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Abstract 30 
The Multi-Scale Infrastructure for Chemistry and Aerosols Version 0 (MUSICAv0) is a new 31 
community modeling infrastructure that enables the study of atmospheric composition and 32 
chemistry across all relevant scales. We develop a MUSICAv0 grid with Africa refinement (~28 33 
km ´ 28 km over Africa). We evaluate the MUSICAv0 simulation for 2017 with in situ 34 
observations and compare the model results to satellite products over Africa. A simulation from 35 
the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), a regional 36 
model that is widely used in Africa studies, is also included in the analyses as a reference. Overall, 37 
the performance of MUSICAv0 is comparable to WRF-Chem. Both models underestimate carbon 38 
monoxide (CO) compared to in situ observations and satellite CO column retrievals from the 39 
Measurements of Pollution in the Troposphere (MOPITT) satellite instrument. MUSICAv0 tends 40 
to overestimate ozone (O3), likely due to overestimated stratosphere-to-troposphere flux of ozone. 41 
Both models significantly underestimate fine particulate matter (PM2.5) at two surface sites in East 42 
Africa. The MUSICAv0 simulation agrees better with aerosol optical depth (AOD) retrievals from 43 
the Moderate Resolution Imaging Spectroradiometer (MODIS) and tropospheric nitrogen dioxide 44 
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(NO2) column retrievals from the Ozone Monitoring Instrument (OMI) than WRF-Chem. 45 
MUSICAv0 has a consistently lower tropospheric formaldehyde (HCHO) column than OMI 46 
retrievals. Based on model-satellite discrepancies between MUSICAv0 and WRF-Chem and 47 
MOPITT CO, MODIS AOD, and OMI tropospheric NO2, we find that future field campaign(s) 48 
and more in situ observations in an East African region (30°E – 45°E, 5°S – 5°N) could 49 
substantially improve the predictive skill of atmospheric chemistry model(s). This suggested focus 50 
region exhibits the largest model-in situ observation discrepancies, as well as targets for high 51 
population density, land cover variability, and anthropogenic pollution sources. 52 
 53 
1. Introduction 54 

As one of the most dramatically changing continents, Africa is experiencing myriad 55 
environmental sustainability issues (e.g., Washington et al., 2006; Ziervogel et al., 2014; Boone et 56 
al., 2016; Baudoin et al., 2017; Güneralp et al., 2017; Nicholson 2019; Fisher et al., 2021; Kumar 57 
et al., 2022). These environmental issues are causing vast losses in lives and in African economies, 58 
and are coupled with poverty and under-development (Washington et al., 2006; Fisher et al., 2021). 59 
Some of these environmental challenges are particularly severe in Africa compared to many other 60 
regions of the world (e.g., famine, droughts, floods, high temperatures, land degradation, and fires; 61 
Washington et al., 2006; van der Werf et al., 2017). However, even though Africa is the second 62 
largest continent, in land area and population, attention and research on environmental challenges 63 
in Africa are very limited, leading to a deficit of knowledge and solutions (e.g., De Longueville et 64 
al., 2010). Degraded air quality is an example of a severe environmental challenge with growing 65 
importance in Africa (e.g., Liousse et al., 2014; Thompson et al., 2014; Heft-Neal et al., 2018; 66 
Fisher et al., 2021; Vohra et al., 2022). A previous study found that air pollution across Africa 67 
caused ~1.1 million deaths in 2019 (Fisher et al., 2021). However, the study of air quality in Africa 68 
is hindered by the scarcity of ground-based observations (e.g., Paton-Walsh et al., 2022), 69 
modelling capability and the use of satellite observations. In this paper, we will focus on air quality 70 
analyses over Africa with the new model Multi-Scale Infrastructure for Chemistry and Aerosols 71 
(MUSICA; Pfister et al., 2020).  72 

Atmospheric chemistry modeling is a useful tool to perform research on air quality 73 
conditions and evolution. Various models have been applied to study atmospheric chemistry and 74 
air quality in Africa such as the Weather Research and Forecasting (WRF) model coupled with 75 
Chemistry (WRF-Chem) (e.g., Kuik et al., 2015; Kumar et al., 2022), the GEOS-Chem chemical 76 
transport model (e.g., Marais et al., 2012, 2019; Lacey et al., 2018), the CHIMERE chemical 77 
transport model (e.g., Menut et al., 2018; Mazzeo et al., 2022), and the U.K. Earth System Model 78 
(UKESM1) (Brown et al., 2022), and GEOS5 (Bauer et al., 2019). 79 
 MUSICA is a new state-of-the-art community modeling infrastructure that enables the 80 
study of atmospheric composition and chemistry across all relevant scales (Pfister et al., 2020). 81 
The newly developed MUSICA Version 0 (MUSICAv0) is a global chemistry-climate model that 82 
allows global simulations with regional refinement down to a few kilometers spatial resolution 83 
(Schwantes et al., 2022). The coupling with other components of the Earth system (e.g., land, 84 
ocean, and sea ice) can also be performed at multiple scales. MUSICAv0 has various advantages 85 
and is particularly suitable for research applications over Africa. For example, MUSICAv0 can be 86 
used to study the interactions between atmospheric chemistry and other components of the Earth 87 
system and climate. MUSICA also includes the whole atmosphere (from the surface to 88 
thermosphere), and therefore can also be used to study the stratosphere and above and interactions 89 
between the stratosphere and troposphere. This is critical because some of the environmental issues 90 
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in Africa are coupled (e.g., the ozone–climate penalty; Brown et al., 2022). In addition, as a global 91 
model, MUSICAv0 does not require boundary conditions to study a region at high resolution. 92 
Global impacts and interactions can be simulated in a consistent and coherent way. This feature is 93 
important as inflow from other continents and oceans significantly impacts air quality in Africa. 94 
MUSICAv0 has been evaluated over North America (Schwantes et al., 2022, Tang et al., 2022) 95 
and is also being developed and tested in other regions around the globe 96 
(https://wiki.ucar.edu/display/MUSICA/Available+Grids). 97 
 This paper serves as the basis for the future application of MUSICAv0 in Africa. In this 98 
study, we develop a MUSICAv0 model grid with regional refinement over Africa. Because 99 
MUSICAv0 with Africa refinement is newly developed while WRF-Chem has been previously 100 
used for African atmospheric chemistry and air quality studies, here we include results from WRF-101 
Chem to assess the ability of MUSICAv0 in reproducing the regional features of atmospheric 102 
composition as simulated by WRF-Chem. We conduct the MUSICAv0 simulation for the year 103 
2017 to compare with a previous WRF-Chem simulation (Kumar et al., 2022). MUSICAv0 and 104 
the WRF-Chem simulation and the observational data used in this study are described in Section 105 
2. The MUSICAv0 model simulation results are evaluated against in situ observations and 106 
compared with satellite retrievals in Section 3. In Section 4, we provide an example application of 107 
MUSICAv0 over Africa – identifying key potential regions in Africa for future in situ observations 108 
and field campaign(s).  109 
 110 
2. Model and data 111 
2.1 MUSICAv0 112 

MUSICA is a newly developed framework for simulations of large-scale atmospheric 113 
phenomena in a global modeling framework, while still resolving chemistry at emission- and 114 
exposure-relevant scales (Pfister et al., 2020). MUSICA version 0 (MUSICAv0) is a configuration 115 
of the Community Earth System Model (CESM). It is also known as the Community Atmospheric 116 
Model with chemistry (CAM-chem) (Tilmes et al., 2019; Emmons et al., 2020) with regional 117 
refinement (RR) down to a few kilometers (Lauritzen et al., 2018; Schwantes et al., 2022). CAM-118 
chem, and thus MUSICAv0, includes several choices of chemical mechanisms of varying 119 
complexity. This study uses the default MOZART-TS1 chemical mechanism for gas phase 120 
chemistry (including comprehensive tropospheric and stratospheric chemistry; Emmons et al., 121 
2020) and the four-mode version of the Modal Aerosol Module (MAM4; Liu et al., 2016) for the 122 
aerosol scheme. The MUSICAv0 model source code and the model documentation can be 123 
downloaded through https://wiki.ucar.edu/display/MUSICA/MUSICA+Home (last access: 3 124 
April 2023). 125 

The MUSICAv0 users have the option to create their own model grid. MUSICAv0 is 126 
currently being developed and tested for applications over various regions globally 127 
(https://wiki.ucar.edu/display/MUSICA/Available+Grids), including North America, India, East 128 
Asia, South America, Australia, and Korea, among others. (e.g., Schwantes et al., 2022; Tang et 129 
al., 2022; Jo et al., 2023). In this study, we develop a model grid for applications in Africa 130 
(ne0np4.africa_v5.ne30x4). As shown in Figure 1a, the horizontal resolution is ~111 km ´ 111 km 131 
(i.e., 1° latitude ´ 1° equatorial longitude) globally, and ~28 km ´ 28 km (i.e., 0.25° latitude ´ 132 
0.25° equatorial longitude) within the region over Africa. Our simulation uses the default option 133 
for vertical layers (i.e., 32 layers from the surface to ~3.64 hPa). 134 

Moved (insertion) [1]
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Here we run MUSICAv0 with the model grid for Africa for the year 2017, saving 3-hourly 135 
output. We use the Copernicus Atmosphere Monitoring Service Global Anthropogenic emissions, 136 
(CAMS-GLOB-ANTH) version 5.1 (Soulie et al., 2023) for anthropogenic emissions and the 137 
Quick Fire Emissions Dataset (QFED) for fire emissions (Darmenov and da Silva, 2013). CAMS-138 
GLOB-ANTH version 5.1 emissions can be found at https://eccad3.sedoo.fr/data (last access: 3 139 
April 2023). QFED emissions can be found at 140 
https://portal.nccs.nasa.gov/datashare/iesa/aerosol/emissions/QFED/ (last access: 3 April 2023). 141 
Plume rise climatology is applied to fire emissions following Tang et al. (2022). In addition, we 142 
also include open waste burning (https://www.acom.ucar.edu/Data/fire/; Wiedinmyer et al., 2014) 143 
emissions in the simulation. The model has the option of a free-running atmosphere or nudging to 144 
external meteorological reanalysis. In this simulation, only wind and temperature are nudged to 145 
the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2; 146 
Gelaro et al., 2017) with a relaxation time of 12 hours. MERRA-2 data can be found at 147 
https://disc.gsfc.nasa.gov/datasets?project=MERRA-2 (last access: 3 April 2023). 148 

We also added carbon monoxide (CO) tracers in the simulation to understand the source 149 
and transport of air pollution. CO tracers in CAM-chem/MUSICAv0 are described in detail by 150 
Tang et al. (2019). In this study we include tracers for 6 regions (North Africa, West Africa, East 151 
Africa, Central Africa, Southern Africa, and the rest of the world) and 3 emission sources 152 
separately (anthropogenic emissions, fire emissions, and open waste burning emissions). In total, 153 
there are 18 tagged CO tracers. 154 
 155 
2.2 WRF-Chem 156 
 The Weather Research and Forecasting (WRF) model coupled with Chemistry (WRF-157 
Chem) is a regional chemical transport model. It has been widely used for air quality studies in 158 
Africa. In this study we use model results from a WRF-Chem simulation described by Kumar et 159 
al. (2022). The WRF-Chem simulation has a grid spacing of 20 km, slightly higher than the 160 
MUSICAv0 simulation, and the model domain is highlighted in Figure 1a. The simulation has 36 161 
vertical levels from the surface to ~50 hPa. The WRF-Chem simulation uses the Model for Ozone 162 
and Related Tracers-4 (MOZART-4) chemical mechanism (Emmons et al., 2010) for tropospheric 163 
gas phase chemistry, and the Goddard Global Ozone Chemistry Aerosol Radiation and Transport 164 
(GOCART) model (Chin et al., 2002) for aerosol processes. The European Centre for Medium 165 
Range Weather Forecasts (ECMWF) global reanalysis (ERA-Interim) fields are used for initial 166 
and boundary meteorology conditions, while another CAM-chem simulation is used for initial and 167 
boundary chemical conditions (Kumar et al., 2022). The WRF-Chem simulation used the global 168 
Emission Database for Atmospheric Research developed for Hemispheric Transport of Air 169 
Pollution (EDGAR-HTAP v2) for anthropogenic emissions and the Fire Inventory from NCAR 170 
version 1.5 (FINNv1.5) (Wiedinmyer et al., 2011) for fire emissions. The WRF-Chem output is 171 
saved hourly, however we only use 3-hourly output to match the MUSICAv0 simulation.  172 
 173 
2.3 ATom 174 
 The Atmospheric Tomography mission (ATom; Thompson et al. 2022) was designed to 175 
study the impact of human-produced air pollution on greenhouse gases, chemically reactive gases, 176 
and aerosols in remote ocean air masses. ATom data are available at 177 
https://espoarchive.nasa.gov/archive/browse/atom (last access: 3 April 2023). During the project, 178 
the DC-8 aircraft sampled the remote troposphere with continuous vertical profiles. There were 179 
four seasonal deployments from the summer of 2016 through the spring of 2018. Here we compare 180 
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the MUSICAv0 simulation with observations from ATom-2 (January–February 2017) and ATom-181 
3 (September–October 2017). Since the ATom flight tracks were mostly outside the WRF-Chem 182 
domain (Figure 1a), we do not compare the WRF-Chem simulation with ATom data. However, 183 
we compare chemical species from the MUSICAv0 simulation to the 2-minute merged ATom 184 
measurements globally to obtain a benchmark and broader understanding of MUSICAv0 185 
performance both within and outside the refined region. The model output is saved along the ATom 186 
aircraft flight tracks and with respect to the observational times at run time. Nitric oxide (NO) and 187 
ozone (O3) measurements from the NOAA Nitrogen Oxides and Ozone (NOyO3) instrument 188 
(Bourgeois et al., 2020, 2021) and the merged CO data (from Quantum Cascade Laser System and 189 
NOAA Picarro CO measurements) are used. 190 
 191 
2.4 IAGOS 192 

The In-service Aircraft for a Global Observing System (IAGOS) is a European research 193 
infrastructure, and was developed for operations on commercial aircraft to monitor atmospheric 194 
composition (Petzold et al., 2015). IAGOS data are available at https://www.iagos.org/iagos-data/ 195 
(last access: 3 April 2023). The IAGOS instrument package 1 measures CO, O3, air temperature, 196 
and water vapor (https://www.iagos.org/iagos-core-instruments/package1/). CO is measured by 197 
infrared absorption using the gas filter correlation technique (Precision: ±5%, Accuracy: ±5 ppb) 198 
while O3 is measured by UV absorption at 253.7 nm (Precision: ±2%, Accuracy: ±2 ppb). We use 199 
airborne measurements of CO, O3, air temperature, and water vapor from IAGOS for model 200 
evaluation. The locations of the IAGOS flight tracks over Africa are shown in Figure 1b. The 201 
model results and IAGOS data comparisons are conducted separately for five African sub-regions 202 
(defined in Figure 1b). 203 
 204 
2.5 Ozonesondes 205 

The ozonesonde is a balloon-borne instrument that measures atmospheric O3 profiles 206 
through the electrochemical concentration cell using iodine/iodide electrode reactions (Thompson 207 
et al., 2017), with records of temperature, pressure, and relative humidity from standard 208 
radiosondes. NASA/GSFC SHADOZ data are available at https://tropo.gsfc.nasa.gov/shadoz/ (last 209 
access: 3 April 2023). We use ozonesonde data from Southern Hemisphere ADditional 210 
OZonesondes (NASA/GSFC SHADOZ; Thompson et al., 2017; Witte et al., 2017, 2018). 211 
Specifically, ozonesonde data from four sites are used (Figure 1b): Ascension (Ascension Island, 212 
U.K.), Nairobi (Kenya), Irene (South Africa), and La Reunion (La Réunion Island, France). The 213 
average O3 measurement uncertainty ranged from 5–9% for the ozonsonde data used in this study.  214 
 215 
2.6 WDCGG 216 
 Monthly surface CO measurements from the World Data Center for Greenhouse Gases 217 
(WDCGG; operated by the Japan Meteorological Agency in collaboration with the World 218 
Meteorological Organization) are used for model evaluation. WDCGG data are available at 219 
https://gaw.kishou.go.jp/ (last access: 3 April 2023). Data from six sites are used (Figure 1b), 220 
namely (Ascension Island, U.K.), Assekrem (Algeria; remote site located in Saharan desert), 221 
Gobabeb (Namibia; located at the base of a linear sand dune, next to an interdune plain), Cape 222 
Point (South Africa; site exposed to the sea on top of a cliff 230 meters above sea level), Izana 223 
(Tenerife, Spain; located on the Island that is ~300 km west of the African coast), and Mare 224 
(Seychelles; near an international airport). 225 
 226 
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2.7 Surface PM2.5 227 
At the U.S. embassies, regulatory-grade monitoring data are collected with Beta 228 

Attenuation Monitors (BAMs), using a federal equivalent monitoring method, with an accuracy 229 
within 10% of federal reference methods (Watson et al., 1998; U.S. EPA, 2016). These instruments 230 
are operated by the U.S. State Department and the U.S. EPA, and data are available through 231 
AirNow (https://www.airnow.gov/international/us-embassies-and-consulates/). We use the 232 
measurements at the U.S. embassy locations in Addis Ababa Central (Ethiopia, 9.06° N, 38.76° E) 233 
and Kampala (Uganda, 0.30° N, 32.59° E) for the year 2017 as references (Malings et al., 2020) 234 
to match our simulations. The raw data are made available hourly and for this study we use daily 235 
mean PM2.5 for comparison with model simulations. 236 
 237 
2.8 MOPITT 238 

The Measurements of Pollution in the Troposphere (MOPITT) instrument on board the 239 
NASA Terra satellite provides both thermal-infrared (TIR) and near-infrared (NIR) radiance 240 
measurements since March 2000. MOPITT CO data can be accessed through 241 
https://search.earthdata.nasa.gov/search (last access: 3 April 2023). Retrievals of CO column 242 
density and vertical profiles are provided in a multispectral TIR–NIR joint product which has 243 
sensitivity to near-surface as well as free tropospheric CO (Deeter et al., 2011; Worden et al., 244 
2010). Here we use the MOPITT Version 9 Level 2 CO column product (Deeter et al., 2022) over 245 
Africa to evaluate the MUSICAv0 and WRF-Chem simulations. MOPITT Version 9 has 246 
significant updates to the cloud detection algorithm and NIR calibration scheme. The MOPITT 247 
satellite pixel size is ~22 km ´ 22 km, and the overpass time is ~10:30 am local time in 2017. 248 
When comparing model outputs to MOPITT the recommended data quality filter is applied and 249 
model outputs are interpolated to the MOPITT retrievals in space and time. To perform 250 
quantitative comparisons, the MOPITT averaging kernel and a priori are used to transform the 251 
model CO profiles to derive model column amounts.  252 

  253 
2.9 OMI NO2 (QA4ECV) 254 

Tropospheric column NO2 from the Ozone Monitoring Instrument (OMI) on board Aura 255 
is compared to the model in this study. Specifically, the NO2 product from the quality assurance 256 
for the essential climate variables (QA4ECV) project is used (Boersma et al., 2017a; Compernolle 257 
et al., 2020). OMI NO2 data are available at https://www.temis.nl/qa4ecv/no2.html (last access: 3 258 
April 2023). The satellite pixel size is ~13 km ´ 25 km, and the overpass time is ~1:40 pm local 259 
time in 2017. A data quality filter was applied following the Product Specification Document 260 
(Boersma et al., 2017b; processing_error_flag = 0, solar_zenith_angle < 80, snow_ice_flag < 10 261 
or snow_ice_flag = 255, amf_trop/amf_geo > 0.2, and cloud_radiance_fraction_no20 <= 0.5). 262 
Model profiles were transformed using the provided tropospheric air mass factor (AMF) and 263 
averaging kernels. 264 
 265 
2.10 OMI HCHO (QA4ECV) 266 

We also use tropospheric column HCHO from OMI in this study. Similar to OMI NO2, we 267 
also use OMI HCHO product from QA4ECV (De Smedt et al., 2017a). OMI HCHO data are 268 
available at https://www.temis.nl/qa4ecv/hcho.html (last access: 3 April 2023). A data quality 269 
filter was applied following the Product User Guide (De Smedt et al., 2017b; processing_error_flag 270 
= 0 and processing_quality_flag = 0). Model profiles were transformed using provided averaging 271 
kernels. We note that HCHO retrievals are subject to relatively large uncertainties compared to 272 

Deleted: MERRA-2 data can be found at 273 
https://disc.gsfc.nasa.gov/datasets?project=MERRA-2 (last 274 
access: 3 April 2023). ATom data are available at 275 
https://espoarchive.nasa.gov/archive/browse/atom (last 276 
access: 3 April 2023). WDCGG data are avail277 
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other satellite products used in this study. Therefore, the comparisons between model results and 278 
the OMI HCHO product only indicate the model-satellite discrepancies rather than determining 279 
model deficiencies. In addition, the WRF-Chem simulation from Kumar et al. (2022) does not 280 
include HCHO in the output and hence will not be compared.  281 
 282 
2.11 MODIS AOD 283 
 The aerosol optical depth (AOD) product (550 nm) from the Moderate Resolution Imaging 284 
Spectroradiometer (MODIS) on board Terra NASA Terra satellite is used. MODIS AOD data can 285 
be accessed through https://search.earthdata.nasa.gov/search (last access: 3 April 2023). 286 
Specifically, we used the MODIS Level 2 Collection 6.1 product (MOD04_L2; Levy et al., 2017). 287 
Deep Blue Aerosol retrievals are used (Hsu et al., 2013; Levy et al., 2013) to include retrievals 288 
over the desert. The MODIS satellite pixel size is ~1 km ´ 1 km, and the overpass time is ~10:30 289 
am local time.  290 
 291 
3. Model comparisons with satellite data and evaluation with in situ observations 292 
 Africa includes a wide range of environments and emissions source. Therefore, in this 293 
section we separate the continent in five sub-regions for analysis following Kumar et al. (2022). 294 
CO is a good tracer of anthropogenic and biomass burning emissions and modeled CO tracers are 295 
used in this section to understand sources. Figure 2 shows the seasonal averages of CO column 296 
distributions over Africa from MOPITT along with the MUSICAv0 and WRF-Chem biases. The 297 
highest levels of CO in these maps are primarily associated with biomass burning, which moves 298 
around the continent with season. Both MUSICAv0 and WRF-Chem simulations underestimate 299 
the CO column compared to MOPITT (Figures 3a and 3b). Overall, MUSICAv0 agrees better with 300 
the OMI tropospheric NO2 column (Figure 3c) and MODIS AOD (Figure 3e) than WRF-Chem 301 
(Figures 3d and 3f). The MUSICAv0 simulation overall has lower tropospheric HCHO column 302 
than OMI in all regions and seasons (Figure 3g). Spatial distributions of model biases against the 303 
OMI tropospheric NO2 column, MODIS AOD, and OMI tropospheric HCHO column are included 304 
in Figures S1–S3. In this section we compare the model results with satellite data and in situ 305 
observations over sub-regions in Africa and oceans near Africa (Figure 1b). 306 
 307 
3.1 North Africa 308 
 Over North Africa, both MUSICAv0 and WRF-Chem simulations underestimate the CO 309 
column during 2017 (Figures 2 and 3). As shown by the tagged model CO tracers (Figure 4), CO 310 
over North Africa is mainly driven by transport of CO from outside the continent and 311 
anthropogenic emissions. The model underestimation compared to the MOPITT CO column is 312 
consistent with the results of the comparisons with surface CO observations from WDCGG at the 313 
two sites located in North Africa (Assekrem and Izana; Figures 5a and 5c). At the two surface 314 
sites, the composition of source types and source regions are close to the composition of source 315 
types and source regions of the column average over North Africa (Figure 4 and Figures S4 and 316 
S5), hence the two sites are representative of the background conditions of North Africa. 317 
Compared to MODIS AOD, WRF-Chem has a mean bias of 0.36 whereas MUSICAv0’s mean 318 
bias is 0.17 for 2017. The model AOD biases over North Africa are likely driven by dust. No 319 
comparison is made with IAGOS O3 in North Africa due to data availability. 320 
 321 
3.2 West Africa 322 
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Over West Africa, fire and anthropogenic emissions are both important for CO pollutant 323 
and fire impacts peak in DJF (December, January, and February). Compared to the MOPITT CO 324 
column, the mean bias of MUSICAv0 and WRF-Chem for West Africa peak around February – 325 
the dry season of the Northern Hemisphere (Figure 3). In February, the MUSICAv0 mean bias is 326 
-1.1´1018 molecules/cm2 and WRF-Chem mean bias is -7.5´1017 molecules/cm2, which are likely 327 
driven by fire emission sources (Figure 4). Model comparisons with IAGOS CO also show a 328 
similar bias – both model simulations underestimate CO at all vertical levels. The underestimation 329 
peaks during DJF and below 600 hPa (Figure 6). As for MODIS AOD, WRF-Chem has the mean 330 
bias 0.69 whereas MUSICAv0’s mean bias is 0.15, respectively. Similar to North Africa, the model 331 
biases in AOD over West Africa are also likely driven by dust and biomass burning. We also 332 
compare modeled O3 with IAGOS O3 observations (Figure 7).  333 

Over West Africa, both models agree well with the IAGOS O3 observations below 800 hPa 334 
(mean bias ranges from -1 to -4 ppb). Above 800 hPa over West Africa, WRF-Chem 335 
underestimates O3 while MUSICAv0 overestimates O3. Overall, MUSICAv0 consistently 336 
overestimates O3 above 800 hPa in all seasons while the direction of WRF-Chem bias changes 337 
with seasons (Figure 7). When MUSICAv0 overestimates O3, the bias is in general larger at the 338 
higher altitude of the troposphere. The concentration of the model stratospheric ozone tracer, O3S, 339 
is also larger at the higher altitude in DJF (Figure 9). The correlation of modeled O3 and O3S is 340 
0.54, and the correlations of O3S and model O3 bias (modeled O3 minus IAGOS O3) is 0.35 over 341 
West Africa, implying the overestimation of O3 in the upper troposphere could be partially driven 342 
by too strong stratosphere-to-troposphere flux of ozone. Lightning NO emissions can also impact 343 
O3 in the upper troposphere. The MUSICAv0 simulation has somewhat (~3 times) higher lightning 344 
NO emissions (Figure S6) compared to a standard CAM-chem simulation (not shown), therefore 345 
the high ozone in the upper troposphere may be due to an over-estimate of lightning NO. Impacts 346 
of lightning NO emissions on upper troposphere O3 in MUSICAv0 will be investigated and 347 
evaluated further in the future. A brief comparison with IAGOS measurements of air temperature 348 
and water vapor profiles over West Africa as well as other sub-regions shows that MUSICAv0 349 
overall agrees well with these meteorological variables (Figure S7). 350 
 351 
3.3 Central Africa 352 
 Compared to MOPITT CO column, the mean bias of MUSICAv0 and WRF-Chem for 353 
Central Africa varies with seasons (Figure 3) but peaks during the dry season in September 354 
(MUSICAv0 mean bias of -1.0´1018 molecules/cm2; WRF-Chem mean bias of -1.2´1018 355 
molecules/cm2). The tagged model CO tracers show that in September, local fire emissions are the 356 
dominant driver of CO in Central Africa (Figure 4). Compared to the IAGOS CO profiles (Figure 357 
6), both models have the largest bias over Central Africa among the sub-regions in Africa – mean 358 
bias of MUSICAv0 and WRF-Chem are -46 ppb and -36 ppb, respectively. The high bias over 359 
Central Africa mainly occurs during the fire season. In central Africa, both models also 360 
underestimate NO2 (mean biases of MUSICAv0 and WRF-Chem are -1.5´1014 and -5.5´1014 361 
molecules/cm2, respectively). The underestimations in both CO and NO2 by the two model 362 
simulations are likely driven by the underestimation in fire emissions. Indeed, the emission 363 
estimates from the newest version of FINN (FINNv2.5; Wiedinmyer et al., 2023) are higher 364 
compared to both QFED (used in the MUSICAv0 simulation) and FINNv1.5 (used in the WRF-365 
Chem simulation) in this region. 366 

Model mean bias of HCHO (-1.3´1016 molecules/cm2 for the whole 2017) over Central 367 
Africa is the largest among the five regions (Figure 3). The spatial distribution of HCHO bias 368 



 9 

(Figure S4) largely co-locates with the vegetation (Figure 8). Over the barren or sparsely vegetated 369 
area in North Africa and along the west coast of Southern Africa, HCHO biases are relatively small 370 
while over the vegetated area HCHO bias are relatively large. Over North Africa, the mean bias is 371 
-0.66´1016 molecules/cm2 for the whole 2017 whereas over the other four regions, the mean bias 372 
ranges from -0.93´1016 molecules/cm2 to -1.31´1016 molecules/cm2 for the whole 2017. This 373 
indicates that the negative bias in MUSICAv0 HCHO could be due to underestimated biogenic 374 
emissions in the model. In addition, the underestimation of HCHO in Central Africa (Figure S4) 375 
co-locates with the underestimation of CO during fire season (Figure S1), implying that fire 376 
emissions may also contribute to the HCHO underestimation in MUSICAv0. It is important to 377 
note that the uncertainty of OMI tropospheric HCHO column is relatively large compared to other 378 
satellite products. Here the averaged retrieval uncertainty (random and systematic) is ~120%. 379 

When compared to the IAGOS O3 profiles over Central Africa (Figure 7), both models 380 
agree well with the IAGOS O3 observations below 800 hPa (mean bias ranges from -1 to -4 ppb). 381 
Above 800 hPa, WRF-Chem underestimates O3 while MUSICAv0 overestimates O3. The 382 
correlation of modeled O3 and O3S is 0.67, and the correlations of O3S and model O3 bias is 0.50 383 
over Central Africa, indicating O3 overestimation in Central Africa are more likely to be impacted 384 
by stratosphere-to-troposphere flux of ozone than that in West Africa. 385 
 386 
3.4 East Africa 387 
 CO over East Africa is dominated by local emissions and inflow from outside the continent. 388 
Fire and anthropogenic emissions contribute approximately the same to CO over East Africa 389 
(Figure 4). Both MUSICAv0 and WRF-Chem simulations underestimate the CO column 390 
compared to MOPITT (Figure 3), and the WRF-Chem simulation also underestimate the 391 
tropospheric NO2 column compared to OMI. The biases in CO column and tropospheric NO2 392 
column peak in September, likely driven by fire emissions (Figure 4). 393 
 Compared to IAGOS O3 profiles over East Africa, biases of MUSICAv0 below 600 hPa 394 
has a seasonal variation while over 600 hPa are consistently positive (Figure 7). The correlations 395 
of O3S and model O3 bias against IAGOS data is 0.50 in the region. The correlations between O3S 396 
and model O3 bias are highest over Central and East Africa compared to other regions, indicating 397 
stratosphere influence are strongest in these two regions among the sub-regions. Central and East 398 
Africa are relatively more mountainous therefore topography driven stratospheric intrusions might 399 
be expected. The Nairobi ozonesonde site is located in East Africa (Figure 1b). When comparing 400 
to the O3 profiles from ozonesondes (Figure 9), MUSICAv0 overall overestimates O3 in the 401 
troposphere at the four sites while WRF-Chem tends to underestimate O3 in the free troposphere 402 
(below 200 hPa). The Nairobi site is an exception where both MUSICAv0 and WRF-Chem 403 
simulations significantly overestimate O3 in all seasons (mean bias of MUSICAv0 and WRF-404 
Chem below 200 hPa are 27 ppb and 20 ppb, respectively). Among the four ozonesonde sites, 405 
correlations of model bias of O3 and O3S are highest at the Nairobi site (0.74) where the model 406 
significantly overestimates O3. The results of model-ozonesonde comparisons are consistent with 407 
the results of model-IAGOS comparisons and indicate a potential issue in modeled stratosphere-408 
to-troposphere flux of ozone. 409 

There are two surface PM2.5 sites in East Africa (Addis Ababa and Kampala; Figure 1b). 410 
Despite using different aerosol methods and emission inventories, both MUSICAv0 and WRF-411 
Chem underestimate surface PM2.5 when compared to observations at the two sites (Figure 10). 412 
The errors in PM2.5 concentrations at the U.S. Embassy in Kampala are especially prominent. 413 
However, both models approximate the variation of the PM2.5 in both locations. Many factors 414 
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contribute to the inconsistency in the magnitude of modeled PM2.5 concentrations. For instance, 415 
emission inventories in this region require additional improvement. In Uganda, increasing motor 416 
vehicle ownership and burning biomass for domestic energy use contribute to ambient PM2.5 levels 417 
(Clarke et al., 2022; Petkova et al., 2013). Detailed PM2.5 composition measurements would also 418 
help to pinpoint the cause of inaccuracies. In addition, model resolutions could also be a potential 419 
reason for the underestimation. 420 
 421 
3.5 Southern Africa 422 

Among the five regions, MUSICAv0 has the lowest mean bias (-3.2´1017 molecules/cm2 423 
annually) over Southern Africa (Figure 3). WRF-Chem also has low mean bias and RMSE over 424 
Southern Africa except for the months of September, October, and November (SON) period where 425 
WRF-Chem has larger CO mean bias (-6.2´1017 molecules/cm2) than MUSICAv0. Tagged model 426 
CO tracers indicate that CO over Southern Africa is significantly impacted by CO emissions from 427 
Central Africa, East Africa, Southern Africa, and inflow from outside the continent. As for the 428 
source types, anthropogenic and fire emissions are both important and fire impacts peak in 429 
September. There are two WDCGG sites located in Southern Africa (Figure 1b; Gobabeb and Cape 430 
Point). When compared to surface CO observations from WDCGG, both models consistently 431 
underestimate CO by up to 40% at most sites. The Cape Point site in Southern Africa is an 432 
exception (Figure 5) where MUSICAv0 overestimates CO by 40 ppb (annual mean; and up to 78 433 
ppb in May 2017). CO tracers in the model (Figures S4 and S5) show that CO at Cape Point is 434 
mainly driven by anthropogenic CO emissions from Southern Africa. Therefore, the 435 
overestimation of CO by MUSICAv0 should be due to the overestimation of anthropogenic 436 
emissions from Southern Africa used in the model. As for NO2, WRF-Chem underestimates 437 
tropospheric NO2 column in most regions except for Southern Africa (Figure 3). Over Southern 438 
Africa, WRF-Chem overestimates NO2 especially during June, July, and August (JJA). 439 
MUSICAv0 also tends to overestimates NO2 at the same location in JJA however the bias is not 440 
as large as for WRF-Chem.  441 

MUSICAv0 simulation overall has a lower mean bias (0.14 annually) than the WRF-Chem 442 
simulation (mean bias of 0.31 annually) compared to MODIS AOD with Southern Africa being 443 
the only exception (Figure 3). Over Southern Africa, MUSICAv0 overestimates AOD by ~0.21 444 
annually (Figure 3) and the bias peaks in January (mean bias=0.45). This overestimation in AOD 445 
over Southern Africa is not seen in WRF-Chem. It is likely that the MUSICAv0 overestimation in 446 
AOD over Southern Africa is also due to biases in modeled dust as the AOD bias is co-located 447 
with the only barren or sparsely vegetated area in Southern Africa (Figure 8 and Figure S3). 448 

Over Southern Africa, MUSICAv0 tends to overestimate O3 compared to IAGOS at all 449 
levels at all seasons in 2017 (Figure 7). The concentration of O3S over Southern Africa is higher 450 
than those over other regions. However, the correlation of O3S and model O3 bias is lower than 451 
other regions (0.13) indicating stratosphere-to-troposphere flux of ozone may not be the main 452 
driver of O3 bias over Southern Africa even though stratosphere-to-troposphere flux of ozone are 453 
relatively strong in the region. The Irene ozonesonde site is located in Southern Africa (Figure 1b). 454 
Compared to the ozonesonde O3 profiles at the Irene site, however, the MUSICAv0 performance 455 
has a seasonal variation (Figure 9e-9h). Compared to other ozonesonde sites, the correlation of 456 
O3S and model O3 bias over Southern Africa is lower (0.14) and MUSICAv0 agrees relatively well 457 
with observations, which is consistent with the comparison results with IAGOS data (Figure 7). 458 
 459 
3.6 Oceans near Africa 460 
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We compare the CO, NO, and O3 from the MUSICAv0 simulation with measurements 461 
from ATom-2 and ATom-3 in 2017 (Figure 1a) to provide a global benchmark. Measurements 462 
made over the Atlantic Ocean and Pacific Ocean, and in January-February (Jan-Feb) and 463 
September-October (Sep-Oct) are compared separately (Figures 11 and 12). The comparison was 464 
made with data averaged into 10° latitude and 200 hPa bins. Overall, the model consistently 465 
underestimates CO globally in both seasons. The underestimation of CO is a common issue in 466 
atmospheric chemistry models and could be due to various reasons, including emissions, 467 
deposition, and chemistry (e.g., Fisher et al., 2017; Shindell et al., 2006; Stein et al., 2014; Tilmes 468 
et al., 2015; Tang et al., 2018; Gaubert et al., 2020). Specifically for our MUSICAv0 simulation 469 
in this study, the model bias in CO is relatively large (up to 52 ppb) over the Northern Hemisphere 470 
(especially at high latitude and near the surface) and small over the Southern Hemisphere (Figures 471 
11 and 12). Over the Atlantic Ocean, the bias in CO is larger in September-October than Jan-Feb 472 
in both the Northern Hemisphere (-30 ppb in Jan-Feb versus -34 ppb in Sep-Oct) and Southern 473 
Hemisphere (-11 ppb in Jan-Feb versus -14 ppb in Sep-Oct). Over the Pacific Ocean, however, the 474 
CO bias is similar for both time periods in the Northern Hemisphere (-30 ppb) while in the 475 
Southern Hemisphere, the CO bias changes significantly from -8 ppb in Jan-Feb to -16 ppb in Sep-476 
Oct. The changes in CO bias over the Southern Hemisphere are likely due to seasonal change in 477 
fire emissions. Overall, the mean biases (Figures 11 and 12) suggest that the simulation agrees 478 
better with ATom observations in the Southern Hemisphere than in the Northern Hemisphere, and 479 
in Jan-Feb than in Sep-Oct (Figures 11 and 12), consistent with Gaubert et al. (2016). 480 

In both seasons and both hemispheres, the model in general overestimates O3 in the 481 
stratosphere/UTLS (upper troposphere and lower stratosphere) by up to 38 ppb (above 200 hPa). 482 
In the troposphere (below 200 hPa), the model overall agrees well with the ATom data over the 483 
Pacific Ocean in the Southern Hemisphere (in most cases the bias is less than ±5 ppb). However, 484 
over the Atlantic Ocean in the Southern Hemisphere, MUSICAv0 tends to overestimate O3, 485 
especially in Jan-Feb. In the troposphere of the Northern Hemisphere, MUSICAv0 consistently 486 
overestimates O3 over both oceans and both seasons. The positive bias in O3 decreases from the 487 
upper troposphere towards the surface, indicating that the overestimation of O3 in the troposphere 488 
may be due to stratosphere-to-troposphere flux of ozone. This was also noted for other global 489 
models (Bourgeois et al. 2021). As for NO, the model tends to overestimate NO above 200 hPa 490 
(approximately the stratosphere and Upper Troposphere-Lower Stratosphere; UTLS) by up to 50 491 
ppt. Overall, the NO biases can be either positive or negative depending on location and season. 492 
The distributions of NO bias (Figures 11 and 12) do not show an overall spatial pattern, unlike 493 
those for CO (which changes monotonically with latitude) or O3 (which changes monotonically 494 
with altitude).  495 

 496 

4. Model application: identifying key regions in Africa for future in situ observations and 497 
field campaign(s) 498 
 As a demonstration of the application of MUSICAv0, here we use the results of model-499 
satellite comparisons to identify potential regions where the atmospheric chemistry models need 500 
to be improved substantially. More field campaigns and more in situ observations would not only 501 
provide observational benchmark dataset to understand and improve the modeling capability in 502 
the region, but would be also useful for the validation and calibration of satellite products. Here 503 
we use Taylor score to quantify model-satellite discrepancies. Taylor score (Taylor, 2001) is 504 
defined by 505 
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where σ$*  is the ratio of σ*  (standard deviation of the model) and σ+  (standard deviation of 507 
observations), R is correlation between model and observations, and R,  is the maximum 508 
potentially realizable correlation (=1 in this study). Taylor score ranges from 0 to 1 and a higher 509 
Taylor score indicates better satellite-model agreement. To identify potential locations, we 510 
separate the Africa continent into 5° ´ 5° (latitude ´ longitude) pixels as shown in Figure 13. And 511 
for each pixel, we calculate Taylor scores of MUSICAv0 compared to the three satellite Level 2 512 
products (e.g., MOPITT CO column retrievals, OMI tropospheric NO2 column retrievals, and 513 
MODIS AOD) separately. And then three Taylor scores are summed up to obtain the total Taylor 514 
score for MUSICAv0 (ranges from 0 to 3) as shown in Figures 13a-13e. A similar calculation is 515 
conducted for WRF-Chem (Figures 13f-13j). Note that we did not include Taylor scores for HCHO 516 
in the total Taylor score due to that (1) WRF-Chem simulations did not save HCHO output, and 517 
(2) the HCHO retrievals have relatively high uncertainties (Taylor scores of MUSICAv0 compared 518 
to OMI tropospheric HCHO column retrievals are provided separately in Figure S8). 519 
 Overall, both MUSICAv0 and WRF-Chem have low total Taylor scores in the 30°E – 45°E, 520 
5°S – 5°N region in East Africa (a region of 15° longitude ´ 10° latitude) during MAM (March, 521 
April, and May), JJA (June, July, and August), and SON (September, October, and November), as 522 
highlighted in Figure 13, indicating relatively large model-satellite discrepancies in the region. 523 
Moreover, this is also the region where the Nairobi ozonesonde site and the Kampala surface PM2.5 524 
site are located (Figure 1b). As discussed above, both MUSICAv0 and WRF-Chem significantly 525 
overestimate O3 (Figure 9) and largely underestimate PM2.5 (Figure 10) in the region. More in situ 526 
observations or future field campaigns in the region can substantially help in the understanding 527 
model-satellite and model-in situ observation discrepancies and improving model performance. 528 

The 30°E – 45°E, 5°S – 5°N region in East Africa is potentially a favorable location for 529 
future field campaign(s) not only because of the large model-satellite and model-in situ observation 530 
discrepancies, but also due to that the population density is high and landcover are diverse in the 531 
region (Figure 8). The relatively high population density in the region indicates that improved air 532 
quality modeling in the region can benefit a large population. And a diverse landcover indicates 533 
more processes/environments can be sampled. CO tracers in the model (Figure 14) show that CO 534 
over the region is mainly driven by both anthropogenic and fire emissions. Anthropogenic 535 
emissions play a more important role in this region compared to East Africa in general (Figures 4 536 
and 14). In terms of source regions, emissions from East Africa and inflow from outside the 537 
continent are the dominant source, with some contributions from Central Africa. Note that the 538 
source analyses using model tracers may be subject to uncertainties in the emission inventories. 539 
As discussed above (e.g., Section 3.4), there might be missing sources in the region. Therefore, a 540 
field campaign in the region can help address this issue. 541 

We would like to point out that in this analysis, the key area is selected using 3 satellite 542 
products/chemical species and two models. The Taylor score is a comprehensive measure of model 543 
performance that accounts for variance and correlation, however, other models and types of 544 
comparisons may provide different answers. 545 

 546 
5. Conclusions 547 

Africa is one of the most rapidly changing regions in the world and air pollution is a 548 
growing issue at multiple scales over the continent. MUSICAv0 is a new community modeling 549 
infrastructure that enables the study of atmospheric composition and chemistry across all relevant 550 
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scales. We developed a MUSICAv0 grid with Africa refinement (~28 km ´ 28 km over Africa and 551 
~110 km ´ 110 km for the rest of the world) and conducted the simulation for the year 2017. We 552 
evaluated the model with in situ observations including ATom-2 and ATom-3 airborne 553 
measurements of CO, NO, and O3, IAGOS airborne measurements of CO and O3, O3 profiles from 554 
ozonesondes, surface CO observations from WDGCC, and surface PM2.5 observations from two 555 
U.S. Embassy locations. We then compare MUSICAv0 with satellite products over Africa, namely 556 
MOPITT CO column, MODIS AOD, OMI tropospheric NO2 column, and OMI tropospheric 557 
HCHO column. Results from a WRF-Chem simulation were also included in the evaluations and 558 
comparisons as a reference. Lastly, as an application of the model, we identified potential African 559 
regions for in situ observations and field campaign(s) based on model-satellite discrepancies 560 
(quantified by Taylor score), with regard to model-in situ observation discrepancies, source 561 
analyses, population, and land cover. The main conclusions are as follows. 562 

(1) When comparing to ATom-2 and ATom-3, MUSICAv0 consistently underestimates 563 
CO globally. Overall, the negative model bias increases with latitude from the Southern 564 
Hemisphere to the Northern Hemisphere. MUSICAv0 also tends to overestimate O3 in the 565 
stratosphere/UTLS, and the positive model bias overall decreases with altitude. 566 
(2) The MUSICAv0 biases in O3 when compared to ATom, IAGOS, and ozonesondes are 567 
likely driven by stratosphere-to-troposphere fluxes of O3 and lightning NO emissions. 568 
(3) Overall, the performance of MUSICAv0 and WRF-Chem are similar when compared 569 
to the surface CO observations from six WDCGG sites in Africa.  570 
(4) Both models have negative bias compared to the MOPITT CO column, especially over 571 
Central Africa in September, which is likely driven by fires. 572 
(5) Overall, MUSICAv0 agrees better with OMI tropospheric NO2 column than WRF-573 
Chem. 574 
(6) MUSICAv0 overall has a lower tropospheric HCHO column than OMI retrievals in all 575 
regions and seasons. Biogenic and fire emissions are likely to be the main driver of this 576 
disagreement. 577 
(7) Over Africa, the MUSICAv0 simulation has smaller mean bias and RMSE compared 578 
to MODIS AOD than the WRF-Chem simulation. 579 
(8) The 30°E – 45°E, 5°S – 5°N region in East Africa is potentially a favorable location for 580 
future field campaign(s) not only because of the large model-satellite and model-in situ 581 
observation discrepancies, but also due to the population density, landcover, and pollution 582 
source in this region. 583 

 Overall, the performance of MUSICAv0 is comparable to WRF-Chem. The 584 
underestimation of CO is a common issue in atmospheric chemistry models such as MUSICAv0 585 
and WRF-Chem. The overestimation of O3 in MUSICAv0 is likely driven by too strong of 586 
stratosphere-to-troposphere fluxes of O3 and perhaps an over-estimate of lightning NO emissions, 587 
however, future studies are needed to confirm and solve this issue. The significant underestimation 588 
in surface PM2.5 at two sites in East Africa and the overall overestimation in AOD in Africa 589 
compared to MODIS imply missing local sources and an overestimation of dust emissions, and 590 
require further study. Field campaigns and more in situ observations in 30°E–45°E, 5°S–5°N 591 
region in East Africa are necessary for the improvement of atmospheric chemistry model(s) as 592 
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shown by the MUSICAv0 and WRF-Chem simulations. In the future, we plan to conduct a model 593 
simulation for multiple years and develop additional model grids with potentially higher resolution 594 
in Africa sub-regions based on the current MUSICAv0 Africa grid. 595 
 596 
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 983 
Figure 1. Model grid, in situ observations used in this study, and sub-regions in Africa. (a) 984 
MUSICAv0 model grid developed for Africa in this study (black), domain boundary of the WRF-985 
Chem simulation compared in this study (shown by green box), observations from the 986 
Atmospheric Tomography Mission (ATom) field campaign 2 (ATom-2; 2017 Jan to 2017 Feb; 987 
pink) and ATom-3 (2017 Sep to 2017 Oct; yellow). (b) Sub-regions in Africa are shown, namely 988 
North Africa (green), West Africa (pink), East Africa (orange), Central Africa (blue), and Southern 989 
Africa (yellow). Location of in situ observations are labeled on the map. Flight tracks of the In-990 
service Aircraft for a Global Observing System (IAGOS) are shown with black lines. Four 991 
ozonesonde sites are shown by pentagrams (Ascension, Irene, Nairobi, and La Reunion); six sites 992 
from the World Data Centre for Greenhouse Gases are shown by triangles (Assekrem, Cape Point, 993 
Izana, Gobabeb, Mare, and Ascension); two surface sites for PM2.5 are shown by squares (Addis 994 
Ababa and Kampala). 995 
 996 
 997 
 998 
 999 
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 1000 
Figure 2. Comparisons of MUSICAv0 and WRF-Chem simulations to MOPITT CO column 1001 
(molecules/cm2) for each season of 2017. (a-d) Averaged MOPITT CO column: MAM (March, 1002 
April, and May), JJA (June, July, and August), SON (September, October, and November), and 1003 
DJF (December, January, and February). (e-h) MUSICAv0 model biases against MOPITT CO 1004 
column for MAM, JJA, SON, and DJF. (i-l) is the same as (e-h) but for WRF-Chem. All data are 1005 
gridded to 0.25 degree ´ 0.25 degree for plotting. 1006 
 1007 

 1008 
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 1009 
 1010 
Figure 3. Mean bias of MUSICAv0 and WRF-Chem simulations from satellite data. Monthly 1011 
timeseries of mean bias of (a) MUSICAv0 and (b) WRF-Chem against MOPITT CO column 1012 
(molecules/cm2) in 2017 over Africa (black), North Africa (green), West Africa (pink), East Africa 1013 
(orange), Central Africa (blue), and Southern Africa (yellow). (c-d) are same as (a-b) but for mean 1014 
bias against OMI tropospheric NO2 column (molecules/cm2). (e-f) are same as (a-b) but for mean 1015 
bias against with MODIS (Terra) Aerosol Optical Depth (AOD). (g) is the same as (a) but for mean 1016 
bias against OMI tropospheric HCHO column (molecules/cm2). 1017 
 1018 
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 1019 
Figure 4. Monthly time series of column-averaged CO tracers in North Africa, West Africa, East 1020 
Africa, Central Africa, and Southern Africa. Top panels show CO tracers of emissions from North 1021 
Africa (green), West Africa (pink), East Africa (orange), Central Africa (blue), Southern Africa 1022 
(yellow), and the rest of the world (grey). Bottom panels show CO tracers of fire emissions (red), 1023 
anthropogenic emissions (green), and waste burning emissions (yellow).   1024 
 1025 
 1026 

 1027 
Figure 5. Monthly mean CO (ppb) from in situ observations (black), MUSICAv0 (red), and WRF-1028 
Chem (blue) during 2017 at (a) Assekrem, (b) Cape Point, (c) Izana, (d) Gobabeb, (e) Mare and 1029 
(f) Ascension (see Figure 1b for locations). Monthly means are calculated from 3-hourly data. The 1030 
range for each data point shows the variation of the 3-hourly data on that day (25% quantile to 1031 
75% quantile). Observational data are from World Data Centre for Greenhouse Gases (WDCGG). 1032 
  1033 
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 1034 
 1035 

 1036 
Figure 6. Vertical profiles of CO (ppb) from the In-service Aircraft for a Global Observing System 1037 
(IAGOS) measurements (black) and corresponding model output from MUSICAv0 (red), and 1038 
WRF-Chem (blue) during different seasons in 2017 over West Africa, Central Africa, East Africa, 1039 
and Southern Africa. North Africa is not shown due to data availability. Seasonal mean profiles 1040 
with the variation of the data in the pressure layer (25% quantile to 75% quantile) in MAM (March, 1041 
April, and May), JJA (June, July, and August), SON (September, October, and November), and 1042 
DJF (December, January, and February) are shown.  1043 
 1044 
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 1045 
Figure 7. Vertical profiles of O3 (ppb) from the In-service Aircraft for a Global Observing System 1046 
(IAGOS) measurements (black) and corresponding model output from MUSICAv0 (red), and 1047 
WRF-Chem (blue) during different seasons in 2017 over West Africa, Central Africa, East Africa, 1048 
and Southern Africa. North Africa is not shown due to data availability Seasonal mean profiles 1049 
with the variation of the data in the pressure layer (25% quantile to 75% quantile) in MAM (March, 1050 
April, and May), JJA (June, July, and August), SON (September, October, and November), and 1051 
DJF (December, January, and February) are shown. The dash red lines represent O3S 1052 
(stratospheric ozone tracer) from the MUSICAv0 simulation. 1053 
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 1054 
Figure 8. (a) Land cover in 2017 and (b) population density (persons/km2) in 2020 over Africa. 1055 
Land cover data is from MODIS/Terra+Aqua Land Cover Type Yearly L3 Global product 1056 
(resolution: 0.05 degree) (Friedl et al., 2022). Cropland/Natural Vegetation Mosaics means 1057 
Mosaics of small-scale cultivation (40-60%) with natural tree, shrub, or herbaceous vegetation. 1058 
Population density data is from the Gridded Population of the World, Version 4 (GPWv4), 1059 
Revision 11 (CIESIN, 2018). 1060 
 1061 
 1062 
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 1063 
Figure 9. Vertical profiles of O3 (ppb) from Ozonesondes (black) and corresponding model output 1064 
from MUSICAv0 (red), and WRF-Chem (blue) for each season of 2017. The thick lines denote 1065 
the seasonal mean profiles and the thin lines denote the individual profiles. The dash red lines 1066 
represent O3S (stratospheric ozone tracer) from the MUSICAv0 simulation. Ozonesonde data at 1067 
Ascension in (a) MAM (March, April, and May), (b) JJA (June, July, and August), (c) SON 1068 
(September, October, and November), and (d) DJF (December, January, and February) are shown. 1069 
(e-h), (i-l), and (m-p) are the same as (a-d), except for Irene, La Reunion, and Nairobi, respectively. 1070 
Locations of the sites are shown in Figure 1b. 1071 
 1072 
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 1073 
 1074 
Figure 10. Daily mean PM2.5 from in situ observations (black), MUSICAv0 (red), and WRF-Chem 1075 
(blue) during 2017 at (a) Addis Ababa and (b) Kampala. Daily means are calculated from 3-hourly 1076 
data. The shown range for each data point shows the variation on that day (25% quantile to 75% 1077 
quantile). Locations of the sites are shown in Figure 1b. 1078 
 1079 
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 1080 
Figure 11. Observations of (a) CO (ppb), (b) O3 (ppb), and (c) NO (ppt) over Atlantic Ocean 1081 
during ATom-2 and ATom-3 (d-f). (g-l) corresponding model biases against ATOM observations. 1082 
The ATom airborne measurements and corresponding MUSICAv0 model results are binned to 10-1083 
degree latitude and 200-hPa pressure bins. The values of mean biases for each latitude and pressure 1084 
bin are labeled in the figure.  1085 
 1086 
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 1087 
Figure 12. Same as Figure 9 but for over the Pacific Ocean. 1088 
 1089 
 1090 
 1091 
 1092 
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 1093 
Figure 13. Spatial distribution of total Taylor score of MUSICAv0 and (f-j) WRF-Chem compared 1094 
to satellite retrievals. In each 5° ´ 5° (latitude ´ longitude) pixel, Taylor scores of the model 1095 
compared to three satellite products (e.g., MOPITT CO column retrievals, OMI tropospheric NO2 1096 
column retrievals, and MODIS AOD) are calculated separately (as shown in Figure S8). Taylor 1097 
score against each satellite product ranges from 0 to 1. And then three Taylor scores are summed 1098 
up to obtain the shown total Taylor score (ranges from 0 to 3). Total Taylor score of MUSICAv0 1099 
for (a) 2017, (b) MAM (March, April, and May), (c) JJA (June, July, and August), (d) SON 1100 
(September, October, and November), and (e) DJF (December, January, and February) are shown. 1101 
The blue box highlights a potential region for future field campaigns and/or in situ observations. 1102 
(f-j) are similar to (a-e) except for WRF-Chem. 1103 
 1104 
 1105 
 1106 



 35 

 1107 
Figure 14. Monthly time series of column-averaged CO tracers in the 30°E – 45°E, -5°S – 5°N 1108 
region in East Africa. (a) CO tracers of emissions from North Africa (green), West Africa (pink), 1109 
East Africa (orange), Central Africa (blue), Southern Africa (yellow), and the rest of the world 1110 
(grey). (b) CO tracers of fire emissions (red), anthropogenic emissions (green), and waste burning 1111 
emissions (yellow).   1112 
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