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Abstract

The Multi-Scale Infrastructure for Chemistry and Aerosols Version 0 (MUSICAVO0) is a new
community modeling infrastructure that enables the study of atmospheric composition and
chemistry across all relevant scales. We develop a MUSICAVO grid with Africa refinement (~28
km x 28 km over Africa). We evaluate the MUSICAvVO simulation for 2017 with in situ
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observations and compare the model results to satellite products over Africa. A simulation from
the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), a regional
model that is widely used in Africa studies, is also included in the analyses as a reference. Overall,
the performance of MUSICAVO is comparable to WRF-Chem. Both models underestimate carbon
monoxide (CO) compared to in situ observations and satellite CO column retrievals from the
Measurements of Pollution in the Troposphere (MOPITT) satellite instrument. MUSICAvVO tends
to overestimate ozone (O3), likely due to overestimated stratosphere-to-troposphere flux of ozone.
Both models significantly underestimate fine particulate matter (PMa.5) at two surface sites in East
Africa. The MUSICAVO simulation agrees better with aerosol optical depth (AOD) retrievals from
the Moderate Resolution Imaging Spectroradiometer (MODIS) and tropospheric nitrogen dioxide
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(NO2) column retrievals from the Ozone Monitoring Instrument (OMI) than WRF-Chem.
MUSICAvVO has a consistently lower tropospheric formaldehyde (HCHO) column than OMI
retrievals. Based on model-satellite discrepancies between MUSICAvO0 and WRF-Chem and
MOPITT CO, MODIS AOD, and OMI tropospheric NO2, we find that future field campaign(s)
and more in situ observations in an East African region (30°E — 45°E, 5°S — 5°N) could
substantially improve the predictive skill of atmospheric chemistry model(s). This suggested focus
region exhibits the largest model-in situ observation discrepancies, as well as targets for high
population density, land cover variability, and anthropogenic pollution sources.

1. Introduction
As one of the most dramatically changing continents, Africa is experiencing myriad
environmental sustainability issues (e.g., Davidson et al., 2003; Washington et al., 2006; Ziervogel

et al., 2014; Boone et al., 2016; Swilling et al., 2016; Baudoin et al., 2017; Giineralp et al., 2017;

Nicholson 2019; Fisher et al., 2021 Langerman et al., 2023). These environmental issues are

causing vast losses in lives and in African economies, and are coupled with poverty and under-
development (Washington et al., 2006; Fisher et al., 2021). Some of these environmental
challenges are particularly severe in Africa compared to many other regions of the world (e.g.,
droughts, floods, high temperatures, land degradation, and fires; Washington et al., 2006; Nka et

al., 2015; van der Werf et al., 2017; Haile et al., 2019). However, even though Africa is the second

largest continent, in land area and population, attention and research on environmental challenges

in Africa are very limited, leading to a deficit of knowledge and solutions (e.g., De Longueville et
al., 2010). Intergovernmental Panel on Climate Change (IPCC), computes a human vulnerability
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metric from existing challenges such as poverty, access to health care plus expected mortality for
climate hazards such as heat, drought, flood, fires and constraints to adaptation like funding, and
government infrastructure (Moss et al., 2001). Many regions in Africa exhibit the most extreme
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values for this metric.
Degraded air quality is an example of a severe environmental challenge with growing
importance in Africa (e.g., Kinney et al., 2011; Naikeret al., 2012; Liousse et al., 2014; Thompson

et al., 2014; Amegah et al.. 2017: Heft-Neal et al., 2018; Fisher et al., 2021; Okure et al., 2022:

Vohra et al., 2022). A previous study found that air pollution across Africa caused ~1.1 million
deaths in 2019 (Fisher et al., 2021). However, the study of air quality in Africa is hindered by the
scarcity of ground-based observations (e.g., Paton-Walsh et al., 2022; Kalisa et al., 2023),
modelling capability and the use of satellite observations. In this paper, we will focus on air quality
analyses over Africa with the new model Multi-Scale Infrastructure for Chemistry and Aerosols
(MUSICA; Pfister et al., 2020).

Atmospheric chemistry modeling is a useful tool to provide air quality forecasts and to

understand chemical processes, Various models have been applied to study atmospheric chemistry

and air quality in Africa such as the Weather Research and Forecasting (WRF) model coupled with
Chemistry (WRF-Chem) (e.g., Kuik et al., 2015; Kumar et al., 2022; Jenkins and Gueye, 2022),
the GEOS-Chem chemical transport model (e.g., Marais et al., 2012, 2019; Lacey et al., 2018), the
CHIMERE chemical transport model (e.g., Menut et al., 2018; Mazzeo et al., 2022), and the U.K.
Earth System Model (UKESM1) (Brown et al., 2022), and GEOSS5 (Bauer et al., 2019).
MUSICA is a new state-of-the-art community modeling infrastructure that enables the
study of atmospheric composition and chemistry across all relevant scales (Pfister et al., 2020).
The newly developed MUSICA Version 0 (MUSICAVO) is a global chemistry-climate model that
allows global simulations with regional refinement down to a few kilometers spatial resolution
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(Schwantes et al., 2022). The coupling with other components of the Earth system (e.g., land,
ocean, and sea ice) can also be performed at multiple scales. MUSICAVO has various advantages
and is particularly suitable for research applications over Africa. For example, MUSICAVO can be
used to study the interactions between atmospheric chemistry and other components of the Earth
system and climate. MUSICA also includes the whole atmosphere (from the surface to
thermosphere), and therefore can also be used to study the stratosphere and above and interactions
between the stratosphere and troposphere. This is critical because some of the environmental issues
are coupled (e.g., the ozone—climate penalty; Brown et al., 2022). In addition, as a global model,

(Deleted: in Africa

MUSICAvVO does not require boundary conditions to study a region at high resolution. Global
impacts and interactions can be simulated in a consistent and coherent way. This feature is
important as inflow from other continents and oceans significantly impacts air quality in Africa.
MUSICAvVO0 has been evaluated over North America (Schwantes et al., 2022, Tang et al., 2022)
and is also being developed and tested in other regions around the globe
(https://wiki.ucar.edu/display/MUSICA/Available+Grids).

This paper serves as the basis for the future application of MUSICAVO in Africa. In this
study, we develop a MUSICAv0O model grid with regional refinement over Africa. Because
MUSICAvV0 with Africa refinement is newly developed while WRF-Chem has been previously
used for African atmospheric chemistry and air quality studies, here we include results from WRF-
Chem to assess the ability of MUSICAVO in reproducing the regional features of atmospheric
composition as simulated by WRF-Chem. We conduct the MUSICAVO simulation for the year
2017 to compare with a previous WRF-Chem simulation (Kumar et al., 2022). MUSICAvVO and
the WRF-Chem simulation and the observational data used in this study are described in Section
2. The MUSICAvV0 model simulation results are evaluated against in situ observations and
compared with satellite retrievals in Section 3. In Section 4, we provide an example application of
MUSICAvVO0 over Africa — identifying key potential regions in Africa for future in situ observations
and field campaign(s).

2. Model and data
2.1 MUSICAV0

MUSICA is a newly developed framework for simulations of large-scale atmospheric
phenomena in a global modeling framework, while still resolving chemistry at emission- and
exposure-relevant scales (Pfister et al., 2020). MUSICA version 0 (MUSICAVO) is a configuration
of the Community Earth System Model (CESM). It is also known as the Community Atmospheric
Model with chemistry (CAM-chem) (Tilmes et al., 2019; Emmons et al., 2020) with regional
refinement (RR) down to a few kilometers (Lauritzen et al., 2018; Schwantes et al., 2022). CAM-
chem, and thus MUSICAVO0, includes several choices of chemical mechanisms of varying
complexity. This study uses the default MOZART-TS1 chemical mechanism for gas phase
chemistry (including comprehensive tropospheric and stratospheric chemistry; Emmons et al.,
2020) and the four-mode version of the Modal Aerosol Module (MAM4; Liu et al., 2016) for the
aerosol scheme. The generation of desert dust particles in MUSICAVO is calculated based on the
Dust Entrainment and Deposition Model (Mahowald et al., 2006: Yoshioka et al., 2017). Dust
emissions calculation is sensitive to the model surface wind speed. The dust aerosol processes in
the MUSICAvVO simulation are simulated based on the MAM4 model (Liu et al., 2016). MAM4
has 4 modes — Aitken, accumulation coarse, and primary carbon modes. Dust is mostly in the
accumulation and coarse modes. [JThe MUSICAvO model source code and the model
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documentation can be downloaded through

https://wiki.ucar.edu/display/MUSICA/MUSICA+Home, (last access: 3 April 2023). o (Formatted: Font color: Auto
The MUSICAV0 users have the option to create their own model grid. MUSICAVO is ((Formatted: Font color: Auto
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Asia, South America, Australia, and Korea, among others. (e.g., Schwantes et al., 2022; Tang et (Formatted: Font color: Auto
al., 2022; Jo et al., 2023). In this study, we develop a model grid for applications in Africa (Formatted; Font color: Auto
(neOnp4.africa_v5.ne30x4). As shown in Figure 1a, the horizontal resolutionis ~111 km x 111 km (Formatted: Font color: Auto
(i.e., 12 latitude x 1° equatorial longitude) globally, and ~28 km x 28 km (i.e., 0.25°, latltude X ( Formatted: Font color: Auto

0.257, equatorial longitude) within the region over Africa. Our s1mulat10n uses the default option %
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for vertical layers (i.e., 32 layers from the surface to ~3.64 hPa).
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Here we run MUSICAvVO with the model grid for Africa for the year 2017, saving 3-hourly
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output. We use the Copernicus Atmosphere Monitoring Service Global Anthropogenic emissions, © ( Formatted
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(CAMS-GLOB-ANTH) version 5.1 (Soulie et al., 2023) for anthropogenic emissions and the
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Quick Fire Emissions Dataset (QFED) for fire emissions (Darmenov and da Silva, 2013). CAMS-
GLOB-ANTH version 5.1 emissions can be found at https://eccad3.sedoo.fr/data_(last access: 3
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April 2023). QFED emissions can be found at \
https://portal.nccs.nasa.gov/datashare/iesa/aerosol/emissions/QFED/, (last access: 3 April 2023).
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CAMS-GLOB-ANT version 5.1 (Soulie et al., 2023) is one of the most widely used global || Formatted: Font color: Auto
inventories for anthropogenic emissions. CAMS-GLOB-ANT version 5.1 has been implemented | (Formatted: Font color: Auto
in MUSICAV0, and evaluated in our previous studies (Tang et al., 2022, 2023; Jo et al., 2023). : (Formatted: Font color: Auto
CAMS-GLOB-ANT version 5.1 does not include information from the Dynamics-Aerosol- | (Formatted: Font color: Auto
Chemistry-Cloud Interactions in West Africa (DACCIWA) project, however, a future version of (Formatted: Font color: Auto
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Plume rise climatology is applied to fire emissions following Tang et al. (2022). In addition, we ' ‘(Formatted: Font color: Auto
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also include open waste burning (https://www.acom.ucar.edu/Data/fire/; Wiedinmyer et al., 2014)
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emissions in the simulation. The model has the option of a free-running atmosphere or nudging to | \ (F"r“"‘"ed'

external meteorological reanalysis. In this simulation, only wind and temperature are nudged to (Formatted: Font color: Auto
the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2; | (Formatted: Font color: Auto
Gelaro et al.,, 2017) with a relaxation time of 12 hours. MERRA-2 data can be found at (Field Code Changed
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We also added carbon monoxide (CO) tracers in the simulation to understand the source - (Formatted: Font color: Auto
and transport of air pollution. CO tracers in CAM-chem/MUSICAVO are described in detail by (Formatted: Font color: Auto
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MUSICAvVO0 simulation, and the model domain is highlighted in Figure 1a. The simulation has 36
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vertical levels from the surface to ~50 hPa. The WRF-Chem simulation uses the Model for Ozone
and Related Tracers-4 (MOZART-4) chemical mechanism (Emmons et al., 2010) for tropospheric
gas phase chemistry, and the Goddard Global Ozone Chemistry Aerosol Radiation and Transport
(GOCART) model (Chin et al., 2002) for aerosol processes. The dust aerosol processes in the
WRF-Chem simulation are simulated based on the Goddard Global Ozone Chemistry Aerosol
Radiation and Transport (GOCART) model (Chin et al., 2002). Specifically, the dust emission
scheme is following the GOCART emission treatment (Ginoux et al., 2001), which is a function
of 10-m wind speed. soil moisture, and soil erosion capability. The atmospheric processes of dust
are simulated based on the mass mixing ratio and size distribution that has been divided into 5 size
bins with effective radii of 0.73, 1.4, 2.4, 4.5 and 8.0 um. The dust dry and wet depositions are
also treated following the GOCART scheme (Chin et al., 2002). The European Centre for Medium

(Formatted: Font color: Auto

Range Weather Forecasts (ECMWF) global reanalysis (ERA-Interim) fields are used for initial
and boundary meteorology conditions, while another CAM-chem simulation is used for initial and
boundary chemical conditions (Kumar et al., 2022). The WRF-Chem simulation used the global
Emission Database for Atmospheric Research developed for Hemispheric Transport of Air
Pollution (EDGAR-HTAP v2) for anthropogenic emissions and the Fire Inventory from NCAR
version 1.5 (FINNv1.5) (Wiedinmyer et al., 2011) for fire emissions. The WRF-Chem output is
saved hourly, however we only use 3-hourly output to match the MUSICAvV0 simulation.

2.3 ATom

The Atmospheric Tomography mission (ATom; Thompson et al. 2022) was designed to
study the impact of human-produced air pollution on greenhouse gases, chemically reactive gases,
and aerosols in remote ocean air masses. ATom data (Wofsy et al., 2021) are available at

(Formatted: Font color: Auto

https://espoarchive.nasa.gov/archive/browse/atom, (last access: 3 April 2023). During the project,

the DC-8 aircraft sampled the remote troposphere with continuous vertical profiles. There were
four seasonal deployments from the summer of 2016 through the spring of 2018. Here we compare
the MUSICAVO simulation with observations from ATom-2 (January—February 2017) and ATom-
3 (September—October 2017). Since the ATom flight tracks were mostly outside the WRF-Chem
domain (Figure la), we do not compare the WRF-Chem simulation with ATom data. However,
we compare chemical species from the MUSICAvVO simulation to the 2-minute merged ATom
measurements globally to obtain a benchmark and broader understanding of MUSICAv0
performance both within and outside the refined region. The model output is saved along the ATom
aircraft flight tracks and with respect to the observational times at run time. Nitric oxide (NO) and
ozone (O3) measurements from the NOAA Nitrogen Oxides and Ozone (NOyO3) instrument
(Bourgeois et al., 2020, 2021) and the merged CO data (from Quantum Cascade Laser System and
NOAA Picarro CO measurements) are used. As we use 2-minute merged ATom measurements
there are 2796 data points in ATom-2 (January—February 2017) and 3369 data points in ATom-3
(September—October 2017).

2.4 TAGOS

The In-service Aircraft for a Global Observing System (IAGOS) is a European research
infrastructure, and was developed for operations on commercial aircraft to monitor atmospheric
composition (Petzold et al., 2015). IAGOS data are available at https://www.iagos.org/iagos-data/
(last access: 3 April 2023). The IAGOS instrument package 1 measures CO, O3, air temperature,
and water vapor (https://www.iagos.org/iagos-core-instruments/packagel/). CO is measured by
infrared absorption using the gas filter correlation technique (Precision: £5%, Accuracy: +5 ppb)
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while O3 is measured by UV absorption at 253.7 nm (Precision: £2%, Accuracy: £2 ppb). We use
airborne measurements of CO, Os, air temperature, and water vapor from IAGOS for model
evaluation. The locations of the IAGOS flight tracks over Africa are shown in Figure 1b. The
model results and IAGOS data comparisons are conducted separately for five African sub-regions
(defined in Figure 1b). The IAGOS instruments are onboard commercial airliners and the sampling

may not be representative of the whole sub-regions. For example, IAGOS data over southern
Africa only covers the west part of southern Africa.,

2.5 Ozonesondes

The ozonesonde is a balloon-borne instrument that measures atmospheric O3 profiles
through the electrochemical concentration cell using iodine/iodide electrode reactions (Thompson
et al., 2017), with records of temperature, pressure, and relative humidity from standard
radiosondes. NASA/GSFC SHADOZ data are available at https://tropo.gsfc.nasa.gov/shadoz/, (last

access: 3 April 2023). We use ozonesonde data from Southern Hemisphere ADditional

OZonesondes (NASA/GSFC SHADOZ; Thompson et al., 2017, Witte et al., 2017, 2018).
Specifically, ozonesonde data from four sites are used (Figure 1b): Ascension (Ascension Island,
U.K.), Nairobi (Kenya), Irene (South Africa), and La Reunion (La Réunion Island, France). The
average O3 measurement uncertainty ranged from 5-9% for the ozonsonde data used in this study.

2.6 WDCGG

Monthly surface CO measurements from the World Data Center for Greenhouse Gases
(WDCGG; operated by the Japan Meteorological Agency in collaboration with the World
Meteorological Organization) are used for model evaluation. WDCGG data are available at
https://gaw.kishou.go.jp/ (last access: 3 April 2023). Data from six sites are used (Figure 1b),
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namely (Ascension Island, U.K.), Assekrem (Algeria; remote site located in Saharan desert),

Gobabeb (Namibia; located at the base of a linear sand dune, next to an interdune plain), Cape
Point (South Africa; site exposed to the sea on top of a cliff 230 meters above sea level), [zana
(Tenerife, Spain; located on the Island that is ~300 km west of the African coast), and Mare
(Seychelles; near an international airport).

2.7 Surface PMzs

At the U.S. embassies, regulatory-grade monitoring data are collected with Beta
Attenuation Monitors (BAMs), using a federal equivalent monitoring method, with an accuracy
within 10% of federal reference methods (Watson et al., 1998; U.S. EPA, 2016). These instruments
are operated by the U.S. State Department and the U.S. EPA, and data are available through
AirNow (https://www.airnow.gov/international/us-embassies-and-consulates/). We use the

measurements at the U.S. embassy locations in Addis Ababa Central (Ethiopia, 9.06° N, 38.76° E)

and Kampala (Uganda, 0.30° N, 32.59° E) for the year 2017 as references (Malings et al., 2020)
to match our simulations. The raw data are made available hourly and for this study we use daily -
mean PMys for comparison with model simulations. Djossou et al. (2018) presented PMp s,
measurements from Feb 2015 to March 2017 at two cities in West Africa — Abidjan and Cotonou

Figure 1b). In Abidjan, there were three sites that are representative of traffic, waste burning at
landfill, and domestic fires. The site in Cotonou is close to traffic emissions. The concentrations
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(Djossou et al., 2018). We compare model results with the weekly PM», s measurements from the
sites in Abidjan and Cotonou for January—March 2017.
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P83 2.8 MOPITT

R84 The Measurements of Pollution in the Troposphere (MOPITT) instrument on board the
R85  NASA Terra satellite provides both thermal-infrared (TIR) and near-infrared (NIR) radiance
P86  measurements since March 2000. MOPITT CO data can be accessed through

R87  https://search.earthdata.nasa.gov/search (last access: 3 April 2023). Retrievals of CO column [Formatted: Font color: Auto
P88  density and vertical profiles are provided in a multispectral TIR-NIR joint product which has (Formatted: Font color: Auto
289  sensitivity to near-surface as well as free tropospheric CO (Deeter et al., 2011; Worden et al,, (Formmed: Font color: Auto
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290  2010). Here we use the MOPITT Version 9 Level 2 CO column product (Deeter et al., 2022) over
P91  Africa to evaluate the MUSICAvVO and WRF-Chem simulations. MOPITT Version 9 has
R92  significant updates to the cloud detection algorithm and NIR calibration scheme. The MOPITT

P93  satellite pixel size is ~22 km x 22 km, and the overpass time is ~10:30 am local time in 2017. (Formatted: Font color: Auto

294  When comparing model outputs to MOPITT the recommended data quality filter is applied and (Formatted: Font color: Auto

NI AN

P95  model outputs are interpolated to the MOPITT retrievals in space and time. To perform
P96  quantitative comparisons, the MOPITT averaging kernel and a priori are used to transform the
297  model CO profiles to derive model column amounts.

P98
299 2.9 OMI NO: (QA4ECY)
BOO Tropospheric column NO; from the Ozone Monitoring Instrument (OMI) on board Aura

BO1  is compared to the model in this study. Specifically, the NO2 product from the quality assurance
B02  for the essential climate variables (QA4ECV) project is used (Boersma et al., 2017a; Compernolle

BO3  etal., 2020). OMI NO, data are available at https://www.temis.nl/gadecv/no2.html, (last access: 3 Deleted: MERRA-2 data can be found at

304 Apri1.2023 ). The satellite pixel size is ~13 kn}gg25 km,. and the overpass tim}e is ~1:40 pm local %%}fm%}%am
BO5  time in 2017. A data quality filter was applied following the Product Specification Document * - | pps://espoarchive.nasa.gov/archive/browse/atom (last
BO6  (Boersma et al., 2017b; processing_error_flag = 0, solar_zenith_angle < 80, snow_ice flag < 10 " ( access: 3 April 2023). WDCGG data are avail

BO7  or snow_ice flag = 255, amf trop/amf geo > 0.2, and cloud radiance fraction no20 <= 0.5). ; (Formatted: Font color: Auto

BO8  Model profiles were transformed using the provided tropospheric air mass factor (AMF) and ; (Formmed: Font color: Auto
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B11  2.10 OMI HCHO (QA4ECYV)

B12 We also use tropospheric column HCHO from OMI in this study. Similar to OMI NO, we (Formmed: Font color: Auto

B13  also use OMI HCHO product from QA4ECV (De Smedt et al., 2017a). OMI HCHO data are

B14  available at https:/www.temis.nl/ga4ecv/hcho.htm], (last access: 3 April 2023). A data quality (Formatted: Font color: Auto

B15  filter was applied following the Product User Guide (De Smedt et al., 2017b; processing_error flag (Formatted: Font color: Auto

B16 =0 and processing_quality flag = 0). Model profiles were transformed using provided averaging (Formmed: Font color: Auto
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B17  kernels. We note that HCHO retrievals are subject to relatively large uncertainties compared to
B18  other satellite products used in this study. Therefore, the comparisons between model results and
B19  the OMI HCHO product only indicate the model-satellite discrepancies rather than determining
B20  model deficiencies. In addition, the WRF-Chem simulation from Kumar et al. (2022) does not
B21  include HCHO in the output and hence will not be compared.

322
B23  2.11 MODIS AOD
B24 The aerosol optical depth (AOD) product (550 nm) from the Moderate Resolution Imaging

B25  Spectroradiometer (MODIS) on board Terra NASA Terra satellite is used. MODIS AOD data can
B26  be accessed through https://search.earthdata.nasa.gov/search (last access: 3 April 2023).
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Deep Blue Aerosol retrievals are used (Hsu et al., 2013; Levy et al., 2013) to include retrievals
over the desert. The MODIS satellite pixel size is ~1 km x 1 km, and the overpass time is ~10:30
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am local time. East and Southern Africa have complex terrain due to mountains and rift valleys.
This may lead to some uncertainties in MODIS AOD retrievals.

2.12 AERONET AOD,

We use AOD measurements from the AErosol RObotic NETwork (AERONET: Holben et

al., 1998, 2001). AERONET data can be accessed through https://acronet.gsfc.nasa.gov/. We use

Level 2 daily data (quality assured), with pre-field and post-field calibration applied and has been "

automatically cloud cleared and manually inspected. AOD at 675 nm from AERONET data are
converted to AOD at 550 nm using provided Angstrom exponent to compare with modeled AOD
at 550 nm.
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We also compare model results with PM, s, CO, NOp, and O3 measurements from South . CFormatted: Font: Not Bold
Africa Air Quality Information System (SAAQIS:; Gwaze et al., 2018; Tshehla et al., 2019), " (Fommed: Subscript
SAAQIS is available at http://saaqis.environment.gov.za/, The data are hourly and we calculate ‘~l:"~-(Formatted: Subscript
daily average values before compare with model results. Similar to Zhang et al. (2021), we * ( -
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Africa includes a wide range of environments and emissions source. Therefore, in this (Formatted: Font: Not Bold
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CO is a good tracer of anthropogenic and biomass burning emissions and modeled CO tracers are
used in this section to understand sources. CO is a commonly used tracer in models with only one
photochemical sink and an intermediate lifetime (e.g., Tang et al., 2019). CO tracers also allow
clear identification of simulated anthropogenic and biomass burning contributions. Therefore
tagging CO is computationally efficient and tagged CO is relatively reliable as a tracer in models,
Meteorology has a significant impact on the distributions of pollutants across the regions (e.g.
Gordon et al., 2023). The CO tracers in the model go through the same model processes (e.g.
transport) as CO. Therefore, the source contribution shown by the CO tracers is a result of both
emissions and transport, Figure 2 shows the seasonal averages of CO column distributions over
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Africa from MOPITT along with the MUSICAv0O and WRF-Chem biases. The highest levels of
CO in these maps are primarily associated with biomass burning, which moves around the
continent with season. Both MUSICAvV0 and WRF-Chem simulations underestimate the CO
column compared to MOPITT (Figures 3a and 3b). Overall, MUSICAVO agrees better with the
OMI tropospheric NO; column (Figure 3c) and MODIS AOD (Figure 3e) than WRF-Chem
(Figures 3d and 3f). The MUSICAVO simulation overall has lower tropospheric HCHO column
than OMI in all regions and seasons (Figure 3g). Spatial distributions of model biases against the
OMI tropospheric NO; column, MODIS AOD, and OMI tropospheric HCHO column are included
in Figures 4 and Figures S1-S2, In this section we compare the model results with satellite data
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and in situ observations over sub-regions in Africa and oceans near Africa (Figure 1b). AERONET
data are overlayed with MODIS data in Figure 4. Overall, MODIS and AERONET AOD are
consistent.
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3.1 North Africa

Over North Africa, both MUSICAv0O and WRF-Chem simulations underestimate the CO
column during 2017 (Figures 2 and 3). As shown by the tagged model CO tracers (Figure 5), CO
over North Africa is mainly driven by transport of CO from outside the continent and
anthropogenic emissions. The model underestimation compared to the MOPITT CO column is
consistent with the results of the comparisons with surface CO observations from WDCGG at the
two sites located in North Africa (Assekrem and Izana; Figures 6a and 6¢). At the two surface

sites, the composition of source types and source regions are close to the composition of source
types and source regions of the column average over North Africa (Figure 5 and Figures S3 and

S4), hence the two sites are representative of the background conditions of North Africa.

Compared to MODIS AOD, WRF-Chem has a mean bias of 0.36 whereas MUSICAv0’s mean

bias is 0.17 for 2017. The model AOD biases over North Africa are likely driven by dust. No
comparison is made with IAGOS O3 in North Africa due to data availability,

(Deleted: 4

(Deleted: 5

(Deleted: 5

(Deleted: 4

) (Deleted: 4

(Deleted: 5

(Formatted

: Font color: Auto

AN

3.2 West Africa

Over West Africa, fire and anthropogenic emissions are both important for CO pollutant
and fire impacts peak in DJF (December, January, and February). Compared to the MOPITT CO
column, the mean bias of MUSICAv0O and WRF-Chem for West Africa peak around February —
the dry season of the Northern Hemisphere (Figure 3). In February, the MUSICAVO mean bias is
-1.1x10'® molecules/cm? and WRF-Chem mean bias is -7.5x10'7 molecules/cm?, which are likely
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driven by fire emission sources (Figure 5). Model comparisons with IAGOS CO also show a

similar bias — both model simulations underestimate CO at all vertical levels. The underestimation - -

peaks during DJF and below 600 hPa (Figure 7). As for MODIS AOD, WRF-Chem has the mean

bias 0.69 whereas MUSICAv0’s mean bias is 0.15, respectively. Similar to North Africa, the model |

biases in AOD over West Africa are also likely driven by dust and biomass burning. We also
compare modeled O3 with IAGOS O3 observations (Figure &).

Over West Africa, both models agree well with the IAGOS O3 observations below 800 hPa
(mean bias ranges from -1 to -4 ppb). Above 800 hPa over West Africa, WRF-Chem
underestimates O3 while MUSICAvVO overestimates Os. Overall, MUSICAVO consistently
overestimates O3 above 800 hPa in all seasons while the direction of WRF-Chem bias changes
with seasons (Figure 8). When MUSICAVO0 overestimates O3, the bias is in general larger at the
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higher altitude of the troposphere. The concentration of the model stratospheric ozone tracer, O3S,
is also larger at the higher altitude in DJF (Figure 10). The correlation of modeled O3 and O3S is
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0.54, and the correlations of O3S and model O3 bias (modeled O3 minus IAGOS 03) is 0.35 over
West Africa, implying the overestimation of O3 in the upper troposphere could be partially driven
by too strong stratosphere-to-troposphere flux of ozone. Previous studies also found impacts of
stratosphere-to-troposphere flux of ozone over West Africa (e.g., Oluleye et al., 2013). Lightning
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NO emissions can also impact Oz in the upper troposphere. The MUSICAvO simulation has
somewhat (~3 times) higher lightning NO emissions (Figure S5) compared to a standard CAM-
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chem simulation (not shown), therefore the high ozone in the upper troposphere may be due to an
over-estimate of lightning NO. We also compared our modeled lightning NO emissions with a

multi-year average, climatology (2008-2015) from Maseko et al. (2021) over South Africa, and
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found that the seasonal cycle from MUSICAvO and standard CAM-chem are consistent with the

climatology. The magnitude of MUSICAVO lightning NO emissions overall agree better with the
climatology compared to that from standard CAM-chem simulation. Impacts of lightning NO

emissions on upper troposphere Oz in MUSICAvVO will be investigated and evaluated further in the
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future. A brief comparison with IAGOS measurements of air temperature and water vapor profiles
over West Africa as well as other sub-regions shows that MUSICAVO overall agrees well with

these meteorological variables (Figure S6). (Deleted: 7
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When compared to the IAGOS Os profiles over Central Africa (Figure §8), both models
agree well with the IAGOS O3 observations below 800 hPa (mean bias ranges from -1 to -4 ppb).
Above 800 hPa, WRF-Chem underestimates O3 while MUSICAvO overestimates Os. The
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correlation of modeled Oz and O3S is 0.67, and the correlations of O3S and model O3 bias is 0.50
over Central Africa, indicating O3 overestimation in Central Africa are more likely to be impacted
by stratosphere-to-troposphere flux of ozone than that in West Africa.

3.4 East Africa

CO over East Africa is dominated by local emissions and inflow from outside the continent.
Fire and anthropogenic emissions contribute approximately the same to CO over East Africa
(Figure 5). Both MUSICAvO0 and WRF-Chem simulations underestimate the CO column
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compared to MOPITT (Figure 3), and the WRF-Chem simulation also underestimate the
tropospheric NO> column compared to OMI. The biases in CO column and tropospheric NO»

column peak in September,One possible driver could be fire emissions from other regions (Figure

5).however, further studies will be needed to address this.

Compared to IAGOS O3 profiles over East Aftica, biases of MUSICAVO below 600 hPa

has a seasonal variation while over 600 hPa are consistently positive (Figure 8). The correlations

of O3S and model Os bias against IAGOS data is 0.50 in the region. The correlations between O3S

and model Os bias are highest over Central and East Africa compared to other regions, indicating
stratosphere influence are strongest in these two regions among the sub-regions. Central and East
Africa are relatively more mountainous therefore topography driven stratospheric intrusions might
be expected. The Nairobi ozonesonde site is located in East Africa (Figure 1b). When comparing
to the O3 profiles from ozonesondes (Figure 10), MUSICAvVO overall overestimates O3 in the

(Deleted: s

(Deleted: likely

% . : "(Deleted: driven by

i (Deleted: 4

(Deleted: .

(Deleted: 7

NN N AN AN N

(Deleted: 9

troposphere at the four sites while WRF-Chem tends to underestimate O; in the free troposphere
(below 200 hPa). The Nairobi site is an exception where both MUSICAvV0 and WRF-Chem
simulations significantly overestimate O3 in all seasons (mean bias of MUSICAv0O and WREF-
Chem below 200 hPa are 27 ppb and 20 ppb, respectively). Among the four ozonesonde sites,
correlations of model bias of O3 and O3S are highest at the Nairobi site (0.74) where the model
significantly overestimates Os. The results of model-ozonesonde comparisons are consistent with
the results of model-IAGOS comparisons and indicate a potential issue in modeled stratosphere-
to-troposphere flux of ozone.

We compare the model results with PM, s measurements from two surface sites in East .~
Africa (Addis Ababa and Kampala; Figure 1b). Despite using different aerosol methods and -

emission inventories, both MUSICAvO and WRF-Chem underestimate surface PM,s when

compared to observations at the two sites (Figure 11). The errors in PM» s concentrations at the -

U.S. Embassy in Kampala are especially prominent. However, both models approximate the
variation of the PMas in both locations. Many factors contribute to the inconsistency in the
magnitude of modeled PMas concentrations. For instance, emission inventories in this region
require additional improvement. In Uganda, increasing motor vehicle ownership and burning

biomass for domestic energy use contribute to ambient PM; s levels (Clarke et al., 2022; Petkova
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etal., 2013; Kinney et al., 2011). Detailed PM, s composition measurements would also help to
pinpoint the cause of inaccuracies (Kalisa et al., 2018). Model resolutions could also be a potential .~

reason for the underestimation. Over Kampala, high spatial variability of PMy s over the urban

environment can contribute to model bias (Atuhaire et al., 2022), as also shown by the AirQo low-

cost air quality monitors (Sserunjogi et al., 2022 Okure et al., 2022).

3.5 Southern Africa

molecules/cm? annually) over Southern Africa (Figure 3). WRF-Chem also has low mean bias and
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RMSE in CO over Southern Africa except for the months of September, October, and November
(SON) period where WRF-Chem has larger CO mean bias (-6.2x10'7 molecules/cm?) than

(&Y
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MUSICAvV0. Tagged model CO tracers indicate that CO over Southern Africa is significantly
impacted by CO emissions from Central Africa, East Africa, Southern Africa, and inflow from
outside the continent. As for the source types, anthropogenic and fire emissions are both important
and fire impacts peak in September (e.g., Archibald et al.. 2009, 2010; Archibald 2016). There are
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two WDCGG sites located in Southern Africa (Figure 1b; Gobabeb and Cape Point). When
compared to surface CO observations from WDCGG, both models consistently underestimate CO
by up to 40% at most sites. The Cape Point site in Southern Africa is an exception (Figure 6) where
MUSICAvV0 overestimates CO by 40 ppb (annual mean; and up to 78 ppb in May 2017). CO tracers
in the model (Figures S3 and S4) show that the simulated CO at Cape Point is mainly driven by
anthropogenic CO emissions from Southern Africa. Therefore, the overestimation of CO at Cape
Point by MUSICAvV0 may be due to an overestimation of emissions in South Africa. Note that the
Cape Point measurement site is located on the tip of southern Africa and has a strong impact from
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Deleted: CO tracers in the model (Figures S4 and S5) show
that CO at Cape Point is mainly driven by anthropogenic CO
emissions from Southern Africa. Therefore, the
overestimation of CO by MUSICAvO0 should be due to the
overestimation of anthropogenic emissions from Southern
Africa used in the model.

clean marine air (Labuschagne et al., 2018), which the model likely cannot represent accurately.
As for NO,, WRF-Chem underestimates tropospheric NO> column in most regions except

for Southern Africa (Figure 3). Over Southern Africa, WRF-Chem overestimates NO: especially
during June, July, and August (JJA). MUSICAVO also tends to overestimates NO» at the same
location in JJA however the bias is not as large as for WRF-Chem.

MUSICAvVO simulation overall has a lower mean bias (0.14 annually) than the WRF-Chem
simulation (mean bias of 0.31 annually) compared to MODIS AOD with Southern Africa being
the only exception (Figure 3). Over Southern Africa, MUSICAVO0 overestimates AOD by ~0.21
annually (Figure 3) and the bias peaks in January (mean bias=0.45). This overestimation in AOD
over Southern Africa is not seen in WRF-Chem. It is likely that the MUSICAvVO0 overestimation in
AOD over Southern Africa is also due to biases in modeled dust as the AOD bias is co-located
with the only barren or sparsely vegetated area in Southern Africa (Figure 9,and Figure S2).

Over Southern Africa, MUSICAvVO tends to overestimate O3 compared to TAGOS at all
levels at all seasons in 2017 (Figure &). The MUSICAvVO O, bias is 5-10 ppb below 800 hPa for

the four seasons and 23-39 ppb at 225 hPa. The concentration of O3S over Southern Africa is -

higher than those over other regions. However, the correlation of O3S and model O3 bias is lower
than other regions (0.13) indicating stratosphere-to-troposphere flux of ozone may not be the main
driver of Os bias over Southern Africa even though stratosphere-to-troposphere flux of ozone are
relatively strong in the region_(e.g., Leclair De Bellevue et al., 2006; Clain et al., 2009; Mkololo
et al., 2020). The Irene ozonesonde site is located in Southern Africa (Figure 1b). Compared to the
ozonesonde O3 profiles at the Irene site, however, the sign of MUSICAvV0 has a seasonal variation
(Figure 10g-10h). For example, at 675-725 hPa, MUSICAVO Os bias in MAM and JJA is 3-9 ppb
whereas in SON and DJF it is -2 to -6 ppb. The IAGOS measurements and the Irene ozonesonde
site are not co-located, so the difference is expected due to the different sampling locations and
environment. Compared to other ozonesonde sites, the correlation of O3S and model O3 bias over
Southern Africa is lower (0.14) and MUSICAvVO agrees relatively well with observations, which
is consistent with the comparison results with IAGOS data (Figure 8).
We further compare MUSICAvO and WRF-Chem results with surface PM»s, CO, NOo.«
and O3 measurements from SAAQIS in South Africa (Figures S8-S11). Overall, the performance
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of MUSICAv0 and WRF-Chem compared to SAAQIS data are similar. Both models underestimate
surface CO in most sites (consistent with the comparisons with satellites) with exceptions near
Gauteng (industrialized and urbanized region). Compared to SAAQIS sites near Cape Point
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MUSICAvVO0 does not show overestimation which is opposite to the overestimation compared to
WDCGG Cape Point site. The maximum value of monthly CO observations from WDCGG Cape
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Point site in 2017 is ~150 ppb whereas the seasonal mean values of SAAQIS CO measurements

near Cape Point site can be up to 600 ppb. SAAQIS CO measurements near Cape Point shows

relatively large spatial variability, indicating (1) that there may be a wide range of emission sources
that are poorly captured by the model and (2) a large role of local sources and potentially complex

meteorology. In addition, uncertainties in observations could also contribute to the difference. Both

models tend to overestimate NO, near Gauteng, which may be related to local emissions. Both

models can either overestimate or underestimate PM, s and/or O; at different SAAQIS sites. The *

model bias in PM>.s and O3 shows large spatial variability especially near Gauteng. Higher model
resolution is needed to address the highly complex and diverse environment in the region. Lastly.
it is worth pointing out that in South Africa, both models have evident bias in PM».s near Gauteng
(Figure S11) however modeled AOD from both models agree relatively well with MODIS and
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AERONET (Figure 4). More studies are needed to understand this feature.
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3.6 Oceans near Africa

We compare the CO, NO, and O3 from the MUSICAvVO simulation with measurements
from ATom-2 and ATom-3 in 2017 (Figure 1a) to provide a global benchmark. Measurements
made over the Atlantic Ocean and Pacific Ocean, and in January-February (Jan-Feb) and
September-October (Sep-Oct) are compared separately (Figures 11 and 12). The comparison was
made with data averaged into 10° latitude and 200 hPa bins, Overall, the model consistently

'(Formatted: Font color: Auto

underestimates CO globally in both seasons. The underestimation of CO is a common issue in
atmospheric chemistry models and could be due to various reasons, including emissions,
deposition, and chemistry (e.g., Fisher et al., 2017; Shindell et al., 2006; Stein et al., 2014; Tilmes
et al., 2015; Tang et al., 2018; Gaubert et al., 2020). Specifically for our MUSICAVO0 simulation
in this study, the model bias in CO is relatively large (up to 52 ppb) over the Northern Hemisphere
(especially at high latitude and near the surface) and small over the Southern Hemisphere (Figures
11 and 12). Over the Atlantic Ocean, the bias in CO is larger in September-October than Jan-Feb
in both the Northern Hemisphere (-30 ppb in Jan-Feb versus -34 ppb in Sep-Oct) and Southern
Hemisphere (-11 ppb in Jan-Feb versus -14 ppb in Sep-Oct). Over the Pacific Ocean, however, the
CO bias is similar for both time periods in the Northern Hemisphere (-30 ppb) while in the
Southern Hemisphere, the CO bias changes significantly from -8 ppb in Jan-Feb to -16 ppb in Sep-
Oct. The changes in CO bias over the Southern Hemisphere are likely due to seasonal change in
fire emissions. Overall, the mean biases (Figures 11 and 12) suggest that the simulation agrees
better with ATom observations in the Southern Hemisphere than in the Northern Hemisphere, and
in Jan-Feb than in Sep-Oct (Figures 11 and 12), consistent with Gaubert et al. (2016).

In both seasons and both hemispheres, the model in general overestimates O3 in the
stratosphere/UTLS (upper troposphere and lower stratosphere) by up to 38 ppb (above 200 hPa).
In the troposphere (below 200 hPa), the model overall agrees well with the ATom data over the
Pacific Ocean in the Southern Hemisphere (in most cases the bias is less than £5 ppb). However,

o (Formatted: Font color: Auto

over the Atlantic Ocean in the Southern Hemisphere, MUSICAvVO tends to overestimate O3,
especially in Jan-Feb. In the troposphere of the Northern Hemisphere, MUSICAVO consistently
overestimates O3 over both oceans and both seasons. The positive bias in O3 decreases from the
upper troposphere towards the surface, indicating that the overestimation of O3 in the troposphere
may be due to stratosphere-to-troposphere flux of ozone. This was also noted for other global
models (Bourgeois et al. 2021), Thompson et al. (2014) found Os at the Irene site is also influenced
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by long-range transport of growing pollution in the Southern Hemisphere, which could also

contribute to the model bias, As for NO, the model tends to overestimate NO above 200 hPa (Formatted: Font color: Auto )
(approximately the stratosphere and Upper Troposphere-Lower Stratosphere; UTLS) by up to 50

ppt. Overall, the NO biases can be either positive or negative depending on location and season.

The distributions of NO bias (Figures 11 and 12) do not show an overall spatial pattern, unlike

those for CO (which changes monotonically with latitude) or O3 (which changes monotonically

with altitude).

4. Model application: identifying key regions in Africa for future in situ observations and
field campaign(s)

As a demonstration of the application of MUSICAVO, here we use the results of model-
satellite comparisons to identify potential regions where the atmospheric chemistry models need
to be improved substantially. More field campaigns and more in situ observations would not only
provide observational benchmark dataset to understand and improve the modeling capability in
the region, but would be also useful for the validation and calibration of satellite products. Here
we use Taylor score to quantify model-satellite discrepancies. Taylor score (Taylor, 2001) is

defined by
S= A+ Formatted
(Ot /06)2(1+Ro), e

where gy is the ratio of o, (standard deviation of the model) and gy, (standard deviation of _—{Formatted
observations), R is correlation between model and observations, and Ry, is the maximum i&Formatted

potentially realizable correlation (=1 in this study). Taylor score ranges from 0 to 1 and a higher
Taylor score indicates better satellite-model agreement. To identify potential locations, we
separate the Africa continent into 5°, x 5° (latitude x longitude) pixels as shown in Figure 14, And
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| Deleted: 3... And for each pixel, we calculate Taylor scores

—

for each pixel, we calculate Taylor scores of MUSICAvV0 compared to the three satellite Level 2 /| of MUSICAVO compared to the three satellite Level 2
products (e.g., MOPITT CO column retrievals, OMI tropospheric NO> column retrievals, and / | products (e.g., MOPITT CO column retrievals, OMI
MODIS AOD) separately. Then three Taylor scores are summed up to obtain the total Taylor score /| tropospheric NO; column retrievals, and MODIS AOD)

. - — - - | | separately. And ...t...en three Taylor scores are summed up
for MUSICAVO (ranges from 0 to 3) as shown in Figures 13a-13e. A similar calculation iS | | to obtain the total Taylor score for MUSICAVO (ranges from
conducted for WRF-Chem (Figures 13f-13j). Note that we did not include Taylor scores for HCHO | | 0to 3) as shown in Figures 13a-13¢. A similar calculation s
in the total Taylor score due to that (1) WRF-Chem simulations did not save HCHO output, and | Z?“dUCt?d for WRF-Chem (Figures 13f-13j). Note that we

. X N L / id not include Taylor scores for HCHO in the total Taylor
(2) the HCHO retrievals have relatively high uncertainties (Taylor scores of MUSICAVO compared | score due to that (1) WRF-Chem simulations did not save
to OMI tropospheric HCHO column retrievals are provided separately in Figure S12). / HCHO output, and (2) the HCHO retrievals have relatively

high uncertainties (Taylor scores of MUSICAv0 compared to
OMI tropospheric HCHO column retrievals are provided
separately in Figure S128

Overall, both MUSICAvVO0 and WRF-Chem have low total Taylor scores in the 30°E —45°
5°S — 5°N region in East Africa (a region of 152 longitude x 107, latitude) during MAM (March,
April, and May), JJA (June, July, and August), and SON (September, October, and November), as Formatted
highlighted in Figure 14, indicating relatively large model-satellite discrepancies in the region. (Deleted: 3
Besides the 30°E —45°E, 5°S — 5°N region highlighted in Figure 14, there are a few other regions
with low Taylor scores for both MUSICAv0 and WRF-Chem such as 10°E — 20°E, -30°S — -20°N ) "(Fﬂl'maﬁed: Font color: Auto
region and the east of Madagascar, "/ Deleted: Moreover, this... is also the region where the

The 30°E — 45°E, 5°S — 5°N region (a sub-region in East Africa),is also the region where*. - /[ | Nairobi ozonesonde site and the Kampala surface PM, s site

. . ! f . are located (Figure 1b). As discussed above, both
the Nairobi ozonesonde site and the Kampala surface PM: s site are located (Figure 1b). As N/ | MUSICAVO and WRF-Chem significantly overestimate O3
discussed above, both MUSICAv0 and WRF-Chem significantly overestimate O3 (Figure 10) and //*\ ( (Figure 109... and largely underestimate PMas (Figur
largely underestimate PMa s (Figure 11) in the region. More in situ observations or future field / * Formatted (@
campaigns in the region can substantially help in the understanding model-satellite and model-in ( Formatted: Indent: First line: 0.5"
situ observation discrepancies and improving model performance.
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The 30°E — 45°E, 5°S — 5°N region (a sub-region in East Africa) is potentially a favorabl
location for future field carnpalgn(s) not only because of the large model-satellite and model-i
situ observation discrepancies, but also due to that the population density is high and landcover
are diverse in the region (Figure 9). The relatively high population density in the region indicates

that improved air quality modeling in the region can benefit a large population. A diverse landcover *

indicates more processes/environments can be sampled. CO tracers in the model (Figure 15) show
that CO over the region is mainly driven by both anthropogenic and fire emissions. Anthropogenic
emissions play a more important role in the 30°E — 45°E, 5°S — 5°N region compared to East
Africa in general (Figures 4 and 14). In terms of source regions, emissions from East Africa and \;
inflow from outside the continent are the dominant source, with some contributions from Central

Africa. Note that the source analyses using model tracers may be subject to uncertainties in the

emission inventories, in this case CAMSv5.1. QFED. and the waste burning inventory used here.
As discussed above (e.g., Section 3.4), there might be missing sources in the region. In addition,
emission factors used in many emission inventories are based on measurements outside the
continent of Africa (e.g., Lamarque et al. 2010; Klimont et al., 2013; Pokhrel et al. 2021). It is not
clear so far if these emission factors are applicable to emissions in Africa (e.g.. Keita et al., 2018).
Therefore, a field campaign in the region can help address these, issues.

We would like to point out that in this analysis, the key area is selected using 3 satellite
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products/chemical species and two models. The Taylor score is a comprehensive measure of model
performance that accounts for variance and correlation, however, other models and types of
comparisons may provide different answers.

5. Conclusions

Africa is one of the most rapidly changing regions in the world and air pollution is a
growing issue at multiple scales over the continent. MUSICAVO is a new community modeling
infrastructure that enables the study of atmospheric composition and chemistry across all relevant
scales. We developed a MUSICAVO grid with Africa refinement (~28 km x 28 km over Africa and
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~110 km x 110 km for the rest of the world) and conducted the simulation for the year 2017. We
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evaluated the model with in situ observations including ATom-2 and ATom-3 airborne

measurements of CO, NO, and O3, [AGOS airborne measurements of CO and O3, O3 profiles from
ozonesondes, surface CO observations from WDGCC, and surface PM» s observations from two
U.S. Embassy locations. We then compare MUSICAvVO with satellite products over Africa, namely
MOPITT CO column, MODIS AOD, OMI tropospheric NO> column, and OMI tropospheric
HCHO column. Results from a WRF-Chem simulation were, also included in the evaluations and
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comparisons as a reference. Lastly, as an application of the model, we identified potential African
regions for in situ observations and field campaign(s) based on model-satellite discrepancies
(quantified by Taylor score), with regard to model-in situ observation discrepancies, source
analyses, population, and land cover. The main conclusions are as follows.

(1) When comparing to ATom-2 and ATom-3, MUSICAVO consistently underestimates
CO globally. Overall, the negative model bias increases with latitude from the Southern
Hemisphere to the Northern Hemisphere. MUSICAVO also tends to overestimate O3 in the
stratosphere/UTLS, and the positive model bias overall decreases with altitude.

(2) The MUSICAVO0 biases in O3 when compared to ATom, [AGOS, and ozonesondes are
likely driven by stratosphere-to-troposphere fluxes of O3 and lightning NO emissions.
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(3) Overall, the performance of MUSICAvVO0 and WRF-Chem are similar when compared
to the surface CO observations from six WDCGG sites in Africa.

(4) Both models have negative bias compared to the MOPITT CO column, especially over
Central Africa in September, which is likely driven by fires.

(5) Overall, MUSICAvVO agrees better with OMI tropospheric NO> column than WREF-
Chem.

(6) MUSICAVO0 overall has a lower tropospheric HCHO column than OMI retrievals in all
regions and seasons. Biogenic and fire emissions are likely to be the main driver of this
disagreement.

(7) Over Africa, the MUSICAVO simulation has smaller mean bias and RMSE compared
to MODIS AOD than the WRF-Chem simulation.

(8) The 30°E — 45°E, 5°S — 5°N region in East Africa is potentially a favorable location for
future field campaign(s) not only because of the large model-satellite and model-in situ
observation discrepancies, but also due to the population density, landcover, and pollution
source in this region.

Overall, the performance of MUSICAvO is comparable to WRF-Chem. The
underestimation of CO is a common issue in atmospheric chemistry models such as MUSICAv0
and WRF-Chem. The overestimation of O3 in MUSICAVO is likely driven by too strong of
stratosphere-to-troposphere fluxes of O3 and perhaps an over-estimate of lightning NO emissions,
however, future studies are needed to confirm and solve this issue. The significant underestimation
in surface PMz s at two sites in East Africa and the overall overestimation in AOD in Africa
compared to MODIS imply missing local sources and an overestimation of dust emissions, and
require further study. In addition, Jack of data could also contribute to disagreement in model and

'(Formatted: Font color: Auto

in situ observations as one site in a city is not representative of the full city. Field campaigns and

more in situ observations in 30°E—45°E, 5°S—5°N region in East Africa (as well as other regions
in Africa) are necessary for the improvement of atmospheric chemistry model(s) as shown by the
MUSICAv0 and WRF-Chem simulations.

Fire and dust are important sources of air pollution in Africa. The performance of
MUSICAVO0 is degraded during fire season and over dust regions. Uncertainties in emission

estimates of fire and dust and in the model representation of atmospheric processes could
potentially contribute to the model biases. Future studies on fire and dust in Africa are needed to
address these uncertainties and air quality modeling over Africa,

Here we divided the continent into five sub-regions to show the overall performance of .-~

MUSICAVO0 over sub-regions of Africa. This accounted for the diversity in atmospheric chemistry ™
environment to some degree, However, each sub-region is not homogeneous. In fact, different

cities in the same sub-region may have different emission characteristics. In the future when
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| Deleted: In the future, we plan to conduct a model

simulation for multiple years and develop additional model
grids with potentially higher resolution in Africa sub-regions
based on the current MUSICAVO0 Africa grid.

specific scientific questions are studied with MUSICAvV0, we will use higher resolution to address
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the highly complex and diverse environment. We plan to conduct a model simulation for multiple
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years and develop additional model grids with potentially higher resolution in Africa sub-regions
based on the current MUSICAvVO Africa grid. Higher resolution will benefit the comparisons of

model and in situ observations. The future simulation will be conducted for years after 2017 as

there are more in situ observations available in recent years.
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Code and data availability

The model code used here can be accessed through https://doi.org/10.5281/zenodo.8051435. The <.~

Moved up [1]: The MUSICAVO model source code and the
model documentation can be downloaded through
https://wiki.ucar.edu/display/MUSICA/MUSICA+Home

data produced by this study can be accessed through https://doi.org/10.5281/zenodo.8051443. |
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Figure 1. Model grid, in situ observations used in this study, and sub-regions in Africa. (a)
MUSICAvV0 model grid developed for Africa in this study (black), domain boundary of the WRF-
Chem simulation compared in this study (shown by green box), observations from the
Atmospheric Tomography Mission (ATom) field campaign 2 (ATom-2; 2017 Jan to 2017 Feb;
pink) and ATom-3 (2017 Sep to 2017 Oct; yellow). (b) Sub-regions in Africa are shown, namely
North Africa (green), West Africa (pink), East Africa (orange), Central Africa (blue), and Southern
Africa (yellow). Location of in situ observations are labeled on the map. Flight tracks of the In-
service Aircraft for a Global Observing System (IAGOS) are shown with black lines. Four
ozonesonde sites are shown by pentagrams (Ascension, Irene, Nairobi, and La Reunion); six sites
from the World Data Centre for Greenhouse Gases are shown by triangles (Assekrem, Cape Point,
Izana, Gobabeb, Mare, and Ascension); surface sites for PM» s are shown by squares (Addis Ababa
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Figure 3. Mean bias of MUSICAv0O and WRF-Chem simulations from satellite data. Monthly
timeseries of mean bias of (a) MUSICAVO and (b) WRF-Chem against MOPITT CO column
(molecules/cm?) in 2017 over Africa (black), North Africa (green), West Africa (pink), East Africa
(orange), Central Africa (blue), and Southern Africa (yellow). (c-d) are same as (a-b) but for mean
bias against OMI tropospheric NO, column (molecules/cm?). (e-f) are same as (a-b) but for mean
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bias against with MODIS (Terra) Aerosol Optical Depth (AOD). (g) is the same as (a) but for mean

bias against OMI tropospheric HCHO column (molecules/cm?).
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Figure 4. Comparisons of MUSICAvO and WRF-Chem simulations and MODIS and AERONET
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AQOD at 550 nm in 2017. (a-d) Averaged MODIS and AERONET AOD in MAM (March, April
and May), JJA (June, July, and August), SON (September, October, and November), and DJF
(December, January, and February). (e-h) MUSICAvO model biases against MODIS and
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data are gridded to 0.25 degree x,0.25 degree for plotting. AERONET AOD in (a-d) and model ..

bias against AERONET AOD in (e-1) are shown by the circles overlayed on the map.
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Figure 7, Vertical profiles of CO (ppb) from the In-service Aircraft for a Global Observing System

(IAGOS) measurements (black) and corresponding model output from MUSICAVO (red), and
WRF-Chem (blue) during different seasons in 2017 over West Africa, Central Africa, East Africa,
and Southern Africa, North Africa is not shown due to data availability, Seasonal mean profiles

with the variation of the data in the pressure layer (25% quantile to 75% quantile) in MAM (March,
April, and May), JJA (June, July, and August), SON (September, October, and November), and

DIJF (December, January, and February) are shown.
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Figure 8§, Vertical profiles of O3 (ppb) from the In-service Aircraft for a Global Observing System
(IAGOS) measurements (black) and corresponding model output from MUSICAVO (red), and
WRF-Chem (blue) during different seasons in 2017 over West Africa, Central Africa, East Africa,
and Southern Africa, North Africa is not shown due to data availability, Seasonal mean profiles
with the variation of the data in the pressure layer (25% quantile to 75% quantile),in MAM (March,
April, and May), JJA (June, July, and August), SON (September, October, and November), and
DJF (December, January, and February) are shown. The dash red lines represent O3S
(stratospheric ozone tracer) from the MUSICAv0 simulation.
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Figure 9, (a) I:and cover in 2017 and (b) population density (persons/’km?) in 20A20 over Africa. ; e (Deleted: 8

Land cover data is from MODIS/TerratAqua Land Cover Type Yearly L3 Global product
(resolution: 0.05 degree) (Friedl et al., 2022). Cropland/Natural Vegetation Mosaics means
Mosaics of small-scale cultivation (40-60%) with natural tree, shrub, or herbaceous vegetation.
Population density data is from the Gridded Population of the World, Version 4 (GPWv4),
Revision 11 (CIESIN, 2018).
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Figure 10, Vertical profiles of O3 (ppb) from Ozonesondes (black) and corresponding model

output from MUSICAVO (red), and WRF-Chem (blue) for each season of 2017. The thick lines

denote the seasonal mean profiles and the thin lines denote the individual profiles. The dash red
lines represent O3S (stratospheric ozone tracer) from the MUSICAvVO simulation. Ozonesonde data
at Ascension in (a) MAM (March, April, and May), (b) JJA (June, July, and August), (c) SON
(September, October, and November), and (d) DJF (December, January, and February) are shown.
(e-h), (i-1), and (m-p) are the same as (a-d), except for Irene, La Reunion, and Nairobi, respectively.
Locations of the sites are shown in Figure 1b.
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Figure 11, Daily mean PM, 5 from in situ observations (black), MUSICAVO (red), and WRF-Chem
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(blue) during 2017 at (a) Addis Ababa and (b) Kampala. Daily means are calculated from 3-hourly
data. The shown range for each data point shows the variation on that day (25% quantile to 75%
quantile). Locations of the sites are shown in Figure 1b.
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Figure 12, Observations of (a) CO (ppb), (b) O; (ppb), and (c) NO (ppt) over Atlantic Ocean

during ATom-2 and ATom-3 (d-f). (g-1) corresponding model biases against ATOM observations.
The ATom airborne measurements and corresponding MUSICAv0 model results are binned to 10-
degree latitude and 200-hPa pressure bins. The values of mean biases for each latitude and pressure
bin are labeled in the figure.
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Figure 13, Same as Figure 9 but for over the Pacific Ocean.
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Flgure 14, Spatial distribution of total Taylor score of MUSICAVO and (f-j) WRF-Chem compared

(Deleted: 3

to satellite retrievals. In each 5° x 5° (latitude x longitude) pixel, Taylor scores of the model
compared to three satellite products (e.g., MOPITT CO column retrievals, OMI tropospheric NO>
column retrievals, and MODIS AOD) are calculated separately (as shown in Figure S12). Taylor
score against each satellite product ranges from 0 to 1. And then three Taylor scores are summed
up to obtain the shown total Taylor score (ranges from 0 to 3). Total Taylor score of MUSICAvVO
for (a) 2017, (b) MAM (March, April, and May), (c) JJA (June, July, and August), (d) SON
(September, October, and November), and (¢) DJF (December, January, and February) are shown.
The blue box highlights a potential region for future field campaigns and/or in situ observations.
(fj) are similar to (a-e) except for WRF-Chem.
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(a) Column-averaged CO tracers (by source regions) averaged over
a5 the 30E - 45E, -5S - 5N region in East Africa
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1586  Figure 15, Monthly time series of column-averaged CO tracers jn the 30°E — 45°E, -5°S — 5°N .- "CDeleted: 4
1587  region in East Africa, (a) CO tracers of emissions from North Africa (green), West Africa (pink), »7 : "CFormatted: Font color: Auto
1588  East Africa (orange), Central Africa (blue), Southern Africa (yellow), and the rest of the world »-Cpomatted: Font color: Auto

1589  (grey), (b) CO tracers of fire emissions (red), anthropogenic emissions (green), and waste burning
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