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	5	
Editor	in	chief	6	
 7	
Dear authors, 8	
 9	
Unfortunately, after checking your manuscript, it has come to our attention that it does not comply with 10	
our "Code and Data Policy". 11	
 12	
https://www.geoscientific-model-development.net/policies/code_and_data_policy.html 13	
 14	
You have archived your code on GitHub and pesthome.org. However, neither of them are suitable 15	
repositories for scientific publication. GitHub itself instructs authors to use other alternatives for long-16	
term archival and publishing, such as Zenodo. 17	
 18	
In this way, if you do not fix this problem, we will have to reject your manuscript for publication in our 19	
journal. I should note that, actually, your manuscript should not have been accepted in Discussions, given 20	
this lack of compliance with our policy. Therefore, the current situation with your manuscript is 21	
irregular. 22	
 23	
Therefore, please, publish your code in one of the appropriate repositories, and reply to this comment 24	
with the relevant information (link and DOI) as soon as possible, as it should be available for the 25	
Discussions stage. 26	
Also, you must include in a potentially reviewed version of your manuscript the modified 'Code and Data 27	
Availability' section, the DOI of the code. 28	
  29	
Finally, I have to note that the pesthome.org page says that the software is free. However, it does not seem 30	
to be in the sense of FLOSS "free-libre-open-source", which is what we request in our journal. In the 31	
GitHub repository and web page, there is no license listed for the software. If you do not include a license, 32	
despite what you state on the web page, the code is not "open-source"; it continues to be your property, 33	
and nobody can use it. Therefore, when uploading the model's code to one of the repositories that we can 34	
accept, you could want to choose a FLOSS license. We recommend the GPLv3. You only need to include 35	
the file 'https://www.gnu.org/licenses/gpl-3.0.txt' as LICENSE.txt with your code. Also, you can choose 36	
other options that the repositories provide: GPLv2, Apache License, MIT License, etc. 37	
  38	
Please, fix the issues mentioned, and reply to this comment with the information requested. 39	
  40	
Juan A. Añel 41	
Geosci. Model Dev. Exec. Editor 42	
 43	
Dear Editor, 44	
 45	
Thank you for considering our paper. We have added the source codes for PEST and especially DSI in a Zenodo 46	
repository (https://doi.org/10.5281/zenodo.7913402) with a license file in it. Modification has been made 47	
accordingly concerning the Code Availability section in the revised manuscript. 48	
 49	
We have also made revisions throughout the document to improve overall clarity and consistency of expression 50	
to demonstrate the DSI methodology and how it can (and should) be used in decision-based modelling contexts. 51	
We hope that this will facilitate the quantification of uncertainty of complex, highly parametrized models. 52	
 53	
Best, 54	
 55	
H. Delottier, P. Brunner and J. Doherty 56	
 57	
	 	58	
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Reviewer	#1	59	
 60	
This paper represents an interesting approach to greatly reducing the computational costs of estimating 61	
prediction uncertainties for decision-relevant variables arising from complex spatial fields of parameters 62	
using the Data Space Inversion (DSI) surrogate model approach for both model calibration and the 63	
evaluation of data worth. I cannot find fault with the methodology, only with the assumptions on which it 64	
is based. 65	

In effect the modelling problem is shoehorned into an aleatory Gaussian framework (with transformation 66	
of variables being suggested if necessary), when in general in real problems of this type we are dealing 67	
with epistemic uncertainties rather than purely aleatory uncertainties.  In the example given, this is partly 68	
avoided because the same model is used to create the reality, as is run to create the realisations that 69	
provide the information for the DSI methodology. There is some nonlinearity in the model (as is 70	
illustrated by the difference between the DSI and ensemble smoothing results) but there is absolutely no 71	
doubt that the Gaussian assumptions about “measurement error” and the structural features of the field 72	
are correct. The reasoning is therefore to a degree circular. 73	

I would be much happier if all the demonstrations that the method works pretty well for the synthetic case 74	
were consigned to an electronic supplement and the authors applied the methodology to a real case where, 75	
given the likely epistemic uncertainties, the assumptions might be more difficult to justify. 76	

We welcome your comment and for your time and consideration. 77	

Epistemic uncertainty is difficult to explore as, by definition, it is not part of the prior parameter probability 78	
distribution. Hence all uncertainty methods have difficulties with this issue, and it is a given that the outcomes of 79	
any method of uncertainty analysis will be compromised. 80	
 81	
Sometimes prior-data conflict is apparent from the failure of model outputs to span field observations when the 82	
prior is sampled. Software from both  the PEST and PEST++ suites that work in conjunction with the approach 83	
described in the paper are able to detect whether this is the case, based on samples of the prior that are required 84	
to build the DSI model. 85	
 86	
Another means through which a defective prior parameter probability distribution can be detected is through the 87	
estimation of parameters that violate the prior. Hence if, in history-matching the DSI surrogate model, a large 88	
number of parameters are forced to adopt values that are of low probability for independent Gaussian 89	
parameters, this can be construed as prior data conflict. A modeller would be well advised to take note of this. 90	
Both of the above methodologies for detecting epistemic uncertainty are easily implemented in conjunction with 91	
workflows that are discussed in our paper. 92	
 93	
We also  note that it is uncommon for papers on uncertainty analysis to draw attention to epistemic uncertainty 94	
in general, and prior-data conflict in particular, because it is obvious that uncertainty analysis is only as good as 95	
the prior – regardless of the method that is used to undertake uncertainty analysis. On the other hand, papers that 96	
are dedicated to methodologies that explore and expose prior-data conflict (rightly) focus on this aspect of 97	
uncertainty analysis. In short, we do not see that it is incumbent on anyone who wants to discuss an uncertainty 98	
analysis methodology to also discuss epistemic uncertainty, for everybody knows that (a) it is an issue and (b) it 99	
is unquantifiable but important. 100	
  101	
We note that there have been some recent papers in which hyperparameters of highly-parameterized prior 102	
probability distributions are estimated at the same time as the parameters themselves. These methodologies do 103	
address, to some extent, inadequacy of the prior parameter distribution by treating these inadequacies as 104	
uncertainties. This is a worthy undertaking, but is also accompanied by a considerable amount of numerical 105	
difficulty. Hence they are worthy topics of publication in their own right. 106	
 107	
See, for example: 108	
 109	
Oliver, D.S., 2022. Hybrid iterative ensemble smoother for history matching of hierarchical models. Math. 110	
Geosci, 54:1289-1313, 111	
Chada, N.K., Iglesias, M.A., Roininen, L. and Stuart, A.M. (2018). Parameterisations for ensemble Kalman 112	
inversion. Inverse problems 34 https://doi.org/10.1088/1361-6420/aab6d9 113	
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 114	
It is also worthy of note that both of these high-quality papers demonstrate their methodologies using entirely 115	
synthetic cases – with less of a resemblance to hydrogeological reality than our own example. 116	
 117	
It is, therefore, our opinion that our paper covers the topic to which it is dedicated to the extent required to 118	
demonstrate the veracity of the method that it employs, in such a way as to allow other modellers to use this 119	
method with little difficulty. We make no claims that the methodology that we present is exempt from problems 120	
which beset all uncertainty analysis methods. We note this in our paper, but would rather leave the discussion of 121	
these important (but ancillary) issues to other papers. We have added the following paragraph in the conclusion 122	
section of our paper to make this clear. 123	
 124	
« Realisations that compose the initial ensemble from which model outputs are calculated do not have to be 125	
multiGaussian. The multiGaussian assumption used to link measurements of past system behaviour to 126	
predictions of future system behaviour is independent of any assumptions about the prior realisations. Because a 127	
direct link is made between measurements and predictions (thereby bypassing parameters), an assumption of 128	
multiGaussianality is likely to have a weaker effect on the results of the predictive uncertainty analysis process 129	
than highly parameterised methods that rely implicitly or explicitly on parameter adjustment (such as linear 130	
Bayesian methods, randomised maximum likelihood methods and iterative ensemble smoother methods). Thus, 131	
prior realisations used to start the DSI process can accommodate both aleatory and epistemic uncertainties. 132	
Uncertainties in prior parameter distributions can also be readily accommodated. »  133	
 134	
In addition to these changes, we've also added a paragraph at the beginning of Section 3 to make it clear that our 135	
application is based on a synthetic model rather than a real-world model, and that we, therefore, do not consider 136	
the potential effects of epistemic uncertainty.  137	
 138	
« The objective of this section is to demonstrate the performance and utility of DSI in quantifying posterior 139	
uncertainties of predictions made by a model whose run time is long and whose parameter field is complex. As is 140	
common in the literature, where the performance of a new method is tested and documented, we base our 141	
analyses on a synthetic model rather than on a real-world model. This allows us to assess, and document the 142	
performance of the method. It also dispenses with the need to account for epistemic uncertainties which 143	
accompany real-world modelling. »  144	
 145	
Just one further comment.  Not sure I understand how the lack of persistence of connectivity of the 146	
posterior parameter fields can lead to faster travel times than in the prior sample of simulations (Line 147	
532) – is it not the fast pathways in the connected high conductivity alluvial channels that would give the 148	
fastest times?   If that connectivity is lost how can it speed things up?  Perhaps a bit more explanation 149	
needed. 150	

We agree with the reviewer and would like to emphasise that this is exactly what we wanted to mention in the 151	
text. In response to this comment, it is true that this paragraph needed some clarification. To this end, we have 152	
added some further explanation and clarification to this paragraph (see below) (see between line 514 and line 153	
527 of the revised manuscript). 154	

«An interesting feature of Figure 3a is that some posterior parameter fields have fast travel times that exceed 155	
those calculated using prior parameter fields. This can be explained by the fact that some posterior parameter 156	
fields have lost some of the connectivity exhibited by the prior parameter fields. (see Appendix B). This is an 157	
outcome of the PESTPP-IES parameter adjustment process which is only truly Bayesian where prior parameter 158	
distributions are Gaussian on a cell-by cell basis (if cell-by-cell parameterisation is employed). However, the 159	
prior realisations that compose the initial ensemble from which the IES inversion process has started is not 160	
multiGaussian (see Appendix A). Neither the theory on which IES is based, nor numerical implementation of that 161	
theory in its history-matching algorithm, can guarantee the maintenance of long-distance hydraulic property 162	
connectedness which cannot be characterised by a multiGaussian distribution. Indeed, history-match-163	
constrained adjustment of connected and categorical parameter fields is still an area of active research 164	
(Khambhammettu et al., 2020). Note that while uncertainty analysis methods such as rejection sampling or 165	
Markov Chain Monte Carlo approaches do not require a Gaussian prior nor a Gaussian likelihood function, 166	
these methods are impractical in contexts where the number of parameters is high and model run times are long, 167	
which is the case for the many hydrogeological applications and for the example used in this paper. » 168	
  169	
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Reviewer	#2	170	

The paper is well written and addresses an important topic in hydrologic systems analysis, namely robust 171	
model evaluation. The authors draw inspiration from the Kalman Filter and bring linear algebra, 172	
Tikhonov-regularized inversion and surrogate modeling to bear to decompose and/or approximate the 173	
forward model and quantify its prediction uncertainty using relatively few model simulations. This is yet 174	
another addition to the methods of the PEST toolbox designed to enable as thoroughly as possible the 175	
uncertainty quantification of highly parameterized and CPU-demanding surface-subsurface hydrologic 176	
models for which existing Monte Carlo simulation methods are too demanding and/or cumbersome to 177	
implement. One can only applaud the efforts of the authors, particularly the 2nd author, John Doherty, to 178	
provide workable solutions (with sufficient theoretical rigor) to practical, real-world, problems. 179	

I do not have comments on the methodology. The assumptions are almost always listed and/or defined, 180	
and the mathematics (linear algebra) articulates the implementation. I only have one comment, which I 181	
think could help to further strengthen this paper. 182	

Thank you very much for your kind words on our approach and our work in general. As reviewer #1, no 183	
methodological issues were identified.  184	

The present case study is well chosen to illustrate the DSI methodology. But this case study is not easy to 185	
immediately repeat. I think the authors should consider including a relatively simple hydrologic modeling 186	
study which (a) is easy to reproduce and (b) most readers are familiar with. I believe that this may help 187	
articulate the detailed workings of the presented DSI methodology.  188	

This case study does not have to be a distributed and/or computationally demanding modeling problem. 189	

One may interpret this as a moderate revision but at the same time, I also understand if authors wish to 190	
publish their work as is. 191	

Thank you for your comment, your time and consideration. While reviewer #1 suggests implementing a real case 192	
study you suggest to rather implement a much simpler model, so the suggestions are contrary. For the following 193	
reasons we feel that our model is at the sweetspot to effectively demonstrate our approach:  194	

- The model is actually easy to reproduce and straightforward to implement. All boundary conditions are 195	
clearly described, the grid is easy to reproduce with the information provided in the paper. In any case, 196	
the input files are all provided, and can readily be used.  197	

- We believe that the setting we are simulating is probably one of the most common settings in 198	
hydrogeology: A well next to a river. We do not see the benefit of having a simpler model. The model 199	
has to be tailored to provide a solid basis for verification and to demonstrate the usefulness of the 200	
approach. 201	

One of the most important features of our approach is that it is capable of dealing with slow, and 202	
computationally very demanding models. We do not think that using a computationally non-demanding model is 203	
useful to demonstrate this feature. We have added a paragraph at the beginning of the application section to 204	
make this clear by discussing the veracity of our modelling example (see also our response to reviewer #1). 205	

« The objective of this section is to demonstrate the performance and utility of DSI in quantifying posterior 206	
uncertainties of predictions made by a model whose run time is long and whose parameter field is complex. As is 207	
common in the literature, where the performance of a new method is tested and documented, we base our 208	
analyses on a synthetic model rather than on a real-world model. This allows us to assess, and document the 209	
performance of the method. It also dispenses with the need to account for epistemic uncertainties which 210	
accompany real-world modelling. » 211	

An additional advantage of such a simple study is that the uncertainty of the DSI methodology can be 212	
benchmarked against Bayesian methods using a full exploration of the model’s parameter space using 213	
MCMC simulation with/without the use of advanced distribution-free likelihood functions. This will 214	
readers to better understand the strengths and weaknesses of the presented methodology. 215	
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We do not see MCMC simulation directly comparable to DSI. DSI is independent of the number of model 216	
parameters, while the efficiency of MCMC is dependent on the number of parameters employed. We understand 217	
the point of verifying the methods against a more traditional method. This work has already been done by Sun 218	
and Durlofsky (2017), who compare the results of DSI with the rejection sampling procedure. We preferred to 219	
compare our DSI procedure against the Iterative Ensemble Smoother, which is a well established method that 220	
can be used with complex models and highly parameterised environments. This is the closest approach to DSI, 221	
and therefore suitable for a benchmark comparison.  222	
 223	
As mentioned above, to some extent our work continues that of Sun and Durlofsky (2017). This continuation 224	
embodies use of the DSI surrogate model in conjunction with linear analysis tools that support data worth 225	
analysis at very little cost. The worth of data is judged by its ability to reduce the uncertainties of model 226	
predictions of interest. To be sure, linear analysis is approximate. Its strength, however, is that it does not require 227	
that values be assigned to posited observations, nor to the parameters that they may inform. Furthermore, it can 228	
be undertaken extremely quickly once a sensitivity matrix is available. We see a demonstration of this 229	
methodology using the DSI model as an important component of our paper. However, we see a comparison of 230	
the results of this analysis with MCMC (which is unable to handle enough parameters to characterise the 231	
heterogeneity of aquifers, and for which data worth assessment would need to be nonlinear) as well beyond the 232	
scope of our paper. This is especially the case where uncertainty is dominated by parameter nonuniqueness – a 233	
context in which the numerical cost of MCMC can be very high indeed. (As we point out in our paper, 234	
comparison with IES – a method that IS able to accommodate parameter nonuniqueness - was a numerically 235	
costly exercise.) 236	
 237	
To address the reviewer comment, we have added clarifications in the introduction and complements one 238	
paragraph between lines 524 and 527 of the revised manuscript. (see below). 239	
 240	
« Note that while uncertainty analysis methods such as rejection sampling or Markov Chain Monte Carlo 241	
approaches do not require a Gaussian prior nor a Gaussian likelihood function, these methods are impractical 242	
in contexts where the number of parameters is high and model run times are long, which is the case for the many 243	
hydrogeological applications and for the example used in this paper. » 244	
 245	
One may interpret this as a moderate revision but at the same time, I also understand if authors wish to 246	
publish their work as is. 247	
	248	
We thank the reviewer that he is not objecting to publication as it is. While reviewer #1 suggests a more complex 249	
model for a real case, reviewer #2 suggests a simpler model. For the reasons we outlined above, we believe that 250	
our choice of model is the most appropriate one in terms of demonstrating the capability of our approach. It is 251	
easy to reproduce, provides all the information required to assess the robustness of our approach, corresponds to 252	
a very common hydrogeological setting and allows us to demonstrate the very high performance of the proposed 253	
methodology. 254	
 255	


