
 1

GMD-2023-45 Response to Reviewers

We appreciate the time and efforts the two reviewers dedicated in the second round of review to
providing feedback on our manuscript “Intercomparisons of five ocean particle tracking
software packages in the Regional Ocean Modeling System”. We have incorporated or responded
to all the comments and suggestions made by the reviewers. Please see below, in blue, for a
point-by-point response to the reviewers’ comments and concerns. The line numbers refer to the
tracked version of our manuscript.

Reviewer 1:

Review of the revised version of "Intercomparisons of five ocean particle tracking software
packages" by Xiong and MacCready.

I thank the authors for their extensive and detailed replies to my queries and comments. While
many of the issues that I raised have been solved in the revised version of the manuscript, I am
left with the most important one (original comment 1): what does this new Lagrangian code add?
Or, in other words, what niche does it fill? The authors do not sufficiently answer that, in my
opinion. In the reply, they discuss comparison to other codes, but in a diverse ecosystem of
Lagrangian codes, each one has its niche (at least when it was first developed). I don't see that
niche for Tracker: what it can do that other codes can't.

I leave it to the editor whether this manuscript, despite my reservation, still meets the bar for
Geoscientific Model Development; or whether it would be better suited for a (Diamond Open
Access) journal like the Journal of Open Source Software.

Response: we thank both reviewers’ comments on the niche of Tracker that inspire us to clarify
the uniqueness of Tracker and emphasize the major findings of our study. We think that the most
unique thing about Tracker, compared to other packages compatible with ROMS modeling
system, lies in its much faster execution time, a feature attributed to the efficiency of the nearest
neighbor searching algorithm. This performance enhancement is especially pronounced in the
large model domain we tested (please see Figure 9).

Within a forecast system such as LiveOcean, a reasonable computational burden is important
when the offline particle tracking based on forecasted hydrodynamics can be finished in a timely
manner. Even though Particulator (one of the tracking packages that were tested in this study and
is written in MATLAB) can run fast with millions of particles, the commercial software
MATLAB is less accessible than the open-source Python. Therefore, besides saving computation
time, platform independence is another unique thing about Tracker (Table 1, under the category
of ‘Ease of use’).

In addition, the most important finding in this study is that although all tested particle tracking
packages have different choices in e.g., interpolation schemes, advection schemes, boundary
conditions, or compatibilities with different numerical models or forcing data sources that make
them unique, they do not end up with very different results.

 2

In the revised (tracked) manuscript, we added these statements in the sections of abstract (lines
13-14, 18), section 3.4 (lines 313-325), and conclusions (lines 351-352).

Reviewer 2:

In general, I find the paper to be improved and with many added details. I think the paper should
be of interest to the community, and I recommend publication after some minor revisions.

Regarding the use of the 3-point Hanning window: As far as I can tell, North et al. do not in fact
use this approach, but rather discuss a 4-point and 8-point moving average. If this is the case,
then I would suggest adding a reasonably clear explanation of what a Hanning window is, and
how it is used to smooth a function. Or alternatively, a reference to a clear explanation. I think
this is an important point to make clear, as this is one of the few implementation details where
the different models compared are known to be different.

Response: we thank the review for pointing out lack of details for the 3-point Hanning window
method. More explanations and the reference to this method were added in lines 98-101 in the
tracked manuscript. The implementation of 3-point Hanning window can also be found in line
188 in trackfun.py (https://github.com/parkermac/LO/blob/main/tracker/trackfun.py).

At lines 99-100 in the revised manuscript, you state that Eqs. (1) - (3) are solved with 4th-order
Runge-Kutta. However, these equations are not written as ordinary differential equations, but
rather already presented as discrete numerical schemes. Specifically, Eqs. (1) and (2) are the
forward-Euler representation of the horizontal transport equation, and Eq. (3) is the Visser-
scheme implementation of the stochastic differential equation for vertical transport (which can in
any case not be solved by 4th-order Runge-Kutta, as that is an ODE method, not an SDE
method). This should be corrected, and it would also be useful to clarify here if the same
timestep is used for horizontal and vertical motion, as it is fairly common to use a shorter
timestep for the vertical transport. See for example discussions on the difference between
horizontal and vertical equations and timestep in North et al. (2006) or Rowe et al. (2016), both
of which are in your list of references.

Response: thank you for the suggestions and we apologized for the unclear statement. The
velocity components (u, v, w) used in Equations 1-3 are obtained using the 4th-order Runge-
Kutta scheme. We corrected the statement in lines 103-105 in the tracked manuscript.

We also clarified that the same timestep is used for horizontal and vertical motion (lines 105-
108). The random displacement model criterion requires dt << min(1/abs(𝐴𝐾!"")) (Visser, 1997;
North et al. 2006; Rowe et al. 2016). 𝐴𝐾!"" is the second derivative of vertical diffusivity. We
examined the profiles of 1/abs(𝐴𝐾!"") (please see figures below, the x-axis is log10 scaled) based
on the hourly 𝐴𝐾! output at the six stations that were selected to test the vertical well-mixed
conditions. 𝐴𝐾! was smoothed using a 3-point Hanning window. The red dash line denotes the
timestep of 300s used in Tracker and other offline tracking packages. In most occasions, dt <<
min(1/abs(𝐴𝐾!"")) could be achieved in the model.

https://github.com/parkermac/LO/blob/main/tracker/trackfun.py

 3

 4

Lines 127-130: The approach to finding the "significant range" for the WMC test is perfectly
fine, but just as an observation (feel free to ignore), it is possible to make this a bit more
"rigorous". If you consider any one of the 28 bins, then the probability of a particle ending up in
that bin (when positions are drawn uniformly) is 1/28. Hence, drawing 4000 particles and
counting the number in a bin is equivalent to drawing a number from a binomial distribution with
4000 trials and probability of success 1/28. The mean of such a distribution is 4000 * (1/28), and
the variance is 4000 * (1/28) * (27/28). If you let the "significant range" be for example the mean
plus or minus two times the square root of the variance, then you expect the number of particles
in that bin to be outside the range about 4.5% of the time.

Response: we appreciate the reviewer’s idea and checked that by this way, the mean +=
2*sqrt(var) = 119 ~ 166, which is close to 102.5~187.3 used in Figure 2. Therefore, we would
like to keep our approach to finding the significant range for the WMC test.

Line 150: It says "decrease their variance", but it should perhaps be "increase"?

Response: it is actually “decrease”. We reworded this sentence to make it clear (lines 158-159)

Lines 226-230: It is not clear why you chose to convert the concentration in ROMS to "an
equivalent number of particles", at the center of the cell. Is it not better, easier and more accurate
to present the horizontally integrated concentrations directly?

Response: We agree with the review that it will be more accurate to present the horizontally
integrated contractions of dye directly and will give a smoother vertical distribution in Figure 5.
Here, in converting dye mass to an equivalent number of particles, our intention was to give dye
and particle distributions from different particle tracking packages the same unit, i.e., particle
number, so that they could be compared directly in Figure 5.

Finally, regarding the data: I believe GMD has a data availability policy that includes such things
as "data sets for forcing of models". (https://www.geoscientific-model-

 5

development.net/policies/code_and_data_policy.html). You say in the reply to reviewers that the
dataset is around 200 GB, but it should be possible to reduce the size quite significantly by
"cropping" (with ncks, for example) the data horizontally to include only what is needed to
reproduce the results. The model domain shown to the left in Fig 1 appears to be 1000 or so from
south to north, but the longest example trajectories shown only need a rectangle of data of about
160 km by 120 km, which should reduce the size a fair bit.

Response: we appreciate the reviewer’s constructive comments and uploaded our code and
exemplary hydrodynamic outputs to
https://github.com/Jilian0717/LPT_intercomparison/tree/main and
https://zenodo.org/records/10223144. These two links were also added in the section of
Code/Data availability.

Instead of trying to make model extractions to fit the particle tracks, we took the approach of
including a subset of the ROMS history files that could be used with our code. We hope that this
is sufficient.

Additional private note (visible to authors and reviewers only):
In what conditions/circumstances should Tracker be used instead of any other model and why?

Response: please also see our response to reviewer 1 above. Generally, Tracker runs faster than
other particle tracking packages that were tested in the present study, especially in the large
model domain (please see Figure 9). In this study, we demonstrated that all tracking packages,
although with different specialties, would give very similar results. Therefore, if computation
time is the foremost factor, for example, in a forecast system with a large domain size like
LiveOcean and millions of particles are required, Tracker would be a good choice. In Figure 9,
we also observed that Particulator (written in MATLAB) runs very fast with one million
particles, yet MATALB is a commercial software that requires not cheap license, thus much less
accessible than Python.

https://github.com/Jilian0717/LPT_intercomparison/tree/main
https://zenodo.org/records/10223144

