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Abstract.

Numerical convergence of the collision-coalescence algorithm used in Lagrangian particle-based microphysics is studied in

2D simulations of an isolated Cumulus Congestus (CC) and in box
:::::::::
/multi-box simulations of collision-coalescence. Parameters

studied are the time step for coalescence and the number of super-droplets per cell. Time step of 0.1s gives converged droplet

size distribution (DSD) in box simulations and converged mean precipitation in CC. Variances of the DSD and of precipitation5

are not sensitive to
:::
the time step. In box simulations

:
, mean DSD converges for 103 super-droplets per cell, but variance of

the DSD does not converge. In CC simulationsmean
:::::
Fewer

::::::::::::
super-droplets

:::
per

::::
cell

:::
are

:::::::
required

:::
for

::::::::::
convergence

:::
of

:::
the

:::::
mean

::::
DSD

::
in

::::::::
multi-box

::::::::::
simulations,

::::::::
probably

::::::
thanks

::
to

::::::
mixing

::
of

::::::::::::
super-droplets

:::::::
between

::::
cells.

::::::::
However,

:::::
many

:::::
more

::::::::::::
super-droplets

::
are

:::::::
needed

::
in

:::
CC

::::::::::
simulations,

::
if

:::
the

:::::::
sub-grid

:::::
scale

::::::
motion

::
of

::::::::::::
super-droplets

::
is

:::
not

::::::::
modeled.

:::::
Mean precipitation converges for

5× 103, but only in a strongly precipitating case
:::::
cloud. In cases with less precipitation, mean precipitation does not converge10

even for 105 super-droplet per cell. The result that more
:::::
Using

:
a
::::::
model

:::
for

:::::::
sub-grid

::::
scale

:::::::
motion

::
of super-droplets are needed

:::::
(what

:::::::::
strengthens

::::
their

:::::::
mixing)

:::::
helps

::::::
achieve

:::::::::::
convergence

::
of

:::::::::::
precipitation in CC simulationsthan in box simulations indicates

that too large differences in the DSD between cells can reduce precipitation in cloud simulations.
:
,
::
in

::::
line

::::
with

:::::::::
multi-box

::::::
results. Variance in precipitation between independent CC runs is not affected by the number

:::::
more

:::::::
sensitive

::
to

:::
the

::::::::
resolved

::::
flow

::::
field

:::
than

:::
to

::
the

:::::::::::
stochasticity

::
in

::::::::::::::::::
collision-coalescence of super-droplets,

::::
even

:::::
when

:::::
using

::
as

::::
little

::
as

:::
50

::::::::::::
super-droplets

:::
per15

:::
cell. This study suggests that parameters typically used in large-eddy simulations (LES) with particle microphysics can lead to

underestimation of rain in lightly precipitating clouds.

1 Introduction

Particle microphysics (also know
:::::
known

:
as Lagrangian particle-based microphysics, Lagrangian Cloud Model or super-droplet

microphysics) is a class of Lagrangian methods for numerical modeling of cloud microphysics that has been developed in the20

last decade (Shima et al., 2009; Andrejczuk et al., 2010; Sölch and Kärcher, 2010; Riechelmann et al., 2012). In particle

microphysics, numerical objects called super-droplets (SDs, also known as simulational particles) are used as proxies for
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hydrometeors. Similarly to the more common Eulerian bin models, particle models explicitly resolve evolution of the DSD.

There are several advantages of particle models that make them a compelling alternative to bin models (Grabowski, 2020):

lack of numerical diffusion, easy modeling of multiple hydrometeor attributes (e.g. chemical composition), scaling down to25

direct numerical simulations, among others. However, modeling of collision-coalescence has proven to be difficult in particle

microphysics. A few algorithms have been developed to do this, see Unterstrasser et al. (2017) for a review. Out of these, the

all-or-nothing (AON) algorithm from the Super-Droplet Method (SDM) of Shima et al. (2009) was shown to give the most

accurate DSD in box simulations (Unterstrasser et al., 2017) and has been widely adopted (Hoffmann and Feingold, 2021;

Dziekan et al., 2021; Unterstrasser et al., 2020; Arabas and Shima, 2013; Shima et al., 2020).30

A recent study has found discrepancies in rain production between different particle models that use AON, although the

models agree well in modeling condensational growth (Hill et al., 2023). This shows that better understanding of numeri-

cal convergence of AON is necessary before particle models can become the benchmark for microphysics modeling. Several

studies have shown that AON is sensitive to the number of SDs, to the numerical time step and to the way SDs are initial-

ized (Shima et al., 2009; Unterstrasser et al., 2017; Dziekan and Pawlowska, 2017; Dziekan et al., 2019; Unterstrasser et al., 2020)35

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Shima et al., 2009; Unterstrasser et al., 2017; Dziekan and Pawlowska, 2017; Schwenkel et al., 2018; Dziekan et al., 2019; Unterstrasser et al., 2020)

. Detailed studies of numerical convergence of AON were done so far only in simulations of pure collision-coalescence in a

box (Unterstrasser et al., 2017) and in a 1D column (Unterstrasser et al., 2020). It was found that criteria for convergence

of AON are different in 1D than in box simulations. This shows that to confidently model precipitation in LES with particle

microphysics, it is not sufficient to use parameters that give convergence in a box or a 1D column. The aim of this study is to40

better understand numerical convergence of AON in LES.

We begin with a study of numerical convergence of AON in simulations of collision-coalescence in a box model. Al-

though a similar study was done by Unterstrasser et al. (2017), we believe that it is valuable to repeat it for a number of

reasons. Firstly, our implementation of particle microphysics differs in details from that of Unterstrasser et al. (2017), so it

may converge in a different way
:::::::::
differently. Understanding convergence of our implementation in a box model is useful for45

planning convergence tests in more realistic simulations done afterwards
:::::::
afterward. Secondly, we compare with

:::::::::
one-to-one

::::::::
simulation

:::::::::::::::::::::::::::
(Dziekan and Pawlowska, 2017)

:
,
:::::
which

::
is

:
a more detailed reference model than it was done

:::
was

:::::
used in Unter-

strasser et al. (2017). This allows us to study convergence not only of the mean DSD, but also of the variance of
:::
the DSD.

Lastly, we validate results of Unterstrasser et al. (2017).

Guided bybox results, we proceed to
:::::
Next,

:::
we

:::::
study

::::::::::
convergence

::
of

:::::
AON

::
in

:::::::::
multi-box

::::::::::
simulations.

::::
This

:::::::::
simulation

:::::
type,50

:::::::::
introduced

::
by

::::::::::::::::::::
Schwenkel et al. (2018),

::
is

::::::
similar

::
to

::::
box

::::::::::
simulations,

:::
but

:::
the

::::::
domain

::
is
:::::::
divided

:::
into

:::::::
multiple

:::::::::::
coalescence

::::
cells

:::
and

::::::::::::
super-droplets

:::
can

:::::
move

:::::::
between

:::::
these.

::
In

::::
that

:::
way

::::
they

:::
are

:::::
more

::::::
similar

::
to

::::
LES

::::
than

:::
box

::::::::::
simulations

::::
and,

:::::
unlike

::
in

:::::
LES,

:::::::
reference

::::::::
solutions

::::
can

::
be

::::::::
produced

:::
by

:::::::::
one-to-one

::::::::::
simulations.

::::
The

::::
goal

::
of

:::::::::
multi-box

:::::::::
simulations

::
is
::
to
:::::
study

::::
how

::::::
mixing

:::
of

:::::::::::
super-droplets

::::::::
between

::::
cells

::::::
affects

::
the

:::::::::
minimum

::::::
number

:::
of

:::::::::::
super-droplets

::::::::
required

::
for

:::::::::::
convergence.

:

::::::
Finally,

:::
we

:
study numerical convergence of AON in 2D simulations of isolated cumulus congestus. It is a much more55

realistic simulation than was used before for convergence tests of AON. The same processes are included as in a LES
:
, with

the only difference being smaller dimensionality. The reason why we use 2D instead of 3D is that this decreases the required

2



computational power and memory size, allowing us to study a broader range of parameters. AON is a stochastic algorithm,

so it gives different realisations
:::::::::
realizations

:
of collision-coalescence in independent simulation runs. LES runs often also

differ due to random differences in initial conditions. These differences in initial conditions include random perturbations of60

thermodynamic variables (e.g. temperature and humidity) and random initialization of SD attributes. Stochasticity in AON,

as well as in initial conditions, leads to differences in flow fields, what can strongly impact results. To isolate the effect of

stochasticity of AON from stochasticity of initial conditions,
:
we use the same initial conditions in ensembles of simulations.

Moreover, to facilitate studying convergence of AON, we use the same flow field for different simulations. This way
:
, flow

field is not affected by different realisations
:::::::::
realizations

:
of AON. We also perform reference ”dynamic” simulations with65

differences in initial conditions and without a prescribed flow field. This allows us to assess the importance of stochasticity of

AON relatively to other sources of stochasticity in LES.

We start with a presentation of the particle microphysics scheme
:
, with emphasis on AON and on the SD initialization proce-

dure (section 2). Studies of numerical convergence of AON in box,
:::::::::
multi-box and in 2D simulations are presented in section 3

:
,

::::::::
section 4 and in section 5, respectively. Conclusions for cloud modeling are discussed in section 6.70

2 Particle microphysics

In Lagrangian particle micropyhysics methods
::::::::::
microphysics

::::::::
methods, particles in the air (aerosols, haze particles, cloud droplets,

rain drops, ice particles) are represented by computational objects called super-droplets. In most cases, each SD represents a

large number of
::::::::
numerous identical real particles. The number of real particles a SD represents is called its multiplicity ξ

(also known as weighting factor). Another commonly-used SD attribute is spatial position. Two additional attributes are useful75

for modeling warm microphysics: wet radius, which describes the total volume of a particle, and dry radius, which describes

the volume of the dissolved matter. For most processes (advection, condensation, sedimentation), changes of SD attributes

are described by the same equations that describe how single real particles are affected by these processes. However, it is not

straightforward how to model collision-coalescence of SDs. In the next two sections
:
,
:
we present parts of the microphysics

model that are particularly important for modeling collision-coalescence.80

2.1 Initialization of SD radii and multiplicities

Multiplicities and radii of SDs are initialized from a prescribed initial size distribution. In this section
:
,
:
we describe common

methods for doing this. The prescribed radius can either be wet or dry radius. We denote the initial number of SDs per grid cell

with N
(init)
SD .

In one initialization method, all SDs have
::
the

:
same multiplicities and their initial radii are drawn from the distribution using85

inverse sampling (Shima et al., 2009; Hoffmann et al., 2015). Multiplicity is equal to the initial number of droplets in a cell

divided by N
(init)
SD . Following Unterstrasser et al. (2017), we refer to this method as ξconst-init.

Another method of initialization is to divide the initial distribution into bins of equal sizes on a logarithmic scale. We

denote the number of bins with N
(bin)
SD . Within each bin we randomly select radius of a single SD, and its multiplicity follows

3



from the initial distribution. It is not obvious what should be the choice of the leftmost and rightmost bin edges. Arabas90

et al. (2015) proposed to select
:::
bin edges so that multiplicities of SDs in the outermost bins is at least 1 (see Dziekan and

Pawlowska (2017) for details of the algorithm). In this method
:
,
:
bin edges depend on the volume of grid cells and, more

importantly, on N
(bin)
SD . When N

(bin)
SD is increased, the largest possible initial SD radius is decreased. To counter this, Dziekan

and Pawlowska (2017) proposed to initialize additional SDs using inverse sampling from part of the distribution to the right

of the rightmost bin. Note that the number of these additional SDs is rather small. In all simulations presented in this paper
:
,95

we have N
(bin)
SD ≤N

(init)
SD ≤ 1.01N

(bin)
SD . Following Dziekan and Pawlowska (2017), we will refer to this method as "constant

SD"-init.

Instead of using the algorithm for finding bin edges, one can simply prescribe them. We call this method "constant SD"

fixed-init. In this method,
:
no SDs are added to represent the part of the distribution to the right of the largest bin.

Unterstrasser et al. (2017) compared multiple methods of SD initialization and found that using bins to initialize radii (as100

in "constant SD"-init) is preferable because it requires the least SDs to correctly model collision-coalescence. In most of the

simulations presented in this paper,
:

we use the "constant SD"-init. In section 5.6 we study sensitivity to SD initialization

method.

2.2 Collision-coalescence of SDs: the AON algorithm

The AON algrithm
:::::::
algorithm, developed by Shima et al. (2009), is an algorithm for modeling collision-coalescence in La-105

grangian particle microphysics. It is derived from the stochastic description of the collision-coalescence of particles (Gillespie,

1975). In this description, it is assumed that the probability of collision between a pair of particles is known. This probability

is proportional to the coalescence kernel. AON is designed to give the correct expected number of collisions and to keep the

number of SDs constant. The drawback of AON is that it gives a variance in the number of collisions larger than the real

variance
:::::::::::::::::
(Shima et al., 2009). The probability that a pair of super-droplets i and j collide during some time interval is:110

P
(s)
ij =max(ξi, ξj)Pij , (1)

where Pij is the probability that
:
of

::::::::
collision

:::::::
between

:
two real particles with the same attributes

:::::::
identical

::::::::
attributes

::::
(e.g.

::::
wet

::::
radii)

:
as SDs i and jcollide during .

::
It
::
is
:::::
given

:::
by

:::::::::::::::::
Pij =Kij∆t∆V −1,

:::::
where

::::
Kij::

is
:::
the

::::::::::
coalescence

:::::::
kernel,

:::
∆t

:
is
:

the time

interval .
:::
and

:::
∆V

::
is
::::
cell

::::::
volume

:::::::::::::::::
(Shima et al., 2009).

:
Coalescence of SDs i and j represents coalescence of min(ξi, ξj) pairs

of real particles, each pair made of one particles
::::::
particle represented by SD i and one particles

::::::
particle

:
represented by SD j.115

Probability of SD coalescence can be greater than one, in particular for long time steps. This represents multiple collisions

between a SD pair within a single time step. Multiple collisions can be done only if the ratio of multiplicities of colliding SDs

is sufficiently high (Shima et al., 2009). Note that in ξconst-init it is not possible to have multiple collisions between a SD

pair, because their multiplicities are equal. For this reason
:
, in our ξconst-init simulations we adapt time step for coalescence to

maintain collision probability below 1. The "constant SD"-init method typically gives large differences between multiplicities120

of SDs. Thanks to that
:
, multiple collisions per time step are possible

:
, and we use a constant time step for coalescence in this

type of simulations
:::::::::
simulation.
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In some implementations of AON, the number of super-droplet pairs tested for coalescence per time step is equal to

NSD (NSD − 1)/2, where NSD is the number of SDs in a coalescence cell (the coalescence cell is typically equivalent to

an Eulerian grid cell, Dziekan and Pawlowska (2017)). This is known as quadratic sampling (Unterstrasser et al., 2017, 2020).125

However, the original AON method of Shima et al. (2009) uses a technique called linear sampling, which is designed to speed

up the algorithm. In linear sampling, ⌊NSD/2⌋ non-overlapping pairs of super-droplets are considered per time step. The no-

tation ⌊x⌋ represents the largest integer less than or equal to x. To obtain the correct expected number of collisions in linear

sampling, the probability of collision between a pair of SDs is increased to:

P
(s,l)
ij = P

(s)
ij

NSD (NSD − 1)

2
/⌊NSD/2⌋ . (2)130

Linear and quadratic sampling techniques were directly compared in Dziekan and Pawlowska (2017); Unterstrasser et al.

(2020). Unterstrasser et al. (2020) showed that quadratic sampling converges for a longer time step than the linear sampling

(Figure 6 b therein). Once converged, both techniques give the same mean and variance (Dziekan and Pawlowska, 2017;

Unterstrasser et al., 2020). Typically, the number of collision pairs tested per unit of time is smaller in linear sampling than in

quadratic sampling, despite the shorter time steps. Moreover, in linear sampling all collision pairs can be computed in parallel135

because they are non-overlapping. For these reasons, we use linear sampling in this work.

3 Box simulations

We model collision-coalescence of droplets in a well-mixed box. For simplicity, we use r to denote wet radius in this section,

as the dry radius is not important for collision-coalescence. We analyze the mean ⟨m⟩ and standard deviation σ (m) of the mass

density function m(lnr). The mass density function
:
,
:::::
which

:
is such that m(lnr)d lnr is the mass of droplets per unit volume140

in the size range from lnr to lnr+d lnr. The initial distribution of r is exponential in volume with 15µm mean wet radius and

142cm−3 droplet concentration, what gives 2gm−3 liquid water content. This distribution was used in Onishi et al. (2015);

Dziekan and Pawlowska (2017). The box volume is around 0.45m3 and it initially contains 64 million droplets. Simulations

are run for 300s. We use a gravitational coalescence kernel with collision efficiencies from Hall (1980) and from Davis (1972).

Three types of collision-coalescence models are compared: AON algorithm, one-to-one simulations and the stochastic coa-145

lescence equation (SCE). AON is discussed in section 2. One-to-one simulations are particle simulations with ξ = 1, i.e. each

real droplet is explicitly modeled. We use ξconst-init and linear sampling in one-to-one simulations. One-to-one simulations

produce a realization in agreement with the master equation (Dziekan and Pawlowska, 2017). As such, they are the most fun-

damental type of simulation used and are considered to produce reference results. SCE is an equation for time evolution of

the average DSD. It is typically used to model collision-coalescence in bin models. Dziekan and Pawlowska (2017) showed150

that the SCE gives correct average results for droplet populations greater than 107, so it should be valid in the box simulation

with 6.4× 107 droplets discussed in this paper. We solve SCE with the Bott (1997) flux method with bin scaling parameter

α= 21/10 and time step 0.1s. These parameters were found to give converged results.

One-to-one and AON simulations are stochastic. We run ensembles of these simulations and calculate
::
an

::::::::
ensemble

:::
of

:::::::::
one-to-one

::::::::::
simulations

::::
and

:::::::::
ensembles

::
of

:::::
AON

::::::::::
simulations

::::
for

:::::::
different

::::::
values

:::
of

:::::::
N

(bin)
SD .

:::::
From

:::::
these,

:::
we

::::::::
calculate

::::
the155
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::::::::
ensemble

::::
mean

:::
of

::
the

:::::
mass

::::::
density

:::::::
function

:
⟨m⟩ and

::
the

::::::::
ensemble

::::::::
standard

::::::::
deviation

::
of

:::
the

::::
mass

::::::
density

::::::::
function σ (m)from

the ensembles
:
.
:::
The

::::::::
ensemble

::::
size

::
in

:::::::::
one-to-one

:::::::::
simulations

::
is

:::::::
Ω= 10.

::
In

::::
AON

::::::::::
simulations,

::
it

::
is

:::::::::::::
Ω= 107/N

(bin)
SD :::

for
:::::::::::
N

(bin)
SD ≤ 102

:::
and

::::::::::::::
Ω= 107/N

(bin)
SD ::

for
::::::::::::
N

(bin)
SD ≥ 103. The SCE is deterministicand

:
,
::::::::
therefore

:
it
::::
does

::::
not

::::::
require

:
a
:::::::::
simulation

::::::::
ensemble

::::
and

:
it
:
does not explicitly model variance of the DSD. However, Gillespie (1975) estimated the variance of the number of droplets

in a given size range to be equal to the number of droplets in this size range. We validate this estimate by comparing it with160

one-to-one results.

3.1 Results of box simulations

First,
:
we check how numerical time step ∆tcoal affects AON simulations with N

(bin)
SD = 102, what is the number of SDs typical

for LES. In fig. 1,
:
we show DSDs at the end of the simulation for different time step lengths. There are no differences in ⟨m⟩

between ∆tcoal = 0.1s and ∆tcoal = 0.01s. Using ∆tcoal = 1s results in too large ⟨m⟩ for the largest droplets. ∆tcoal = 10s165

gives yet larger ⟨m⟩ for the largest droplets and also a decrease in ⟨m⟩ for droplets with radii between 40µm and 100µm.

Regarding fluctuations, we see that differences in σ(m) correspond to differences in ⟨m⟩, e.g. too large ⟨m⟩ for largest droplets

also gives too large σ(m) for largest droplets
:::
(Fig.

::
1
:::
(a)

:::
and

:::
(b)

:::
for

:::::::::::
∆tcoal = 10). From this test,

:
we conclude that mean DSD

converges for ∆tcoal = 0.1s and that fluctuations in DSD are not sensitive to ∆tcoal.
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10 2

10 1

100
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t(l
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(a)

100 101 102 103

r [ m]

10 4

10 3

10 2

10 1
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101
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gm

3
/u

ni
t(l

n(
m

))]
(b)

tcoal = 0.01 s tcoal = 0.1 s tcoal = 1 s tcoal = 10 s

Figure 1. (a) Mean and (b) standard deviation of the mass density function m for N (bin)
SD = 102 box simulations at t= 300s for different

time step lengths.

Next we check how results are affected by the number of SDs for ∆tcoal = 0.1s. In fig. 2 we show DSDs at the beginning170

and at the end of an AON simulation for different N (bin)
SD . Results of one-to-one simulations and of the SCE are plotted

for reference. The initial ⟨m⟩ is very well represented for all methods of radius initialization and agrees well with the SCE

initialization (fig. 2 (a)). The initial σ(m) in decreases approximately linearly with increasing N
(bin)
SD (fig. 2 b). N (bin)

SD = 105

gives smaller initial σ(m) than one-to-one
:
, despite much higher number of SDs in the latter (6.4× 107). The reason for this

are the differences in the radius initialization procedure. The mean DSD at the end of the simulation does not significantly175
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differ between different types of simulationswith the exception of ,
::::::
except

:::
for N (bin)

SD = 10, which gives too little droplets with

radii between 30µm and 130µm, and too many droplets with r > 130µm (fig. 2 c). Fluctuations in DSD at the end of AON

simulations decrease with increasing N
(bin)
SD (fig. 2 d). Standard deviation σ(m) is proportional to

√
N

(bin)
SD

−1

, in particular

for 103 ≤N
(bin)
SD ≤ 105. Even for N (bin)

SD = 105the ,
:
σ(m) in AON is much larger than the reference one-to-one result. It is

seen that σ(m) estimated from the SCE as the square root of the number of droplets,
::
as
::::::::
proposed

:::
by

:::::::::::::
Gillespie (1975)

:
, is larger180

than the one-to-one result, but much closer to it than σ(m) in AON with N
(bin)
SD = 105. Note that LES cells contain many more

droplets than our modeled box. Therefore in LES the difference between the expected σ(m) and the σ(m) modeled with the

AON algorithm for computationally feasible values of N (bin)
SD is larger than in the presented box simulations.
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t = 300 s
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t = 300 s

N(bin)
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N(bin)
SD = 103
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SD = 104

N(bin)
SD = 105

one-to-one
SCE

Figure 2. Mean and standard deviation of the mass density function m from box simulations at t= 0s (a-b) and at t= 300s (c-d). Two types

of Lagrangian simulations (SDM with ∆tcoal = 10s and for different N (bin)
SD ; one-to-one simulations) and the SCE are compared.

Differences in ⟨m⟩ between simulations for different combinations of N (bin)
SD and of ∆tcoal may potentially lead to differ-

ences in the mean amount of rain in LES with Lagrangian particle microphysics. To have a better view of this issue,
:
we plot185
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differences between ⟨m⟩ in one-to-one simulations and ⟨m⟩ in AON simulations with different N (bin)
SD (fig. 3). In the plot,

⟨m⟩ is multiplied by the terminal velocity to get the sedimentation mass flux of droplets of given size. This analysis con-

firms that results converge for ∆tcoal = 0.1s, irrespective of N (bin)
SD (fig. 3 a-c). Longer time steps result in underestimation

of the sedimentation flux for droplets with radii between around 40 and around 120 microns,
:
and in overestimation of sed-

imentation flux for other droplets. Regarding convergence with N
(bin)
SD , we find that AON results agree with one-to-one for190

N
(bin)
SD ≥ 103 (fig. 3 d). For N (bin)

SD = 10
:
, the mass flux is overestimated for r < 30µm and r > 130µm and underestimated for

30µm< r < 130µm. Using N
(bin)
SD = 102 underestimates mass flux for r > 50µm

::::::
(fig. 3

::
d).
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Figure 3. Differences between ⟨m⟩ from SDM (⟨m⟩SD) and one-to-one (⟨m⟩0) Lagrangian microphysics, multiplied by terminal velocity

vt. Results of box model simulations at t= 300s. Vertical error bars show the 95% confidence interval.

Initialization of droplet radii in Lagrangian particle microphysics is often stochastic (Shima et al., 2009; Unterstrasser et al.,

2017; Dziekan and Pawlowska, 2017). It is a source of random differences between simulations that is separate from the

stochastic collision-coalescence algorithm. We want to check how important are these two different sources of randomness for195

variance in the modeled DSD. We run ensembles of simulations that do not differ in the initial DSD, but differ only in the

8



realization of collision-coalescence. Comparison of these simulations with simulations that differ both in the initial DSD and

the realization of collision-coalescence is shown in fig. 4. The comparison is done for one-to-one simulations and for AON

simulations with N
(bin)
SD = 100. The initial ⟨m⟩ agrees well for all types of simulations (fig. 4 a). As expected, the initial σ(m)

is equal to zero for simulations without randomness in the initial DSD (fig. 4 b). At the end of the simulation,
:
⟨m⟩ agrees well200

between simulations with and without randomness in initial DSD (fig. 4 c). For droplets with r > 20µm, σ(m) at the end of

the simulation is also not sensitive to randomness in the initial DSD (fig. 4 d). Lack of randomness in the initial DSD results

in slightly smaller σ(m) for r < 20µm, σ(m) (fig. 4 d). Considering that collision-coalescence is responsible for formation of

large droplets,
:
and that smaller droplets are formed by condensation

:
, we conclude that the randomness in the initial DSD is not

important for mean nor fluctuations in large droplet production.205
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Figure 4. As in fig. 2, but comparing ensembles of simulations with and without randomness in the initial DSD.
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3.2 Summary of box simulations and comparison with previous studies

Box simulations of collision-coalescence with AON show convergence of ⟨m⟩ for ∆tcoal ≤ 0.1s, irrespective of N (bin)
SD , and

for N (bin)
SD ≥ 103. The standard deviation σ(m) is not sensitive to ∆tcoal, but decreases with increasing N

(bin)
SD . Variance of the

number of droplets in a size bin is approximately equal to the number of droplets. This relationship could be used to model the

stochastic nature of collision-coalescence in bin microphysics.210

Box model tests of the mean DSD in the AON algorithm were previously done by Shima et al. (2009); Unterstrasser et al.

(2017). Unterstrasser et al. (2020) did column simulations and some of them did not include sedimentation, which is equivalent

to box simulations. Shima et al. (2009) found relatively good agreement with the SCE for ∆tcoal = 0.1s and for N (bin)
SD ≈

2× 106. The time step requirement is the same as found in this work, but the required N
(bin)
SD is much higher. The latter is

probably because Shima et al. (2009) used the constant multiplicity initialization, which was found by Unterstrasser et al.215

(2017) to require many more SDs than their ”singleSIP” initialization, which is similar to our constant SD initialization.

Using the ”singleSIP” initialization, Unterstrasser et al. (2017) showed that results are close to converging for ∆tcoal = 1s

(fig. 19
::
18

:
therein, first column, second row), although shorter time steps were not considered

:
). An important difference be-

tween this work and Unterstrasser et al. (2017) is that the latter used quadratic sampling. Differences between linear and

quadratic sampling methods are discussed in section 2.2. Regarding convergence with N
(bin)
SD , Unterstrasser et al. (2017) found220

convergence for N (bin)
SD ≥ 103 (Fig. 19

::
18

:
therein, second column; there κ= 200 corresponds to N

(bin)
SD ≈ 103) and Unter-

strasser et al. (2020) did not find convergence for up to N
(bin)
SD = 103 (Fig. 6 a therein). Convergence tests in Unterstrasser

et al. (2017, 2020) were based on comparing the 0-th, 2-nd and 3-rd
::::
done

:::
by

::::::::
analyzing

:
moments of the DSD(

:
,
:::
and

:
it was

most difficult to obtain convergence of the 0-th moment ). These tests are good for looking for large errors, but do not reveal

smaller differences in the DSD.Small differences can nevertheless be important for rain formation, which depends on the225

large end of the DSD
::::
(total

::::::
droplet

::::::::
number).

::::
We

:::
find

::::::::
contrary

::::::
results,

:::
i.e.

::::
that

::::::
higher

::::::::
moments

::::::::
converge

:::::
more

::::::
slowly

::::
than

:::::
lower

:::::::
moments. To illustrate this, we consider our box simulations for N (bin)

SD = 102. In these simulations, ∆tcoal = 10s gives

significantly
::::::
visibly different large end of the DSD than ∆tcoal = 0.1s (fig. 1), but the difference in the .

::::
The 0-th moment is

only around
::::
(total

::::::
droplet

::::::::
number)

:::
and

::::
2-nd

:::::
(radar

::::::::::
reflectivity)

::::::::
moments

:::
are

:::::
larger

:::
for

:::::::::::
∆tcoal = 10s

::::
than

:::
for

:::::::::::
∆tcoal = 0.1s

:::
by

::::::::::::
approximately 0.5%

:::
and

:::::
30%,

::::::::::
respectively.

::::
This

::
is

:::::::::
consistent

::::
with

:::
the

:::::::
intuition

:::
that

::::::
higher

::::::::
moments

:::
are

::::
more

::::::::
sensitive

::
to

:::
the230

::::
large

:::
end

:::
of

::
the

:::::
DSD,

::::
and

:
it
::
is
:::
the

:::::
large

:::
end

::
of

:::
the

:::::
DSD

:::
that

::
is

::::
most

::::::::
sensitive

::
to

::::::::::::::::::
collision-coalescence.

The AON implementation from the libcloudph++ library, which is the implementation used in this paper, was also used in

box simulations
::::::::
described in Dziekan and Pawlowska (2017). That paper discussed convergence of t10%, the time after which

10% of cloud mass is turned into rain mass. Dziekan and Pawlowska (2017) found that for ∆tcoal = 1s mean t10% converges

for N (bin)
SD ≥ 103 (Fig. 4 therein). Dziekan and Pawlowska (2017) also showed that

::
the

:
standard deviation of t10% decreases235

linearly with the square root of N (bin)
SD (Fig. 5 therein). This is in agreement

::::
with our observation that σ(m) is proportional to√

N
(bin)
SD

−1

and with the theoretical prediction from Shima et al. (2009) (Sec. 4.1.4 therein).
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4
:::::::::
Multi-box

::::::::::
simulations

:::::::::
Simulation

:::::
setup

::
is

:::
the

:::::
same

:::
as

::
in

::::
box

::::::::::
simulations,

::::
but

:::
the

:::::::
domain

::
is

:::::::
divided

::::
into

::
C

:::::
equal

::::::::::
rectangular

::::
cells

:::
of

:::::::
volume

:::::::::
0.45m3/C.

:::::
Only

::::
SDs

::::
that

:::
are

::
in

:::
the

:::::
same

:::
cell

::::
can

::::::
collide

::::
with

::::
each

::::::
other.

::::::::::::
Super-droplets

:::::
move

::::::
around

:::
the

:::::::
domain

::::
with

::
a240

::::::
velocity

::::
that

::
is

:
a
::::
sum

::
of

:::
the

:::::::
terminal

:::::::
velocity

::::
and

::
of

:::
the

:::
air

:::::::
velocity,

:::::
which

::
is

:::::::::
calculated

::::
from

::
a

:::::::
synthetic

::::::::
isotropic

:::::::::
turbulence

::::::
model.

:::::::
Details

::
of

::
the

:::::::::
turbulence

::::::
model

::
are

:::::
given

::
in

::::::::::
appendix A.

::::
Side

:::::
walls

:::
are

:::::::
periodic.

::::
The

:::::::
turbulent

::::::
kinetic

::::::
energy

:::::::::
dissipation

:::
rate

::
is

:::::::::
10cm2s−3.

:::::::::::
Simulations

::
are

::::
run

::
for

::::::
300s.

:::
The

::::::
model

::::
time

:::
step

::
is
:::::::
adapted

::
to

::::
keep

:::
the

:::::::
Courant

:::::::
number

::
in

::::
each

::::::::
direction

::::::
smaller

::::
than

:::
one

::::
(but

:::
the

::::
time

::::
step

::
is

:::
not

::::::
longer

::::
than

:::::
0.1s).

::::
The

::::::::::
coalescence

::::
time

::::
step

:
is
:::::

equal
::
to
:::

the
::::::

model
::::
time

::::
step.

::::::
When

:::::::::
initializing

::::
SDs,

:::
the

:::::
entire

::::::
domain

::
is

::::::
treated

::
as

:
a
:::::
single

::::
cell.

:::::::::
Therefore,

::::::
N

(bin)
SD ::::::::

represents
:::
the

::::
total

:::::
initial

:::::::
number

::
of

::::
SDs

::::::
(minus245

:::
SDs

:::::
from

::::
’tail’

::::::::::::
initialization).

:::
The

:::::
mean

:::::::
number

::
of

::::
SDs

:::
per

:::
cell

::
at

:::
the

::::
start

::
of

:::
the

:::::::::
simulation

::
is

::::::::::::::::
N

(cell)
SD =N

(bin)
SD /C.

::::::
Initial

:::
SD

:::::::
positions

:::
are

:::::::
selected

::::::::
randomly

::::::
within

:::
the

:::::::
domain.

:::
We

:::
run

:::::::::
ensembles

:::
of

:::::::::
one-to-one

::::
and

:::::
AON

::::::::::
simulations

:::
for

::::::::
differing

:::::::
number

::
of

:::::
cells.

::::
The

:::::::::
ensemble

:::
size

:::
is

::::::
Ω= 30

:::
in

:::::::::
one-to-one

:::::::::
simulations

::::
and

:::::::::::::::::
Ω= 3× 106/N

(bin)
SD ::

in
::::
AON

:::::::::::
simulations.

:::
The

:::::
DSD

::
at

:::
the

:::
end

::
of
:::

the
:::::::::
simulation

::
is
::::::
shown

::
in

:::::
fig. 5

:
.
::
In

::::::::
principle,

:::::::::
one-to-one

::::::::::
simulations

::::::
should

:::::::
become

::::
more

:::::::
realistic

::
as

:::
the

:::::::
number

::
of

::::
cells

::
is
::::::::
increased

:::::::
(N (cell)

SD ::
is

::::::::::
decreased).250

::::
This

:
is
:::::::
because

::::::
droplet

::::::::
collisions

:::
are

:::::
local,

:::
i.e.

:::::::
droplets

::::
need

::
to

:::
get

::::
close

:::::::
together

::
in
:::::
order

::
to

:::::::
collide.

:::
We

:::
find

::::
that

::
in

:::::::::
one-to-one

::::::::::
simulations,

:::::
there

::
is

::
no

:::::::::
difference

:::
in

::::::
results

:::
for

:::::::::
N

(cell)
SD = 1

::::
and

:::
for

:::::::::::::::::
N

(cell)
SD = 6.4× 107

::::::
(fig. 5

:::
(a)).

::::
This

::::::
shows

::::
that

:::::
there

:
is
:::

no
:::::
error

::
in

:::::::::
assuming

:::
that

::::
the

::::::
domain

:::
is

::::::::::
well-mixed,

:::
i.e.

::::
that

:::::::
droplets

::::
are

::::::::
uniformly

::::::::::
distributed

::::::
within

:::
the

:::::::
domain.

:::
In

::::
AON

:::::::::::
simulations,

::::
each

::::
SD

::::::::
represents

::::::::
multiple

:::::::
droplets

::::
that

:::
are

:::::::::
uniformly

:::::::::
distributed

::::::
within

:::
the

::::
cell

::
in

::::::
which

:::
the

::::
SD

::
is

::::::
located.

:::
As

::
C

::
is
::::::::
increased

:::::
while

::::::
N

(bin)
SD ::

is
::::
kept

::::::::
constant,

:::
all

:::::::
droplets

::::::::::
represented

::
by

::
a
:::
SD

:::
are

:::::::
confined

:::
to

:
a
:::::::
smaller

:::::::
volume.255

::::::::
Therefore,

:::::::::
increasing

:::
C

:::::
leads

::
to

::::
less

:::::::
uniform

::::::
spatial

::::::::::
distribution

::
of

:::::::
droplet

:::::
sizes.

::::::
Results

:::::
show

::::
that

::::
this

:::
can

:::::
cause

::::::
errors

::
in

:::
the

::::::::::::::
domain-averaged

:::::
DSD

:::::
(fig. 5

:::::::
(b)-(d)).

:::
For

::::::
N

(bin)
SD :::::

large
:::::::
enough,

:::
box

::::::::::
simulations

:::::::
(C = 1,

:::::::::::::::
N

(cell)
SD =N

(bin)
SD )

:::::
agree

::::
with

:::::::::
one-to-one

:::::::::
simulations

::::::
(fig. 3

::::
(d)).

::::::::
However,

:::
the

::::
same

::::::
N

(bin)
SD :::

but
::::
with

::::
large

::
C

::::::
(small

::::::
N

(cell)
SD )

::::::
results

::
in

:::::::::
production

::
of

:::
too

:::::
large

::::::
droplets

::::::
(fig. 5

:::::::
(b)-(d)).

:::
The

::::::::
minimal

:::::
value

::
of

::::::
N

(cell)
SD ::::

that
::::
gives

::::::
correct

::::::
results

:::::::
depends

:::
on

::::::
N

(bin)
SD :

:::::::
N

(cell)
SD :::

can
::
be

:::::::
smaller

:::
for

:::::
larger

:::::
N

(bin)
SD ::::

(e.g.
:::::::::::
N

(cell)
SD = 10

:::::
works

::::
well

:::
for

::::::::::::
N

(bin)
SD = 104,

:::
but

::::::::::::
N

(cell)
SD = 12.5

::::
gives

:::::
errors

:::
for

::::::::::::
N

(bin)
SD = 102).

::::
The

:::::::
number

::
of260

::::::::::
coalescence

::::
cells

::::
does

:::
not

:::::
affect

:::::
σ(m)

::::
(not

:::::
shown

::
in
:::
the

:::::::
figure).

::
In

:::
line

::::
with

::::::::::
conclusions

:::
of

:::::::::::::::::::::::::::::::::::::::::
Schwenkel et al. (2018); Unterstrasser et al. (2020),

:::::::::
multi-box

::::::::::
simulations

::::
show

::::
that

:::::
fewer

::::
SDs

:::
per

:::
cell

:::
are

::::::
needed

::
to

::::::::
correctly

:::::
model

::::::::::::::::::
collision-coalescence

:::::
when

::::::
mixing

::
of

::::
SDs

:::::::
between

::::
cells

::
is
::::::::
included.

:::
For

::::::::
example,

::::
box

:::::::::
simulations

::::
with

:::::::::::::::::::
N

(bin)
SD =N

(cell)
SD = 10

::::
give

::::::::
significant

::::::
errors,

:::
but

:::::::::
multi-box

:::::::::
simulations

:::::
with

:::::::::::
N

(bin)
SD = 104

:::
and

:::::::::::
N

(cell)
SD = 10

::
are

:::::
close

:::
to

::::::::
reference.

::
It
::
is
:::::::::
important

:::
that

::::
the

:::
rate

:::
of

::::::
mixing

::::::::
decreases

:::::
with

:::::::::
increasing

:::
cell

:::::
size,

::::
what

::::::
affects

:::
the

::::::::
minimal265

:::::::
required

::::::
N

(cell)
SD .

::::::::::
Simulations

:::
for

:::::::::::
N

(bin)
SD = 102

:::
and

::::::::::::
N

(cell)
SD = 12.5

::::
give

:::::
errors,

:::::
while

::::::::::
simulations

::
for

::::::::::::
N

(bin)
SD = 104

:::
and

::::::::::
N

(cell)
SD = 10

:::
give

::::::
correct

::::::
results.

:::::
Cells

:::
are

:::::
larger

::
in

:::
the

:::::
former

::::
case

::::
than

::
in

:::
the

::::
latter

:::::
case.

:::::
Larger

::::
cells

:::::
imply

::::
less

::::::
mixing

::::
and,

::
in

:::::::::::
consequence,

:::::
larger

::::::
N

(cell)
SD :::::::

required
:::
for

:::::::::::
convergence.
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Figure 5.
::::
Mean

::::
mass

::::::
density

:::::::
function

::
at

:::
the

:::
end

::
of

::::::::
multi-box

:::::::::
simulations

::::
from

:::
(a)

::::::::
one-to-one

:::::::::
simulations

:::
and

:::::
AON

:::::::::
simulations

::::
with

::::::::::
N

(bin)
SD = 104

::
in

:::
(b),

::::
with

:::::::::::
N

(bin)
SD = 103

::
in

:::
(c)

:::
and

::::
with

:::::::::::
N

(bin)
SD = 102

::
in

:::
(d).

::::
Each

:::::
figure

::::::
shows

:::::
results

:::
for

:::::::
differing

::::::
number

::
of

:::::
cells,

::::::::::
corresponding

::
to

:::::::
differing

::::::
N

(cell)
SD .

5 2D Cumulus Congestus Simulations

In this section
:
, we analyze AON in a two-dimensional simulation of an isolated cumulus congestus cloud. Conclusions about270

convergence of AON in box
:::
and

::::::::
multi-box

:
simulations that were presented in the previous section

:::::::
sections do not necessarily

apply to higher dimensional simulations or simulations that include more processes affecting the DSD (e.g. condensational

growth). For example, Unterstrasser et al. (2020) found that it is easier to reach convergence in a one-dimensional column

simulation than in a box simulation. Based on the fact that in box simulations ⟨m⟩ converges for large N
(bin)
SD , we can expect

that precipitation in the CC simulation also converges for large N (bin)
SD . It is more difficult to assess what errors can be expected275

in precipitation in the CC simulation due to
::::::::
However,

::
it

::
is

:::::::
possible

:::
that

:::::::::::
precipitation

::
in

:::
CC

::
is

:::::::
affected

::
by

:::
the

:
artificially large

variance in AON, which is illustrated by the lack of convergence of σ(m) in box simulations. Too large variance in AON may

12



result in too large differences in the DSD between cells. This might affect precipitation averaged over the entire cloud, because

there is mixing between cells. Too large variance may also cause too large differences in precipitation between independent

simulation runs. However, it is possible that in cloud simulations spatial and temporal variability of DSD is more susceptible280

to other factors, e.g. changes in relative humidity. Then, too large variability in AON would not be a problem. Variance in the

number of collisions is
:::::::
inversely

:
proportional to N

(bin)
SD (see section 3). Doing CC simulations for different values of N (bin)

SD

allows us to study how the artificially large variance in AON affects simulations, even though it is not possible to have N
(bin)
SD

large enough for the variance to converge.
:::
Box

::::::::::
simulations

:::::::
suggest

:::
that

:::
the

:::::
time

::::
step

:::::::
typically

::::
used

:::
in

::::
LES

::
is

::::::::
sufficient

:::
for

::::::::::
convergence

::
of

:::::
AON,

:::
but

:::
we

::::
also

::
do

::
a
::::
time

::::
step

::::::::::
convergence

:::
test

::
in
::::
CC.

:
285

5.1 LES model
:::
and

:::::
setup

The CC simulations are done with the University of Warsaw Lagrangian Cloud Model (UWLCM). UWLCM is a LES tool

that allows 2D and 3D simulations with Lagrangian particle (or Eulerian bulk) microphysics. Thermodynamic variables (po-

tential temperature, water vapor mixing ratio, velocity) are modeled in an Eulerian manner. The Lipps-Hemler anelastic ap-

proximation (Lipps and Hemler, 1982) is used to filter acoustic waves. For spatial discretization of Eulerian variables, the290

staggered Arakawa-C grid (Arakawa and Lamb, 1977) is used. The finite-difference method is used to solve equations for

Eulerian variables. The multidimensional positive-definite advection transport algorithm (MPDATA) (Smolarkiewicz, 2006)

is used to model transport of Eulerian variables. The model uses the generalized conjugate residual solver (Smolarkiewicz

and Margolin, 2000) to solve the pressure disturbance. In this paper, subgrid-scale transport
:::::::
sub-grid

::::
scale

::::::
(SGS)

::::::::
transport

::
of

:::::::
Eulerian

:::::::
variables

:
is modeled using the implicit LES approach (Grinstein et al., 2007).

:::::::::
Depending

::
on

:::
the

:::::::::
simulation

:::::
type,

::::
SGS295

::::::::
advection

::
of

::::
SDs

::
is

:::::
either

:::::::
ignored

::
or

::::::::
modeled

::::
with

:::
the

:::::::
method

::::
from

:::::::::::::::::::::::::
Grabowski and Abade (2017)

::::::
(hereby

:::::::
GA17).

:
A more

detailed description of UWLCM can be found in Dziekan et al. (2019); Dziekan and Zmijewski (2022).

5.2 Simulation setup

We use an isolated cumulus congestus modeling setup that was one of the cases studied at the International Cloud Modeling

Workshop 2020. It is an adaptation of the setup developed by Lasher-Trapp et al. (2001). The computational domain is 12300

km in horizontal and 10 km in vertical. Vertical profiles come from a conditionally unstable sounding from the Small Cumu-

lus Microphysics Study field campaign. Initial potential temperature and water vapor mixing ratio fields are randomly per-

turbed below 1km altitude. Perturbation amplitudes are 0.025gkg−1 and 0.01K. For the first hour, surface fluxes are uniform:

0.04gkg−1ms−1 latent heat flux and 0.1Kms−1 sensible heat flux. Afterwards
::::::::
Afterward, surface fluxes have a Gaussian

distribution centered at the middle of the domain,
:
with maxima three times larger than the uniform flux from the first hour and305

with half width of 1.7km. The momentum surface flux is given by a constant friction velocity 0.28ms−1. The total simulation

time is 3 hours. The lateral boundaries are periodic, and the upper boundary is free-slip rigid-lid. We use an aerosol distribution

based on observations from the RICO campaign (VanZanten et al., 2011). The distribution is made of two log-normal modes.

The first (second) mode parameters are: number concentration 90cm−3 (15cm−3), geometric mean radius 0.03µm (0.14µm)

and geometric standard deviation 1.28 (1.75). Aerosol type is ammonium bisulfate. We model these relatively clean conditions310
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in order to have significant amount of precipitation, which is the focus of this study. A gravitational coalescence kernel is

used,
:
with collision efficiencies from Hall (1980) for large droplets and from Davis (1972) for small droplets. The coalescence

efficiency is set to one. There is no droplet breakup. Terminal velocities are calculated using a formula of Khvorostyanov and

Curry (2002). Model time step is 0.5s, time step for condensation is 0.1s and cell size is 100m in each direction.
::
In

::::::
GA17,

:::
we

::::::
assume

:::
that

:::
the

::::
rate

::
of

:::::::::
dissipation

::
of

:::
the

::::::::
turbulent

::::::
kinetic

::::::
energy

::
is

::::::::
5cm2s−3.

:
315

We use 2D instead of 3D LES, because it allows us to study much larger values of N (bin)
SD . The same processes are modeled in

2D as in 3D, e.g. condensation, advection, sedimentation, collision-coalescence, etc. In 2D,
:
the modeled flow field has different

characteristics than in 3D, but we do not expect this to affect numerical convergence of the collision-coalescence algorithm.
:
.

We expect to see more variability between simulation runs in 2D than there would be in 3D, because of a much smaller number

of spatial cells.
:::
Rate

:::
of

::::::
mixing

::
of

::::
SDs

:::::::
between

:::::
cells

:::
can

::::
also

::
be

::::::::
different

::
in

:::
2D

::::
than

::
in

:::
3D.

:
However, we think that the way320

this variability is affected by parameters of the microphysics scheme in 2D is representative of how it would be affected in 3D.

5.2 Simulation strategy

Typically,
:
in LES there is a random perturbation of initial conditions, e.g. of temperature and humidity. In LES with particle

microphysics, initial conditions may also differ in SD attributes, because they are often randomly initialized. This randomness

in initial conditions leads to differences in results between simulation runs, independently of AON. To understand the role of325

AON
:
, we isolate its effect by comparing dynamic and kinematic simulations. In dynamic simulations,

:::
the

:
pressure equation is

solved, meaning that different realisations
::::::::::
realizations of microphysics lead to different flow fields. In kinematic simulations,

flow field is prescribed. Our strategy is to run an ensemble of dynamic (D) simulations
:::::::::
simulations,

:::::::
denoted

::::
with

::
D,

:
with random

differences in initial conditions. We consider this ensemble as a control group, because this is the way LES is usually done.

From dynamic simulations, we select three realizations: one with little, one with medium and one with high amount of rain330

(LR, MR and HR, respectively). Flow fields from these simulations are used to run ensembles of kinematic simulations. Sizes

of ensembles are given in the Supplement. In these kinematic simulations
::
In

::::::::
kinematic

:::::::::::
simulations, initial conditions do not

change within an ensemble. Therefore,
:
any variability within a kinematic ensemble is solely caused by AON. In our analysis,

we focus on ensemble mean ⟨P ⟩ and standard deviation σ(P ) of accumulated surface precipitation at the end of a simulation.

We look at precipitation, because it is an important observable that strongly depends on
:::
Our

::::
goal

::
is

::
to

:::::
study

::::::::::
convergence

:::
of335

:::::::::::
precipitation,

:::::
which

::
is

::
a

:::::::
variable

:::::::
sensitive

::
to

::::::::
modeling

:
collision-coalescenceof droplets. In each simulation a single cloud is

modeled and it precipitates for a short period of time, so we decided that it is sufficient to study accumulated precipitation.

To test the convergence of AON, we check how ⟨P ⟩ and σ(P ) are affected by N
(bin)
SD and by ∆tcoal. For estimating errors of

ensemble statistics we use the following formulas. The standard error of ⟨P ⟩ is:

se(⟨P ⟩) = σ(P )√
n

.340

The standard error of σ(P ) is (Rao, 1973, p.438):
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se(σ(P )) =
1

2σ(P )

√
1

n

(〈
(P −⟨P ⟩)4

〉
− n− 3

n− 1
σ(P )4

)
.

The 95% confidence interval of ⟨P ⟩ is:

CI95% (⟨P ⟩) =[⟨P ⟩− 1.96 · se(⟨P ⟩) , ⟨P ⟩+1.96 · se(⟨P ⟩)] .

The 95% confidence interval of σ(P ) is (Sheskin, 2020, p.217):345

CI95% (σ(P )) =

[
σ(P )

√
n− 1

f (0.975, n− 1)
, σ(P )

√
n− 1

f (0.025, n− 1)

]
,

where f(x, y) is the inverse CDF of the chi-squared distribution
:::
We

:::
also

:::::
study

::::::::::
convergence

::
in
::::::::::
simulations

:::::::
without

:::::::::::::::::
collision-coalescence,

::
to

::::
make

::::
sure

:::
that

:::::::::::
convergence

::
in

::::::::::
simulations

::::
with

:::::::::::::::::
collision-coalescence

::
is

::::
only

::::::
related

::
to

:::::
AON.

:::::::
Number

::
of

::::::::::
simulations

::
of

::::
each

:::
type

::
is
::::
give

::
in

::::::
table 2.

se

(
σ(P )

⟨P ⟩

)
=

√(
se(⟨P ⟩)
⟨P ⟩

)2

+

(
se(σ(P ))

σ(P )

)2

· σ(P )

⟨P ⟩
,350

5.3 Generating velocity fields for kinematic simulations

We start with running a large number of dynamic simulationsin order
::
To

::::::::
generate

:::::::
velocity

:::::
fields

:::
for

::::::::
kinematic

:::::::::::
simulations,

::
we

::::
run

::::::::
numerous

::::::::
dynamic

::::::::::
simulations.

::::
Our

::::
goal

::
is to find three velocity fields that are expected to

:::::
would

:
give significantly

different amounts of rain. These velocity fields will later be used in kinematic simulations. In a single dynamic simulation,

the amount of precipitation depends not only on the realized flow field, but also on the realization of the AON algorithm.355

This means that rain from a single dynamic simulation is not representative of the expected amount of rain from a series of

simulations with the same velocity field. To be sure that we select velocity fields that will give different amounts of rain, first

we chose a candidate velocity fields based on the amount of rain in the single dynamic run, and then we run
:::
ran 20 kinematic

simulations and use
:::
used

:
the average from these simulations to calculate

::
20

::::::::::
simulations

::
as

:
the expected amount of rain

:::
for

:
a
:::::
given

:::::::
velocity

:::::
field.

::::
Note

::::
that

:::::
these

::
20

::::::::::
simulations

:::::
were

:::
just

::
a
::::::::::
preliminary

::::::::
ensemble

::
to
::::::::

estimate
:::
the

::::::::
expected

::::::
amount

:::
of360

:::::::::::
precipitation,

:::
and

::::
that

:::
the

::::
final

:::::::
number

::
of

::::::::::
simulations

::::
was

:::::
much

:::::
larger

:::
(it

:
is
::::::

given
::
in

::::::
table 2). Based on this procedure, we

selected the three velocity fields for kinematic simulations: LR, MR and HR. In fig. 6 we show a frequency histogram of

:::
The

:::::::::
histogram

::
of

:::
the

::::::::::
distribution

:::
of P from the ensemble of dynamic simulations.

::
in

:::
the

:::::::
dynamic

:::::::::
simulation

:::::::::
ensemble

::
is

:::::
shown

::
in

:::::
fig. 6

:
.
:::::
These

::::::::::
highlighted

::::
bins

:::::::
delineate

::::
the

:::::
range

::
of

:::::::
original

::::::::::
precipitation

::::::
values

:::::
from

:::
the

:::::::
velocity

:::::
fields

:::
that

:::::
were

:::::::::
considered.

:
365

::::::
Besides

:::::
using

::::::::
different

::::
flow

::::::
fields,

:::
we

:::::
study

:::::::::
sensitivity

::
to

:::
the

::::::
model

::
of

:::::
SGS

::::::::
advection

:::
of

::::
SDs,

::
to
::::

the
:::
SD

:::::::::::
initialization

:::::::
method,

::::
and

:::
we

:::
run

::::::::::
simulations

::::::
without

::::::::::::::::::
collision-coalescence.

::
A
:::
list

::
of

:::
all

:::::::::
simulation

:::::
types

:
is
:::::
given

::
in

::::::
table 1

:
.
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Figure 6. Frequency histogram of P from the ensemble of dynamic simulations with N
(bin)
SD = 102. Horizontal axis is bin center. Bin width

is 7.5 ·10−3mm. Vertical
:::
The

:::::
vertical

:
axis is the number of simulations with P within a bin. The bins in burgundy colour show the expected

rain amount for LR, MR and HR velocity fields (left to right).

5.3 Time series
::::::::
Temporal

::::::::::::
development

::
of

:::::
cloud

In this section we discuss temporal development
:::
time

:::::
series

:
of general cloud properties in the D, LR, MR and HR scenarios

::::
(with

:::::::::::::::::::
collision-coalescence). This is done to give the readers an idea about how the modeled cloud develops. Time series of370

cloud top height (CTH), cloud cover (cc), cloud water path (CWP), rain water path (RWP) and precipitation are plotted in fig. 7.

The results are ensemble averages. For brevity, only results for N (bin)
SD = 100 are shown. Time series for other values of N (bin)

SD

are similar and are available as supplemental information.

Time series of CTH, cc and CWP are smoother in dynamic than in kinematic simulations. In dynamic simulations,
:
there

are differences between simulation runs in the moment
:
at
:::
the

:::::::
moment

:::::
when

:::
the

:
cloud starts to develop. When averaged over375

simulation runs, the results are smooth. In kinematic simulations, cloud develops in a very similar way in all simulations within

an ensemble. Therefore,
:

the ensemble average resembles a single dynamic simulation in that it changes significantly at short

time scales. This illustrates that, unsurprisingly, CTH, cc and CWP are more sensitive to the air flow than to the realization of

collision-coalescence.
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Table 1. List
::::::::::
Configuration

:
of simulated CC cases

:::::::::
simulations.

:::::::
Columns, with ensemble sizes

:::
from

:::
left

::
to
:::::

right,
:::
are:

:::::::::::
Configuration

:::::
name;

::::
Type

::
of

:::
flow

::::
field

:::::::
(dynamic

::
or

:::::::::
kinematic);

::::::::::::::::
Collision-coalescence

:::::
on/off

:::
flag;

::::::
Method

:::
for

:::
SD

::::::::::
initialization;

:::::
Model

::
of

::::
SGS

:::::::
advection.

::::
name

: :::
flow

::::
field

:::::::::
coalescence

::
SD

::::::::::
initialization

::::
SGS

::
SD

::::::::
advection

:
D
:::
no

:::::::::
coalescence

:
D
: :

no
: :::::::

"constant
::::::
SD"-init

: ::
no

::
LR

::
no

:::::::::
coalescence

:
LR

:
no

: :::::::
"constant

::::::
SD"-init

: ::
no

:::
MR

::
no

:::::::::
coalescence

:
MR

:
no

: :::::::
"constant

::::::
SD"-init

: ::
no

:::
HR

::
no

:::::::::
coalescence

:
HR D

::
no

:::::::
"constant

::::::
SD"-init

: ::
no

101
::
D 200

:
D 191

::
yes 201

:::::::
"constant

:::::::
SD"-init 600

::
no

:

5 · 101
::
LR

:
150

::
LR

:
201

::
yes 201

:::::::
"constant

:::::::
SD"-init 601

::
no

:

102
:::
MR

:
301

:::
MR 300

::
yes 201

:::::::
"constant

:::::::
SD"-init 700

::
no

:

103
::
HR

:
50

:::
HR 50

:::
yes 31

:::::::
"constant

::::::
SD"-init

:
251

::
no

:

104
::
D

:::::
mixing

:
20

:
D
:

20
:::
yes 11

:::::::
"constant

::::::
SD"-init

:
200

::::
GA17

:

4 · 104
::
LR

::::::
mixing 11

::
LR 10

:::
yes 19

:::::::
"constant

::::::
SD"-init

:
232

::::
GA17

:

:::
MR

::::::
mixing

:::
MR

:::
yes

:::::::
"constant

::::::
SD"-init

: ::::
GA17

:

:::
HR

:::::
mixing

: :::
HR

:::
yes

:::::::
"constant

::::::
SD"-init

: ::::
GA17

:

105
::

HR
::
f-i

:
6

:::
HR 6

::
yes

:
11

:::::::
"constant

:::
SD"

:::::::
fixed-init

:
109

::
no

:

::
HR

:::
ξ-i

:::
HR

:::
yes

:::::::
ξconst-init

: ::
no

In all scenarios
:
, cloud starts to develop at around 1500s. Afterwards

::::::::
Afterward,

:
it deepens with time, reaching maximum cc380

at around 5500s and maximum CWP at around
:::::::
between 7000s

:::
and

::::::
8000s,

::::::::
depending

:::
on

:::
the

::::
case. In kinematic scenarios, rain

appears shortly after CWP reaches its maximum. The cloud almost entirely disappears at around 9500s (CWP close to 0). A

second cloud starts to develop near the end of the simulation, indicated by an increase in CWP. The differences in rain between

LR, MR and HR are explained by differences in CWP, with highest CWP giving most rain. In MR and in HR, CWP steadily

increases until rain is formed. The difference is that CWP and CTH reach higher values in HR than in MR. In LR,
:
there are385

multiple local maxima of CWP, each of them smaller than the maxima in MR and HR.

5.4 Numerical convergence of precipitation
::
in

::::::::::
simulations

:::::::
without

::::::::::::::::::
collision-coalescence

::
To

:::::::
reliably

:::::
study

::::::::::
convergence

::
of

:::
the

::::::::::::::::::
collision-coalescence

:::::::::
algorithm,

:::
we

:::
first

:::::
need

::
to

::::
make

::::
sure

::::
that

:::
the

:::::
model

:::
of

:::::::::
diffusional

::::::
growth

:::
has

:::::::::
converged.

::::
The

::::
time

::::
step

:::
for

:::::::::::
condensation

::::
used

::
in

:::
all

::::::::::
simulations,

::::
0.1s,

::::
was

:::::
found

::
to
::::

give
:::::::::
converged

::::::
results

::::
(not

::::::
shown).

:::::
Here

:::
we

:::::
focus

::
on

:::::::::::
convergence

::::
with

:::
the

:::::::
number

::
of

::::
SDs.

:::::
Time

:::::
series

:::
of

::::
basic

:::::
cloud

:::::::::
properties

::::::
(cloud

:::::
water

:::::::
content,390

::::
cloud

::::::
cover

:::
and

:::::
cloud

:::
top

:::::::
height)

:::::
agree

:::
for

::::::::::
N

(bin)
SD ≥ 50

:::::
(they

:::
are

:::::::
plotted

::
in

:::
the

:::::::::::
Supplement).

::::::::::::
Convergence

::
of

:::
the

:::::
DSD

::
is

:::::::
analyzed

:::
by

:::::::::
comparing

::::::
profiles

:::
of

::::::::::::
concentration,

::::
mean

::::::
radius

:::
and

:::::::
relative

:::::::::
dispersion

::
of

:::::
radius

:::
of

:::::
cloud

:::::::
droplets

:::::
(fig. 8

:
).
::::
Out

::
of

:::
the

::::
three

::::::::::
parameters,

::::::
relative

:::::::::
dispersion

::
is

::::::
slowest

::
to
::::::::
converge

::
as

::
it

:::::::
requires

:::::::::::::
N

(bin)
SD ≥ 1000.
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Figure 7. Time series of ensemble averages of cloud top height, cloud cover, cloud water path, rain water path and surface precipitation for

D, LR, MR and HR scenarios with N
(bin)
SD = 100. Cloud top height is the vertical position of the topmost cloudy cell. Cloud cover is the

fraction of columns with at least one cloudy cell. Cloudy cells are cells with cloud water mixing ratio greater than 10−5. Cloud droplets are

droplets with 0.5µm≤ rw ≤ 25µm. Rain drops are droplets with 25µm≤ rw. Surface precipitation, CWP and RWP are domain averages

divided by CC in order to obtain values representative of the cloudy area.
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Table 2.
::::::::
Simulation

::::::::
ensemble

::::
sizes

::
for

::
all

::::::::
simulation

:::::
types

::::::
(defined

::
in

:::::
table 1

:
)
:::
and

::
all

:::::
tested

:::::
values

::
of

:::::
N

(bin)
SD :::

and
::
of

::::::
∆tcoal.

no coalescence mixing

:::::
N

(bin)
SD : :::::::

∆tcoal [s] :::
LR

:::
MR

:::
HR

:
D

:::
LR

:::
MR

:::
HR

:
D

:::
LR

:::
MR

::
HR

:
D
: :::

HR
::
f-i

:::
HR

::
ξ-i

:

:::
101

: :::
0.1

:::
200

:::
200

:::
201

:::
600

:
1

:
1
: :

1
:::
100

:::
101

:::
201

:::
100

:::
401

:::
100

::
201

::::
5·101

:::
0.1

:::
150

:::
201

:::
201

:::
601

:
1

:
1
: :

1
:::
101

:
99

: :::
192

:
98

: :::
401

:
0

:
0

:::
102

: :::
0.1

:::
201

:::
201

:::
201

:::
700

:
1

:
1
: :

1
:
99

: :::
101

:::
187

:::
101

:::
400

:::
100

::
201

:::
103

: :::
0.1

:
50

: ::
50

:
31

:::
301

:
1

:
1
: :

1
:::
101

:
41

: ::
51

:
41

: :::
151

:::
100

::
101

::::
5·103

:::
0.1

:
0

:
0

:::
100

:
0

:
0

:
0
: :

0
:
0

:
0

:
0
: :

41
: :

0
::
37

: ::
50

:::
104

: :::
0.1

:
20

: ::
20

:
11

:::
195

:
1

:
1
: :

1
:
51

: :
11

: ::
21

:
11
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::::
Note

:::
that

:::
the

::::::
relative

:::::::::
dispersion

::::::
around

:::
0.2

::
is

:::::
within

:::
the

:::::
lower

:::
part

::
of

:::
the

:::::
range

::
of

:::::
values

::::::::
observed

::
in

::::::::::
cumuliform

::::::::::::::
(Lu et al., 2013)

:::
and

::::::::
stratiform

::::::::::::::::::::::::::::::::::::
(Miles et al., 2000; Pawlowska et al., 2006)

::::::
clouds.

::::
This

::::::::
indicates

:::
that

:::
the

:::::
DSD

::
is

:::::::
realistic,

:::
an

::::::::
important

:::::
point395

::::::
because

::::::::::
Lagrangian

::::::
models

::::
tend

::
to

:::::::
generate

::::::
narrow

:::::
DSD.

::
A

:::
too

::::::
narrow

::::
DSD

:::::
would

::::::
results

::
in

:
a
:::
too

:::
low

::::
rate

::
of

::::::::::::::::::
collision-coalescence,

:::
and

:::
for

::::
slow

:::::::::::::::::
collision-coalescence

::
it

:
is
:::::
more

:::::::
difficult

:
to
:::::
reach

:::::::::::
convergence

::::::::::::::::::::::::::
(Dziekan and Pawlowska, 2017).

:::::::::
Therefore,

:::::::
studying

::::::::::
convergence

:::
for

::
an

::::::::::::
unrealistically

::::::
narrow

:::::
DSD

:::::
could

:::
give

:::
too

:::::
strict

::::::::::
convergence

::::::::::::
requirements.

5.5
::::::::

Numerical
:::::::::::
convergence

:::
of

:::::::::::
precipitation

::::
From

::::
now

:::
on,

::::
only

::::::::::
simulations

::::
with

::::::::::::::::::
collision-coalescence

:::
will

::
be

:::::::::
discussed.

:::::::
Profiles

::
of

::::::::::
precipitation

::::
flux

:::
for

:::::::
different

:::::::
number400

::
of

::::
SDs

:::
are

::::::
shown

::
in

:::::
fig. 9.

::::
We

::::
find

:::
that

::
if
:::::
there

:::
are

::::::::::
differences

:::::::
between

:::::
these

:::::::
profiles,

::::
they

:::
are

:::::::
similar

::
at

::
all

::::::
levels

:::::
(with

::::
very

:::
few

:::::::::::
exceptions).

:::
For

::::::::
example,

::
at
:::

all
::::::
levels

:::::::::::
N

(bin)
SD = 100

:::::
gives

::::
less

:::::::::::
precipitation

::::
than

::::::::::::
N

(bin)
SD = 104.

::::
This

::::::
shows

::::
that

::::::::::
convergence

::
of

:::::::::::
precipitation

::
at

::::
one

::::
level

::
is

::::::::::::
representative

::
of

:::::::::::
convergence

::
in

:::
the

:::::
entire

:::::
cloud.

:::::::::
Therefore,

:::
we

:::::::
choose

::
to

:::::
study

::::::
surface

:::::::::::
precipitation

::
in

::::::
detail,

::
in

::::::::
particular

::::
the

::::::::::
accumulated

:::::::
surface

:::::::::::
precipitation

:::
P .

:::
We

::::::
denote

::::::::
ensemble

::::::
mean

::::
with

::::
⟨P ⟩

:::
and

::::::::
ensemble

:::::::
standard

::::::::
deviation

::::
with

::::::
σ(P ).

:::
For

:::::::::
estimating

:::::
errors

::
of

:::::::::
ensemble

:::::::
statistics,

:::
we

::::
use

:::
the

::::::::
following

::::::::
formulas.

::::
The405

:::::::
standard

::::
error

::
of

::::
⟨P ⟩

::
is:

:

se(⟨P ⟩) = σ(P )√
n

,

::::::::::::::

(3)

:::::
where

::
n

:
is
::::::::
ensemble

:::::
size.

:::
The

:::::::
standard

:::::
error

::
of

:::::
σ(P )

::
is

:::::::::::::::
(Rao, 1973, p.438)

:
:
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Figure 8.
::::::
Profiles

::
of

::::
cloud

::::::
droplet

::::::::::
concentration

::::
(top

::::
row),

:::::
cloud

:::::
droplet

:::::
mean

::::
radius

::::::
(center

::::
row)

:::
and

::::::
relative

::::::::
dispersion

::
of

::::
cloud

::::::
droplet

::::
radius

:::::::
(bottom

:::
row)

::::
from

:::::::::
simulations

::::::
without

::::::::::::::::
collision-coalescence.

::::::
Profiles

:::
are

:::::::
averaged

::::
over

:::::
cloudy

::::
cells,

::::
over

:::
the

:::
time

::::::
interval

:::::::
between

:::::
1800s

:::
and

:::::
9600s,

:::
and

::::
over

:::
the

:::::::
ensemble

::
of

:::::::::
simulations.

se(σ(P )) =
1

2σ(P )

√
1

n

(〈
(P −⟨P ⟩)4

〉
− n− 3

n− 1
σ(P )4

)
.

:::::::::::::::::::::::::::::::::::::::::::::::

(4)

:::
The

::::
95%

::::::::::
confidence

::::::
interval

::
of

::::
⟨P ⟩

::
is:

:
410

CI95% (⟨P ⟩) =
::::::::::::

[⟨P ⟩− 1.96 · se(⟨P ⟩) , ⟨P ⟩+1.96 · se(⟨P ⟩)
::::::::::::::::::::::::::::::::::

] . (5)

:::
The

::::
95%

::::::::::
confidence

::::::
interval

::
of

:::::
σ(P )

::
is

:::::::::::::::::::
(Sheskin, 2020, p.217):

:

CI95% (σ(P )) =

[
σ(P )

√
n− 1

f (0.975, n− 1)
, σ(P )

√
n− 1

f (0.025, n− 1)

]
,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(6)

:::::
where

::::::
f(x, y)

::
is
:::
the

::::::
inverse

:::::
CDF

::
of

:::
the

::::::::::
chi-squared

::::::::::
distribution.

In this section we discuss how ensemble statistics of accumulated precipitation at the end of a simulation depend on415

parameters of the collision-coalescence model. Figure 10 shows sensitivity
::
of

::::::
surface

:::::::::::
precipitation to ∆tcoal, the time step
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Figure 9.
::::::
Profiles

::
of

::::::::::
precipitation

:::
flux

::
in

:::::::::
simulations

:::
with

:::::::::::::::::
collision-coalescence.

::::::
Profiles

::
are

:::::::
averaged

::::
over

::
all

:::::
cells,

:::
over

:::
the

::::
time

::::::
interval

::::::
between

:::::
1800s

:::
and

::::::
9600s,

:::
and

:::
over

:::
the

:::::::
ensemble

::
of

:::::::::
simulations.

:::::
Time

:::
step

::
for

:::::::::
coalescence

::
is
:::::::::::
∆coal = 0.1s.

with which coalescence is modeled. We find no statistically significant impact of ∆tcoal on ⟨P ⟩ or on σ (P ) for ∆tcoal ≤ 0.5s.

Sensitivity to time step was tested only for N (bin)
SD = 100, because box simulations showed that results converge for the same

value of ∆tcoal, independent of the value of N (bin)
SD . Sensitivity

:::::
Study

::
of

:::::::::
sensitivity to N

(bin)
SD is discussed in the subsequent

sections
:::
that

::
is
::::::::
discussed

::::
next

::::
was

::::
done

:::
for

:::::::::::
∆coal = 0.1s.420

5.5.1 Convergence of ⟨P ⟩ with N
(bin)
SD

Mean
::::::
surface precipitation for differing number of SDs is shown in fig. 11. We find that ⟨P ⟩ varies with N

(bin)
SD in a non-trivial

way, similar in all four scenarios. Mean precipitation is the highest for N (bin)
SD = 10. Then, there is a large decrease in ⟨P ⟩

when N
(bin)
SD is increased from 10 to 50. A minimum of ⟨P ⟩ is found between N

(bin)
SD = 50 and N

(bin)
SD = 103, depending on

the scenario. Beyond this minimum, ⟨P ⟩ slowly increases (see subplots e-h). Uncertainties in ⟨P ⟩ are large (in particular in D)425

and the 95% confidence intervals often overlap. However,
:::
the center of the confidence interval systematically increases with

N
(bin)
SD in D, LR and MR (subplots e-g). The fact that this happens in three independent scenarios is an indication that the

increase of ⟨P ⟩ with N
(bin)
SD for N (bin)

SD ≥ 103 is not a just a random, statistically insignificant effect. In HR, unlike in the other

scenarios, there is evidence for convergence of ⟨P ⟩ for N (bin)
SD ≥ 5×103. Centers of confidence intervals are at similar positions

for N (bin)
SD = 5× 103, N (bin)

SD = 4× 104 and for N (bin)
SD = 105,

:
and the intervals are small. For N (bin)

SD = 104,
:
the confidence430

interval center is lower, but the interval is large and covers centers of neighbouring
:::::::::
neighboring

:
intervals.

Changes of ⟨P ⟩ for N (bin)
SD ≤ 103 are consistent with results of box simulations of collision-coalescence and of CC simula-

tions without collision-coalescence. In box simulations there are errors in the mean DSD for N (bin)
SD ≤ 103.

:
,
:::::::
because

::::
these

::::
two

::::::::
simulation

:::::
types

::::::::
converge

:::
for

:::::::::::
N

(bin)
SD = 103

::::
(see

::::::::
section 3

:::
and

:::::::::
section 5.4

::
). In CC simulations without collision-coalescence,
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Figure 10. Ensemble mean and standard deviation of accumulated precipitation at the end of a simulation against time step for coalescence

in four scenarios of a CC simulation with N
(bin)
SD = 100. Error bars represent the 95% confidence interval.

which are presented in the Supplement, there are deviations in time series for N (bin)
SD ≤ 103. This shows that N (bin)

SD ≤ 103, and435

N
(bin)
SD = 10 in particular, gives errors in modeling of condensational growth.

Increase
::::::::
However,

:::
the

::::::::
increase of ⟨P ⟩ for N

(bin)
SD > 103 in D, LR and MR cannot be

:::::
easily

:
explained by box simula-

tions nor by CC simulations without collision-coalescence, because mean results in these types of simulations converge for

N
(bin)
SD > 103. .

:
This suggests that ⟨P ⟩ may be affected by to

::
too

:
large variance of the DSD, which does not converge

:
in

::::
box

:::::::::
simulations

:
even for N (bin)

SD > 103. The fact that ⟨P ⟩ quickly convergence with ∆tcoal supports
:
is

:::::::::
consistent

::::
with this hypoth-440

esis, because ∆tcoal does not affect the variance of the DSD. A potential mechanism linking DSD variance with precipitation

includes erroneous spatial distribution of droplets and mixing of droplets between cells. Too large variance and correct mean of

the DSD in box simulations corresponds to a situation in which in LES differences between DSD in neighbouring
::::::::::
neighboring

cells are larger than expected. There are some cells with more large droplets than expected, and some cells with less large

droplets than expected. In an ensemble of independent boxes, these differences average out. However,
:
in 2D simulations, mix-445

ing brings together droplets from different cells. The fact that ⟨P ⟩ slowly increases for N (bin)
SD > 103 suggests that a smoother

::
To

:::::
show

::::
how

:::
the spatial distribution of the DSD, together with mixing, may lead to more precipitation

:::
rain

::::::
within

:::
the

:::::
cloud

::::::
changes

::::
with

:::::::
N

(bin)
SD ,

::
in

::::::
fig. 12

::
we

:::::
show

:::
the

:::::::::
probability

::::::
density

:::::::
function

::
of

::::
rain

::::
water

:::::::
content

::
at

:::
four

:::::::::
moments,

::::
from

:::
just

::::::
before

::
the

:::::
onset

:::
of

::::::
surface

:::::::::::
precipitation

::::
until

::
its

::::::::::
maximum.

:::
We

::::
find

:::
that

:::
the

::::::::::
distribution

:::::::
narrows

::::
with

:::::::::
increasing

::::::
N

(bin)
SD .

::::
For

:::::
small
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Figure 11.
:::::::
Ensemble

:::::
mean

:
of
::::::::::
precipitation

:::::
against

::::::
number

::
of

:::::::::::
super-droplets

::
for

::::
four

:::::::
scenarios:

::
D,

::::
LR,

:::
MR

:::
and

:::
HR.

::
In

::::
(e-h)

:::
the

::::
same

:::::
results

::
are

:::::
shown

::
as

::
in

::::
(a-d),

:::
but

::::::
without

::::::::::
N

(bin)
SD = 10.

::::
Error

::::
bars

::::
show

:::
the

::::
95%

::::::::
confidence

::::::
interval.

:

::::::
N

(bin)
SD ,

:::
the

::::::::::
distribution

::
is

:::::::
bimodal,

::
in
:::::::::
particular

::
at

:::::
earlier

:::::
time.

:::
As

::::::
N

(bin)
SD ::

is
::::::::
increased,

:::
the

:::::::
smaller

:::::
mode

:::::::::
disappears,

::::
and

:::
we450

::
get

::
a
:::::
single

::::::
mode,

::::
with

:
a
:::::::::
maximum

:::
for

::::::
smaller

:::::
values

:::
of

:::
rain

:::::
water

:::::::
content

::::
than

::
the

:::::::::
maximum

::
of

:::
the

:::::
larger

:::
of

:::
the

:::
two

::::::
modes

:::::::
observed

:::
for

:::::
small

::::::
N

(bin)
SD .

::::
The

::::::::::
distribution

::::::::
converges

:::
for

::::::
similar

:::::
values

:::
of

::::::
N

(bin)
SD ,

::
as

:::::::
required

:::
for

:::
the

:::::::::::
convergence

::
of

:::
⟨P ⟩.

5.5.1 Convergence of σ(P ) with N
(bin)
SD

Standard
:::
The

:::::::
standard

:
deviation of precipitation for differing number of SDs is shown in fig. 13. In dynamic simulations

(subplot a), σ(P ) is large for N (bin)
SD = 10, then sharply decreases for N (bin)

SD = 50 and does not change significantly as N (bin)
SD455

is further increased. Most of the 95 % confidence intervals are overlapping for N (bin)
SD ≥ 50. The relative standard deviation

(subplot e) is around 1.5 for N
(bin)
SD ≥ 50, although there seems to be a (not statistically significant) decreasing trend for

N
(bin)
SD ≥ 104. The relatively low sensitivity of σ(P ) to N

(bin)
SD in dynamic simulations shows that precipitation is more sen-

sitive to differences in the flow field, which can be a consequence of small random perturbations of initial conditions, than to

differences in realization of the collision-coalescence model of particle microphysics.460

In kinematic simulations (subplots b-d) standard deviation of precipitation is more sensitive to N
(bin)
SD than in dynamic

simulations. There is a significant decrease of σ(P ) as N
(bin)
SD is increased (except for small N (bin)

SD in HR). The relative

standard deviation has a maximum for N (bin)
SD between 50 and 100, and decreases for higher N (bin)

SD (subplots f-h). This shows
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Figure 12. Ensemble mean of precipitation against number
::::::::
Probability

::::::
density

::::::
function of super-droplets for

::
rain

:::::
water

::::
mass

::
in

:::::
cloudy

::::
cells

:
at
:
four scenarios: D, LR, MR and HR. In (e-h) the same results are shown as

:::::::
moments

:
in (a-d)

:::
time, but without N (bin)

SD = 10. Error bars

show
:::::::
averaged

::::
from the 95% confidence interval

:::
HR

::::::::
simulation

:::::::
ensemble.

that in the absence of differences in flow field, precipitation is governed by realizations of the collision-coalescence model.

Comparing D with MR, which is the kinematic case with the most similar ⟨P ⟩, we find that σ(P )/⟨P ⟩ in dynamic simulations465

is around 4 times higher
::::
much

::::::
larger than in kinematic simulations. This is another example of the fact

:
,
::::
from

::::::
around

::
4
:::::
times

:::::
larger

::
for

::::
low

::::::
N

(bin)
SD ::

to
::
up

::
to

::
70

:::::
times

:::::
larger

:::
for

::::
large

:::::::
N

(bin)
SD .

::::
This

:::::::
supports

:::
the

:::::::::
conclusion that precipitation primarily depends

on the realized flow field
:::
and

:::
not

:::
on

:::
the

:::::::::
realization

::
of

:::::
AON.

5.6 Sensitivity to SD initialization method

Collision-coalescence in particle microphysics is sensitive to the way SD attributes are initialized. Therefore
:
, the way precip-470

itation changes with the number of SDs could depend on SD initialization. To check this, we test convergence for three types

of SD initialization that were introduced in section 2.1: ξconst-init, ”const SD”-init and ”const SD” fixed-init. In ”const SD”

fixed-init the outermost bin edges for dry radius were set to 1nm and 5µm.
::
For

:::
all

::::::::
methods,

:::
the

:::::
initial

:::::
DSD

:::::::
averaged

::::
over

::
a

::::
large

:::::::
number

::
of

::::
cells

::::::
agrees

::::
very

:::
well

:::::
with

::
the

:::::::::
prescribed

::::::::::
distribution

::::::
(fig. 2

::
(a)

:::::
shows

::::
this,

:::::
albeit

:::
for

::
a

:::::::
different

:::::::::::
distribution).

:::
All

:::::::
methods

::::
give

::::
very

::::
good

::::::::::::
representation

::
of

:::
the

:::::
initial

:::::
DSD.

:
Comparison of results for different initialization methods in the475

HR case is shown in fig. 14. We see only minor differences between ”const SD”-init and ”const SD” fixed-init. Both methods

use bins to make sampling of the initial aerosol radius more even, but differ in the way the entire bin range is selected. Re-

cently, Hill et al. (2023) found differences in precipitation between different implementations of particle microphysics, both

using AON and binned initialization. Differences in details of bin initialization were proposed as one of potential reasons for
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Figure 13. Ensemble standard deviation (a-d) and relative standard deviation(e-h) of precipitation against number of super-droplets for

four types of simulations: D, LR, MR and HR. In (a-d), error bars show the 95% confidence interval. In (e-h), error bars show the error

e(σ(P )/⟨P ⟩) estimated with: e(σ(P )/⟨P ⟩)
σ(P )/⟨P ⟩ =

√(
se(⟨P ⟩)
⟨P ⟩

)2

+

(
se(σ(P ))
σ(P )

)2

.

the observed discrepancies. Good agreement between ”const SD”-init and ”const SD” fixed-init in our simulations suggests480

that some other factor is responsible for the discrepancies discussed in Hill et al. (2023).

The ξconst-init gives much
::::::::::
significantly

:
different results than bin

::
the

::::
bin

::::::::::
initialization

:
methods. In ξconst-init there is very

little precipitation when N
(init)
SD is small. As more SDs are used,

:
the amount of precipitation increases. It is plausible that all

methods of initialization should converge for large enough number of SDs. However, even for N (init)
SD = 104, which was the

largest number of SDs that we were able to model in ξconst-init, ξconst-init gives less precipitation than the other methods.485

Unterstrasser et al. (2017) showed that ξconst-init requires a huge number of SDs in box simulations of collision-coalescence
:
,

and the authors hypothesized that it may require fewer SDs in cloud simulations. Our results show that this is not the case: in

2D simulations ξconst-init has the same deficiencies as in box simulations. It requires a very large number of super-droplets,

unattainable in 3D LES, to get convergence in precipitation. For fewer SDs
:
, it gives significantly too little precipitation.

5.7
::::::::
Sensitivity

:::
to

::::
SGS

::::::
motion

::
of
::::
SDs490

::
In

::::::::
multi-box

:::::::::::
simulations,

::::::
mixing

::
of

:::::::
droplets

:::::::
between

:::::
cells

:::::
helps

::::::
achieve

:::::::::::
convergence

::
of

::::::::::::::::::
collision-coalescence

::::::::
modeling.

:::
In

:::
CC

::::::::::
simulations

::::::::
discussed

::
so

::::
far,

::::::
mixing

::::
was

::::::
caused

:::
by

:::
the

::::::::::::
resolved-scale

:::::::
motion

:::
and

:::
by

::::::::::::
sedimentation,

:::
but

:::::
there

::::
was

:::
no
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Figure 14. Mean ⟨P ⟩ and standard deviation σ(P ) of accumulated precipitation against the number of SDs for HR simulations with three

SD initialization methods. Horizontal axis is N
(bin)
SD in "constant SD"-init and N

(init)
SD in ξconst-init. In "constant SD" fixed-init we have

N
(init)
SD =N

(bin)
SD . Error bars represent the 95% confidence interval.
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::::
SGS

::::::
motion

::
of

:::::
SDs.

::::
Here,

:::
we

::::::::
consider

::::::::::
simulations

::
in

:::::
which

::::
SGS

:::::::
velocity

:::
of

:::
SDs

::
is
::::::::
modeled

:::::
using

:::
the

:::::
GA17

:::::::
method,

:::::
what

:::::
should

:::::
make

:::::::
mixing

:::::
more

:::::::
efficient.

:::::::::::
Convergence

:::
of

::::::::::
precipitation

::::::::
statistics

::::
with

::::
and

:::::::
without

:::
the

:::::
GA17

::::::
model

::
is
:::::::::
compared

::
in

:::::
fig. 15

:
.
::
In

:::
all

::::::::
scenarios

::::
and

:::
for

:::
all

:::::
values

:::
of

:::::::
N

(bin)
SD ,

:::::
except

::::
for

::
D

::::
with

:::::::::::
N

(bin)
SD = 10,

:::::
mean

:::::::::::
precipitation

::
is

:::::::::::
significantly495

::::::::
increased

::
by

::::
the

::::
SGS

::::::
motion

:::
of

:::::
SDs.

:::::::::
Moreover,

::::
there

::::
are

::::::
smaller

::::::::::
differences

::
in

::::
⟨P ⟩

:::
for

::::::::
different

::::::
N

(bin)
SD :::::

when
:::
the

:::::
SGS

::::::
mixing

:::::
model

::
is
:::::

used.
:::
In

::::
HR,

:::
⟨P ⟩

:::::::::
converges

::
at

::::::
around

:::::::
21mm

::::::
already

:::
for

::::::::::::
N

(bin)
SD = 102,

::::
and

::::
even

:::::::::::
N

(bin)
SD = 10

::::
gives

:::::
only

:
a
:::::
small

::::
error

::::::::::::::
(⟨P ⟩ ≈ 22mm).

::
In

:::
LR

::::
and

::::
MR,

::::
⟨P ⟩

:::::
varies

::::
with

::::::
N

(bin)
SD ::::::::

similarly
::::
with

::::
and

:::::::
without

::::
SGS

:::::::
motion,

:::
i.e.

::::
there

::
is
::
a

::::::::
minimum

:::
for

:::::::::::
N

(bin)
SD = 102

:::
and

:::
an

:::::::
increase

:::
for

::::::::::::
N

(bin)
SD ≥ 102.

::::::::
However,

:::
the

:::::::
(relative

:::
and

::::::::
absolute)

:::::::::
difference

:::::::
between

::::::
results

::
for

::::::::::::
N

(bin)
SD < 102

:::
and

:::
for

::::::::::::
N

(bin)
SD = 102

::
is

::::::
smaller

:::::
with

:::
the

:::::
GA17

::::::
model

::::
than

:::::::
without

::
it.

:::
In

::
D

::::::::::
simulations

::::
with

::::::
GA17,

::::
⟨P ⟩500

::::
does

:::
not

::::::
change

::
in

::
a

:::::::::
statistically

:::::::::
significant

::::
way,

:::::
albeit

:::
the

::::::
errors

:::
are

:::::
large.

:::
The

:::::::
relative

:::::::
standard

::::::::
deviation

::
of

:::::::::::
precipitation

::
is

::::::::
decreased

::
by

:::
the

::::
SGS

:::::::
motion

::
of

::::
SDs.

:
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Figure 15.
::::
Mean

:::
and

::::::
relative

:::::::
standard

:::::::
deviation

::
of

::::::::::
accumulated

:::::::::
precipitation

::::::
against

:::
the

::::::
number

::
of

::::
SDs

:::
for

:::::::::
simulations

:::
with

::::
(red)

::::
and

::::::
without

:::::
(black)

:::
the

:::::
GA17

::::
model

::
of
::::
SGS

::::::
motion

::
of

::::
SDs.

6 Conclusions

Our study shows that using particle microphysics it is more difficult to reach numerical convergence of precipitation in cloud

simulations, even for a fixed flow field, than it is to reach convergence of mean DSD in an ensemble of box
::
or

:::::::::
multi-box505

simulations of collision-coalescence. In general, convergence requirements are less strict in strongly precipitating clouds
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than in lightly precipitating clouds.
::::::
Mixing

::
of

::::
SDs

::::::::
between

::::
cells

:::::
helps

:::::
reach

:::::::::::
convergence,

::::::::
therefore

:
it
::::

can
::
be

::::::::
expected

::::
that

::::::::::
precipitation

:::::::::
converges

::::
faster

:::
in

::::
more

::::::::
turbulent

::::
than

::
in

:::
less

::::::::
turbulent

::::::
clouds.

:

It is relatively easy to have convergence with ∆tcoal. Mean precipitation in our isolated cumulus simulations converged for

∆tcoal = 0.5s. The same time step length was also sufficient in simulations of cumulus cloud fields (Dziekan et al., 2021).510

However, box simulations presented in this text and stratocumulus cloud field simulations from Dziekan et al. (2021) required

∆tcoal = 0.1s. This suggests that ∆tcoal = 0.1s is a safe choice for cloud modeling. We used the linear sampling technique.

Quadratic sampling may allow for longer time steps (Unterstrasser et al., 2020). Variance of precipitation in cloud simulations

and variance of the DSD in box simulation are not sensitive to ∆tcoal.

It is more difficult to reach convergence with the number of SDs per cell. In box simulations,
:

mean DSD converges for515

N
(bin)
SD ≥ 103, but variance of the DSD decreases with N

(bin)
SD without converging. In isolated cumulus simulations

::::::::
multi-box

:::::::::
simulations

::::::::
(multiple

:::::
boxes

::::
with

::::::
mixing

:::::::
between

:::::
them)

:::::
mean

:::::
DSD

::::::::
converges

:::
for

::::::
smaller

::::::
N

(bin)
SD ::::

than
::
in

:::
box

::::::::::
simulations,

:::::
what

:
is
::::::::
attributed

::
to
::
a
:::::::
positive

:::
role

::
of

:::::::
mixing.

::
In

:::::::
cumulus

::::::::::
simulations

::::::
without

:::::
SGS

::::::
motion

::
of

::::
SDs,

:
mean precipitation converges for

N
(bin)
SD ≥ 5×103, but only in the most heavily precipitating case. In cases with less precipitation

:
, we do not see convergence of

mean precipitation . The maximum value studied was
::::
even

:::
for N (bin)

SD = 105. Typically, LES is done for N (bin)
SD around 102. This520

study suggests that such simulationsmay underestimate surface precipitation, in particular in lightly precipitating clouds
:::::
Using

:
a
:::::
model

:::
for

::::
SGS

:::::::
motion

::
of

::::
SDs

::::::::::
significantly

::::::::
increases

:::
the

::::::
amount

::
of

:::::::::::
precipitation,

:::::
helps

:::::::
achieve

::::::::::
convergence

::
in

:::::::::::
precipitation

:::
and

::::::::
decreases

:::::::::
variability

:::::::
between

:::::::::
simulation

:::::
runs.

:::::
These

::::::
effects

:::
are

:::::::::
attributed

::
to

::::::::
enhanced

:::::::
mixing,

::::::::::
highlighting

:::
its

:::::::
positive

:::::
impact

:::
on

::::::::::
convergence

::::
that

:::
was

::::
also

:::::
found

::
in

:::::::::
multi-box

::::::::::
simulations.

:::
For

:::
this

:::::::
reason,

::
we

::::::
would

:::::::
strongly

::::::::::
recommend

::::::::
modeling

::::
SGS

::::::
motion

::
of

::::
SDs

::
in

:::::
LES.

::::
Note

::::
that

:::
the

::::::::::::::
splitting-merging

:::::::::
algorithm

::
of

:::::::::::::::::::
Schwenkel et al. (2018)

:
,
:::::
which

::::
was

:::
not

::::::::
included

::
in525

:::
this

:::::
study,

:::::
could

::::
also

::::
help

::::::
achieve

:::::::::::
convergence.

::::::::
Variance

::
of

:::::::::::
precipitation

::
in

::
an

::::::::
ensemble

:::
of

:::::
cloud

:::::::::
simulations

:::::::::
decreases

::::
with

::::::
N

(bin)
SD ,

:::
but

::::
only

::
if

:::
the

:::::
same

::::
flow

::::
field

::
is

::::
used

::
in
:::

the
:::::::::

ensemble.
::
If

:::
the

::::
flow

::::
field

::
is
::::::::
different

::
in

:::::::
different

:::::::::::
simulations,

:::
e.g.

::::
due

::
to

::::::
random

::::::::::::
perturbations

::
of

:::::
initial

::::::::::
conditions,

:::::::
variance

::
of
:::::::::::

precipitation
::
is
:::
not

::::::::
sensitive

::
to

:::::::
N

(bin)
SD .

::::
This

::::::
shows

:::
that

:::
in

::::::
typical

:::::::
LES

:
, the

::::::::
increased

::::::::
variance

::
in

:::
the

:::::::
number

::
of

::::::::
collisions

:::
in

::::::
particle

::::::::::::
microphysics

::::
does

:::
not

:::::
affect

:::::::::
variability

:::
in

:::
rain

::::::::
between

::::::::
simulation

:::::
runs,

:::::::
because

:::::::::
differences

::
in

:::::::
realized

::::
flow

:::::
fields

:::
are

::::
more

:::::::::
important..530

Overall, this work shows how difficult it is to have numerical convergence of rain in LES of clouds.Further studies of

collision-coalescence modeling in cloud simulations with particle microphysics are needed. One subject of interest would be to

test convergence in another implementations of particle microphysics in order to validate our findings. Another subject would

be to study spatial distribution of the DSD in particle microphysics in LES with varying resolution and the potential connection

between smoothness of the spatial distribution and precipitation formation.535

Appendix A:
:::::::
Periodic

::::::::
synthetic

::::::::::
turbulence

::::::
model

::
In

::::::::
multi-box

:::::::::::
simulations,

::::::::::::
incompressible

::::::::
isotropic

:::::::::
turbulence

::
is

::::::::
modeled

::
as

:
a
::::

sum
:::

of
::::::
random

:::::::
Fourier

::::::
modes.

::::
The

::::::
model

::
is

::::::
similar

::
to

:::
that

:::::
used

::
in

:::::::::::::::
Sidin et al. (2009)

:
,
:::
but

:::
the

::::::::
generated

:::::::
velocity

:::::
field

::
is

:::::::
periodic

:::::::
because

::
of

:::
the

:::::::::
boundary

:::::::::
conditions

::
in
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::::::::
multi-box

::::::::::
simulations.

:::
We

:::::
shall

::::::
assume

:::::::
periodic

::::::::
boundary

:::::::::
conditions

::
in

:::
the

:::::
space

:::::::
variable

:::::::::::
r = (x,y,z),

u(x+nxL,y+nyL,z+nzL)≡ u(r+nL) = u(x,y,z),
:::::::::::::::::::::::::::::::::::::::::::::::

(A1)540

::
for

:::
all

::
x,

::
y,

::
z

:::
and

::
all

::::::
signed

::::::
integer

:::::::::
nx,ny,nz ,

::::::
where

::
L

:
is
::::::
called

:::
the

::::::
period.

:
It
::
is
:::::::
enough

::
to

:::::::
consider

:::
the

:::::::::
restriction

::
of

:::
the

::::
flow

:::
into

::
a
::::::::

periodic
::::
cubic

::::
box

::
of

::::
side

::
L.

:::::
Using

:::::::
Fourier

:::::
series

:::
we

::::
write

:::
the

:::::::
velocity

::::
field

::
as

:

u(r, t) =
∑
k

û(k, t)exp[ik · r]
:::::::::::::::::::::::::

(A2)

::::
with

k =
2π

L
n=

2π

L
(nx,ny,nz) .

:::::::::::::::::::::::

(A3)545

:::::
Using

:::
the

::::::::::::::
incompressibility

:::::::::
condition,

:::
and

:::::
since

::::::
u(r, t)

::
is

:::::::::
real-valued,

:::
the

:::::::
velocity

::::
field

:::::
(A2)

::::::
reduces

:::
to:

u(r, t) =

N∑
n=1

M(n)/2∑
m=−M(n)/2

::::::::::::::::::::

[an,m(t)× k̂n,m
::::::::::::

]cos(kn,m · r)−
::::::::::::

[bn,m(t)× k̂n,m
::::::::::::

]sin(kn,m · r) ,
:::::::::::

(A4)

:::::
where

:::::::::
k̂ = k/|k|

:
is
:::
the

::::
unit

:::::
vector

::
in

:::
the

:::::::
direction

::
of

::
k

:::
and

:::::
M(n)

::
is

:::
the

::::::::::
n-dependent

::::::::::
multiplicity

:::
(or

:::::::::
degeneracy

:
)
::
of

::::::::::
wavevectors

::::
kn,m::::

with
::::

the
::::
same

::::::::::
magnitude

:::::::::::
kn = |kn,m|.

:::
For

::
a

:::::
given

:::::
value

::
of

::
n

::::::::::
(numbering

:::
the

:::::::::
magnitude

::::::::::::
kn = |kn,m|),

:::
the

:::::
index

:::
m

:::::::
numbers

:::
the

::::::::::
wavevectors

:::::
kn,m::::

with550

kn,−m =−kn,m, m= 1, . . . , 12M(n) .
::::::::::::::::::::::::::::::::

(A5)

:::
The

::::
time

::::::::
evolution

::
of

:::
the

:::::::
random

:::::
vector

::::::::::
coefficients

:::::::
an,m(t)

:::
and

:::::::
bn,m(t)

:::::
reads

an,m(t+ δt) = rnan,m(t)+σn

√
1− r2nξa,

:::::::::::::::::::::::::::::::::::
(A6)

bn,m(t+ δt) = rnbn,m(t)+σn

√
1− r2nξb,

:::::::::::::::::::::::::::::::::::
(A7)

::
for

:::::::::::::::::
m= 1, . . . ,M(n)/2.

:::
In

:::
the

:::::::::
expression

::::::
above,

::
ξa::::

and
::
ξb:::

are
:::::::::::

independent
:::::::
random

::::::
vectors,

:::::
with

::::::::::
components

:::::
taken

::::
from

::
a555

:::::::
Gaussian

::::::::::
distribution

::::
with

:::::::::
zero-mean

:::
and

::::
unit

::::::::
variance.

:::
The

::::::
values

::
of

:::::::
an,m(t)

:::
and

:::::::
bn,m(t)

:::
for

::::::
m< 0

:::
are

:::::::
obtained

:::::
from:

:

an,−m(t) =−an,m(t), bn,−m(t) = bn,m(t) .
::::::::::::::::::::::::::::::::::::::

(A8)

:::
The

:::::::::
remaining

::::::::
quantities

:::
are:

:::
the

:::::::::
relaxation

:::::::
function

:

rn = exp(−ωnδt),
:::::::::::::::

(A9)

::::
with

:::::::::
frequencies

:
560

ωn ∼
√
k3nE(kn),

::::::::::::::
(A10)
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::::::::::
Kolmogorov

::::::
energy

::::::::
spectrum

::
in

:::
the

::::::
inertial

::::::::
subrange

E(kn)∼ k−5/3
n ,

:::::::::::::
(A11)

::::::::
variances

σ2
n = E(kn)∆kn/M(n)

:::::::::::::::::::
(A12)565

:::
and

:::::::::
differences

::
in

::::::::::
wavevector

::::::::::
magnitudes

∆kn =
1

2
(kn+1 − kn−1), 2≤ n≤N − 1,

:::::::::::::::::::::::::::::::::::

(A13)

∆k1 =
1

2
(k2 − k1), ∆kN =

1

2
(kN − kN−1).

:::::::::::::::::::::::::::::::::::::

(A14)

::::::
Validity

:::
of

:::
the

:::::::
periodic

::::::
model

::
is

:::::
tested

:::
by

:::::::::
comparing

::::
pair

:::::::::
separation

:::::::
statistics

:::::
with

:::::
results

:::::
from

:::
the

:::::::::::
non-periodic

::::::
model

::
of

:::::::::::::::
Sidin et al. (2009).

:::::
Initial

::::
pair

:::::::::
separation

:
is
:::::
equal

::
to

:::
the

:::::::::::
Kolmogorov

:::::
length

:::::::
assumed

::
to
:::
be

:::::::::
η = 1mm.

:::
The

::::
size

::
of

:::
the

::::::
largest570

:::::
eddies

::
is

::::::::
L= 1m.

::
In

:::
the

:::::::::::
non-periodic

::::::
model,

::::
200

::::::::::
wavevector

::::::::::
magnitudes

::::
were

:::::
used

:::
that

:::::
form

:
a
:::::::::

geometric
:::::
series

::::::::
between

:
L
::::
and

:
η
::::::::::::::::

(Sidin et al., 2009).
::::

For
::::
each

::::::::::
wavevector

:::::::::
magnitude,

:::
50

::::::::::
wavevectors

:::::
were

::::::::
randomly

:::::::
selected.

:::
In

:::
the

:::::::
periodic

::::::
model,

::
we

:::::
used

:::::::::
magnitudes

:::
of

::
all

:::::::
periodic

:::::::::::
wavevectors

:::::::
between

::
L

::::
and

::
η.

:::
For

::::
each

::::::::::
wavevector

::::::::::
magnitude,

:
n
:::

we
:::::::::

randomly
:::::::
selected

:::::::::::::
min(10,M(n))

::::::::::
wavevectors,

::::::
where

:::::
M(n)

::
is

::::::::::
degeneracy.

:::::
Time

:::
step

::::
was

:::::
0.1s.

::::::
Results

:::
are

::::::
plotted

::
in

::::::
fig. A1

:
.
:::
We

::::
find

:::
that

::::
pair

::::::::
separation

::
is

::
in

:::
the

:::::::
periodic

::::::
model

::
is

:::::::::
somewhat

:::::
larger.

::::::::
However,

:::::
given

::::
that

:::
the

::::::
choice

::
of

:
ϵ
::
in
:::::::::

multi-box
::::
tests

::
is

::::::::
arbitrary,

:::
we575

:::::
decide

::::
that

:::
the

:::::::
periodic

:::::
model

::
is

::::::::::
sufficiently

:::::::
realistic.
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Figure A1.
:::
Pair

::::::::
separation

:::::::
statistics

:::::
from

:::
the

::::::
periodic

::::
and

::::::::::
non-periodic

:::::::
synthetic

::::::::
turbulence

::::::
models

:::
for

:::::::
different

:::::
values

::
of
:::

the
:::::

TKE

::::::::
dissipation

:::
rate.

:::::
Solid

::::
lines

::::
show

:::::::
ensemble

:::::
mean,

:::
and

::::::
shading

:::::
shows

:::
one

::::::
standard

:::::::
deviation

:::::::
interval.
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