa for future in situ observations and 476 
field campaign(s) 477 
 As a demonstration of the application of MUSICAv0, here we use the results of model-478 
satellite comparisons to identify potential regions where the atmospheric chemistry models need 479 
to be improved substantially. More field campaigns and more in situ observations would not only 480 
provide observational benchmark dataset to understand and improve the modeling capability in 481 
the region, but would be also useful for the validation and calibration of satellite products. Here 482 
we use Taylor score to quantify model-satellite discrepancies. Taylor score (Taylor, 2001) is 483 
defined by 484 

     S = !(#$%)
('(!$#/'(!)"(#$%#)

      485 

where σ$*  is the ratio of σ*  (standard deviation of the model) and σ+  (standard deviation of 486 
observations), R is correlation between model and observations, and R,  is the maximum 487 
potentially realizable correlation (=1 in this study). Taylor score ranges from 0 to 1 and a higher 488 
Taylor score indicates better satellite-model agreement. To identify potential locations, we 489 
separate the Africa continent into 5° ´ 5° (latitude ´ longitude) pixels as shown in Figure 13. And 490 
for each pixel, we calculate Taylor scores of MUSICAv0 compared to the three satellite Level 2 491 
products (e.g., MOPITT CO column retrievals, OMI tropospheric NO2 column retrievals, and 492 
MODIS AOD) separately. And then three Taylor scores are summed up to obtain the total Taylor 493 
score for MUSICAv0 (ranges from 0 to 3) as shown in Figures 13a-13e. A similar calculation is 494 
conducted for WRF-Chem (Figures 13f-13j). Note that we did not include Taylor scores for HCHO 495 
in the total Taylor score due to that (1) WRF-Chem simulations did not save HCHO output, and 496 
(2) the HCHO retrievals have relatively high uncertainties (Taylor scores of MUSICAv0 compared 497 
to OMI tropospheric HCHO column retrievals are provided separately in Figure S8). 498 
 Overall, both MUSICAv0 and WRF-Chem have low total Taylor scores in the 30°E – 45°E, 499 
5°S – 5°N region in East Africa (a region of 15° longitude ´ 10° latitude) during MAM (March, 500 
April, and May), JJA (June, July, and August), and SON (September, October, and November), as 501 
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highlighted in Figure 13, indicating relatively large model-satellite discrepancies in the region. 502 
Moreover, this is also the region where the Nairobi ozonesonde site and the Kampala surface PM2.5 503 
site are located (Figure 1b). As discussed above, both MUSICAv0 and WRF-Chem significantly 504 
overestimate O3 (Figure 9) and largely underestimate PM2.5 (Figure 10) in the region. More in situ 505 
observations or future field campaigns in the region can substantially help in the understanding 506 
model-satellite and model-in situ observation discrepancies and improving model performance. 507 

The 30°E – 45°E, 5°S – 5°N region in East Africa is potentially a favorable location for 508 
future field campaign(s) not only because of the large model-satellite and model-in situ observation 509 
discrepancies, but also due to that the population density is high and landcover are diverse in the 510 
region (Figure 8). The relatively high population density in the region indicates that improved air 511 
quality modeling in the region can benefit a large population. And a diverse landcover indicates 512 
more processes/environments can be sampled. CO tracers in the model (Figure 14) show that CO 513 
over the region is mainly driven by both anthropogenic and fire emissions. Anthropogenic 514 
emissions play a more important role in this region compared to East Africa in general (Figures 4 515 
and 14). In terms of source regions, emissions from East Africa and inflow from outside the 516 
continent are the dominant source, with some contributions from Central Africa. Note that the 517 
source analyses using model tracers may be subject to uncertainties in the emission inventories. 518 
As discussed above (e.g., Section 3.4), there might be missing sources in the region. Therefore, a 519 
field campaign in the region can help address this issue. 520 

We would like to point out that in this analysis, the key area is selected using 3 satellite 521 
products/chemical species and two models. The Taylor score is a comprehensive measure of model 522 
performance that accounts for variance and correlation, however, other models and types of 523 
comparisons may provide different answers. 524 

 525 
5. Conclusions 526 

Africa is one of the most rapidly changing regions in the world and air pollution is a 527 
growing issue at multiple scales over the continent. MUSICAv0 is a new community modeling 528 
infrastructure that enables the study of atmospheric composition and chemistry across all relevant 529 
scales. We developed a MUSICAv0 grid with Africa refinement (~28 km ´ 28 km over Africa and 530 
~110 km ´ 110 km for the rest of the world) and conducted the simulation for the year 2017. We 531 
evaluated the model with in situ observations including ATom-2 and ATom-3 airborne 532 
measurements of CO, NO, and O3, IAGOS airborne measurements of CO and O3, O3 profiles from 533 
ozonesondes, surface CO observations from WDGCC, and surface PM2.5 observations from two 534 
U.S. Embassy locations. We then compare MUSICAv0 with satellite products over Africa, namely 535 
MOPITT CO column, MODIS AOD, OMI tropospheric NO2 column, and OMI tropospheric 536 
HCHO column. Results from a WRF-Chem simulation were also included in the evaluations and 537 
comparisons as a reference. Lastly, as an application of the model, we identified potential African 538 
regions for in situ observations and field campaign(s) based on model-satellite discrepancies 539 
(quantified by Taylor score), with regard to model-in situ observation discrepancies, source 540 
analyses, population, and land cover. The main conclusions are as follows. 541 

(1) When comparing to ATom-2 and ATom-3, MUSICAv0 consistently underestimates 542 
CO globally. Overall, the negative model bias increases with latitude from the Southern 543 
Hemisphere to the Northern Hemisphere. MUSICAv0 also tends to overestimate O3 in the 544 
stratosphere/UTLS, and the positive model bias overall decreases with altitude. 545 
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(2) The MUSICAv0 biases in O3 when compared to ATom, IAGOS, and ozonesondes are 546 
likely driven by stratosphere-to-troposphere fluxes of O3 and lightning NO emissions. 547 
(3) Overall, the performance of MUSICAv0 and WRF-Chem are similar when compared 548 
to the surface CO observations from six WDCGG sites in Africa.  549 
(4) Both models have negative bias compared to the MOPITT CO column, especially over 550 
Central Africa in September, which is likely driven by fires. 551 
(5) Overall, MUSICAv0 agrees better with OMI tropospheric NO2 column than WRF-552 
Chem. 553 
(6) MUSICAv0 overall has a lower tropospheric HCHO column than OMI retrievals in all 554 
regions and seasons. Biogenic and fire emissions are likely to be the main driver of this 555 
disagreement. 556 
(7) Over Africa, the MUSICAv0 simulation has smaller mean bias and RMSE compared 557 
to MODIS AOD than the WRF-Chem simulation. 558 
(8) The 30°E – 45°E, 5°S – 5°N region in East Africa is potentially a favorable location for 559 
future field campaign(s) not only because of the large model-satellite and model-in situ 560 
observation discrepancies, but also due to the population density, landcover, and pollution 561 
source in this region. 562 

 Overall, the performance of MUSICAv0 is comparable to WRF-Chem. The 563 
underestimation of CO is a common issue in atmospheric chemistry models such as MUSICAv0 564 
and WRF-Chem. The overestimation of O3 in MUSICAv0 is likely driven by too strong of 565 
stratosphere-to-troposphere fluxes of O3 and perhaps an over-estimate of lightning NO emissions, 566 
however, future studies are needed to confirm and solve this issue. The significant underestimation 567 
in surface PM2.5 at two sites in East Africa and the overall overestimation in AOD in Africa 568 
compared to MODIS imply missing local sources and an overestimation of dust emissions, and 569 
require further study. Field campaigns and more in situ observations in 30°E–45°E, 5°S–5°N 570 
region in East Africa are necessary for the improvement of atmospheric chemistry model(s) as 571 
shown by the MUSICAv0 and WRF-Chem simulations. In the future, we plan to conduct a model 572 
simulation for multiple years and develop additional model grids with potentially higher resolution 573 
in Africa sub-regions based on the current MUSICAv0 Africa grid. 574 
 575 

Code and data availability 576 
The MUSICAv0 model source code and the model documentation can be downloaded through 577 
https://wiki.ucar.edu/display/MUSICA/MUSICA+Home (last access: 3 April 2023). CAMS-578 
GLOB-ANTH version 5.1 emissions can be found at https://eccad3.sedoo.fr/data (last access: 3 579 
April 2023). QFED emissions can be found at 580 
https://portal.nccs.nasa.gov/datashare/iesa/aerosol/emissions/QFED/ (last access: 3 April 2023). 581 
MERRA-2 data can be found at https://disc.gsfc.nasa.gov/datasets?project=MERRA-2 (last 582 
access: 3 April 2023). ATom data are available at 583 
https://espoarchive.nasa.gov/archive/browse/atom (last access: 3 April 2023). WDCGG data are 584 
available at https://gaw.kishou.go.jp/ (last access: 3 April 2023). IAGOS data are available at 585 
https://www.iagos.org/iagos-data/ (last access: 3 April 2023). NASA/GSFC SHADOZ data are 586 
available at https://tropo.gsfc.nasa.gov/shadoz/ (last access: 3 April 2023). The surface PM2.5 data 587 
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used in this study are available through data are available through 588 
https://www.airnow.gov/international/us-embassies-and-consulates/ (last access: 3 April 2023). 589 
MOPITT CO and MODIS AOD data can be accessed through 590 
https://search.earthdata.nasa.gov/search (last access: 3 April 2023). OMI NO2 and OMI HCHO 591 
data are available at https://www.temis.nl/qa4ecv/no2.html (last access: 3 April 2023) and 592 
https://www.temis.nl/qa4ecv/hcho.html (last access: 3 April 2023), respectively. 593 
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 919 
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 922 
Figure 1. Model grid, in situ observations used in this study, and sub-regions in Africa. (a) 923 
MUSICAv0 model grid developed for Africa in this study (black), domain boundary of the WRF-924 
Chem simulation compared in this study (shown by green box), observations from the 925 
Atmospheric Tomography Mission (ATom) field campaign 2 (ATom-2; 2017 Jan to 2017 Feb; 926 
pink) and ATom-3 (2017 Sep to 2017 Oct; yellow). (b) Sub-regions in Africa are shown, namely 927 
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North Africa (green), West Africa (pink), East Africa (orange), Central Africa (blue), and Southern 928 
Africa (yellow). Location of in situ observations are labeled on the map. Flight tracks of the In-929 
service Aircraft for a Global Observing System (IAGOS) are shown with black lines. Four 930 
ozonesonde sites are shown by pentagrams (Ascension, Irene, Nairobi, and La Reunion); six sites 931 
from the World Data Centre for Greenhouse Gases are shown by triangles (Assekrem, Cape Point, 932 
Izana, Gobabeb, Mare, and Ascension); two surface sites for PM2.5 are shown by squares (Addis 933 
Ababa and Kampala). 934 
 935 
 936 
 937 
 938 

 939 
Figure 2. Comparisons of MUSICAv0 and WRF-Chem simulations to MOPITT CO column 940 
(molecules/cm2) for each season of 2017. (a-d) Averaged MOPITT CO column: MAM (March, 941 
April, and May), JJA (June, July, and August), SON (September, October, and November), and 942 
DJF (December, January, and February). (e-h) MUSICAv0 model biases against MOPITT CO 943 
column for MAM, JJA, SON, and DJF. (i-l) is the same as (e-h) but for WRF-Chem. All data are 944 
gridded to 0.25 degree ´ 0.25 degree for plotting. 945 
 946 

 947 
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 948 
 949 
Figure 3. Mean bias of MUSICAv0 and WRF-Chem simulations from satellite data. Monthly 950 
timeseries of mean bias of (a) MUSICAv0 and (b) WRF-Chem against MOPITT CO column 951 
(molecules/cm2) in 2017 over Africa (black), North Africa (green), West Africa (pink), East Africa 952 
(orange), Central Africa (blue), and Southern Africa (yellow). (c-d) are same as (a-b) but for mean 953 
bias against OMI tropospheric NO2 column (molecules/cm2). (e-f) are same as (a-b) but for mean 954 
bias against with MODIS (Terra) Aerosol Optical Depth (AOD). (g) is the same as (a) but for mean 955 
bias against OMI tropospheric HCHO column (molecules/cm2). 956 
 957 
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 958 
Figure 4. Monthly time series of column-averaged CO tracers in North Africa, West Africa, East 959 
Africa, Central Africa, and Southern Africa. Top panels show CO tracers of emissions from North 960 
Africa (green), West Africa (pink), East Africa (orange), Central Africa (blue), Southern Africa 961 
(yellow), and the rest of the world (grey). Bottom panels show CO tracers of fire emissions (red), 962 
anthropogenic emissions (green), and waste burning emissions (yellow).   963 
 964 
 965 

 966 
Figure 5. Monthly mean CO (ppb) from in situ observations (black), MUSICAv0 (red), and WRF-967 
Chem (blue) during 2017 at (a) Assekrem, (b) Cape Point, (c) Izana, (d) Gobabeb, (e) Mare and 968 
(f) Ascension (see Figure 1b for locations). Monthly means are calculated from 3-hourly data. The 969 
range for each data point shows the variation of the 3-hourly data on that day (25% quantile to 970 
75% quantile). Observational data are from World Data Centre for Greenhouse Gases (WDCGG). 971 
  972 
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 973 
 974 

 975 
Figure 6. Vertical profiles of CO (ppb) from the In-service Aircraft for a Global Observing System 976 
(IAGOS) measurements (black) and corresponding model output from MUSICAv0 (red), and 977 
WRF-Chem (blue) during different seasons in 2017 over West Africa, Central Africa, East Africa, 978 
and Southern Africa. North Africa is not shown due to data availability. Seasonal mean profiles 979 
with the variation of the data in the pressure layer (25% quantile to 75% quantile) in MAM (March, 980 
April, and May), JJA (June, July, and August), SON (September, October, and November), and 981 
DJF (December, January, and February) are shown.  982 
 983 
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 984 
Figure 7. Vertical profiles of O3 (ppb) from the In-service Aircraft for a Global Observing System 985 
(IAGOS) measurements (black) and corresponding model output from MUSICAv0 (red), and 986 
WRF-Chem (blue) during different seasons in 2017 over West Africa, Central Africa, East Africa, 987 
and Southern Africa. North Africa is not shown due to data availability Seasonal mean profiles 988 
with the variation of the data in the pressure layer (25% quantile to 75% quantile) in MAM (March, 989 
April, and May), JJA (June, July, and August), SON (September, October, and November), and 990 
DJF (December, January, and February) are shown. The dash red lines represent O3S 991 
(stratospheric ozone tracer) from the MUSICAv0 simulation. 992 
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 993 
Figure 8. (a) Land cover in 2017 and (b) population density (persons/km2) in 2020 over Africa. 994 
Land cover data is from MODIS/Terra+Aqua Land Cover Type Yearly L3 Global product 995 
(resolution: 0.05 degree) (Friedl et al., 2022). Cropland/Natural Vegetation Mosaics means 996 
Mosaics of small-scale cultivation (40-60%) with natural tree, shrub, or herbaceous vegetation. 997 
Population density data is from the Gridded Population of the World, Version 4 (GPWv4), 998 
Revision 11 (CIESIN, 2018). 999 
 1000 
 1001 
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 1002 
Figure 9. Vertical profiles of O3 (ppb) from Ozonesondes (black) and corresponding model output 1003 
from MUSICAv0 (red), and WRF-Chem (blue) for each season of 2017. The thick lines denote 1004 
the seasonal mean profiles and the thin lines denote the individual profiles. The dash red lines 1005 
represent O3S (stratospheric ozone tracer) from the MUSICAv0 simulation. Ozonesonde data at 1006 
Ascension in (a) MAM (March, April, and May), (b) JJA (June, July, and August), (c) SON 1007 
(September, October, and November), and (d) DJF (December, January, and February) are shown. 1008 
(e-h), (i-l), and (m-p) are the same as (a-d), except for Irene, La Reunion, and Nairobi, respectively. 1009 
Locations of the sites are shown in Figure 1b. 1010 
 1011 
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 1012 
 1013 
Figure 10. Daily mean PM2.5 from in situ observations (black), MUSICAv0 (red), and WRF-Chem 1014 
(blue) during 2017 at (a) Addis Ababa and (b) Kampala. Daily means are calculated from 3-hourly 1015 
data. The shown range for each data point shows the variation on that day (25% quantile to 75% 1016 
quantile). Locations of the sites are shown in Figure 1b. 1017 
 1018 
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 1019 
Figure 11. Observations of (a) CO (ppb), (b) O3 (ppb), and (c) NO (ppt) over Atlantic Ocean 1020 
during ATom-2 and ATom-3 (d-f). (g-l) corresponding model biases against ATOM observations. 1021 
The ATom airborne measurements and corresponding MUSICAv0 model results are binned to 10-1022 
degree latitude and 200-hPa pressure bins. The values of mean biases for each latitude and pressure 1023 
bin are labeled in the figure.  1024 
 1025 
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 1026 
Figure 12. Same as Figure 9 but for over the Pacific Ocean. 1027 
 1028 
 1029 
 1030 
 1031 
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 1032 
Figure 13. Spatial distribution of total Taylor score of MUSICAv0 and (f-j) WRF-Chem compared 1033 
to satellite retrievals. In each 5° ´ 5° (latitude ´ longitude) pixel, Taylor scores of the model 1034 
compared to three satellite products (e.g., MOPITT CO column retrievals, OMI tropospheric NO2 1035 
column retrievals, and MODIS AOD) are calculated separately (as shown in Figure S8). Taylor 1036 
score against each satellite product ranges from 0 to 1. And then three Taylor scores are summed 1037 
up to obtain the shown total Taylor score (ranges from 0 to 3). Total Taylor score of MUSICAv0 1038 
for (a) 2017, (b) MAM (March, April, and May), (c) JJA (June, July, and August), (d) SON 1039 
(September, October, and November), and (e) DJF (December, January, and February) are shown. 1040 
The blue box highlights a potential region for future field campaigns and/or in situ observations. 1041 
(f-j) are similar to (a-e) except for WRF-Chem. 1042 
 1043 
 1044 
 1045 
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 1046 
Figure 14. Monthly time series of column-averaged CO tracers in the 30°E – 45°E, -5°S – 5°N 1047 
region in East Africa. (a) CO tracers of emissions from North Africa (green), West Africa (pink), 1048 
East Africa (orange), Central Africa (blue), Southern Africa (yellow), and the rest of the world 1049 
(grey). (b) CO tracers of fire emissions (red), anthropogenic emissions (green), and waste burning 1050 
emissions (yellow).   1051 

 1052 
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