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Abstract. Hydrological numerical modelling is generally designed to provide predictions of uncertain quantities 

in a decision-support context. In the implementation of decision-support modelling, data assimilation and 10	
uncertainty quantification are often the most difficult and time-consuming tasks. This is because the imposition 

of history-matching constraints on model parameters usually requires a large number of model runs. Data Space 

Inversion (DSI) provides an alternative (and highly model-run-efficient) method for predictive uncertainty 

quantification that avoids the need for parameter estimation. It does this by evaluating covariances between 

model outputs used for history matching (e.g. hydraulic heads) and model predictions based on model runs that 15	
sample the prior parameter probability distribution. By focusing on the direct relationship between model 

outputs under historical conditions and predictions of system behaviour under future conditions, DSI avoids the 

need to estimate or adjust model parameters. This is advantageous when using such as Integrated Surface and 

Subsurface Hydrologic Models (ISSHMs). These models are characterised by long run times, a penchant for 

numerical instability and/or complex parameterisation schemes that are designed to maintain geological realism. 20	
This paper demonstrates that DSI provides a robust and efficient means of quantifying the uncertainties of 

complex model predictions, at the same time as it provides a basis for complementary linear analyses that can 

explore issues such as data worth. DSI is applied in conjunction with an ISSHM representing a synthetic but 

realistic stream-aquifer system. Predictions of interest are fast travel times and surface water infiltration. Linear 

and nonlinear estimates of prediction uncertainty based on DSI are validated against a more traditional approach 25	
to prediction uncertainty quantification which requires adjustment of a large number of parameters. A DSI-

generated surrogate model is then used to investigate the effectiveness and efficiency of existing and possible 

future monitoring networks. This demonstrates the benefits of using DSI in conjunction with a complex 

numerical model to quantify prediction uncertainty and support data worth analysis in complex hydrogeological 

environments. 30	
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1. Introduction 
 35	
Numerical hydrological models are typically built to make predictions to support decision-making. Note that in 

this paper we use the terminology “prediction” to refer to any quantity of interest from a numerical model, 

whether it is estimated in the future or as a by-product of data assimilation. Generally, Bayesian methods are 

applied to these models so that the uncertainties associated with predictions of management interest can be 

quantified and reduced. Through this process, the prior uncertainties of these predictions are constrained by the 40	
assimilation of local data to provide estimates of posterior prediction uncertainties. A variety of Bayesian 

methods are available for this purpose. These include linear methods (James et al., 2009; Dausman et al., 2010) 

as well as linear-assisted methods such as null space Monte Carlo (Tonkin and Doherty 2009; Doherty 2015). 

More recently, ensemble methods such as those described by Chen and Oliver (2013) and White (2018) have 

been turned to this task. The attractiveness of ensemble methods lies in their ability to accommodate a large 45	
number of parameters with a high degree of model run efficiency. 

 

In many hydrogeological settings, elongate structural or alluvial features that embody interconnected 

permeability are of high conceptual relevance as they can have a major impact on management-salient 

predictions. Representation of these features typically requires the use of categorical parameterisation schemes 50	
that maintain their inherent connectivity. Despite the efficiency of ensemble methods, it is difficult to adjust and 

maintain permeability connectedness as parameter fields are adjusted so that model outputs can respect field 

measurements (Lam et al., 2020; Juda et al., 2022). Theoretical problems arise from the multi-Gaussian 

assumption on which ensemble methods are based. Practical problems arise from the sometimes problematic 

behaviour of complex numerical models when endowed with stochastic parameter fields with high contrasts in 55	
hydraulic conductivity. These problems are generally exacerbated when solute transport is simulated in addition 

to flow. It follows that the use of model partner software such as PEST (Doherty 2022) and PESTPP-IES (White 

2018) for parameter field conditioning and prediction uncertainty analysis and reduction is not always feasible. 

This makes it difficult to pursue simulation integrity through the use of physically based numerical models 

where potentially information-rich site data must be assimilated. Compromises in model structure, 60	
parameterisation or process complexity may therefore be required (see e.g. Delottier et al., 2022). 

 

To overcome these problems, methods have been developed to generate posterior distributions of predictions 

without the need to adjust the complex parameter fields of large, physically based numerical models. See, for 

example, Satija and Caers 2015; He et al., 2018; Hermans 2017; Sun and Durlofsky 2017. Computational 65	
advantages can be gained by establishing a direct link between historical observations and predictions of 

management interest. To establish this link, a numerical model of arbitrary process complexity is used. This 

model is equipped with parameter fields that can best express the hydrogeological characteristics of the 

simulated system. These may include complex structures that are capable of expressing three-dimensional 

configurations of hydraulic property heterogeneity. Because no adjustment of parameter fields is required, 70	
simulation integrity is maintained regardless of the complexity of hydrogeological site conceptualisation, and 

regardless of the role played by features of structural or alluvial origin that exhibit complex spatial patterns of 

enhanced and continuous hydraulic conductivity. Instead, the model is used to build a prior probability 

distribution of predictions of management interest based on samples of realistic hydraulic property fields. The 
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same model runs that are used to explore prior prediction uncertainty are used to construct a joint probability 75	
distribution that links historical system behaviour with future system behaviour.  

 

Some of the methods that adopt this approach to posterior predictive uncertainty analysis attempt to develop 

explicit relationships between historical observations of system behaviour on the one hand and predictions of 

future system behaviour on the other hand (Satija and Caers 2015; Scheidt et al. 2015). In contrast, other 80	
methods develop a more implicit relationship between these two (Sun and Durlofsky 2017; Lima et al. 2020). 

Once these relationships have been established, predictions of management interest can be directly conditioned 

by real-world measurements of historical system behaviour. The need for manipulation and estimation of 

parameters is thereby obviated. The numerical burden of predictive uncertainty reduction and quantification is 

thereby reduced to a manageable level, regardless of the complexity of the numerical model and regardless of the 85	
complexity of the prior parameter probability distribution. 

 

In this paper, we employ a “data space inversion” (i.e. DSI) methodology that is similar to that described by 

Lima et al. (2020). At the same time, we extend the methodology to consider the value of existing and future 

data. Assessment of data worth is based on the premise that the value of data increases with its ability to reduce 90	
the uncertainties of decision-critical predictions. Because it requires uncertainty quantification, assessing the 

value of data using methods that rely on explicit or implicit (through linear analysis) parameter adjustment can 

be computationally expensive, especially when performed in numerical and parameterisation contexts that 

attempt to respect hydrogeological processes and hydraulic property integrity as much as possible. The 

numerically inexpensive methodology for data worth assessment that is presented herein can support these 95	
assessments in modelling contexts where it would otherwise be computationally intractable. It is hoped that this 

can support attempts to achieve the goals of decision-support utility and failure avoidance that are set out in 

articles such as Kikuchi 2017 and Doherty and Moore 2020. 

 

All of the methods described here can be implemented using PEST (Doherty, 2022) and/or PEST++ (PEST++ 100	
Development Team, 2022). They are therefore readily available to the wider groundwater community. 

 

The paper is organised as follows: Section 2 describes the theory behind DSI. In the following section, a 

synthetic alluvial stream-aquifer system is introduced. This is then used to (i) validate DSI estimates of 

prediction uncertainty and (ii) demonstrate the use of DSI in quantifying the value of existing and new data. 105	
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2. Theory 
 
2.1 Statistical Linkage between the Past and the Future 
	110	
Let the vector o denote outputs of a model that correspond to field measurements of system behaviour (e.g. 

system states and fluxes). Meanwhile, we denote the actual field measurements of these quantities by the vector 

h. We use the symbol Z to characterise the operator through which model outputs o are calculated from model 

parameters; the latter are denoted by the vector k. Therefore: 

	115	
	 h	=	o	+	ε	=	Z(k)	+	ε	 	 	 	 	 	 	 	 (1)	
	
The vector ε denotes the noise associated with field measurements h. It may also include that part of model-to-

measurement misfit that arises from the imperfect nature of numerical simulation. In the present case we 

combine both of these into a single “noise” term. It is generally assumed that ε has a mean of 0; we denote its 120	
covariance matrix by C(ε). 

	

Ideally, k in equation (1) can represent any model inputs that are incompletely known. Conceptually, there is no 

limit to the number of elements that comprise the vector k, and hence to the complexity of model 

parameterisation. Typically, elements of k represent spatially distributed hydraulic and transport properties. 125	
They may also include historical system stresses such as pumping and recharge rates that are incompletely 

known, as well as some incompletely known specifications of other boundary conditions. 

	

Suppose the model is run over a period for which predictions are made. Let the vector s contain simulator 

predictions of management interest. We depict these as being computed from model parameters using the 130	
operator Y. Thus: 

	
	 s	=	Y(k)          (2) 
 
Suppose that the model is run N times over its simulation period, and that this simulation period spans both the 135	
time over which history-matching is performed (that is, the “calibration period”) and the time over which 

predictions are required (that is, the “prediction period”); depending on the prediction, these two periods may 

coincide. Suppose further that on each of the N occasions on which the model is run, the vector k comprises a 

different sample of its prior probability distribution of k. The set of N realisations of o computed by the model 

over these N model runs can be collected into a matrix O by arranging them in columns. Meanwhile, the set of N 140	
realisations of s can be similarly collected into a matrix S. From these realisations, vectors depicting the mean of 

O and the mean of S (i.e. o and s) are calculated as: 

	

	 𝐨 = 𝐨!!
!!!
!

	 	 	 	 	 	 	 	 	 (3a) 

	 𝐬 = 𝐬!!
!!!
!

	 	 	 	 	 	 	 	 	 (3b)	145	
	
Let O and S designate matrices whose columns are comprised of replicates of o and s. Consider now the 

covariance matrix: 
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	 C 𝐨
𝐬 =  C!! C!"

C!" C!!
	 	 	 	 	 	 	 	 (4)	150	

	
Submatrices appearing on the right side of equation (4) can be calculated from realizations of model outputs 

using the following equations: 

	

	 C!! =
𝐎!𝐎 𝐎!𝐎

!

!!!
	 	 	 	 	 	 	 	 (5a) 155	

	 C!" = C!"! = 𝐎!𝐎 𝐒!𝐒
!

!!!
	 	 	 	 	 	 	 (5b) 

	 C!! =
𝐒!𝐒 𝐒!𝐒

!

!!!
	 	 	 	 	 	 	 	 (5c)	

	
Conditioning of predictions by historical observations of system state (see below) often benefits from 

transforming individual elements oi and si of o and s into normally distributed variables og
i and sg

i before 160	
calculating the covariance matrices that are depicted in equation (4). Unfortunately, Gaussian transformation of 

individual elements of o and s does not guarantee that the joint probability distribution of [ogT, sgT] is multi-

Gaussian. However, this can be at least partially accommodated by undertaking an ensemble-based conditioning 

process in which og and sg are linked by a surrogate model. This is now discussed. Meanwhile, to make the 

following equations a little less complex, we drop the “g” superscript. 165	
 
2.2 The DSI Surrogate Model 
 
Sun and Durlofsky (2017) and Lima et al. (2020) demonstrate use of a covariance-matrix-derived surrogate 

model that can be used to link o and s. Conditioning of s by h (the measured counterpart of o) is then achieved 170	
by adjusting the parameters of this model using standard parameter conditioning methodologies. The former 

authors use the randomised maximum likelihood method, while the latter authors use an ensemble smoother. 

 
The DSI prediction model is described by the following equation: 

 175	
𝐨
𝐬 =

𝐨!
𝐬! +  C½ 𝐨

𝐬 𝐱 

 

(6) 
 

“Adjustable parameters” of this model comprise the vector x. Meanwhile op and sp are prior mean values of o 

and s. The prior probability distribution of elements xi of x is such that they are independently normal with a 

standard deviation of 1.0. Thus: 

 
 E(x) = 0        (7a) 180	
and 

 
 C(x) = I         (7b) 
 
where E(x) denotes expected value and C(x) denotes the prior covariance matrix of x. The square root of the 185	
covariance matrix that is depicted in equation (6) is obtained using singular value decomposition. First: 

 
C 𝐨

𝐬 = 𝐔𝚺𝐔!         (8) 
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where U is an orthonormal matrix and 𝚺 is a diagonal matrix whose elements are positive singular values. The 190	
square root of this matrix is then obtained as: 

 
 C½ 𝐨

𝐬 = 𝐔𝚺½𝐔!        (9) 
 
Normally 𝚺½ is truncated so that unduly low singular values are excluded. The sum of squared singular values 195	

(i.e. the diagonal elements of Σ½) is a measure of the total variability of 𝐨𝐬 . Normally truncation of Σ½ is such 

that 99% or more of this variability is retained. Once singular value truncation has been accomplished, a 

linearised inverse problem can be formulated using the following equation. (Without loss of generality, we omit 

the vector of prior means 
𝐨!
𝐬!  in this and the following equations in order to simplify them.) 

 200	
 𝐡

𝐬 = C½ 𝐨
𝐬 𝐱 + 𝛆

𝟎 = 𝐌𝐱 + 𝛆
𝟎       (10) 

 
The matrix operator M is defined through the above equation. Let the matrix N be an appropriate “selection 

matrix” comprised of 1’s and 0’s such that: 

 205	
 𝐡 = 𝐍 𝐡

𝐬            (11) 
Then: 

 h = Lx + ε           (12) 
where 

𝐋 = 𝐌C½ 𝐨
𝐬         (13) 210	

 
In equations (10-12), the vector h contains measurements of historical system behaviour that correspond to 

model outputs o (same as in equation 1). We refer to the model M herein as the “DSI surrogate model” that links 

elements of observed system behaviour to elements of its predicted behaviour (normally those that have 

decision-relevance). As stated above, the former are encapsulated in the vector o while the latter are 215	
encapsulated in the vector s. This surrogate model can be "calibrated" against field measurements of system state 

encapsulated in h to obtain a maximum a posteriori (MAP) estimate x of x, from which a MAP estimate s of s 

can be readily obtained using equation (6). Alternatively, or in addition, samples of the posterior distribution of x 

can be obtained using standard Bayesian methods. In the following analysis we use an ensemble smoother as 

well as a linearised form of Bayes equation for prediction conditioning. Because the computations embodied in 220	
equation (10) are simple, the DSI surrogate model runs extremely fast. 

 
2.3 Imposition of History-Match Constraints 
 
In the examples that follow, we apply equations (10) and (12) in a number of different ways. These will now be 225	
briefly described.  

 

The first of these applications is similar to that described by Lima et al. (2020). That is, an ensemble smoother is 

used to directly sample the posterior probability distribution of x. The posterior probability distribution of s is 

https://doi.org/10.5194/gmd-2023-40
Preprint. Discussion started: 15 March 2023
c© Author(s) 2023. CC BY 4.0 License.



7	
	

then sampled by running the DSI surrogate model using these samples of x. We use the PESTPP-IES ensemble 230	
smoother described by PEST++ development team (2022) for this purpose, invoking its automatic adaptive 

localisation scheme. 

 
We then use Tikhonov regularised inversion to “calibrate” the surrogate model, thereby obtaining a MAP 

estimate x of x from which a MAP estimate s of s is obtained from a single forward run of the calibrated DSI 235	
surrogate model. Calibration is achieved using PEST (Doherty, 2022). Because of equation (6) and the fact that 

the prior expected value of x is 0, the Tikhonov-regularised solution to the inverse problem described by 

equation (12) is (Doherty, 2015): 

 
 x = (LtQL + β2I)-1LtQh        (14) 240	
 
In equation (14), Q is the observation weight matrix; ideally: 

 
 𝐐 = C!! 𝛆          (15) 
 245	
In practice, equation (14) is solved iteratively as a value for β is sought that guarantees a model-to-measurement 

least squares objective function that is equal to, or greater than, a user-specified value. This value is calculated 

from the statistics of measurement noise (de Groot-Hedlin and Constable, 1991; Doherty, 2003). 

 

As explained below, we also use a constrained optimisation process to determine the maximum and minimum 250	
values that an individual prediction (i.e. an individual element of s) can take subject to the constraint that a least 

squares objective function does not rise above a user-specified value. This objective function is comprised of 

appropriately-weighted model-to-field-measurement residuals, as well as departures of elements of x from their 

prior expected values of 0.  

 255	
Because the prior expected value of x is 0, we can write: 

 
 0 = x + η         (16) 
 
where η is a random vector with the same statistical properties as x. Equation (12) can then be written as: 260	

 𝐡
𝟎 =  𝐋𝐈 𝐱 +  

𝛆
𝛈         (17a) 

 
With obvious definitions for d, J and τ, equation (17a) can be re-written as: 

 
 d = Jx + τ         (17b) 265	
 
From (7b), the covariance matrix of τ is: 

 

 C 𝛕 = C
𝛆
𝛈 = C 𝛆 0

0 𝐈
       (18) 

 270	
Let the vector y denote the sensitivity of an element si of s to surrogate model parameters x. For the purposes of 

prediction uncertainty analysis, we define a least squares objective function φu as the sum of squared, weighted 

model-to-measurement misfit residuals and parameter misfit residuals from their preferred values of 0. Thus: 
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 Φ! = 𝐡 − 𝐨 !𝐐 𝐡 − 𝐨 + 𝐱!𝐱      (19) 275	
 
Suppose that values of the objective function φu that exceed a user-specified value of φu0 are deemed to be 

unlikely (at a certain level of confidence). Vecchia and Cooley (1987) show that solution of the constrained 

optimisation problem in which si is maximized/minimized subject to the constraint that φu ≤ φu0 can be obtained 

through iterative solution of the following equation: 280	
 
 𝐱 = 𝐉!𝐐𝐉 !! 𝐉!𝐐𝐡 − 𝒚

!!
       (20a) 

 
where: 

 !
!!

!
= ±!!!!𝐝!𝐑𝐝!𝐝𝐓𝐑𝐉 !!𝐑𝐉

!!
𝐉!𝐑𝐝

𝒚! 𝐉!𝐑𝐉 !!𝒚
      (20b) 285	

 
and: 

 R = C-1(τ)         (20c) 
 
Recall that d is defined by equation (17b). Maximisation or minimisation of si is chosen according to the sign 290	
used in equation (20b). In the following example, this process is carried out using the “predictive analysis” 

functionality of PEST (Doherty, 2022). 

 

Finally, in the examples that we present below, we apply linear uncertainty analysis to evaluate the worth of 

various subsets of field data (i.e. elements of h). If we assume a linear relationship between surrogate model 295	
outputs (under both history-matching and predictive conditions) and surrogate model parameters, and Gaussian 

probability distributions for both x and ε , the posterior uncertainty of a prediction si can be calculated from the 

prior covariances matrix C(x) of model parameters on the one hand, and the covariance matrix C(ε ) of 

measurement noise on the other hand using the following Bayes-derived equation (Doherty, 2015; Fienen et al., 

2010): 300	
 

σ2
si = yTC(x)y – yTC(x)LT[LC(x)LT + C(ε)]-1LC(x)y     (21) 

 
The first term on the right side of equation (21) is the prior uncertainty of the prediction si. The second term 

represents predictive uncertainty reduction accrued through history-matching. In implementation of equation 305	
(21), the sensitivities embodied in the vector L can be calculated using finite perturbations of the MAP estimate 

x of x. Meanwhile C(x) is the identity matrix I.  

It is important to note that equation (21) includes the values of neither parameters nor observations; it features 

only sensitivities. Hence, as will be discussed below, it can be easily turned to the task of data worth evaluation. 

In particular, the ability of a new measurement to reduce the uncertainty of a prediction of interest can be 310	
evaluated without actually knowing the value of that measurement. 

 
3. Application 
 
We now discuss application of the DSI methodology in a synthetic alluvial stream-aquifer context. Alluvial river 315	
corridors are used worldwide for drinking water supply. Up to 85% of groundwater withdrawals from these 
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systems come from surface water capture (Scanlon et al., 2023). They provide productive aquifer systems and 

natural riparian filtration; see, for example, Epting et al. (2022). River-associated aquifers have been formed by 

millennia of channel meander migration, aggregation and erosional flow processes. These processes produce 

heterogeneous aquifers in which large-scale features, such as palaeochannels, provide preferential flow paths. 320	
These can significantly influence the spatial distribution of exchange fluxes between streams and aquifers. 

Interactions between surface and subsurface waters are therefore complex. Furthermore, stochastic 

characterisation of subsurface heterogeneity is strongly non-Gaussian. This makes it difficult to evaluate the 

statistical properties of management-pertinent model predictions. 

 325	
In our synthetic example, the objective of numerical modelling mimics that of real-world modelling in many 

alluvial depositional environments with which we are familiar. It is to predict surface water infiltration along a 

stream, and surface water travel times to water production wells with particular emphasis on the shortest of these 

times. Both of these variables are salient to management of an alluvial aquifer that is used for drinking water 

supply. Provision of these predictions by a numerical model can assist water managers in operating a well field 330	
in a way that minimizes the potential for bacterial contamination of drinking water (Epting et al., 2018). In this 

example, we investigate the ability of DSI to associate uncertainties with management-pertinent predictions, and 

to support data acquisition-strategies which reduce these uncertainties.  

 
3.1 Numerical Model 335	
 
Complex interactions and feedback mechanisms between surface and subsurface waters often need to be 

considered when managing alluvial aquifers, and therefore when simulating them for management purposes. 

Integrated surface and subsurface hydrologic models (ISSHMs) provide a consistent framework for simulating 

flow and transport processes that are operative within these aquifers (Brunner et al., 2017). A strength of these 340	
models is that they can simulate dynamic feedback between the surface and subsurface water regimes over a 

wide range of temporal and spatial scales (Paniconi and Putti 2015). 

 

For this reason, and because it is frequently used by the authors in real-world decision-support modelling of 

alluvial aquifers, the ISSHM modelling platform HydroGeoSphere (HGS) (Aquanty Inc., 2022; Brunner and 345	
Simmons 2012; Brunner et al., 2012) is used to perform the numerical simulations documented herein. HGS 

simulates surface water (SW) and groundwater (GW) flow processes using a globally implicit, finite-difference 

flow formulation. Simulation of water movement within the 2D surface water domain is based on the diffusion-

wave equation, while the three-dimensional, variability-saturated Richards equation is used to simulate 

subsurface flow processes. 350	
 
3.2 Model Setup 
 
3.2.1 Geometry 
 355	
The numerical flow model that we deploy to explore and document the capabilities of DSI has a spatial extent of 

300 × 500 × 30 m in the x, y and z directions (Figure 1a). An alluvial plain slopes gently towards the stream 

outlet with a slope of 0.003 m/m in the y-direction. The stream itself flows along the eastern boundary of the 

model domain in a 3 m deep and 15 m wide channel. The numerical grid is discretised using a 2D unstructured 
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triangular mesh with lateral internodal spacing that ranges between 4 m along the stream and 7 m under the 360	
proximal alluvial plain. The 2D mesh was generated using AlgoMesh (HydroAlgorithmics Pty Ltd, 2022). The 

model has 14 layers. Layer boundaries are at depths of 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 8.0, 11.0, 14.0, 17.0, 20.0, 

23.0 and 26.0 metres. The bottom of the model is at a depth of 30 metres. The resulting 3D mesh consists of 

112,240 nodes and 204,000 elements.  

 365	
3.2.2 Boundary conditions 
 
The surface water inflow on the upstream side of the stream was conceptualised as a second type (specified flux) 

boundary corresponding to a constant flow (Q) of 2 m3.s-1. The surface water outflow was implemented as a so-

called “critical depth boundary”, which allows surface water to leave the overland flow area downstream (Figure 370	
1a). Meanwhile, an areal infiltration rate of 300 mm.y-1 is imposed over all nodes of the alluvial plain that 

borders the river. This top boundary condition represents effective rainfall, as evapotranspiration processes are 

not explicitly simulated by the model. At the northern and southern ends of the groundwater system, a fluid 

transfer boundary condition is deployed to ensure a regional groundwater in- and outflow at these upstream and 

downstream model boundaries respectively. Lateral model boundaries, as well as the basal model boundary, are 375	
impermeable. 

 
Two water production wells are represented by flux nodal boundary conditions; each well extracts 400 m3.h-1 

from the groundwater system. The well field, therefore, produces a total of 800 m3.h-1 of water. In each well the 

pump is emplaced at an elevation of 85 m (i.e. at a depth of approximately 14 m). As in all ISSHMs, streamflow 380	
simulation is explicit, while the simulation process passes water between the surface and groundwater systems in 

accordance with heads that are calculated in these two flow domains. This eliminates the need to specify special 

boundary conditions at the surface water groundwater interface. The surface water domain is directly coupled to 

the groundwater domain using the dual-node approach with a coupling length of 0.1 m.  

 385	
The transient simulation covers a period of 95 days. Over this period, extraction rates from the two water 

production wells are varied in order to reproduce a controlled pumping experiment (Figure 1c). During this 

experiment, well field extraction is shut down for 50 days. The pumping rate is then restored, and simulation 

continues for another 30 days. This pumping rate reduction experiment introduces a significant transient event to 

the alluvial system. The response of the system to this event has the potential to provide a significant amount of 390	
information on system hydraulic properties. It is worthy of note that a field-scale experiment that is similar to 

this was conducted in the Aeschau plain, Switzerland, under the supervision of the city of Bern (Schilling et al., 

2017). 

 

Prior to the 95 day reducing pumping experiment, the model runs for a period of 365 days. This allows 395	
attainment of near-steady-state conditions. The average computational time required for the model to simulate 

the preceding 365 days and the full 95 days of the pumping rate reduction experiment is 10 minutes; simulation 

is not parallelized. HGS employs adaptive time-stepping; however the maximum time step was limited to a 

single day in order to ensure computational stability. 

 400	
3.2.3 Parameterisation 
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The generation of realistic distributions of subsurface hydraulic properties in depositional environments that are 

characterised by distinct, continuous features of complex geometry such as alluvial channels, is often 

implemented using rule-based feature-generation codes. Alternatively, packages which implement multipoint 405	
geostatistics (Remy et al., 2009; Linde et al., 2015) can be employed. Algorithms that underpin the former codes 

generate geobodies that can have similar geometric properties to alluvial channels, whereas latter packages 

employ stochastic image analysis techniques to support reproduction of these complex structures while 

maintaining their long-distance connectivity. 

 410	
In the present case, we employ the ALLUVSIM alluvial channel simulator (Pyrcz et al., 2009) to generate 

realisations of the alluvial subsurface. (Note that these do not affect the flow path of the river; conceptually they 

are remnants of historical river channels). The numerical generation of superimposed and intersecting alluvial 

channels is controlled by geometric input parameters such as channel depth, width, porosity, starting location 

and sinuosity (Pyrcs et al., 2009); see Table 1. ALLUVSIM simulations were used to assign sets of alluvial 415	
channels to the HGS groundwater flow domain.  

 

For the generation of ALLUVSIM channel sets we adopt a width-to-depth ratio of 1. Furthermore, the depth of 

channel deposits averages 20m, this being a considerable portion of the modelled subsurface. Recall that the 

depth of the base of the model is 30m. We do not stack channels at different depths. Therefore each realization 420	
of the subsurface contains a small number (up to 10) alluvial channels, each of which is continuous from the 

north to the south of the model domain while extending from the surface to a depth that approaches the bottom 

of the alluvium. As is apparent in Table 1, the mean channel x coordinate (about 370m from the western edge of 

the ALLUVSIM model boundary along its northern boundary) is such that channels tend to occupy parts of the 

subsurface that are not too far from the course of the present river. Groundwater flow within the near-river part 425	
of the model domain is therefore dominated by the presence of these continuous, conductive channels. One of 

the ALLUVSIM-generated channel distributions (out of a total of 101) was adopted as the “reality” channel 

distribution. This is displayed in Figure 1b. The other 100 realisations were used to generate realisations of prior 

hydraulic properties. These are required by the DSI process that is described above. 

 430	
Each realisation of the subsurface contains three facies; each is based on a different realisation of an 

ALLUVSIM-generated channel set. These facies are channel, non-channel and riverbed deposits. This last facies 

is mainly present near the banks, while it is absent in the deepest parts in the middle of the stream. In this model 

we assume that the riverbed deposits have developed in a uniform layer of 50 centimetres, which is therefore 

assigned to the uppermost model layer. For each HGS model realisation, each of these facies is provided with a 435	
spatially uniform set of hydraulic properties (i.e. hydraulic conductivity and porosity). The value of each of these 

properties is randomly selected from probability distributions that are presented in Table 1. (Intra-facies 

heterogeneity is purposefully neglected in order to examine DSI’s performance in geological settings where 

hydraulic properties are categorical in nature, with one category exerting a dominant influence on groundwater 

flow.) Appendix A depicts a number of HGS model parameter realisations, coloured according to horizontal 440	
hydraulic conductivity. 
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A vertical anisotropy of 4 is assigned to all hydraulic conductivities in all realisations of all facies. This is 

consistent with alluvial depositional systems similar to those that our study attempts to represent. (Gianni et al., 

2018; Chen 2000; Ghysels et al., 2018). 445	
 

Parameters that govern unsaturated flow were also homogeneous, and invariant between realisations. The van 

Genuchten-Mualem parameters a [m-1] and β [-] are set to 3.48 and 1.75, respectively, these being typical of 

alluvial gravel (Dann et al., 2009). The residual soil water content is set to 0.095. The Manning’s roughness 

coefficient is set to 1.7 ×10-6 d.m-1/3. 450	
 
3.3 History-matching dataset and model predictions 
 

The dataset used for history matching consists of 95 observations of hydraulic heads in each of eight observation 

wells, these providing a total of 760 individual observations. These heads are calculated using the HGS “reality 455	
parameter field”. A random realisation of measurement noise is added to each head measurement. The 

probability density distribution of synthetic head measurement noise has a mean of 0.0m and a standard 

deviation of 0.05m. Figure 2 shows “reality heads” together with heads calculated at the same locations using the 

remaining 100 hydraulic property realisations. There is considerable scatter in these plots. This suggests that the 

information content of these heads with respect to subsurface hydraulic properties is high. Their information 460	
content with respect to predictions of management interest is pursued using the methodologies discussed above. 

 

The predictions of interest are as follows: 

- fast travel times (days) at the first well (well #1); 

- fast travel times (days) at the second well (well #2); 465	
- rate of surface water infiltration into the groundwater system (l.s-1) along the entire length of the 

stream. 

 

Travel times are calculated using particles; see Anderson et al. (2015) for details. For each realisation of the 

alluvial architecture and accompanying hydraulic properties, particles are placed along the riverbed at the top of 470	
the subsurface flow domain; see Figure 1b. Most particles leave the model domain through an extraction well. 

The travel time that corresponds to the 5th percentile of the particle breakthrough curve at a particular well under 

normal operating conditions is deemed to be the “fast travel time” pertaining to that well. Our focus on fast-

moving water acknowledges the likelihood of rapid flow processes being driven by preferential flow paths. 

These same rapid flow processes can threaten water extraction in the event of surface water contamination.  475	
 

Fast times and surface water infiltration are calculated at t = 365 days. Thus they pertain to maximum well 

abstraction rates. 

 

For the synthetic reality, the 5th percentile of travel times is 9.57 and 7.90 days for water production wells #1 480	
and #2, respectively. Meanwhile, surface water infiltration along the entire stream is 130.67 l.s-1. 

 
4. Uncertainty Quantification 
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In this section we document how the posterior (i.e. post-history-matching) uncertainties of the three predictions 485	
of interest can be evaluated using four different approaches. One of these requires adjustment of the parameters 

of the HGS model. The other three approaches require adjustment of parameters of a surrogate model that is 

built to implement DSI-based predictive uncertainty evaluation in ways that are discussed in Section 2. In all 

cases parameter adjustment minimizes a least squares objective function that serves as a measure of model-to-

measurement misfit. This objective function is calculated as the sum of weighted squared differences between 490	
observed and modelled heads in the eight observation wells discussed above. Weights are uniform to reflect the 

temporal uniformity of measurement noise; each has a value that is equal to the square of the standard deviation 

of this noise. The expected value of the history-matched objective function is therefore expected to be somewhat 

greater than 760, this being the number of observations which comprise the calibration dataset. The “somewhat 

greater” is an outcome of the fact that number of “effective parameters” is unknown prior to solving an ill-posed 495	
inverse problem. See Doherty (2015) for details. 

 

4.1 Bayesian history-matching 
 
4.1.1 History matching with the HGS model 500	
 

First, we adjust HGS model parameters using the PESTPP-IES ensemble smoother. History-match-constrained 

parameter fields are then used to make the predictions of interest. The variability of these predictions between 

these posterior parameter fields is a measure of their posterior uncertainties. 

 505	
The ensemble smoothing process begins with samples of the prior parameter probability distribution. In the 

present case we use the 100 parameter fields that were obtained in the manner discussed above. These parameter 

fields are iteratively adjusted until model outputs fit field measurements. The HGS model has 204,000 elements. 

As is common practice when using parameter ensembles for history-matching, each of these is considered as a 

separate parameter when undertaking PESTPP-IES-based parameter adjustment.  510	
 

Piecewise spatial uniformity of the initial parameter fields is lost during the ensemble parameter adjustment 

process as each parameter is subject to individual adjustment while maintaining a high level of spatial 

correlation with neighbouring parameters that is inherited from the initial realisations. See Chen and Oliver 

(2013) for mathematical details of the parameter adjustment process. 515	
 

The objective function associated with all ensemble realisations was significantly reduced after 3 iterations of 

the IES parameter adjustment process. Objective function values ranged between 1075 and 16098, except for 30 

realisations which suffered excessively slow HGS model solution convergence and where therefore abandoned. 

Note that each iteration of the IES parameter adjustment process requires as many model runs – in this case HGS 520	
model runs - as there are realisations that comprise the ensemble. Figure 2 shows that model-calculated heads at 

the observation wells are indeed close to “measured” heads. The 70 realisations which remained after 3 IES 

iterations were used to make the predictions that are described above. The results are plotted in Figure 3a. 
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It can be seen from Figure 3a that the uncertainty of predicted surface water infiltration is significantly reduced 525	
by PESTPP-IES based history matching of the HGS model. It can therefore be concluded that the information 

content of hydraulic heads with respect to this specific prediction is high. In contrast, the uncertainties of first 

arrival travel time predictions are not significantly reduced; see Figure 3a. The information content of head 

responses to altered pumping rates with respect to these predictions is therefore lower that it is for surface water 

infiltration.  530	
 

An interesting feature of Figure 3a is that some fast travel times calculated for posterior parameter fields exceed 

those calculated using prior parameter fields. This can be explained by the fact that some posterior parameter 

fields have lost some of the connectivity exhibited by the prior parameter fields. (See Appendix B). This is an 

outcome of the PESTPP-IES parameter fitting process. Its parameter adjustment process is only truly Bayesian 535	
where prior parameter distributions are Gaussian on a cell-by cell basis (if cell-by-cell parameterisation is 

employed). Neither the theory on which it is based, nor numerical implementation of that theory in its history-

matching algorithm, can guarantee maintenance of long-distance hydraulic property connectedness that cannot 

be characterised by a multiGaussian distribution. Indeed, history-match-constrained adjustment of connected and 

categorical parameter fields is still an area of active research (Khambhammettu et al., 2020). 540	
 

4.1.2 History matching with the DSI surrogate model 
 

The same 100 samples of the prior parameter probability distribution that were used to start the PESTPP-IES 

data assimilation process were then used to construct a DSI surrogate model using the methodology described in 545	
Section 2. Recall that this model is based on an empirical covariance matrix that relates history-matched model 

outputs to predictive model outputs. A singular value energy level of 0.999 was used in the construction of this 

surrogate model. This results in the use of 87 singular values (and corresponding eigencomponents) of this 

matrix, and hence an 87-dimensional x vector; see equation (6). Note that the only HGS model runs that were 

required to construct and history-match the surrogate DSI model were those that were based on the 100 prior 550	
hydraulic property field realisations discussed above. No further runs of the HGS model were required to carry 

out any of the procedures described below. 

 

Sampling of the posterior distribution of surrogate model parameters (i.e. elements of the x vector) was 

implemented using the PESTPP-IES ensemble smoother. However, in contrast to the previous use of PESTPP-555	
IES, its use with the DSI surrogate model incurs a trivial numerical burden because of the extremely fast 

execution speed of this model. An ensemble comprising 100 realisations of the prior probability distribution of 

surrogate model parameters was adjusted. After 6 iterations of this process, all realisations yielded good model-

to-measurement fits, with objective function values ranging between 814 and 830. Prior and posterior prediction 

histograms are shown in Figure 3b. 560	
 

The posterior prediction probability distributions for surface water infiltration calculated by HGS parameter 

fitting and by DSI surrogate model parameter fitting are very similar. The same cannot be said for fast travel 

times. The posterior uncertainty of this prediction is lower after DSI surrogate model parameter fitting than after 

HGS model parameter fitting. This suggests that fitting of DSI surrogate model parameters does not suffer the 565	
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same degradation in uncertainty evaluation performance as that which is incurred by PESTPP-IES-based fitting 

of HGS parameters which tend to loose their continuity as the history-matching process progresses. In contrast, 

parameters of the surrogate DSI model are not required to maintain any spatial patterns or relationships; they 

must simply represent observation-to-prediction relationships that are embodied in 100 HGS model outputs that 

were all calculated using continuous hydraulic property parameter fields. 570	
 

4.2 Tikhonov-regularised inversion and constrained predictive maximization/minimization 
 

The DSI surrogate model was next calibrated using Tikhonov regularisation; see equation (14). The MAP 

estimates of x that are obtained in this way can then be used to calculate MAP values of predictions. These are 575	
listed in Appendix C.  

 

Following calibration of the DSI surrogate model, equation (21) was used to calculate the prior and posterior 

standard deviations of the uncertainties of the three predictions of interest based on an assumption of surrogate 

model linearity. Sensitivities of model outputs that correspond to members of the calibration dataset, and that 580	
correspond to model predictions, were calculated using finite difference perturbations from calibrated surrogate 

model parameter values. Linear-calculated standard deviations are then used to plot the probability density 

distributions for the three predictions to be compared with ensemble-calculated standard deviations (Figure 3c). 

 

Next, posterior uncertainties of the three predictions of interest were calculated using the constrained 585	
maximisation/minimisation procedure that is described by equation (20). The objective function constraint 

provided to this equation was that which enables calculation of Scheffe 95% confidence intervals (see Vecchia 

and Cooley, 1987). The values obtained through this process agree reasonably well with maximum and 

minimum predictions obtained through Bayesian history matching of the DSI surrogate model (Figure 3c).  

 590	
Differences between evaluated predictive uncertainties that appear in Figure 3 (statistics are available in 

Appendix C) are generally small; however some are large enough to warrant discussion. Differences between 

linear and nonlinear uncertainty estimates can be at least partly attributed to approximations that calculation of 

these estimates require. Linear estimation of posterior predictive uncertainty requires not only an assumption of 

linearity of the DSI model; it also assumes Gaussianality of the prior probability distributions of DSI model 595	
parameters (i.e. elements of the x vector of equation 6). Meanwhile, nonlinear analysis using ensembles is prone 

to sampling errors incurred through the use of only 100 realisations; it is also affected by problems that PESTPP-

IES has in maintaining continuity of hydraulic properties (see above). Another factor that may degrade the 

accuracy of ensemble-calculated posterior uncertainties is failure of model outputs based on some parameter 

realisations to fit measured heads to within limits that are set by the statistical properties of measurement noise. 600	
Nevertheless, in spite of these approximations, it is pleasing to note that the ratio of prior to posterior uncertainty 

is reasonably consistent between linear and nonlinear estimates of posterior predictive uncertainty. This 

increases confidence in the data worth analysis which is the subject of the next section. 

 

5. Data worth 605	
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Quantifying the effectiveness and efficiency of existing and planned data acquisition and monitoring strategies 

can (and often should) be an important outcome of decision-support groundwater modelling. This is because 

quantification of uncertainty brings with it an ancillary benefit, this being quantification of the extent to which 

existing or contemplated data can reduce the uncertainties of one or more decision-critical model predictions. 610	
The worth of data increase in proportion to their ability to achieve this outcome.  

 

5.1 Value of existing data 
 

The worth of data that already comprise the calibration dataset can be evaluated according to two different 615	
metrics. The value of subsets of existing data can be assessed by evaluating the extent to which the posterior 

standard deviations of decision-critical model predictions are increased by their omission from this dataset. The 

worth of these subsets can also be assessed by evaluating the extent to which the prior standard deviation of 

these predictions is reduced by including a particular subset as the only members of the history-matching dataset. 

In the present section, we evaluate the worth of existing data according to the first of these metrics only. This is 620	
implemented using linear analysis based on equation (21). It is worth noting that, because the surrogate model 

runs so fast, the ensemble smoother could also have been used to sample the posterior distribution of our 

predictions with the omission of certain subsets of the history-matching dataset. 

 

Using equation (21), data is notionally omitted in a calibration dataset simply by setting their associated weights 625	
to values of zero. This was done for each of the observation wells that are featured in Figure 1a. The outcomes of 

this analysis are presented in Figure 4. 

 

Inspection of Figure 4 reveals that members of the existing observation network are more informative of 

predictive flux than they are of fast travel times. Furthermore, the cost of omitting OBS110 from the existing 630	
observation network appears to be greater than that of omitting any other observation well from the network. 

This implies a certain degree of uniqueness of information that is forthcoming from this well. This is not 

surprising as OBS110 is located upstream and closer to sources of surface water infiltration than most of the 

other observation wells. It is therefore close to the path of much of the water that flows from the river to 

production wells. 635	
 

Of particular interest is the high information content of OBS17 data with respect to the prediction of induced 

infiltration. This is attributable to the fact that prior realisations of hydraulic properties display spatially 

uniformity within each stratigraphic unit (that is channels, riverbed and other alluvium). Therefore, while 

pumping-induced surface water infiltration is sensitive to the structure and disposition of paleochannels which 640	
convey water from the river to production wells, it is also sensitive to aquifer properties that can control 

inflow/outflow of water to/from the northern and southern boundaries of the model domain. The difference in 

head between OBS17 and the southern fixed-head boundary is informative of these properties. The importance 

of these head measurements would be reduced if stratigraphic unit properties were internally heterogeneous. 

 645	
5.2 Value of a new observation point 
 

https://doi.org/10.5194/gmd-2023-40
Preprint. Discussion started: 15 March 2023
c© Author(s) 2023. CC BY 4.0 License.



17	
	

Equation (21) can be readily turned to evaluation of the issue of whether it is worth supplementing the existing 

observation network of eight observation wells with a new observation well. In our study, contenders for the new 

observation point are each of the 146 sites that are represented by black crosses in Figure 1a. We establish the 650	
worth of including a new point in the monitoring network by including heads at that point in an expanded 

history-matching dataset, thereby assuming that observations from this well were available during the calibration 

period that has formed the basis for all investigations that have been discussed so far. The reduction in the 

uncertainty standard deviation of management-pertinent predictions that is accrued through expansion of the 

history-matching dataset in this way is a measure of the worth of the hypothesized new data. Recall from the 655	
discussion in Section 2 of this paper, that equation (21) does not require the values of observation to assess their 

worth. It requires only the sensitivities of corresponding model outputs to model parameters. 

 

We base our exploration of data worth on a DSI surrogate model. However, HGS model outputs on which this 

model is based must be extended to include those at the candidate observation wells. This enables the 660	
construction of an expanded covariance matrix that links model outputs at these sites to predictions of interest. In 

our case, these were available from archived output files of the 100 HGS model runs which form the basis for 

results that are reported in previous sections of this paper. In other cases another suite of large model runs may 

be required for the construction of a new surrogate model. Note, however, that once these model runs have been 

completed, all further analyses are conducted using the DSI surrogate model. 665	
 

To verify this linear approach to data worth assessment, reductions in prediction uncertainty that would result 

from updating the calibration dataset to include heads from each of the 146 potential observation wells that are 

shown in Figure 1a were calculated using an alternative (and much more laborious) nonlinear approach. 

 670	
For each of the 100 prior realisations of HGS parameter fields, heads were calculated at each of the 146 trial 

observation points. For each of these observation points, for each of these parameter realizations, a new DSI 

model was constructed using the methodology discussed above. The history-matching dataset for each of these 

models included the existing dataset (comprised of eight observation wells), as well as the expanded dataset that 

is pertinent to that well and that particular realisation of the prior HGS parameter field. Predictions were the 675	
same for each DSI surrogate model (i.e. fast travel times to the production wells and surface water infiltration). 

Each of these 14,600 DSI surrogate models was then history-matched against its respective history-matching 

dataset to yield the posterior uncertainties of our predictions of interest. This was done using the PESTPP-IES 

ensemble smoother. For each trial observation well, the “total” posterior uncertainty of a prediction of interest 

was calculated by accumulating prediction realisations over all 100 DSI surrogate models that pertained to each 680	
expanded observation well. These were compared with the posterior uncertainties calculated using the original 

DSI surrogate model that was based on a history-matching dataset that did not include the new well. 

 

For both of these approaches, the percent reduction in the standard deviations of the uncertainties of our 

predictions was calculated for each of the 154 observation wells. These were then interpolated over the model 685	
grid for presentation purposes; see Figure 5. 
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Areas of high and low worth of installation of a new observation well are broadly similar between the upper and 

lower sets of maps that comprise Figure 5, especially for the surface water infiltration prediction. 

 690	
It is clear from Figure 5 that the collection of new hydraulic head data in the northern part of the model has the 

potential to reduce the uncertainty associated with predictions of surface water infiltration. This also applies to 

fast travel times to the northern extraction well, and to a lesser extent for fast travel times to southern extraction 

well. The nonlinear analysis also suggests that acquisition of head data in the river corridor between the existing 

OBS110 and OBS83 observation wells may yield reductions in uncertainties of fast travel time predictions for 695	
both water production wells. To a lesser extent (especially for the southern production well), this is also found in 

the linear analysis. This makes sense, as this zone is crossed by most of the particles that arrive at the production 

wells. 

 

Both of the methods for data worth analysis that are described above are based on approximations. Nonlinear 700	
analysis suffers from the limited number of realisations on which it is based. Obviously, linear analysis suffers 

from an assumption of DSI model linearity. Nevertheless, despite these approximations, the two approaches 

yield results that are in broad agreement with each other. Furthermore, they are both readily deployable in real-

world contexts where hydraulic property distributions and processes are complex; this applies especially to DSI-

based linear analysis. 705	
 

6. Discussion and Conclusions 
 

The purpose of this paper is to document and demonstrate the use of data space inversion (DSI) as a means of 

quantifying and reducing the posterior uncertainties of predictions made by complex models with complex 710	
parameter fields. Both of these model attributes make application of traditional uncertainty analysis difficult. 

Model complexity increases model run time; it can also increase the propensity of a model to exhibit unstable 

numerical behaviour when endowed with a stochastic parameter field. The complexity of parameterisation, 

especially when it involves the use of continuous, connected hydraulic properties, can violate the assumptions 

upon which these properties are adjusted in order for model outputs to respect measurements of system 715	
behaviour. 

 

Data space inversion addresses the first of these challenges by replacing a numerical model with a fast-running 

surrogate model. This model is tuned to the decision-support role for which the original, complex model was 

built. This is because the DSI surrogate model is designed to replicate the ability of a numerical model to 720	
simulate past measurements of system behaviour and to make predictions of future system behaviour that are of 

interest to management. Both of these complex model outputs can be calculated using parameter fields of 

arbitrary complexity that represent aspects of the subsurface that are critical to past and future groundwater 

behaviour. In many cases, these will include structural or alluvial features that can rapidly transport water and 

dissolved contaminants to points of environmental impact. 725	
 

A strength of the DSI methodology is that it does not require adjustment of hydraulic property fields in order for 

model outputs to replicate the past so that they can be used as a basis for posterior sampling of future 
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groundwater behaviour. Instead, the parameters and predictions of the surrogate model (rather than the original 

model) are subjected to adjustment and posterior sampling. The nature of these surrogate model parameters is 730	
such that they embody the parameterisation complexity of the original model without actually replicating it. 

Instead, they are formulated to replicate the effects of that complexity on the model outputs used for both history 

matching and system management. Thus, the complex nuances of system hydraulic properties are implicitly 

taken into account as predictions of future system behaviour are conditioned by measurements of past system 

behaviour. 735	
 

This paper demonstrates that the use of a surrogate DSI-based model can extend beyond that of sampling the 

posterior probability distribution of one or a number of predictions of management interest. Like conventional 

numerical models, it can be used for rapid assessment of the worth of existing or new data. The simplest (and 

most rapid) form of data worth analysis relies on an assumed linear relationship between surrogate model 740	
parameters and surrogate model outputs. There may be many circumstances where this linearity assumption is 

more applicable than that of a linear relationship between conventional model parameters and conventional 

model outputs, as the latter relationships are bypassed in definition and construction of the DSI surrogate model 

and its parameters. DSI-based evaluation of data worth may therefore be more reliable than evaluation of data 

worth using a complex model. In fact, if a complex model has many parameters (as it should), and its run times 745	
are high (as they often are), calculation of sensitivities that are required for linear analysis may not be possible. 

Meanwhile, by construction, the parameters of a DSI surrogate model can take the complex dispositions and 

connectivity relationships of real-world hydraulic properties into account. 

 

This paper also demonstrates more complex uses to which a DSI surrogate model can be put. Tikhonov-750	
regularised inversion and constrained, nonlinear prediction optimisation are demonstrated in Section 4. Section 5 

demonstrates how more complex assessments of data worth can be made than that which relies on an assumption 

of surrogate model linearity. While the numerical costs associated with these assessments are high, they are far 

from prohibitive. 

 755	
However, together with strength comes weakness. It is acknowledged that while the DSI methodology enables 

rapid and effective posterior uncertainty analysis in contexts that may otherwise render such analyses 

approximate at best and impossible at worst, a modeller is entitled to feel a sense of frustration at not being able 

to “see for him/herself” the parameter fields that give rise to predictive extremes. Not only may an understanding 

of these fields add to a modeller’s understanding of a system; they may accomplish the same thing for decision-760	
makers and stakeholders as well. 
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Figure 1: (a) Model boundary conditions and observation points that are discussed herein. (b) “Synthetic reality” 890	
showing “true” alluvial channels that govern hydraulic properties such as hydraulic conductivity and porosity. Depth 

to water table under the maximum pumping regime is also shown. So too are the paths of particles (black lines 

converging towards water production wells) that are used to calculate travel times to water production wells. (c) 

Transient pumping rates for the two production wells over a period of 95 days; note that the pumping rate is reduced 

to zero for a period of 50 days. 895	
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Table 1: Model parameters used for the synthetic reality, and prior parameter means and uncertainties used for prior 

ensemble generation. 

Parameter type Unit Synthetic 
reality 

Priors 
mean 

Prior 
standard 
deviation  

     
HydroGeoSphere     

Riverbed Porosity (-) 0.4 0.20 0.05 (log) 
Riverbed Hydraulic conductivity (m.d-1) 2.5 5.0 0.20 (log) 
Aquifer Porosity (-) 0.09 0.10 0.05 (log) 
Aquifer Hydraulic conductivity (m.d-1) 176 150.0 0.10 (log) 
Paleo-Channel Porosity (-) 0.3 0.3 0.05 (log) 
Paleo-Channel Hydraulic conductivity (m.d-1) 866 1000.0 0.10 (log) 

ALLUVSIM     
Channel level elevation (m) 90 -  
Channel depth (m) 20 20 3 
Channel source location (m) 370 370  5 
Width-to-depth ratio (-) 1 -  
Channel sinuosity (-) 0.1 0.1 0.015 
Net-to-gross ratio (-) 0.05 -  
Maximum number of streamlines (-) 10 -  
     

	900	

Figure 2: Observations of hydraulic heads (red); these are calculated by the “reality realisation” of the HGS 

parameter field. Heads calculated by the remaining simulations are shown in grey. Heads calculated using posterior 

hydraulic property realisations (see below) are shown in blue; there are 70 of these. 

	905	
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Figure 3: Posterior distributions of model predictions of fast travel times (days) and surface water infiltration (l.s-1) 

with (a) application of IES (after 3 iterations) to the HydroGeoSphere (HGS) model ensemble (b) application of IES 910	
(after 6 iterations) to the surrogate model ensemble and (c) application of equation (21) (linear analysis) and equation 

(20) (nonlinear analysis) with the MAP estimate of the DSI surrogate model. The dashed lines in (c) represent values 

for the Scheffe 95% confidence intervals. 
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 915	
Figure 4: Percent increase in the standard deviation of posterior uncertainty of each of the three predictions discussed 

herein when one existing observation well is removed from the current observation dataset. 
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 920	
Figure 5: Percent decrease in posterior uncertainty of each of the three predictions accrued through supplementing 

the existing calibration dataset with head measurements gathered in an extra well following (a) linear analysis and (b) 

nonlinear analysis. 

	
	925	
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Appendices 
 

 Appendix A. Prior realizations of alluvial structural features generated from ALLUVSIM and mapped 930	
into the HGS model for hydraulic conductivity (K) parameterisation.	

 
Appendix B. Posterior estimates (for realisations number 10 and 16) of hydraulic conductivity (K) after 

applying the Iterative Ensemble Smoother over three iterations by adjusting the HGS model parameters 

with the existing dataset. 935	
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Appendix C: Posterior uncertainty statistics of distributions shown in Figure 3. 
 940	

  Bayesian 
history-

matching on 
HGS model 

Bayesian 
history-

matching on 
DSI model 

MAP 
estimates 
on DSI 
model 

Nonlinear 
analysis 
on DSI 
model 

Linear 
analysis 
on DSI 
model 

HGS model calls 1000 100 100 100 100 
fast travel times for 
well #1 
(“reality” = 9.57 days) 

Min 4.82 6.59  6.24  
Max 11.86 10.50  11.89  
Mean 8.13 8.65 8.63   
Std 1.63 1.00   1.44 

fast travel times for 
well #2 
(“reality” = 7.90 days) 

Min 4.67 6.23  5.65  
Max 9.95 8.52  9.54  
Mean 6.82 7.36 7.42   
Std 1.37 0.52   0.94 

surface water 
infiltration 
 (“reality” = 130.67 l.s-1) 

Min 128.30 128.33  124.06  
Max 135.89 137.98  140.58  
Mean 131.94 133.27 131.90   
Std 1.67 2.21   2.15 
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