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Abstract.

Numerical convergence of the collision-coalescence algorithm used in Lagrangian particle-based microphysics is studied in
2D simulations of an isolated Cumulus Congestus (CC) and in box/multi-box simulations of collision-coalescence. Parameters
studied are the time step for coalescence and the number of super-droplets per cell. Time step of 0.1s gives converged droplet
size distribution (DSD) in box simulations and converged mean precipitation in CC. Variances of the DSD and of precipitation
are not sensitive to the time step. In box simulations, mean DSD converges for 10® super-droplets per cell, but variance of

the DSD does not converge. In-CC-simulationsmean-Fewer super-droplets per cell are required for convergence of the mean

DSD in multi-box simulations, probably thanks to mixing of super-droplets between cells. However, many more super-droplets

are needed in CC simulations, if the sub-grid scale motion of super-droplets is not modeled. Mean precipitation converges for
5 x 103, but only in a strongly precipitating easecloud. In cases with less precipitation, mean precipitation does not converge

even for 10° super-droplet per cell. Theresult-that-more-Using a model for sub-grid scale motion of super-droplets are-needed
what strengthens their mixing) helps achieve convergence of precipitation in CC simulationsthan-in-bexsimulations-indicates

hat-too-targe-differences-in-the-DSD-between-cells-can-reduce-precipitationin-—cloud-simulations—, in line with multi-box
results. Variance in precipitation between independent CC runs is net-affected-by-the-number-more sensitive to the resolved
flow field than to the stochasticity in collision-coalescence of super-droplets, even when using as little as 50 super-droplets per
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1 Introduction

Particle microphysics (also knew-known as Lagrangian particle-based microphysics, Lagrangian Cloud Model or super-droplet
microphysics) is a class of Lagrangian methods for numerical modeling of cloud microphysics that has been developed in the
last decade (Shima et al., 2009; Andrejczuk et al., 2010; Solch and Kércher, 2010; Riechelmann et al., 2012). In particle

microphysics, numerical objects called super-droplets (SDs, also known as simulational particles) are used as proxies for
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hydrometeors. Similarly to the more common Eulerian bin models, particle models explicitly resolve evolution of the DSD.
There are several advantages of particle models that make them a compelling alternative to bin models (Grabowski, 2020):
lack of numerical diffusion, easy modeling of multiple hydrometeor attributes (e.g. chemical composition), scaling down to
direct numerical simulations, among others. However, modeling of collision-coalescence has proven to be difficult in particle
microphysics. A few algorithms have been developed to do this, see Unterstrasser et al. (2017) for a review. Out of these, the
all-or-nothing (AON) algorithm from the Super-Droplet Method (SDM) of Shima et al. (2009) was shown to give the most
accurate DSD in box simulations (Unterstrasser et al., 2017) and has been widely adopted (Hoffmann and Feingold, 2021;
Dziekan et al., 2021; Unterstrasser et al., 2020; Arabas and Shima, 2013; Shima et al., 2020).

A recent study has found discrepancies in rain production between different particle models that use AON, although the
models agree well in modeling condensational growth (Hill et al., 2023). This shows that better understanding of numeri-
cal convergence of AON is necessary before particle models can become the benchmark for microphysics modeling. Several
studies have shown that AON is sensitive to the number of SDs, to the numerical time step and to the way SDs are initial-

ized

. Detailed studies of numerical convergence of AON were done so far only in simulations of pure collision-coalescence in a
box (Unterstrasser et al., 2017) and in a 1D column (Unterstrasser et al., 2020). It was found that criteria for convergence
of AON are different in 1D than in box simulations. This shows that to confidently model precipitation in LES with particle
microphysics, it is not sufficient to use parameters that give convergence in a box or a 1D column. The aim of this study is to
better understand numerical convergence of AON in LES.

We begin with a study of numerical convergence of AON in simulations of collision-coalescence in a box model. Al-
though a similar study was done by Unterstrasser et al. (2017), we believe that it is valuable to repeat it for a number of
reasons. Firstly, our implementation of particle microphysics differs in details from that of Unterstrasser et al. (2017), so it
may converge in-a-different-waydifferently. Understanding convergence of our implementation in a box model is useful for
planning convergence tests in more realistic simulations done afterwardsafterward. Secondly, we compare with one-to-one
simulation (Dziekan and Pawlowska, 2017), which is a more detailed reference model than it-was-done-was used in Unter-
strasser et al. (2017). This allows us to study convergence not only of the mean DSD, but also of the variance of the DSD.
Lastly, we validate results of Unterstrasser et al. (2017).

Guided-byboxresults;we proceed-to-Next, we study convergence of AON in multi-box simulations. This simulation type,
introduced by Schwenkel et al. (2018
and super-droplets can move between these. In that way they are more similar to LES than box simulations and, unlike in LES,
reference solutions can be produced by one-to-one simulations. The goal of multi-box simulations is to study how mixing of

super-droplets between cells affects the minimum number of super-droplets required for convergence.
Finally, we study numerical convergence of AON in 2D simulations of isolated cumulus congestus. It is a much more

is similar to box simulations, but the domain is divided into multiple coalescence cells

realistic simulation than was used before for convergence tests of AON. The same processes are included as in a LES, with

the only difference being smaller dimensionality. The reason why we use 2D instead of 3D is that this decreases the required

Shima et al., 2009; Unterstrasser et al., 2017; Dziekan and Pawlowska, 2017; Schwenkel et al., 2018; Dziekan et al., 2019; Unterstrasser
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computational power and memory size, allowing us to study a broader range of parameters. AON is a stochastic algorithm,
so it gives different realisations—realizations of collision-coalescence in independent simulation runs. LES runs often also
differ due to random differences in initial conditions. These differences in initial conditions include random perturbations of
thermodynamic variables (e.g. temperature and humidity) and random initialization of SD attributes. Stochasticity in AON,
as well as in initial conditions, leads to differences in flow fields, what can strongly impact results. To isolate the effect of
stochasticity of AON from stochasticity of initial conditions, we use the same initial conditions in ensembles of simulations.
Moreover, to facilitate studying convergence of AON, we use the same flow field for different simulations. This way, flow
field is not affected by different realisations—realizations of AON. We also perform reference “dynamic” simulations with
differences in initial conditions and without a prescribed flow field. This allows us to assess the importance of stochasticity of
AON relatively to other sources of stochasticity in LES.

We start with a presentation of the particle microphysics scheme, with emphasis on AON and on the SD initialization proce-
dure (section 2). Studies of numerical convergence of AON in box, multi-box and in 2D simulations are presented in section 3,

section 4 and in section 5, respectively. Conclusions for cloud modeling are discussed in section 6.

2 Particle microphysics

In Lagrangian particle mierepyhysies-methedsmicrophysics methods, particles in the air (aerosols, haze particles, cloud droplets,
rain drops, ice particles) are represented by computational objects called super-droplets. In most cases, each SD represents &

large-number-of-numerous identical real particles. The number of real particles a SD represents is called its multiplicity £
(also known as weighting factor). Another commonly-used SD attribute is spatial position. Two additional attributes are useful
for modeling warm microphysics: wet radius, which describes the total volume of a particle, and dry radius, which describes
the volume of the dissolved matter. For most processes (advection, condensation, sedimentation), changes of SD attributes
are described by the same equations that describe how single real particles are affected by these processes. However, it is not
straightforward how to model collision-coalescence of SDs. In the next two sections, we present parts of the microphysics

model that are particularly important for modeling collision-coalescence.
2.1 Initialization of SD radii and multiplicities

Multiplicities and radii of SDs are initialized from a prescribed initial size distribution. In this section, we describe common
methods for doing this. The prescribed radius can either be wet or dry radius. We denote the initial number of SDs per grid cell
with NS,

In one initialization method, all SDs have the same multiplicities and their initial radii are drawn from the distribution using
inverse sampling (Shima et al., 2009; Hoffmann et al., 2015). Multiplicity is equal to the initial number of droplets in a cell
divided by Ns(i];ﬂt). Following Unterstrasser et al. (2017), we refer to this method as &.opst-init.

Another method of initialization is to divide the initial distribution into bins of equal sizes on a logarithmic scale. We

denote the number of bins with Ns(k]’jin). Within each bin we randomly select radius of a single SD, and its multiplicity follows
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from the initial distribution. It is not obvious what should be the choice of the leftmost and rightmost bin edges. Arabas
et al. (2015) proposed to select bin edges so that multiplicities of SDs in the outermost bins is at least 1 (see Dziekan and
Pawlowska (2017) for details of the algorithm). In this method, bin edges depend on the volume of grid cells and, more
importantly, on N, S(gn). When Ns(gn) is increased, the largest possible initial SD radius is decreased. To counter this, Dziekan
and Pawlowska (2017) proposed to initialize additional SDs using inverse sampling from part of the distribution to the right
of the rightmost bin. Note that the number of these additional SDs is rather small. In all simulations presented in this paper,
we have Ns(%in) < Néigit) <1.01 Ns(k]’jin). Following Dziekan and Pawlowska (2017), we will refer to this method as "constant
SD"-init.

Instead of using the algorithm for finding bin edges, one can simply prescribe them. We call this method "constant SD"
fixed-init. In this method, no SDs are added to represent the part of the distribution to the right of the largest bin.

Unterstrasser et al. (2017) compared multiple methods of SD initialization and found that using bins to initialize radii (as
in "constant SD"-init) is preferable because it requires the least SDs to correctly model collision-coalescence. In most of the
simulations presented in this paper, we use the "constant SD"-init. In section 5.6 we study sensitivity to SD initialization

method.
2.2 Collision-coalescence of SDs: the AON algorithm

The AON algrithmalgorithm, developed by Shima et al. (2009), is an algorithm for modeling collision-coalescence in La-
grangian particle microphysics. It is derived from the stochastic description of the collision-coalescence of particles (Gillespie,
1975). In this description, it is assumed that the probability of collision between a pair of particles is known. This probability
is proportional to the coalescence kernel. AON is designed to give the correct expected number of collisions and to keep the
number of SDs constant. The drawback of AON is that it gives a variance in the number of collisions larger than the real

variance (Shima et al., 2009). The probability that a pair of super-droplets ¢ and j collide during some time interval is:
PY) = max(&,&;) Py, (1)

where P;; is the probability that-of collision between two real particles with the-same-attributes-identical attributes (e.g. wet

interval —and AV is cell volume (Shima et al., 2009). Coalescence of SDs ¢ and j represents coalescence of min(§;,&;) pairs
of real particles, each pair made of one particles-particle represented by SD ¢ and one particles-particle represented by SD j.
Probability of SD coalescence can be greater than one, in particular for long time steps. This represents multiple collisions
between a SD pair within a single time step. Multiple collisions can be done only if the ratio of multiplicities of colliding SDs
is sufficiently high (Shima et al., 2009). Note that in &.ons¢-init it is not possible to have multiple collisions between a SD
pair, because their multiplicities are equal. For this reason, in our £.onet-init simulations we adapt time step for coalescence to
maintain collision probability below 1. The "constant SD"-init method typically gives large differences between multiplicities
of SDs. Thanks to that, multiple collisions per time step are possible, and we use a constant time step for coalescence in this

type of simulationssimulation.
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In some implementations of AON, the number of super-droplet pairs tested for coalescence per time step is equal to
Nsp (Nsp — 1) /2, where Ngp is the number of SDs in a coalescence cell (the coalescence cell is typically equivalent to
an Eulerian grid cell, Dziekan and Pawlowska (2017)). This is known as quadratic sampling (Unterstrasser et al., 2017, 2020).
However, the original AON method of Shima et al. (2009) uses a technique called linear sampling, which is designed to speed
up the algorithm. In linear sampling, | Nsp /2| non-overlapping pairs of super-droplets are considered per time step. The no-
tation |z | represents the largest integer less than or equal to 2. To obtain the correct expected number of collisions in linear

sampling, the probability of collision between a pair of SDs is increased to:

. o Nsp (Nep — 1
Pt = pp oo =D ) o). @

Linear and quadratic sampling techniques were directly compared in Dziekan and Pawlowska (2017); Unterstrasser et al.
(2020). Unterstrasser et al. (2020) showed that quadratic sampling converges for a longer time step than the linear sampling
(Figure 6 b therein). Once converged, both techniques give the same mean and variance (Dziekan and Pawlowska, 2017;
Unterstrasser et al., 2020). Typically, the number of collision pairs tested per unit of time is smaller in linear sampling than in
quadratic sampling, despite the shorter time steps. Moreover, in linear sampling all collision pairs can be computed in parallel

because they are non-overlapping. For these reasons, we use linear sampling in this work.

3 Box simulations

We model collision-coalescence of droplets in a well-mixed box. For simplicity, we use r to denote wet radius in this section,
as the dry radius is not important for collision-coalescence. We analyze the mean<{#-and-standard-deviation-e{m)-of the-mass
density function m (Inr)-Fhe-mass-density-funetion-, which is such that m (Inr) dInr is the mass of droplets per unit volume
in the size range from Inr to Inr + dlnr. The initial distribution of r is exponential in volume with 15 um mean wet radius and
142cm 2 droplet concentration, what gives 2gm ™3 liquid water content. This distribution was used in Onishi et al. (2015);
Dziekan and Pawlowska (2017). The box volume is around 0.45m? and it initially contains 64 million droplets. Simulations
are run for 300s. We use a gravitational coalescence kernel with collision efficiencies from Hall (1980) and from Davis (1972).

Three types of collision-coalescence models are compared: AON algorithm, one-to-one simulations and the stochastic coa-
lescence equation (SCE). AON is discussed in section 2. One-to-one simulations are particle simulations with £ = 1, i.e. each
real droplet is explicitly modeled. We use &.qnst-init and linear sampling in one-to-one simulations. One-to-one simulations
produce a realization in agreement with the master equation (Dziekan and Pawlowska, 2017). As such, they are the most fun-
damental type of simulation used and are considered to produce reference results. SCE is an equation for time evolution of
the average DSD. It is typically used to model collision-coalescence in bin models. Dziekan and Pawlowska (2017) showed
that the SCE gives correct average results for droplet populations greater than 107, so it should be valid in the box simulation
with 6.4 x 107 droplets discussed in this paper. We solve SCE with the Bott (1997) flux method with bin scaling parameter
a = 2'/10 and time step 0.1s. These parameters were found to give converged results.

One-to-one and AON simulations are stochastic. We run ensembles—of-these-simulations—and-ecaleulate-an ensemble of

one-to-one simulations and ensembles of AON simulations for different values of NS". From these, we calculate the



ensemble mean of the mass density function (m) and the ensemble standard deviation of the mass density function o (m)frem
the-ensembles, The ensemble size in one-to-one simulations is Q = 10. In AON simulations, itis © = 107 /N{™ for NP < 102

and Q = 107 /NP for NP™ > 103, The SCE is deterministicand-, therefore it does not require a simulation ensemble and

it does not explicitly model variance of the DSD. However, Gillespie (1975) estimated the variance of the number of droplets

160 in a given size range to be equal to the number of droplets in this size range. We validate this estimate by comparing it with

one-to-one results.
3.1 Results of box simulations

First, we check how numerical time step At..1 affects AON simulations with NS(]E;“) = 102, what is the number of SDs typical
for LES. In fig. 1, we show DSDs at the end of the simulation for different time step lengths. There are no differences in (m)
165 between Atcoa = 0.1s and Ateoa = 0.01s. Using Ateoa = 1s results in too large (m) for the largest droplets. Atcoa = 10s
gives yet larger (m) for the largest droplets and also a decrease in (m) for droplets with radii between 40 ym and 100 pm.
Regarding fluctuations, we see that differences in o(m) correspond to differences in (m), e.g. too large (m) for largest droplets
also gives too large o(m) for largest droplets (Fig. 1 (a) and (b) for Atcga = 10). From this test, we conclude that mean DSD

converges for Atc,, = 0.1s and that fluctuations in DSD are not sensitive to Atco)-
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Figure 1. (a) Mean and (b) standard deviation of the mass density function m for Ns(gn) = 10? box simulations at ¢ = 300s for different

time step lengths.

170 Next we check how results are affected by the number of SDs for Atcoa1 = 0.1s. In fig. 2 we show DSDs at the beginning
and at the end of an AON simulation for different Négn). Results of one-to-one simulations and of the SCE are plotted
for reference. The initial (m) is very well represented for all methods of radius initialization and agrees well with the SCE
initialization (fig. 2 (a)). The initial o(m) in decreases approximately linearly with increasing Ns(gn) (fig. 2 b). N, S(]Bin) =10°
gives smaller initial o(m) than one-to-one, despite much higher number of SDs in the latter (6.4 x 107). The reason for this

175 are the differences in the radius initialization procedure. The mean DSD at the end of the simulation does not significantly



differ between different types of simulationswith-the-exeeption-of-, except for Né%in)

radii between 30 ym and 130 gm, and too many droplets with » > 130 um (fig. 2 c). Fluctuations in DSD at the end of AON

= 10, which gives too little droplets with

1
simulations decrease with increasing NS(]SH) (fig. 2 d). Standard deviation o(m) is proportional to 4/ Ns(gn) , in particular
for 103 < Négn) < 105. Even for Ns(]gn) = 10°the~, 0(m) in AON is much larger than the reference one-to-one result. It is

180 seen that o(m) estimated from the SCE as the square root of the number of droplets, as proposed by Gillespie (1975), is larger

than the one-to-one result, but much closer to it than ¢(m) in AON with N2 = 105
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Figure 2. Mean and standard deviation of the mass density function m from box simulations at £ = Os (a-b) and at t = 300s (c-d). Two types

of Lagrangian simulations (SDM with Atc.a1 = 10s and for different Ns(gn); one-to-one simulations) and the SCE are compared.

Differences in (m) between simulations for different combinations of Ns(%m) and of At may potentially lead to differ-

185 ences in the mean amount of rain in LES with Lagrangian particle microphysics. To have a better view of this issue, we plot
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differences between (m) in one-to-one simulations and (m) in AON simulations with different Ns(%in) (fig. 3). In the plot,

(m) is multiplied by the terminal velocity to get the sedimentation mass flux of droplets of given size. This analysis con-
firms that results converge for At.oa = 0.1s, irrespective of Né%in) (fig. 3 a-c). Longer time steps result in underestimation
of the sedimentation flux for droplets with radii between around 40 and around 120 microns, and in overestimation of sed-
imentation flux for other droplets. Regarding convergence with Négn), we find that AON results agree with one-to-one for
NS(}SH) > 10® (fig. 3 d). For Ns(%in) = 10, the mass flux is overestimated for » < 30 ym and r > 130 um and underestimated for
30pm < r < 130 pm. Using Ns(kgn) = 10? underestimates mass flux for r > 50 um (fig. 3 d).

NEY =101 NEM =102

= Atcoa =0.01 s

E 0011 @ 1 0024 Mt =015 o)
z . Atcoa=1s

0,00 L R f TS 0011 Mt =10's

=]
7 -0.01
K 0.00 BN oo A A
E? -0.02 A

- -0.01 1

>

< -0.03

’é —0.02

V. -0.04 4

L —— Ateow=0.015s -0.03 1

N —0.054 —t Atca=0.1s

1S Atcoa=1s

—0.04 4
v ~0.064 Ateoai=10's
10! 102 10! 102
NébDin) =103 Atcoa =0.15s

= —— Atea=0.01s 0.01 1

E 002 —— Ateou=0.1s © /H_l/l/*/H\ d)
g Atcoa=1s 0.00 dbdrh bt ... |
z Atcoa =10's !

3 0.014
T -0.01 4

n
b

E  0.00

= -0.02 4

<

3

A —0:014 ~0.03 1 N

g —= NV =10

‘I’ NEIM =102

b —0.02 1 ~0.04 4 N = 103

2 —— NEM =104

vV —0.03 —0.051 4 pem_ 105

10! 102 10! 102
r[um] r[pm]

Figure 3. Differences between (m) from SDM ({(m)sp) and one-to-one ({m)o) Lagrangian microphysics, multiplied by terminal velocity

v¢. Results of box model simulations at ¢ = 300s. Vertical error bars show the 95 % confidence interval.

Initialization of droplet radii in Lagrangian particle microphysics is often stochastic (Shima et al., 2009; Unterstrasser et al.,
2017; Dziekan and Pawlowska, 2017). It is a source of random differences between simulations that is separate from the
stochastic collision-coalescence algorithm. We want to check how important are these two different sources of randomness for

variance in the modeled DSD. We run ensembles of simulations that do not differ in the initial DSD, but differ only in the
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realization of collision-coalescence. Comparison of these simulations with simulations that differ both in the initial DSD and
the realization of collision-coalescence is shown in fig. 4. The comparison is done for one-to-one simulations and for AON
simulations with Ns(%in) = 100. The initial (m) agrees well for all types of simulations (fig. 4 a). As expected, the initial o(m)
is equal to zero for simulations without randomness in the initial DSD (fig. 4 b). At the end of the simulation, (m) agrees well
between simulations with and without randomness in initial DSD (fig. 4 c). For droplets with 7 > 20 um, o(m) at the end of
the simulation is also not sensitive to randomness in the initial DSD (fig. 4 d). Lack of randomness in the initial DSD results
in slightly smaller o (m) for r < 20 um, o(m) (fig. 4 d). Considering that collision-coalescence is responsible for formation of
large droplets, and that smaller droplets are formed by condensation, we conclude that the randomness in the initial DSD is not

important for mean nor fluctuations in large droplet production.
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Figure 4. As in fig. 2, but comparing ensembles of simulations with and without randomness in the initial DSD.
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3.2 Summary of box simulations and comparison with previous studies

Box simulations of collision-coalescence with AON show convergence of (m) for At.o, < 0.1s, irrespective of Négn), and

for Ng (bm) > 103. The standard deviation o(m) is not sensitive to At,,1, but decreases with increasing Ns(%m)

. Variance of the
number of droplets in a size bin is approximately equal to the number of droplets. This relationship could be used to model the
stochastic nature of collision-coalescence in bin microphysics.

Box model tests of the mean DSD in the AON algorithm were previously done by Shima et al. (2009); Unterstrasser et al.
(2017). Unterstrasser et al. (2020) did column simulations and some of them did not include sedimentation, which is equivalent
to box simulations. Shima et al. (2009) found relatively good agreement with the SCE for At,, = 0.1s and for NS(%”‘) ~

) is much higher. The latter is

2 x 10°. The time step requirement is the same as found in this work, but the required Ns(%n
probably because Shima et al. (2009) used the constant multiplicity initialization, which was found by Unterstrasser et al.
(2017) to require many more SDs than their ”singleSIP” initialization, which is similar to our constant SD initialization.
Using the ”singleSIP” initialization, Unterstrasser et al. (2017) showed that results are close to converging for At.o, = 1s
(fig. +9-18 therein, first column;-secondrow);-attheughsherter-time-steps-were-not-considered). An important difference be-
tween this work and Unterstrasser et al. (2017) is that the latter used quadratic sampling. Differences between linear and

quadratic sampling methods are discussed in section 2.2. Regarding convergence with Né in) , Unterstrasser et al. (2017) found

convergence for N%™ > 103 (Fig. 49-18 therein, second column; there & = 200 corresponds to Ni™ ~ 10) and Unter-

strasser et al. (2020) did not find convergence for up to Négn) =103 (Fig. 6 a therein). Convergence tests in Unterstrasser

et al. (2017, 2020) were based-on-comparing-the-0-th; 2-nd-and-3-rd-done by analyzing moments of the DSD(, and it was
most difficult to obtain convergence of the 0-th moment Hhesﬁ%&ﬂfegemkfeﬂeelﬂﬁgﬂ%ﬁkafgeﬂamﬁ—b%deﬂwea}

large-end-of-the-DSD(total droplet number). We find contrary results, i.e. that higher moments converge more slowly than

(bm) = 102. In these simulations, At ., = 105 gives

lower moments. To illustrate this, we consider our box simulations for Ng
significantly-visibly different large end of the DSD than At., = 0.1s (fig. 1)--but-the-difference-in-the-, The 0-th momentis
only-areund-(total droplet number) and 2-nd (radar reflectivit = 10s than for Ateo, =0.1sb
approximately 0.5% and 30 %, respectively. This is consistent with the intuition that higher moments are more sensitive to the
large end of the DSD, and it is the large end of the DSD that is most sensitive to collision-coalescence.

The AON implementation from the libcloudph++ library, which is the-implementation-used in this paper, was also used in

box simulations described in Dziekan and Pawlowska (2017). That paper discussed convergence of ¢4, the time after which

moments are larger for At.

10% of cloud mass is turned into rain mass. Dziekan and Pawlowska (2017) found that for At.., = 1s mean t;q9, converges
for Ng (bm) > 102 (Fig. 4 therein). Dziekan and Pawlowska (2017) also showed that the standard deviation of ¢,y decreases

linearly with the square root of Ns(%in) (Fig. 5 therein). This is in agreement with our observation that o(m) is proportional to

—1
A/ Négn) and with the theoretical prediction from Shima et al. (2009) (Sec. 4.1.4 therein).
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4 Multi-box simulations

Simulation setup is the same as in box simulations, but the domain is divided into C’ equal rectangular cells of volume
240 0.45m°/C. Only SDs that are in the same cell can collide with each other. Super-droplets move around the domain with a
velocity that is a sum of the terminal velocity and of the air velocity, which is calculated from a synthetic isotropic turbulence
model, Details of the turbulence model are given in appendix A Side walls are periodic. The turbulent kinetic energy dissipation
rate is 10em?s”?. Simulations are run for 300s. The model time step is adapted to keep the Courant number in each direction
smaller than one (but the time step is not longer than 0.1s). The coalescence time step is equal to the model time step. When

245 initializing SDs, the entire domain is treated as a single cell. Therefore, IV, (bin) represents the total initial number of SDs (minus

SDs from ’tail’ = N /o Initial SD
ositions are selected randomly within the domain.

We run ensembles of one-to-one and AON simulations for differing number of cells. The ensemble size is 2 = 30 in
N, (bin) in AON simulations. The DSD at the end of the simulation is shown in fig. 5

initialization). The mean number of SDs per cell at the start of the simulation is /V, (cell)

one-to-one simulations and Q = 3 x 10°

This is because droplet collisions are local, i.¢. droplets need to get close together in order to collide. We find that in one-to-one
simulations, there is no difference in results for NSV = 1 and for N = 6.4 x 107 (fig. 5 (a)). This shows that there
is_no error in assuming that the domain is well-mixed, i.e. that droplets are uniformly distributed within the domain. In
Therefore, increasing C' leads to less uniform spatial distribution of droplet sizes. Results show that this can cause errors
. ) (bin) 12roe enough, box simulations (C' = 1, N — n(bin)

larger NP (6.0 N — 10 works well for NSP™ — 104, but N — 12,5 (bin) _ 12

agree with

260 . The number of

coalescence cells does not affect o(m) (not shown in the figure).

In line with conclusions of Schwenkel et al. (2018); Unterstrasser et al. (2020), multi-box simulations show that fewer SDs

per cell are needed to correctly model collision-coalescence when mixing of SDs between cells is included. For example, box.

265  are close to reference. It is important that the rate of mixing decreases with increasing cell size, what affects the minimal
give correct results. Cells are larger in the former case than in the latter case. Larger cells imply less mixing and, in consequence,

1 .
larger N required for conversgence,

11
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Figure 5. Mean mass density function at the end of multi-box simulations from (a) one-to-one simulations and AON simulations with

NE® — 104 in (b), with N2 =103 in (c) and with N2™ = 102 in (d). Each figure shows results for differing number of cells,

corresponding to differing NV .

5 2D Cumulus Congestus Simulations

In this section, we analyze AON in a two-dimensional simulation of an isolated cumulus congestus cloud. Conclusions about
convergence of AON in box and multi-box simulations that were presented in the previous seetior-sections do not necessarily
apply to higher dimensional simulations or simulations that include more processes affecting the DSD (e.g. condensational
growth). For example, Unterstrasser et al. (2020) found that it is easier to reach convergence in a one-dimensional column
simulation than in a box simulation. Based on the fact that in box simulations (m) converges for large Ns(%in), we can expect
that precipitation in the CC simulation also converges for large Né%in). Ttis-more-difficult-to-assess-whaterrorsean-be-expected
in-precipitation-in-the CC simulation-due-to_However, it is possible that precipitation in CC is affected by the artificially large

variance in AON, which is illustrated by the lack of convergence of o(m) in box simulations. Too large variance in AON may

12
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result in too large differences in the DSD between cells. This might affect precipitation averaged over the entire cloud, because
there is mixing between cells. Too large variance may also cause too large differences in precipitation between independent
simulation runs. However, it is possible that in cloud simulations spatial and temporal variability of DSD is more susceptible
to other factors, e.g. changes in relative humidity. Then, too large variability in AON would not be a problem. Variance in the

number of collisions is inversely proportional to Nébm) (see section 3). Doing CC simulations for different values of Ng (bm)

allows us to study how the artificially large variance in AON affects simulations, even though it is not possible to have Négn)

large enough for the variance to converge. Box simulations suggest that the time step typically used in LES is sufficient for
convergence of AON, but we also do a time step convergence test in CC.

5.1 LES model and setup

The CC simulations are done with the University of Warsaw Lagrangian Cloud Model (UWLCM). UWLCM is a LES tool
that allows 2D and 3D simulations with Lagrangian particle (or Eulerian bulk) microphysics. Thermodynamic variables (po-
tential temperature, water vapor mixing ratio, velocity) are modeled in an Eulerian manner. The Lipps-Hemler anelastic ap-
proximation (Lipps and Hemler, 1982) is used to filter acoustic waves. For spatial discretization of Eulerian variables, the
staggered Arakawa-C grid (Arakawa and Lamb, 1977) is used. The finite-difference method is used to solve equations for
Eulerian variables. The multidimensional positive-definite advection transport algorithm (MPDATA) (Smolarkiewicz, 2006)
is used to model transport of Eulerian variables. The model uses the generalized conjugate residual solver (Smolarkiewicz

and Margolin, 2000) to solve the pressure disturbance. In this paper, subgrid-seale-transpoert-sub-grid scale (SGS) transport of
Eulerian variables is modeled using the implicit LES approach (Grinstein et al., 2007). Depending on the simulation type, SGS

advection of SDs is either ignored or modeled with the method from Grabowski and Abade (2017) (hereby GA17). A more
detailed description of UWLCM can be found in Dziekan et al. (2019); Dziekan and Zmijewski (2022).

5.2 Simulatien-setup

We use an isolated cumulus congestus modeling setup that was one of the cases studied at the International Cloud Modeling
Workshop 2020. It is an adaptation of the setup developed by Lasher-Trapp et al. (2001). The computational domain is 12
km in horizontal and 10 km in vertical. Vertical profiles come from a conditionally unstable sounding from the Small Cumu-
lus Microphysics Study field campaign. Initial potential temperature and water vapor mixing ratio fields are randomly per-
turbed below 1km altitude. Perturbation amplitudes are 0.025gkg " and 0.01 K. For the first hour, surface fluxes are uniform:
0.04gkg™'ms™! latent heat flux and 0.1 Kms™! sensible heat flux. AfterwardsAfterward, surface fluxes have a Gaussian
distribution centered at the middle of the domain, with maxima three times larger than the uniform flux from the first hour and
with half width of 1.7 km. The momentum surface flux is given by a constant friction velocity 0.28 ms~!. The total simulation
time is 3 hours. The lateral boundaries are periodic, and the upper boundary is free-slip rigid-lid. We use an aerosol distribution
based on observations from the RICO campaign (VanZanten et al., 2011). The distribution is made of two log-normal modes.
The first (second) mode parameters are: number concentration 90 cm ™~ (15cm™2), geometric mean radius 0.03 zm (0.14 pm)

and geometric standard deviation 1.28 (1.75). Aerosol type is ammonium bisulfate. We model these relatively clean conditions
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in order to have significant amount of precipitation, which is the focus of this study. A gravitational coalescence kernel is
used, with collision efficiencies from Hall (1980) for large droplets and from Davis (1972) for small droplets. The coalescence
efficiency is set to one. There is no droplet breakup. Terminal velocities are calculated using a formula of Khvorostyanov and

Curry (2002). Model time step is 0.5s, time step for condensation is 0.1s and cell size is 100m in each direction. In GA17, we

assume that the rate of dissipation of the turbulent kinetic energy is 5 cm?s 2,

We use 2D instead of 3D LES, because it allows us to study much larger values of Ns(gn). The same processes are modeled in
2D as in 3D, e.g. condensation, advection, sedimentation, collision-coalescence, etc. In 2D, the modeled flow field has different

characteristics than in 3D;bu

We expect to see more variability between simulation runs in 2D than there would be in 3D, because of a much smaller number

of spatial cells. Rate of mixing of SDs between cells can also be different in 2D than in 3D. However, we think that the way

this variability is affected by parameters of the microphysics scheme in 2D is representative of how it would be affected in 3D.
5.2 Simulation strategy

Typically, in LES there is a random perturbation of initial conditions, e.g. of temperature and humidity. In LES with particle
microphysics, initial conditions may also differ in SD attributes, because they are often randomly initialized. This randomness
in initial conditions leads to differences in results between simulation runs, independently of AON. To understand the role of
AON, we isolate its effect by comparing dynamic and kinematic simulations. In dynamic simulations, the pressure equation is
solved, meaning that different realisations-realizations of microphysics lead to different flow fields. In kinematic simulations,
flow field is prescribed. Our strategy is to run an ensemble of dynamic (B)-simulationssimulations, denoted with D, with random
differences in initial conditions. We consider this ensemble as a control group, because this is the way LES is usually done.
From dynamic simulations, we select three realizations: one with little, one with medium and one with high amount of rain

(LR, MR and HR, respectively). Flow fields from these simulations are used to run ensembles of kinematic simulations. Sizes

------- —In-theseki te-si tonsIn kinematic simulations, initial conditions do not

NMe-look-atprecipitationbecause-itis-animportant-observable-that stronely-depend s-en-Our goal is to study convergence of
recipitation, which is a variable sensitive to modeling collision-coalescenceef-droplets—In-each-simulation-a-single-cloud-is
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Clysgs ((P)) =[(P) = 196 -se ((P)), (P) + 196 -se ((P))].

345 The 95% confidence-interval-of () -is—(Sheskin; 2020, p-217):

n—1 n—1
oo n=1) "N Fo02, 0 1)] ’

where—{a#yHs the-inverse- CDFof the-chi-squared-distributionWe also study convergence in simulations without collision-coalescence,

to make sure that convergence in simulations with collision-coalescence is only related to AON. Number of simulations of each

type is give in table 2.

w (57) - )

Clsss (o(P)) =

er-To generate velocity fields for kinematic simulations
we run numerous dynamic simulations. Our goal is to find three velocity fields that are-expeeted-to-would give significantly
different amounts of rain. These-veloeityfields—will Hater-beused-inkinematie-simulations—In a single dynamic simulation,

355 the amount of precipitation depends not only on the realized flow field, but also on the realization of the AON algorithm.
This means that rain from a single dynamic simulation is not representative of the expected amount of rain from a series of
simulations with the same velocity field. To be sure that we select velocity fields that will give different amounts of rain, first
we chose a candidate velocity fields based on the amount of rain in the single dynamic run, and then we run-ran 20 kinematic

simulations and use-used the average from these simulations—to-ealeulate-20 simulations as the expected amount of rain for

360 a given velocity field. Note that these 20 simulations were just a preliminary ensemble to estimate the expected amount of
precipitation, and that the final number of simulations was much larger (it is given in table 2). Based on this procedure, we
selected the three velocity fields for kinematic simulations: LR, MR and HR. Infig—6-weshow-afrequency-histogram—of
The histogram of the distribution of P from-the-ensemble-of dynamicsimulations—in_the dynamic simulation ensemble is
shown in fig. 6. These highlighted bins delineate the range of original precipitation values from the velocity fields that were

365  considered.

Besides using different flow fields, we study sensitivity to the model of SGS advection of SDs, to the SD initialization
method, and we run simulations without collision-coalescence. A list of all simulation types is given in table 1.
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Figure 6. Frequency histogram of P from the ensemble of dynamic simulations with Né}?“’ =102, Horizontal axis is bin center. Bin width
is 7.5-10*mm. Vertieal-The vertical axis is the number of simulations with P within a bin. The bins in burgundy eeteur-show the expected
rain amount for LR, MR and HR velocity fields (left to right).

5.3 TimeseriesTemporal development of cloud

In this section we discuss temporal-development-time series of general cloud properties in the D, LR, MR and HR scenarios
(with collision-coalescence). This is done to give the readers an idea about how the modeled cloud develops. Time series of
cloud top height (CTH), cloud cover (cc), cloud water path (CWP), rain water path (RWP) and precipitation are plotted in fig. 7.
The results are ensemble averages. For brevity, only results for Né%in) = 100 are shown. Time series for other values of Né%in)
are similar and are available as supplemental information.

Time series of CTH, cc and CWP are smoother in dynamic than in kinematic simulations. In dynamic simulations, there
are differences between simulation runs in-the-mement-at the moment when the cloud starts to develop. When averaged over
simulation runs, the results are smooth. In kinematic simulations, cloud develops in a very similar way in all simulations within
an ensemble. Therefore, the ensemble average resembles a single dynamic simulation in that it changes significantly at short
time scales. This illustrates that, unsurprisingly, CTH, cc and CWP are more sensitive to the air flow than to the realization of

collision-coalescence.
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Table 1. List-Configuration of simutated-CC easessimulations. Columns, with-ensemble-sizesfrom left to right, are: Configuration name;
Type of flow field (dynamic or kinematic); Collision-coalescence on/off flag; Method for SD initialization; Model of SGS advection.

name_ flow field | coalescence SD initialization SGS SD advection
D no coalescence D no_ ~constant SD”-init no
LR no coalescence LR no, ~constant SD™-init no
MR no coalescence | MR no ~constant SD”-init no
HR nocoalescence, |  HR Bno ~constant SD’-init no
1D 260D tyes 264 constant SD"-init 66600
5—HLR 50LR | 26tyes 264 constant SD-init 66ino
2 MR 36+MR | 366yes 264 constant SD-init 766n0_
HOHHR S6HR S0yes. 3+ constant SD”-init_ 25ino,
+6°-D mixing 26D, 20yes, H constant SD”-init 200GA17
46 Rmixing | HLR H0yes. 19 constant SD”-init 232GA17.
MR mixing MR yes “constant SD"-init GAL7,
HR mixing HR yes “constant SD"-init GALT,
HO-HR £ 6HR 6yes. | +lconstant SD” fixed:init_ 1690
HR L HR yes SeonsycAnit. no

In all scenarios, cloud starts to develop at around 1500s. Afterwards-Afterward, it deepens with time, reaching maximum cc
at around 5500s and maximum CWP at-areund-between 7000s and 8000s, depending on the case. In kinematic scenarios, rain
appears shortly after CWP reaches its maximum. The cloud almost entirely disappears at around 9500s (CWP close to 0). A
second cloud starts to develop near the end of the simulation, indicated by an increase in CWP. The differences in rain between
LR, MR and HR are explained by differences in CWP, with highest CWP giving most rain. In MR and in HR, CWP steadily
increases until rain is formed. The difference is that CWP and CTH reach higher values in HR than in MR. In LR, there are

multiple local maxima of CWP, each of them smaller than the maxima in MR and HR.
5.4 Numerical convergence of preeipitationin simulations without collision-coalescence

To reliably study convergence of the collision-coalescence algorithm, we first need to make sure that the model of diffusional
growth has converged. The time step for condensation used in all simulations, 0.1s, was found to give converged results (not
shown). Here we focus on convergence with the number of SDs. Time series of basic cloud properties (cloud water content,
cloud cover and cloud top height) agree for N > 50 (they are plotied in the Supplement). Convergence of the DSD is
analyzed by comparing profiles of concentration, mean radius and relative dispersion of radius of cloud droplets (fig. 8). Out

of the three parameters, relative dispersion is slowest to converge as it requires V. (bin) - 1000.
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Figure 7. Time series of ensemble averages of cloud top height, cloud cover, cloud water path, rain water path and surface precipitation for
D, LR, MR and HR scenarios with Nét[’)in) = 100. Cloud top height is the vertical position of the topmost cloudy cell. Cloud cover is the
fraction of columns with at least one cloudy cell. Cloudy cells are cells with cloud water mixing ratio greater than 10~°. Cloud droplets are
droplets with 0.5 pm < r,, < 25 pm. Rain drops are droplets with 25 ym < r,,. Surface precipitation, CWP and RWP are domain averages

divided by CC in order to obtain values representative of the cloudy area.
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Table 2. Simulation ensemble sizes for all simulation types (defined in table 1) and all tested values of V. (PIn) and of At oal-

no coalescence mixing
NG | Afeouls] | LR | MR |HR | D |LR |MR |HR| D | LR | MR | HR | D | HRfi | HREi
ot | 01 1200 | 200 | 200|600 | 1 | L | L |100 | 101 | 201 | 100 | 401 | 100 | 201
5100 | 00 | 150 | 201 | 201|601 | L | L | 1L |10L |99 | 192 |98 |40l | 0O 0
102 | 01 200 | 201 | 200|700 | 1 | L | L |99 | 101 | 187 | 101 | 400 | 100 | 201
10° Ol |50 | 50 |31 ]300 L | L | L [101 |41 | 5L |4 |151 | 100 | 101
5100 | oL |0 | 0 J100] 0|0 |0 |0 |0 |0 |0 |4 |0 |37 | 50
10! Ol |20 |20 |11 195 L | L | L |sL |1 |2 |1 10| 9 1L
4100 | o0 || il 19 23| L | Lo |1 [ |1l |2 | 1|55 | 0 0
10° | o1 |6 | 6 |11 |109]0 | 0 |0 |0 |6 |1 |6 |2 |0 0
102 | 05 199 | 200 1981200 0 | 0 |0 |0 |0 O |0 ]O | O 0
102 | 005 199 | 200 2001200 0 | O |0 |0 |0 O |0 O | O 0

Note that the relative dispersion around 0.2 is within the lower part of the range of values observed in cumuliform (Lu et al., 2013
395 and stratiform (Miles et al., 2000; Pawlowska et al., 2006) clouds. This indicates that the DSD is realistic, an important point

because Lagrangian models tend to generate narrow DSD. A too narrow DSD would results in a too low rate of collision-coalescence
and for slow collision-coalescence it is more difficult to reach convergence (Dziekan and Pawlowska, 2017). Therefore, studyin
convergence for an unrealistically narrow DSD could give too strict convergence requirements.

5.5 Numerical convergence of precipitation

400  From now on, only simulations with collision-coalescence will be discussed. Profiles of precipitation flux for different number
of SDs are shown in fig. 9. We find that if there are differences between these profiles, they are similar at all levels (with
convergence of precipitation at one level is representative of convergence in the entire cloud. Therefore, we choose to study
surface precipitation in detail, in particular the accumulated surface precipitation P. We denote ensemble mean with (P)

405  and ensemble standard deviation with o (P). For estimating errors of ensemble statistics, we use the following formulas, The

standard error of (P) is:

se((P)) = U(\/?, 3)

where n is ensemble size. The standard error of o( P) is (Rao, 1973, p.438):
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Figure 8. Profiles of cloud droplet concentration (top row), cloud droplet mean radius (center row) and relative dispersion of cloud droplet
radius (bottom row) from simulations without collision-coalescence. Profiles are averaged over cloudy cells, over the time interval between

18005 and 9600s, and over the ensemble of simulations.

selo(P) = 5 (P (7)) = 2Pyt @
The 95 % confidence interval of (P) is:_
Clysys ((P)) =[(P) = 1.96 -se ((P)) , (P) +1.96 - se ((P))]. 5)

The 95 % confidence interval of o (P) is (Sheskin, 2020, p.217):

n—1
£(0.025,n—1)

n—1
£(0.975,n—1)

;o(P) : (6)

parameters-of-the-eollision-coaleseence-medel—Figure 10 shows sensitivity of surface precipitation to At..,), the time step
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Figure 9. Profiles of precipitation flux in simulations with collision-coalescence. Profiles are averaged over all cells, over the time interval

between 1800s and 9600s, and over the ensemble of simulations. Time step for coalescence is Acgay = 0.15.

with which coalescence is modeled. We find no statistically significant impact of At.oa1 on (P) or on o (P) for Ateoa < 0.5s.

Sensitivity to time step was tested only for Négn) = 100, because box simulations showed that results converge for the same

N | Sensitivity-Study of sensitivity to NSI™ is-diseussed-in-the-subsequent

seetionsthat is discussed next was done for A 4 = 0.1s.

55.1 Cenvergeneeof{P)with-N o)

value of Atca1, independent of the value of N,

Mean surface precipitation for differing number of SDs is shown in fig. 11. We find that (P) varies with Ns(gn) in a non-trivial

way, similar in all four scenarios. Mean precipitation is the highest for Ns(gin) = 10. Then, there is a large decrease in (P)
bin) bin) — 50 and N(bln)

when NéD 103, depending on
the scenario. Beyond this minimum, (P) slowly increases (see subplots e-h). Uncertainties in (P} are large (in particular in D)

is increased from 10 to 50. A minimum of (P) is found between NS(

and the 95% confidence intervals often overlap. However, the center of the confidence interval systematically increases with
Ns(gin) in D, LR and MR (subplots e-g). The fact that this happens in three independent scenarios is an indication that the
increase of (P) with Ns(%in) for Ns(lf-)in) >10%isnot a just a random, statistically insignificant effect. In HR, unlike in the other
scenarios, there is evidence for convergence of (P) for Ns(gn) > 5x 103, Centers of confidence intervals are at similar positions
for NI =5 % 103, N{P™ =4 % 10* and for N{2™ =105, and the intervals are small. For N{%™ = 104, the confidence
interval center is lower, but the interval is large and covers centers of neighbouring-neighboring intervals.

Changes of (P) for Ng (bin) < 10 are consistent with results of box simulations of collision-coalescence and of CC simula-

!
tions without collision- CO&]CSCCHCCWMWWM%@SB%&A%Q—M@M

simulation types converge for N2 = 103 (see section 3 and section 5.4).
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Figure 10. Ensemble mean and standard deviation of accumulated precipitation at the end of a simulation against time step for coalescence

in four scenarios of a CC simulation with Négm = 100. Error bars represent the 95% confidence interval.

Inerease-However, the increase of (P) for

bin
e

>10%in D, L

R and MR cannot be easily explained by box simula-

tions nor by CC simulations without collision-coalescence;-beeause-mean-results-in-these-types-of-simulations-convergefor
Aé&g%%@;g—..w This suggests that (P) may be affected by te-too large variance of the DSD, which does not converge in box

simulations even for Ns(gn) > 103. The fact that (P) quickly convergence with At ., supperts-is consistent with this hypoth-
esis, because At does not affect the variance of the DSD. A potential mechanism linking DSD variance with precipitation
includes erroneous spatial distribution of droplets and mixing of droplets between cells. Too large variance and correct mean of
the DSD in box simulations corresponds to a situation in which in LES differences between DSD in neighbeuring-neighboring
cells are larger than expected. There are some cells with more large droplets than expected, and some cells with less large
droplets than expected. In an ensemble of independent boxes, these differences average out. However, in 2D simulations, mix-

ing brings together droplets from different cells. %PM%WHW&M%%%W&WM

To show how the spatial distribution of

changes with IV, (bin) in fig. 12 we show the probability density function of rain water content at four moments, from just before

the onset of surface precipitation until its maximum. We find that the distribution narrows with increasing V., (bin). For small

rain within the cloud
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Figure 11. Ensemble mean of precipitation against number of super-droplets for four scenarios: D, LR, MR and HR. In (e-h) the same results
are shown as in (a-d), but without N, (>n) _ 10 Error bars show the 95% confidence interval.

N, (bin), the distribution is bimodal, in particular at earlier time. As NV, (bin) is increased, the smaller mode disappears, and we
et a single mode, with a maximum for smaller values of rain water content than the maximum of the larger of the two modes
observed for small [V, (bin). The distribution converges for similar values of IV, (bin), as required for the convergence of (P).

5.5.1 Convergeneeof-o-(2)-with N )

Standard-The standard deviation of precipitation for differing number of SDs is shown in fig. 13. In dynamic simulations
(subplot a), o(P) is large for Ns(lf)in) = 10, then sharply decreases for Ns(%in) = 50 and does not change significantly as Né%in)
is further increased. Most of the 95 % confidence intervals are overlapping for Ns(%in) > 50. The relative standard deviation
(subplot e) is around 1.5 for Négn) > 50, although there seems to be a (not statistically significant) decreasing trend for

Ns(gn) > 10%. The relatively low sensitivity of o(P) to Ns(lgn)

in dynamic simulations shows that precipitation is more sen-
sitive to differences in the flow field, which can be a consequence of small random perturbations of initial conditions, than to
differences in realization of the collision-coalescence model of particle microphysics.

In kinematic simulations (subplots b-d) standard deviation of precipitation is more sensitive to Né]f)in) than in dynamic
simulations. There is a significant decrease of o(P) as Ns(gn) is increased (except for small Ns(kf)in) in HR). The relative

standard deviation has a maximum for Ns(gn) between 50 and 100, and decreases for higher Ns(gn) (subplots f-h). This shows
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that in the absence of differences in flow field, precipitation is governed by realizations of the collision-coalescence model.

Comparing D with MR, which is the kinematic case with the most similar (P}, we find that o(P)/(P) in dynamic simulations

is ¢ imes-hi much larger than in kinematic simulations—This-is-another-example-of-the-faet, from around 4 times
larger for low N2™ to up to 70 times larger for laree N2 This supports the conclusion that precipitation primarily depends

on the realized flow field and not on the realization of AON.
5.6 Sensitivity to SD initialization method

Collision-coalescence in particle microphysics is sensitive to the way SD attributes are initialized. Therefore, the way precip-
itation changes with the number of SDs could depend on SD initialization. To check this, we test convergence for three types
of SD initialization that were introduced in section 2.1: &.onst-init, “const SD”-init and ”const SD” fixed-init. In ”const SD”’
fixed-init the outermost bin edges for dry radius were set to 1nm and 5 um. For all methods, the initial DSD averaged over a

large number of cells agrees very well with the prescribed distribution (fig. 2 (a) shows this, albeit for a different distribution).

All methods give very good representation of the initial DSD. Comparison of results for different initialization methods in the
HR case is shown in fig. 14. We see only minor differences between “const SD”-init and ”const SD” fixed-init. Both methods
use bins to make sampling of the initial aerosol radius more even, but differ in the way the entire bin range is selected. Re-
cently, Hill et al. (2023) found differences in precipitation between different implementations of particle microphysics, both

using AON and binned initialization. Differences in details of bin initialization were proposed as one of potential reasons for
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Figure 13. Ensemble standard deviation (a-d) and relative standard deviation(e-h) of precipitation against number of super-droplets for

four types of simulations: D, LR, MR and HR. In (a-d), error bars show the 95% confidence interval. In (e-h), error bars show the error
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the observed discrepancies. Good agreement between “const SD”-init and “const SD” fixed-init in our simulations suggests

; ith. e(@(P)/(P))
e(o(P)/(P)) estimated with: B/

that some other factor is responsible for the discrepancies discussed in Hill et al. (2023).

The &const-init gives mueh-significantly different results than bin-the bin initialization methods. In onst-init there is very
little precipitation when Ns(gﬂt) is small. As more SDs are used, the amount of precipitation increases. It is plausible that all
methods of initialization should converge for large enough number of SDs. However, even for Négit) = 10%, which was the
largest number of SDs that we were able to model in & opst-init, &const-init gives less precipitation than the other methods.
Unterstrasser et al. (2017) showed that £.onst-init requires a huge number of SDs in box simulations of collision-coalescence,
and the authors hypothesized that it may require fewer SDs in cloud simulations. Our results show that this is not the case: in
2D simulations &.opnst-init has the same deficiencies as in box simulations. It requires a very large number of super-droplets,

unattainable in 3D LES, to get convergence in precipitation. For fewer SDs, it gives significantly too little precipitation.

5.7 Sensitivity to SGS motion of SDs

In multi-box simulations, mixing of droplets between cells helps achieve convergence of collision-coalescence modeling. In
CC simulations discussed so far, mixing was caused by the resolved-scale motion and by sedimentation, but there was no
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should make mixing more efficient. Convergence of precipitation statistics with and without the GA17 model is compared

mixing model is used. In HR, (P) converges at around 21 mm already for N\>™ = 102, and even N2™ — 10 gives onl

&~ 22mm). In LR and MR, (P) varies with N{pin)

a small error similarly with and without SGS motion, i.e. there is a

minimum for N = 102 and an increase for N, > 102 However, the (relative and absolute) difference between results
for NN, (bin) < 102 and for N, (bin) _ 102 is smaller with the GA17 model than without it. In D simulations with GA17, (P

does not change in a statistically significant way, albeit the errors are large. The relative standard deviation of precipitation is
decreased by the SGS motion of SDs.
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Figure 15. Mean and relative standard deviation of accumulated precipitation against the number of SDs for simulations with (red) and
without (black) the GA17 model of SGS motion of SDs.

6 Conclusions

Our study shows that using particle microphysics it is more difficult to reach numerical convergence of precipitation in cloud
simulations, even for a fixed flow field, than it is to reach convergence of mean DSD in an ensemble of box or multi-box

simulations of collision-coalescence. In general, convergence requirements are less strict in strongly precipitating clouds
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than in lightly precipitating clouds. Mixing of SDs between cells helps reach convergence, therefore it can be expected that

recipitation converges faster in more turbulent than in less turbulent clouds.
It is relatively easy to have convergence with At..,. Mean precipitation in our isolated cumulus simulations converged for

Atcoal = 0.5s. The same time step length was also sufficient in simulations of cumulus cloud fields (Dziekan et al., 2021).
However, box simulations presented in this text and stratocumulus cloud field simulations from Dziekan et al. (2021) required
Atcoa1 = 0.1s. This suggests that At.,, = 0.1s is a safe choice for cloud modeling. We used the linear sampling technique.
Quadratic sampling may allow for longer time steps (Unterstrasser et al., 2020). Variance of precipitation in cloud simulations
and variance of the DSD in box simulation are not sensitive to Atcoa).

It is more difficult to reach convergence with the number of SDs per cell. In box simulations, mean DSD converges for

N > 103, but variance of the DSD decreases with N.>™ without converging. In iselated-cumutus-simulations-multi-box

is attributed to a positive role of mixing. In cumulus simulations without SGS motion of SDs, mean precipitation converges for
Ns%m) > 5 x 102, but only in the most heavily precipitating case. In cases with less precipitation, we do not see convergence of
mean precipitation —Fhe-maximum-vakue studied-was-even for NSI™ = 105, Typieatly LBS is-donefor VoL around-102- Fhis

ady-sugee hatsuch-simulationsmay-underestimate surface precipitation tn-partictlar tn-ightly precipitating-etondsUsing
amodel for SGS motion of SDs significantly increases the amount of precipitation, helps achieve convergence in precipitation
and decreases variability between simulation runs. These effects are attributed to enhanced mixing, highlighting its positive
impact on convergence that was also found in multi-box simulations. For this reason, we would strongly recommend modeling.
SGS motion of SDs in LES. Note that the splitting-merging algorithm of Schwenkel et al. (2018), which was not included in

this study, could also help achieve convergence. Variance of precipitation in an ensemble of cloud simulations decreases with
N{R™. but only if the same flow field is used in the ensemble. If the flow field s different in different simulations, e.g. due
LES, the increased variance in the number of collisions in particle microphysics does not affect variability in rain between

simulation runs, because differences in realized flow fields are more important..

Appendix A: Periodic synthetic turbulence model

In multi-box simulations, incompressible isotropic turbulence is modeled as a sum of random Fourier modes. The model is

similar to that used in Sidin et al. (2009), but the generated velocity field is periodic because of the bound. conditions in
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multi-box simulations. We shall assume periodic boundary conditions in the space variable r = (x, v,

u(z+n,L,y+nyL,z+n.L)=u(r+nl)=u(z,y,z), (A1)

for all x, y, z and all signed integer n,,n,,n., Where L is called the period. It is enough to consider the restriction of the flow
into a periodic cubic box of side L. Using Fourier series we write the velocity field as

u(r,t) =Y _a(k,t)explik-r] (A2)
k
with
2 2
b= e (A9

A2) reduces to:

ur) =3, > [anm(t) X knmlcostknm 1)~ [bnm () X knmlsin(knm )., (A4)

where k = k/|k| is the unit vector in the direction of k and M (n) is the n-dependent multiplicit (or degeneracy) of wavevectors

k with the same magnitude k,, = |k . For a given value of n (numbering the magnitude k,, = |k , the index m

numbers the wavevectors Ky, ,, With

oo = Honmy =1 M) (A3)

The time evolution of the random vector coefficients a,, ,,,(t) and b,, ,,,(t) reads

an,m(t + 6t> =TnQnm (t) +on V 1- r%&av (A6)
brm(t+6t) =rpby m () + on/1—1r2&s, (A7)
form=1,...,M(n)/2. In the expression above and &, are independent random vectors, with components taken from a

Gaussian distribution with zero-mean and unit variance. The values of a t) and b t) for m < 0 are obtained from:
@ om () = Z@nm(t),  nom () = bm(t). (A8)

The remaining quantities are: the relaxation function

T = exp(—wy0t), (A9)
with frequencies

n o KB k), (A10)
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Kolmogorov energy spectrum in the inertial subrange

E(ky) ~ K, /%, (A11)
variances
02 = B(k,) Ak, /M (n) (A12)

and differences in wavevector magnitudes

1

Akn,:§(/€n+1—kn—1)7 2<n<N-1, (A13)
1 1

Ay =5k = k1), Aky =3 (ky —ky-). (A14)

Validity of the periodic model is tested by comparing pair separation statistics with results from the non-periodic model

of Sidin et al. (2009). Initial pair separation is equal to the Kolmogorov length assumed to be 7 = 1 mm. The size of the largest

eddies is L = lm. In the non-periodic model, 200 wavevector magnitudes were used that form a geometric series between
L and 7 (Sidin et al.,, 2009). For each wavevector magnitude, 50 wavevectors were randomly selected. In the periodic model,
we used magnitudes of all periodic wavevectors between L and 7). For each wavevector magnitude, 1 we randomly selected
min(10, M(n)) wavevectors, where M (n) is degeneracy, Time step was 0.1s. Results are plotted in fig. A1. We find that pair
separation is in the periodic model is somewhat larger. However, given that the choice of ¢ in multi-box tests is arbitrary, we
decide that the periodic model is sufficiently realistic.
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