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Abstract 12 

Adjoint of the GEOS-Chem model has been widely used to constrain the sources of 13 

atmospheric compositions. Here we designed a new framework to facilitate emission inventory 14 

updates in the adjoint of GEOS-Chem model. The major advantage of this new framework is 15 

good readability and extensibility, which allows us to support Harmonized Emissions 16 

Component (HEMCO) emission inventories conveniently and to easily add more emission 17 

inventories following future updates in GEOS-Chem forward simulations. Furthermore, we 18 

developed new modules to support MERRA-2 meteorological data, which allows us to perform 19 

long-term analysis with consistent meteorological data in 1979-present. The performances of 20 

the developed capabilities were evaluated with the following steps: 1) diagnostic outputs of 21 

carbon monoxide (CO) sources and sinks to ensure the correct reading and use of emission 22 

inventories; 2) forward simulations to compare the modeled surface and column CO 23 

concentrations among various model versions; 3) backward simulations to compare adjoint 24 

gradients of global CO concentrations to CO emissions with finite difference gradients; and 4) 25 

observing system simulation experiments (OSSE) to evaluate the model performance in 4D 26 

variational (4D-var) assimilations. Finally, an example application of 4D-var assimilation was 27 

presented to constrain anthropogenic CO emissions in 2015 by assimilating Measurement of 28 

Pollution in the Troposphere (MOPITT) CO observations. The capabilities developed in this 29 

work are important for better applications of the adjoint of GEOS-Chem model in the future. 30 
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These capabilities will be submitted to the standard GEOS-Chem adjoint code base for better 31 

development of the community of the adjoint of GEOS-Chem model. 32 

 33 

1. Introduction 34 

GEOS-Chem is a global 3D chemical transport model (CTM) and has been widely used 35 

to analyze the sources and variabilities of atmospheric compositions (Whaley et al., 2015; Li 36 

et al., 2019; Hammer et al., 2020; Jiang et al., 2022). GEOS-Chem model is driven by 37 

meteorological reanalysis data from the Goddard Earth Observing System (GEOS) of the 38 

Global Modeling and Assimilation Office (GMAO). Emissions in GEOS-Chem model are 39 

calculated with state-of-the-art inventories such as CEDS (Community Emissions Data 40 

System) (Hoesly et al., 2018), MIX (Li et al., 2017) and NEI2011 (National Emissions 41 

Inventory). Based on GEOS-Chem forward simulation, the adjoint of the GEOS-Chem model 42 

(Henze et al., 2007) further provides the capability of backward simulation of physical and 43 

chemical processes within the 4D variational (4D-var) framework. The major advantage of the 44 

adjoint model is obtaining the sensitivity of atmospheric concentrations to multiple model 45 

variables within a single backward simulation. The major applications of the adjoint of GEOS-46 

Chem model include inverse analyses of atmospheric composition emissions by minimizing 47 

the difference between simulations and observations (Jiang et al., 2015a; Zhang et al., 2018; 48 

Qu et al., 2022) as well as sensitivity analyses to analyze the sources of atmospheric 49 

compositions (Jiang et al., 2015b; Zhao et al., 2019; Dedoussi et al., 2020). 50 

The algorithm of the 4D-var framework requires identical model processes in the forward 51 

and backward simulations. Ideally, the code for the adjoint model should be updated following 52 

the GEOS-Chem forward codes to take advantage of the new features in GEOS-Chem forward 53 

simulations. However, the updates in the adjoint model are difficult and usually delayed. For 54 

example, the MEERA-2 meteorological reanalysis data with temporal coverage of 1979-55 
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present were supported in the GEOS-Chem forward simulations in v11-01. The adjoint of 56 

GEOS-Chem model does not support MERRA-2, and thus, long-term analysis must combine 57 

different meteorological reanalysis data, such as GEOS-4 (1985-2007), GEOS-5 (2004-2012) 58 

and GEOS-FP (2012-present). For instance, Jiang et al. (2017) constrained global carbon 59 

monoxide (CO) emissions in 2001-2015, while the derived trends in CO emissions in Jiang et 60 

al. (2017) could be affected by the discontinuity among various versions of the meteorological 61 

data (i.e., GEOS-4 in 2001-2003, GEOS-5 in 2004-2012 and GEOS-FP in 2013-2015) and the 62 

lack of consistency in the model physics of GEOS-5. 63 

Emission inventories play a key role in the simulation of atmospheric compositions. 64 

Harmonized Emissions Component (HEMCO) (Keller et al., 2014; Lin et al., 2021) was 65 

included in the GEOS-Chem forward simulations in v10-01. HEMCO is responsible for inputs 66 

of meteorological and emission data with default support for emission inventories such as 67 

CEDS, MIX and NEI2011. New emission inventories can be added readily within HEMCO 68 

framework. There are noticeable differences between HEMCO and the adjoint of GEOS-Chem 69 

model. First, meteorological and emission data are read with individual modules in the adjoint 70 

of GEOS-Chem model. Second, the inputs of emission inventories are undertaken by different 71 

modules that were developed individually with significant discrepancies in the source code. In 72 

addition, the file format (e.g., binary punch in the adjoint of GEOS-Chem that is the format of 73 

older GEOS-Chem versions in contrast to netCDF in HEMCO), emission variables and the 74 

usage methods of emission variables (e.g., emission hierarchy, scaling factors and time slice) 75 

are inconsistent. These differences have posed a barrier to the application of new emission 76 

inventories in the adjoint of GEOS-Chem model. 77 

The lack of support to the updated emission inventories can affect the applications of the 78 

adjoint of GEOS-Chem model. First, adjoint-based sensitivity analyses are obtained by the 79 

backward simulations of atmospheric compositions (i.e., adjoint tracers) and the combination 80 
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of adjoint tracers with emissions. Out-of-date emission inventories can thus result in inaccurate 81 

estimation of the adjoint sensitivities. Second, while inverse analyses are constrained by 82 

atmospheric observations, the updated emission inventories are still critical because they are 83 

helpful for better convergence of 4D-var assimilations by setting a more reasonable a priori 84 

penalty in the cost function. For instance, the a priori biomass burning CO emissions (GFED3, 85 

van der Werf et al. (2010)) in Jiang et al. (2017) lack interannual variabilities later than 2011. 86 

In order to obtain reasonable convergence of biomass burning emissions, the a priori biomass 87 

burning emissions in September-November 2006 were applied to September-November 2015 88 

over Indonesia in Jiang et al. (2017). 89 

Ideally, people should consider porting the complete HEMCO to the adjoint of GEOS-90 

Chem model to match the new features in GEOS-Chem forward simulations. However, a 91 

complete port of HEMCO implies replacing the input framework of the adjoint of GEOS-Chem 92 

model, as well as restructuring of HEMCO and the adjoint of GEOS-Chem model to address 93 

the compatibility issues, which is very challenging and may not be necessary because the 94 

meteorological modules still work well in the adjoint of GEOS-Chem model. Consequently, a 95 

major objective of this work is to design a new framework to facilitate emission inventory 96 

updates in the adjoint of GEOS-Chem model. For this objective, this new framework must have 97 

good readability and extensibility to allow us to support HEMCO emission inventories 98 

conveniently and to add more emissions inventories following future updates in GEOS-Chem 99 

forward simulations easily. Furthermore, we developed new modules to support MERRA-2 100 

meteorological data within the current framework of the adjoint of GEOS-Chem model, as 101 

reuse of existing frameworks can save much work. 102 

CO is one of the most important atmospheric pollutants and plays a key role in 103 

tropospheric chemistry. Sources of atmospheric CO include fossil fuel combustion, biomass 104 

burning and oxidation of hydrocarbons. The major sink of atmospheric CO is hydroxyl 105 
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radical (OH). The simple chemical sink of atmospheric CO allows us to simulate atmospheric 106 

CO with linearized chemistry; for example, the tagged-CO mode of the GEOS-Chem model 107 

can reduce the calculation cost by 98% with respect to the full chemistry mode by reading 108 

archived monthly OH fields. The tagged-CO mode of the GEOS-Chem model has been widely 109 

used to investigate the sources and variabilities of atmospheric CO in recent decades (Heald et 110 

al., 2004; Kopacz et al., 2009; Jiang et al., 2017). The capabilities developed in this work are 111 

thus based on the tagged-CO mode, as it can effectively accelerate the model development 112 

process. More efforts are needed in the future to extend these capabilities to support emissions 113 

inventories associated with full chemistry simulations. 114 

The results presented in this paper show the development, integration, evaluation, and 115 

application of these new capabilities, which is important to better applications of the adjoint of 116 

GEOS-Chem model in the future. The capabilities developed in this work will be submitted to 117 

the standard GEOS-Chem adjoint code base (Henze et al., 2007) for better development of the 118 

community of the adjoint of GEOS-Chem model. This paper is organized as follows: in Section 119 

2, we describe the adjoint of GEOS-Chem model, the development of these new capabilities, 120 

and the Measurement of Pollution in the Troposphere (MOPITT) CO observations used in this 121 

work. In Section 3, we evaluated the performances of the developed capabilities in forward and 122 

backward simulations, together with observing system simulation experiments (OSSE) to 123 

evaluate the model performance in 4D-var assimilations. An example application of 4D-var 124 

assimilation to constrain anthropogenic CO emissions in 2015 by assimilating MOPITT CO 125 

observations was also presented. Our conclusions follow in Section 4. 126 

 127 

2. Methodology and Data 128 

2.1 Adjoint of the GEOS-Chem model 129 

We use version v35n of the adjoint of GEOS-Chem model. Our analysis is conducted at 130 
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a horizontal resolution of 4°×5° with 47 vertical levels and employs the CO-only simulation 131 

(tagged-CO mode). The global default anthropogenic emission inventory in the standard 132 

version of the adjoint of GEOS-Chem model (hereafter referred to as GC-Adjoint-STD) is 133 

Global Emissions InitiAtive (GEIA), but is replaced by the following regional emission 134 

inventories: NEI2008 in North America, the Criteria Air Contaminants (CAC) inventory for 135 

Canada, the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study 136 

Emissions Inventory for Mexico (Kuhns et al., 2003), the Cooperative Program for Monitoring 137 

and Evaluation of the Long-range Transmission of Air Pollutants in Europe (EMEP) inventory 138 

for Europe in 2000 (Vestreng and Klein, 2002) and the INTEX-B Asia emissions inventory for 139 

2006 (Zhang et al., 2009). Biomass burning emissions are based on the GFED3 (van der Werf 140 

et al., 2010). 141 

The objective of the 4D-var approach is to minimize the difference between simulations 142 

and observations described by the cost function (Henze et al., 2007): 143 

𝐽(𝒙) = ∑ (𝑭𝑖(𝒙) − 𝒛𝑖)
𝑇𝑺𝛴

−1(𝑭𝑖(𝒙) − 𝒛𝑖)
𝑁
𝑖=1 + 𝛾(𝒙 − 𝒙𝑎)𝑇𝑺𝑎

−1(𝒙 − 𝒙𝑎)         (1) 144 

where 𝒙  is the state vector of CO emissions, N is the number of observations that are 145 

distributed in time over the assimilation period, 𝒛𝑖 is a given measurement, and 𝑭(𝒙) is the 146 

forward model. The error estimates are assumed to be Gaussian and are given by 𝑺Σ, the 147 

observational error covariance matrix, and 𝑺𝑎, the a priori error covariance matrix. The cost 148 

function is minimized through minimizing the adjoint gradients by adjusting the CO emissions 149 

iteratively: 150 

𝛻𝒙𝐽(𝒙) = ∑ [2𝑺𝛴
−1(𝑭𝑖(𝒙) − 𝒛𝑖)

𝜕𝑭𝑖

𝜕𝒙
]𝑁

𝑘=1 + 2𝛾𝑺𝑎
−1(𝒙 − 𝒙𝑎)             (2) 151 

We assume a uniform observation error of 20%. The combustion CO sources (fossil fuel, 152 

biofuel and biomass burning) and the oxidation source from biogenic volatile organic 153 

compounds (VOCs) are combined, assuming a 50% uniform a priori error. We optimize the 154 

source of CO from the oxidation of methane (CH4) separately as an aggregated global source, 155 
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assuming an a priori uncertainty of 25%. The CO emission estimates are optimized with 156 

monthly temporal resolution. Following Jiang et al. (2017), we performed 40 iterations 157 

(forward + backward simulations) for each month, which usually produced 6-8 accepted 158 

iterations (i.e., successful line searches in the large-scale bound constrained optimization (L-159 

BFGS-B, Zhu et al. (1997)) to reduce the cost functions and adjoint gradients. The a posteriori 160 

CO emission estimates were calculated based on the last accepted iteration, which usually 161 

corresponded to the iteration with the lowest cost function. 162 

2.2 New framework to read emission inventories 163 

A major objective of this work is to design a new framework to facilitate emission 164 

inventory updates in the adjoint of GEOS-Chem model. As shown in Fig. 1, we first initialize 165 

the array in [INITIAL] and batch read the emission data in [READ_DATA], which were 166 

interpolated offline with 1°×1° resolution by considering the mass conservation. Here, the data 167 

include the emission inventory data listed in Table S1 (see the SI), the corresponding scaling 168 

factor data and the mask map files of domain definitions. The data are scaled in 169 

[SCALE_DATA] by multiplying the corresponding annual, season, month, week, and 24-hour 170 

emission factors and are then online interpolated to the current resolution (4°×5° in this work) 171 

of the model by [RGRID_DATA], which was followed by the application of region masks in 172 

[MASK]. 173 

The emission variable of CO obtained in this part is written to the model memory in 174 

emission.f and emission_adj.f by calling DO_EMISSIONS to ensure the consistent emissions 175 

in both forward and backward simulations. The GET_[TRACER] subroutines are used to 176 

obtain the CO emission variable, which participates in the calculation of physicochemical 177 

processes in the model, to interact with other modules. Finally, the variable is cleaned from the 178 

memory by the [CLEANUP] module. It should be noted that a two-step interpolation is 179 

employed in this work (hereafter referred to as GC-Adjoint-HEMCO) following GC-Adjoint-180 
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STD, for example, 0.1°×0.1° to 1°×1° and then to 4°×5° for the NEI2011 inventory, which is 181 

different from the one-step interpolation in GEOS-Chem forward model (v12-08-01, hereafter 182 

referred to as GC-v12), for example, 0.1°×0.1° to 4°×5° directly for the NEI2011 inventory. 183 

The different interpolation methods can lead to differences in the interpolated emission data. 184 

2.3 Updates in emission inventories 185 

In addition to baseline emission data, there are critical factors that affect the usage of 186 

emission data in the models. Reading the emission data correctly thus does not necessarily 187 

mean using emission data correctly. For example, emission hierarchy is used to prioritize 188 

emission fields within the same emission category. Emissions of higher hierarchy overwrite 189 

lower hierarchy data. Regional emission inventories usually have a higher hierarchy within 190 

their mask boundaries. Scaling factors are used to adjust the baseline emissions with annual, 191 

season, month, week, and 24-hour temporal scales. Time slice selection is used to define the 192 

usage methods of the emission data outside the original temporal range; for instance, data can 193 

be interpreted as climatology and recycled once the end of the last time slice is reached or be 194 

only considered as long as the simulation time is within the time range. Furthermore, there are 195 

experience parameters applied in files such as emfossil.f and tagged_co.f, which may not be 196 

compatible with HEMCO emission inventories. Consequently, we must validate the integrated 197 

emissions carefully to ensure that the abovementioned factors have been correctly applied and 198 

to ensure that the calculated emissions are reasonable for individual inventories and the 199 

combination of all inventories. 200 

To take advantage of this new framework, six HEMCO emission inventories have been 201 

added to this work. To validate the emissions, we performed actual simulations with GC-v12, 202 

GC-Adjoint-HEMCO and GC-Adjoint-STD, and the emissions were calculated in the model 203 

simulations and then output to the Log file. As shown in Table S1, the CEDS emission 204 

inventory (0.5°×0.5°) is adopted in GC-Adjoint-HEMCO to provide global default emissions 205 
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for 1750-2019. The diurnal scale factors are applied to obtain CO emissions at different 206 

moments of the day. Fig. S1 (see the SI) shows CEDS CO emissions in 2015 in GC-v12 and 207 

GC-Adjoint-HEMCO and GEIA CO emissions in GC-Adjoint-STD, and we find noticeable 208 

differences in CO emissions between CEDS and GEIA. As shown in Table 1, the CEDS CO 209 

emissions in 2015 were 613.57 and 613.85 Tg/y in GC-v12 and GC-Adjoint-HEMCO, 210 

respectively, with a relative difference of 0.05% between GC-v12 and GC-Adjoint-HEMCO. 211 

The GEIA CO emissions in 2015 were 445.88 Tg/year in GC-Adjoint-STD. 212 

The default CEDS inventory is replaced by the following regional emission inventories 213 

in GC-Adjoint-HEMCO: MIX in Asia (0.25°×0.25°), NEI2011 in the United States 214 

(0.1°×0.1°), DICE_AFRICA and EDGARV43 in Africa (0.1°×0.1°) and APEI in Canada 215 

(0.1°×0.1°). As shown in Fig. S2 (see the SI), the MIX inventory provides Asian emissions in 216 

2008-2010, accompanied by diurnal scale factors to describe daily emission variation. The 217 

1°×1° scale factors in the AnuualScalar.geos.1x1.nc file further provide the annual variation in 218 

1985-2010. As shown in Table 1, the MIX CO emissions in 2015 were 321.18 and 321.71 Tg/y 219 

in GC-v12 and GC-Adjoint-HEMCO, respectively, with a relative difference of 0.17% between 220 

GC-v12 and GC-Adjoint-HEMCO. The INTEX-B CO emissions in 2015 were 353.03 Tg/y in 221 

GC-Adjoint-STD. 222 

The NEI2011 inventory (Fig. S3, see the SI) provides anthropogenic emissions for the 223 

United States in 2011 with annual scalar factors from 2006-2013. The weekday and weekend 224 

factors are read from NEI99.dow.geos.1x1.nc file since 1999 with all CO factors of 1.0 on 225 

weekdays and between 0.990 and 0.997 on Saturdays and Sundays. The NEI2011 CO 226 

emissions in 2015 were 35.83 and 37.70 Tg/y in GC-v12 and GC-Adjoint-HEMCO, 227 

respectively, with a relative difference of 5.22% between GC-v12 and GC-Adjoint-HEMCO. 228 

The NEI2008 CO emissions in 2015 were 52.87 Tg/y in GC-Adjoint-STD. APEI (Fig. S4, see 229 

the SI) is the primary source of anthropogenic emissions in the Canadian domain. The APEI 230 
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CO emissions in 2015 were 6.10 and 6.17 Tg/y in GC-v12 and GC-Adjoint-HEMCO, 231 

respectively, with a relative difference of 1.14% between GC-v12 and GC-Adjoint-HEMCO. 232 

The CAC CO emissions in 2015 were 10.20 Tg/y in GC-Adjoint-STD. Following GC-v12, the 233 

CO emissions in APEI are enhanced by 19% to account for coemitted VOC in the tagged-CO 234 

simulation. 235 

Emissions for the African domain are provided by the combination of DICE_AFRICA 236 

and EDGARV43 (Fig. S5, see the SI). Here DICE_AFRICA includes anthropogenic and 237 

biofuel emissions in 2013. We read the DICE_AFRICA emissions data into the model in two 238 

types according to the guidelines of the inventory. Emissions from sectors such as automobiles 239 

and motorcycles are aggregated into anthropogenic sources, and household-generated 240 

emissions such as charcoal and agricultural waste are aggregated into biofuel sources. Efficient 241 

combustion emissions from EDGAR v4.3 in 1970-2010 then compensate for the lacking 242 

sources in DICE_AFRICA. Daily variation factors for CO are also used here for emissions 243 

across the African region. The 2010 CO seasonal scale factors are used in EDGAR v4.3 for 244 

sectoral emission sources. The DICE_AFRICA and EDGARV43 CO emissions in 2015 were 245 

83.42 and 83.02 Tg/y in GC-v12 and GC-Adjoint-HEMCO, respectively, with a relative 246 

difference of -0.48% between GC-v12 and GC-Adjoint-HEMCO. Following GC-v12, the CO 247 

emissions in DICE_AFRICA and EDGARV43 are enhanced by 19% to account for coemitted 248 

VOC in the tagged-CO simulation. 249 

The biomass burning emission inventory in GC-Adjoint-HEMCO is GFED4 (Fig. S6, 250 

see the SI), which includes dry matter emissions from a total of seven sectors in 1997-2019. 251 

The same GFED_emssion_factors.H header file as in the GC-v12 version is read in the GC-252 

Adjoint-HEMCO. This file contains the ratio factors of atmospheric pollutants, and we 253 

multiply the ratio factors one by one according to the ID of each species to ensure that the 254 

species in the model have biomass burning sources. The GFED4 CO emissions in 2015 were 255 
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437.13 and 435.89 Tg/y in GC-v12 and GC-Adjoint-HEMCO, respectively, with a relative 256 

difference of -0.28% between GC-v12 and GC-Adjoint-HEMCO. The GFED3 CO emissions 257 

in 2015 were 382.04 Tg/year in GC-Adjoint-STD. Following GC-v12, the combustion CO 258 

sources in biomass burning are enhanced by 5% to consider the CO generated by VOC in the 259 

tagged-CO simulation. 260 

Fig. 2 shows the total combustion CO emissions in 2015 from GC-v12, GC-Adjoint-261 

HEMCO and GC-Adjoint-STD. As shown in Table 2, the regional combustion CO emissions 262 

are 320.66 and 320.38 Tg/y (Asia), 73.96 and 66.93 Tg/y (North America), 199.51 and 263 

193.29/y Tg (Africa), 79.04 and 78.91 Tg/y (South America), 31.58 and 30.96 Tg/y (Europe) 264 

and 12.24 and 11.99 Tg/y (Australia) in GC-v12 and GC-Adjoint-HEMCO, respectively. Fig. 265 

3 further shows the monthly combustion CO emissions in 2015 from GC-v12, GC-Adjoint-266 

HEMCO and GC-Adjoint-STD, and there are good agreements in the monthly variation of CO 267 

emissions between GC-v12 and GC-Adjoint-HEMCO. The CO emissions in GC-Adjoint-STD 268 

are similar to those in GC-v12 and GC-Adjoint-HEMCO in winter and spring but with large 269 

differences in summer and autumn. This seasonal difference may reflect the influence of 270 

different emission inventories on biomass burning. 271 

2.4 Updates in CO chemical sources and sinks 272 

The biogenic emissions in GC-Adjoint-STD are Model of Emissions of Gases and 273 

Aerosols from Nature, version 2.0 (MEGANv2.0, Guenther et al. (2006)) in the full chemistry 274 

simulation but are GEIA in the tagged-CO simulation (Fig. S7, see the SI). Fisher et al. (2017) 275 

demonstrated improvement in modeled CO concentrations in tagged-CO simulation by reading 276 

archived VOC- and CH4-generated CO fields provided by full chemistry simulation. The 277 

archived VOC- and CH4-generated CO fields in 2013 (PCO_3Dglobal.geosfp.4x5.nc) were set 278 

as the default CO chemical sources in the tagged-CO simulation in GC-v12 and supported in 279 

GC-Adjoint-HEMCO. As shown in Table 2, the CO chemical sources (columns) obtained by 280 
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reading the archived VOC- and CH4-generated CO fields demonstrate good agreement between 281 

GC-v12 and GC-Adjoint-HEMCO. However, they are 30-60% lower than those in GEIA in 282 

GC-Adjoint-STD, and this difference could be partially associated with the inconsistency 283 

between the archived VOC-generated CO fields in 2013 and the actual meteorological data in 284 

2015 in the simulation. 285 

The default CH4-generated CO emissions in GC-Adjoint-STD (Fig. S8, see the SI) are 286 

calculated based on averaged CH4 concentrations in four latitude bands (90°S - 30°S, 30°S - 287 

00°S, 00°N - 30°N, 30°N - 90°N), which are based on Climate Monitoring and Diagnostics 288 

Laboratory (CMDL) surface observations and Intergovernmental Panel on Climate Change 289 

(IPCC) future scenarios. As shown in Table 2, there are good agreements in the CH4-generated 290 

CO emissions between GC-v12 and GC-Adjoint-HEMCO by reading 291 

PCO_3Dglobal.geosfp.4x5.nc, and they are 20-60% lower than those in CMDL/IPCC in GC-292 

Adjoint-STD. Furthermore, the default archived monthly OH fields were updated following 293 

GC-v12 with updated calculations for the decay rate (KRATE, from JPL 03 to JPL 2006) in 294 

GC-Adjoint-HEMCO. The subsequent CO sinks (Fig. S9, see the SI) in GC-v12 and GC-295 

Adjoint-HEMCO are 20-40% higher than those in GC-Adjoint-STD. 296 

2.5 Updates in meteorological data 297 

The MERRA-2 meteorological data (1979-present) are supported in GC-Adjoint-298 

HEMCO to ensure long-term consistency in the meteorological data in the analyses. The code 299 

porting to support MERRA-2 follows the current framework of the adjoint of GEOS-Chem 300 

model, particularly because the meteorological variables and vertical resolutions of MERRA-301 

2 are the same as those of GEOS-FP (2012-present), while GEOS-FP is already supported by 302 

GC-Adjoint-STD. Fig. 4A-B show the averages of surface CO concentrations in 2015 from 303 

GC-Adjoint-HEMCO driven by MERRA-2 and GEOS-FP, respectively. Our results 304 

demonstrate lower surface CO concentrations driven by MERRA-2 (Fig. 4C), although there 305 
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is good agreement in the spatial distributions of CO concentrations. Similarly, Fig. 4D-F show 306 

the averages of CO columns in 2015 from GC-Adjoint-HEMCO driven by MERRA-2 and 307 

GEOS-FP and their differences. Despite the noticeable differences in surface CO 308 

concentrations (Fig. 4C), the differences in CO columns (Fig. 4F) are much smaller, and the 309 

modeled CO columns driven by MERRA-2 are higher than those driven by GEOS-FP over the 310 

Indian Ocean. The discrepancy between surface and column CO in Fig. 4 may reflect the 311 

impacts of different convective transports on the modeled CO concentrations. 312 

2.6 MOPITT CO measurements 313 

The MOPITT data used here were obtained from the joint retrieval (V7J) of CO from 314 

thermal infrared (TIR, 4.7m) and near-infrared (NIR, 2.3m) radiances using an optimal 315 

estimation approach (Worden et al., 2010; Deeter et al., 2017). The retrieved volume mixing 316 

ratios (VMR) are reported as layer averages of 10 pressure levels with a footprint of 22 km × 317 

22 km. Following Jiang et al. (2017), we reject MOPITT data with CO column amounts less 318 

than 5×1017 molec/cm2 and with low cloud observations. Since the NIR channel measures 319 

reflected solar radiation, only daytime data are considered. 320 

 321 

3. Model evaluation and application 322 

3.1 Model performances in forward and backward simulations 323 

The reasonable emissions in the diagnostic outputs in Section 2 do not necessarily mean 324 

the correct integration of emissions in the assimilations. Consequently, here we evaluate the 325 

performance of GC-Adjoint-HEMCO in forward simulations. Fig. 5 shows the averages of 326 

surface and column CO concentrations in 2015 from GC-v12, GC-Adjoint-HEMCO and GC-327 

Adjoint-STD. As shown in Table 2, the regional differences between GC-v12 and GC-Adjoint-328 

HEMCO are 2.6%, -5.7%, -4.6%, -1.7%, -1.4% and -3.6% in surface CO concentrations, and 329 

-2.3%, -3.6%, -3.3%, -3.1%, -3.3% and -4.1% in CO columns over Asia, North America, 330 
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Africa, South America, Europe, and Australia, respectively. There are larger regional 331 

differences in CO concentrations between GC-v12 and GC-Adjoint-STD: 4.6%, -10.1%, 6.3%, 332 

22.5%, 6.4% and 25.7% in surface CO concentrations, and -0.7%, -9.9%, 2.5%, 8.0%, -5.8% 333 

and 8.5% in CO columns over Asia, North America, Africa, South America, Europe, and 334 

Australia, respectively. The agreement between GC-v12 and GC-Adjoint-HEMCO confirms 335 

the reliability of GC-Adjoint-HEMCO in forward simulations, while the small differences in 336 

CO concentrations between GC-v12 and GC-Adjoint-HEMCO are expected in view of the 337 

comparable differences in regional emissions, chemical sources and sinks, as shown in Table 338 

2. 339 

In addition to forward simulations, the reliability of 4D-var assimilation also relies on 340 

the accuracy of the adjoint-based sensitivities, which are obtained by the backward simulations 341 

of adjoint tracers and the combination of adjoint tracers with emissions. As mentioned in 342 

Section 2.2, we have made corresponding modifications to both forward and backward 343 

modules. Consequently, here we further evaluate the performance of GC-Adjoint-HEMCO in 344 

backward simulations. Here the adjoint gradients are simplified as: 345 

 𝛻𝒙𝐽(𝒙) =
𝜕𝑭𝑁

𝜕𝒙
                                (3) 346 

The adjoint gradients (Eq. 3) represent the sensitivities of modeled atmospheric compositions 347 

at the final time step (i.e., 𝑖 = 𝑁) to emissions, which were then compared with the finite 348 

difference gradients calculated with: 349 

Λ =  
𝐽(𝜎+𝛿𝜎)−𝐽(𝜎−𝛿𝜎)

2𝛿𝜎
                            (4) 350 

Here the finite difference gradients represent the response of modeled atmospheric 351 

compositions at the final time step to finite perturbations in emissions provided by the forward 352 

simulations (𝛿𝜎 = 10% in this work). 353 

Fig. 6A-C show the comparison of adjoint and finite difference gradients of global CO 354 

concentrations to CO emissions with a 24-hour assimilation window by turning on the 355 
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convection, planetary boundary layer mixing and advection processes individually. We find 356 

good consistency in the gradients with respect to convection and planetary boundary layer 357 

mixing. The larger deviation with respect to advection is caused by the discrete advection 358 

algorithm in forward simulations and continuous advection algorithm in backward simulations 359 

(Henze et al., 2007). Fig. 6D-F further exhibit the effects of combined model processes (turning 360 

off advection as suggested by Henze et al. (2007)). We find good agreement between the 361 

adjoint and finite difference gradients with different assimilation windows (24 hours, 7 days 362 

and one month). This confirms the consistency in the impacts of emissions to modeled 363 

atmospheric compositions between the forward and backward simulations, which is the 364 

prerequisite for more detailed evaluations in the following Sections. 365 

3.2 Observing system simulation experiments with pseudo-CO observations 366 

Here we further evaluate the performance of GC-Adjoint-HEMCO in 4D-var 367 

assimilations. OSSE is a useful method and has been widely used to evaluate the performance 368 

of various data assimilation systems (Jones et al., 2003; Barré et al., 2015; Shu et al., 2022). In 369 

contrast to assimilations by assimilating actual atmospheric observations, pseudo-observations 370 

are usually generated by model simulations and then assimilated in OSSE. The true 371 

atmospheric states are known in OSSEs as they are used to produce the pseudo-observations, 372 

and consequently, the difference between assimilated and true atmospheric states describes the 373 

capability of the assimilation systems to converge to the true atmospheric states in assimilations 374 

when assimilating actual observations.  375 

The pseudo-observations in this work are produced by archiving CO concentrations from 376 

GC-Adjoint-HEMCO forward simulations with the CO emissions unchanged (i.e., the default 377 

CO emission inventory such as CEDS, MIX and NEI2011). According to the usage of pseudo-378 

observations, two types of OSSE are performed in this work: 1) full modeled CO fields are 379 

assimilated as pseudo-observations so that we have pseudo-CO observations at every grid/level 380 
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and time step (hereafter referred to as OSSE-FullOBS). This experiment is designed to evaluate 381 

the performance of the assimilation system under ideal conditions with full coverage of 382 

observations. 2) The modeled CO fields are sampled at the locations/times of MOPITT CO 383 

observations and smoothed with MOPITT a priori concentrations and averaging kernels to 384 

produce MOPITT-like pseudo-CO observations (hereafter referred to as OSSE-MOPITT). This 385 

experiment is designed to evaluate the performance of the assimilation system under actual 386 

conditions with limited coverage of observations.    387 

In the inverse analysis with the pseudo-CO observations, we reduce the anthropogenic 388 

CO emissions by 50% so that the objective of the OSSE is to produce scaling factors that can 389 

return the source estimate to the default emissions (i.e., scaling factors of 1.0). Fig. 7A shows 390 

the annual scaling factors in 2015 in OSSE-FullOBS. After 40 iterations, the a posteriori 391 

anthropogenic CO emission estimates converge to the true states in all major emission regions. 392 

As shown in Table 3, the regional scaling factors of OSSE-FullOBS are 1.00, 0.97, 0.97, 1.00, 393 

0.98 and 0.94 for anthropogenic CO emissions over Asia, North America, Africa, South 394 

America, Europe, and Australia, respectively. 395 

Furthermore, Fig. 7D shows the annual scaling factors in OSSE-MOPITT, which are 396 

noticeably worse than those in Fig. 7A. The regional scaling factors of OSSE-MOPITT are 397 

1.04, 0.88, 1.01, 1.02, 0.84 and 0.81 for anthropogenic CO emissions over Asia, North 398 

America, Africa, South America, Europe, and Australia, respectively. With respect to OSSE-399 

FullOBS, the limited coverage of observations in OSSE-MOPITT has resulted in 400 

approximately 15% underestimations in the a posteriori CO emission estimates over North 401 

America and Europe. In addition, Fig. 7B-C and Fig. 7E-F show the a priori and a posteriori 402 

biases in the modeled CO columns. We find dramatic improvements in the modeled CO 403 

columns, which confirms the reliability of the 4D-var assimilation system. The difference 404 

between Fig. 7B and 6E reflects the influence of the application of MOPITT averaging kernels, 405 
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which lead to larger negative biases in the a priori simulation. It should be noted that we cannot 406 

expect comparable improvement in the actual assimilations because of the potential effects of 407 

model and observation errors. 408 

3.3 Anthropogenic CO emissions constrained with MOPITT CO observations 409 

As an example of the application of GC-Adjoint-HEMCO, here we constrain 410 

anthropogenic CO emissions in 2015 by assimilating MOPITT CO observations. Fig.8A shows 411 

the relative differences between modeled and MOPITT CO columns at the beginning of each 412 

month in 2015 (i.e., biases in monthly initial CO conditions) in the original GEOS-Chem 413 

simulations. We find dramatic underestimations in the modeled CO columns by approximately 414 

30-40%. As indicated by previous studies (Jiang et al., 2013; Jiang et al., 2017), the biases in 415 

monthly initial CO conditions are caused by model biases in CO concentrations accumulated 416 

in previous months. Considering that the lifetime of CO is approximately 2-3 months, the 417 

negative biases in the initial conditions can result in negative biases in the modeled CO 418 

concentration in the following month. A lack of consideration of these biases, as shown in Fig. 419 

8A, can thus result in overestimations in the derived monthly CO emission estimates because 420 

the assimilation system will tend to adjust emissions to reduce the initial condition-induced 421 

biases. 422 

Following Jiang et al. (2017), a suboptimal sequential Kalman filter (Todling and Cohn, 423 

1994; Tang et al., 2022) was employed in this work to optimize the modeled CO concentrations 424 

with an hourly resolution by combining GC-Adjoint-HEMCO forward simulation and 425 

MOPITT CO observations. The CO concentrations provided by the Kalman filter assimilations 426 

were archived at the beginning of each month, which were used as the optimized monthly initial 427 

CO conditions in the inverse analysis. As shown in Fig. 8B, the biases in the modeled CO 428 

columns in the optimized initial CO conditions are pronounced lower than those in the original 429 

simulation (Fig. 8A). The optimization of the initial CO conditions is essential for our inverse 430 
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analysis, as it can ensure that the adjustments in CO emissions are dominated by the differences 431 

between simulations and observations in the current month instead of the 30-40% 432 

underestimations in CO columns accumulated in previous months. 433 

Fig. 9A shows the distribution of a priori anthropogenic CO emissions in 2015. The 434 

regional a priori anthropogenic CO emissions (as shown in Table 4) are 243.53, 34.42, 23.24, 435 

30.39, 25.94 and 2.02 Tg/y over Asia, North America, Africa, South America, Europe, and 436 

Australia, respectively. As shown in Fig. 9B, our inverse analysis suggests a wide distribution 437 

of underestimations in the a priori anthropogenic CO emissions in 2015 except in E. China. 438 

The regional scaling factors (Table 4) are 1.16, 1.47, 1.52, 1.41, 1.60 and 1.38, and the a 439 

posteriori anthropogenic CO emissions are 283.20, 50.47, 35.34, 42.92, 41.62 and 2.79 Tg/y 440 

over Asia, North America, Africa, South America, Europe, and Australia, respectively. As 441 

shown in Fig. 9C, we find noticeable underestimations in the modeled CO columns in the a 442 

priori simulations, despite the negative biases being much weaker than those in Fig. 8A due to 443 

the optimization of the initial CO conditions. The negative biases are effectively reduced in the 444 

a posteriori simulation driven by the a posteriori CO emission estimates (Fig. 9D). 445 

Finally, we compare the a posteriori CO emission estimates in this work with Jiang et al. 446 

(2017), who constrained CO emissions in 2001-2015 with GC-Adjoint-STD by assimilating 447 

the same MOPITT CO observations. As shown in Table 4, the a posteriori anthropogenic CO 448 

emission estimates in this work match well with Jiang et al. (2017) in North America and Africa 449 

but are 38%, 157% and 228% higher than those in Jiang et al. (2017) in Asia, South America 450 

and Australia, respectively. A major discrepancy between this work and Jiang et al. (2017) is 451 

the treatment of ocean grids. Jiang et al. (2017) defined ocean grids as continental boundary 452 

conditions, which were rewritten hourly using the optimized CO concentrations archived from 453 

the suboptimal sequential Kalman filter by assimilating MOPITT CO observations. Only 454 

MOPITT data over land were assimilated in the 4D-var assimilations in Jiang et al. (2017) 455 
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without any change in CO distribution over the ocean. In addition, the large differences in 456 

chemical sources and sinks between GC-Adjoint-HEMCO and GC-Adjoint-STD, for example, 457 

lower VOC-generated CO emissions by 40-60% and higher CO sinks by 20-40% in GC-458 

Adjoint-HEMCO, as shown in Table 2, may also contribute to the discrepancy in the derived 459 

a posteriori CO emission estimates. 460 

As shown in Fig. 9D, the a posteriori simulation demonstrates positive biases in CO 461 

columns over China and Southeast Asia, which is a signal of overestimated local CO emissions; 462 

meanwhile, the negative biases over the northern Pacific Ocean are reduced in the a posteriori 463 

simulation. The negative biases over the remote ocean are more affected by CO chemical 464 

sources and sinks; however, biases in chemical sources cannot be effectively adjusted because 465 

of the global uniform scaling factor for CH4-generated CO emissions; biases in chemical sinks 466 

cannot be adjusted because of the fixed OH fields in the tagged-CO simulation. Jiang et al. 467 

(2017) tried to address this problem by defining continental boundary conditions so that the 468 

inverse analysis is dominated by local MOPITT observations to avoid the influence of model 469 

biases accumulated within the long-range transport. Conversely, CO emissions over China and 470 

Southeast Asia are overestimated in this work to offset the negative biases over the northern 471 

Pacific Ocean. We expect similar overestimations in the a posteriori CO emission estimates 472 

over South America, southern Africa, and Australia in this work because it is the effective 473 

pathway to reduce the negative bias over the ocean in the Southern Hemisphere.  474 

4. Conclusion 475 

This work demonstrates our efforts on the development of a new framework to facilitate 476 

emission inventory updates in the adjoint of GEOS-Chem model. The major advantage of this 477 

new framework is good readability and extensibility, which allows us to conveniently support 478 

HEMCO emission inventories, including CEDS, MIX, NEI2011, DICE_AF, AF_EDGAR43, 479 

APEI and GFED4. The updated emission inventories are critical for reliable sensitivity 480 
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analyses, as well as better convergence of assimilations by setting a more reasonable a priori 481 

penalty in the cost function. Second, we developed new modules to support MERRA-2 482 

meteorological data, which allows us to perform long-term inverse analysis with consistent 483 

meteorological data in 1979-present. We evaluated the performances of the developed 484 

capabilities by validating the diagnostic outputs of CO emissions, modeled surface and column 485 

CO concentrations in forward simulations, and adjoint gradients of global CO concentrations 486 

to CO emissions with respect to the finite difference gradients. 487 

Two types of OSSE were conducted to evaluate the model performance in 4D-var 488 

assimilations. The a posteriori CO emissions converged to the true states in all major emission 489 

regions with fully covered pseudo-CO observations; the limited coverage of observations by 490 

sampling the pseudo-CO observations at the locations/times of MOPITT CO observations and 491 

smoothing with MOPITT averaging kernels resulted in approximately 15% underestimations 492 

in the a posteriori CO emissions over North America and Europe. Furthermore, as an example 493 

application of the developed capabilities, we constrain anthropogenic CO emissions in 2015 494 

by assimilating MOPITT CO observations. The a posteriori anthropogenic CO emission 495 

estimates derived in this work match well with Jiang et al. (2017) in North America and Africa 496 

but are overestimated in Asia, South America and Australia, which could be associated with 497 

the different treatment of MOPITT CO observations over ocean grids and the large differences 498 

in CO chemical sources and sinks. The capabilities developed in this work are a useful 499 

extension for the adjoint of GEOS-Chem model. More efforts are needed to support emissions 500 

inventories associated with full chemistry simulations, as well as integration of these 501 

capabilities with the standard GEOS-Chem adjoint code base for better development of the 502 

community of the adjoint of GEOS-Chem model. 503 

 504 
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Code and data availability: The MOPITT CO data can be downloaded from 505 

https://asdc.larc.nasa.gov/data/MOPITT/. The GEOS-Chem model (version 12.8.1) can be 506 

downloaded from http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_12#12.8.1. 507 

The adjoint of GEOS-Chem model (GC-Adjoint-STD) can be downloaded from 508 

http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_Adjoint. The adjoint of 509 

GEOS-Chem model (GC-Adjoint-HEMCO) can be downloaded from 510 

https://doi.org/10.5281/zenodo.7512111. 511 
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Tables and Figures 525 

Table 1. CO emissions for each inventory in 2015 with unit Tg/y. 526 

 527 

Table 2. Regional combustion CO emissions, VOC-generated CO (PCO_NMVOC), CH4-528 

generated CO (PCO_CH4), CO sinks (CO_OH, calculated as CO_OH = KRATE×CO×OH), 529 

and simulated surface and column CO concentrations in 2015. The region definitions are shown 530 

in Fig. 2A. 531 

https://asdc.larc.nasa.gov/data/MOPITT/
http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_12#12.8.1
http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_Adjoint
https://doi.org/10.5281/zenodo.7512111
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 532 

Table 3. Annual scaling factors of anthropogenic CO emissions in OSSEs. The scaling factors 533 

represent the ratio of the estimated to true emissions. The ratio for the first guess is 0.5. The 534 

actual value is 1.0. The pseudo-observations are produced by GC-Adjoint-HEMCO forward 535 

simulation. The full modeled CO fields are used in OSSE-FullOBS as pseudo-CO observations. 536 

The modeled CO fields are smoothed with MOPITT averaging kernels to produce MOPITT-537 

like pseudo-CO observations in OSSE-MOPITT. 538 

 539 

Table 4. Regional anthropogenic CO emissions (with unit Tg/y) and annual scaling factors in 540 

2015 in this work and Jiang et al. 2017. 541 

 542 

Fig. 1. Framework to read the updated emission inventories in GC-Adjoint-HEMCO. 543 

 544 

Fig. 2. Total combustion CO emissions in 2015 from (a) GC-v12; (b) GC-Adjoint-HEMCO; 545 

(c) GC-Adjoint-STD. The unit is molec/cm2/s. 546 

 547 

Fig. 3. Monthly variation in combustion CO emissions in 2015 from GC-v12, GC-Adjoint-548 

HEMCO and GC-Adjoint-STD. 549 

 550 

Fig. 4. Averages of surface CO concentrations (unit ppbv) in 2015 from (a) GC-Adjoint-551 

HEMCO driven by MERRA-2, (b) GC-Adjoint-HEMCO driven by GEOS-FP and (c) their 552 

difference; (d-f) same as panels a-c, but for CO columns (column-averaged dry-air mole 553 

fractions, Xco). 554 

 555 

Fig. 5. Averages of surface CO concentrations (unit ppbv) in 2015 from (a) GC-v12; (b) GC-556 

Adjoint-HEMCO; (c) GC-Adjoint-STD; (d-f) same as panels a-c, but for CO columns (column-557 

averaged dry-air mole fractions, Xco). 558 

 559 

Fig. 6. Comparison of sensitivities of global CO concentrations to CO emission scaling factors 560 

calculated using the adjoint method vs. the finite difference method. (a-c) the effects of 561 

convection, PBL mixing and advection with 24-hour assimilation window; (d-f) the combined 562 

effects (the advection process is turned off) with increased assimilation windows. 563 

 564 
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Fig. 7. (a) Annual scaling factors in OSSE-FullOBS. The scaling factors represent the ratio of 565 

the estimated to true emissions. The ratio for the first guess is 0.5. The actual value is 1.0. (b-566 

c) the a priori and a posteriori biases calculated by (model-observation)/observation in OSSE-567 

Full. (d-f) same as panels a-c, but for OSSE-MOPITT. 568 

 569 

Fig. 8. (a) Biases in monthly initial CO conditions in 2015 in the original GEOS-Chem 570 

simulation. (b) same as panel a, but with optimized initial CO conditions provided by 571 

suboptimal sequential Kalman filter. The biases are calculated by (model-MOPITT)/MOPITT. 572 

 573 

Fig. 9. (a) A priori anthropogenic CO emissions in 2015 with unit molec/cm2/s; (b) Annual 574 

scaling factors for CO emissions in 2015. The scaling factors represent the ratio of the estimated 575 

to true emissions. (c-d) the a priori and a posteriori biases calculated by (model-576 

MOPITT)/MOPITT. 577 
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Table 1. CO emissions for each inventory in 2015 with unit Tg/y. 

 

 

 

 

 

 

Table 2. Regional combustion CO emissions, VOC-generated CO (PCO_NMVOC), CH4-

generated CO (PCO_CH4), CO sinks (CO_OH, calculated as CO_OH = KRATE×CO×OH), 

and simulated surface and column CO concentrations in 2015. The region definitions are shown 

in Fig. 2A.



 

Table 3. Annual scaling factors of anthropogenic CO emissions in OSSEs. The scaling factors 

represent the ratio of the estimated to true emissions. The ratio for the first guess is 0.5. The 

actual value is 1.0. The pseudo-observations are produced by GC-Adjoint-HEMCO forward 

simulation. The full modeled CO fields are used in OSSE-FullOBS as pseudo-CO observations. 

The modeled CO fields are smoothed with MOPITT averaging kernels to produce MOPITT-

like pseudo-CO observations in OSSE-MOPITT. 

 

 

 

 

 

Table 4. Regional anthropogenic CO emissions (with unit Tg/y) and annual scaling factors in 

2015 in this work and Jiang et al. 2017. 

 

 

 

 

 

 



 
Fig. 1. Framework to read the updated emission inventories in GC-Adjoint-HEMCO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 2. Total combustion CO emissions in 2015 from (a) GC-v12; (b) GC-Adjoint-HEMCO; 

(c) GC-Adjoint-STD. The unit is molec/cm2/s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Fig. 3. Monthly variation in combustion CO emissions in 2015 from GC-v12, GC-Adjoint-

HEMCO and GC-Adjoint-STD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. 4. Averages of surface CO concentrations (unit ppbv) in 2015 from (a) GC-Adjoint-

HEMCO driven by MERRA-2, (b) GC-Adjoint-HEMCO driven by GEOS-FP and (c) their 

difference; (d-f) same as panels a-c, but for CO columns (column-averaged dry-air mole 

fractions, Xco). 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Fig. 5. Averages of surface CO concentrations (unit ppbv) in 2015 from (a) GC-v12; (b) GC-

Adjoint-HEMCO; (c) GC-Adjoint-STD; (d-f) same as panels a-c, but for CO columns (column-

averaged dry-air mole fractions, Xco). 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Fig. 6. Comparison of sensitivities of global CO concentrations to CO emission scaling factors 

calculated using the adjoint method vs. the finite difference method. (a-c) the effects of 

convection, PBL mixing and advection with 24-hour assimilation window; (d-f) the combined 

effects (the advection process is turned off) with increased assimilation windows. 

 



 

 

Fig. 7. (a) Annual scaling factors in OSSE-FullOBS. The scaling factors represent the ratio of 

the estimated to true emissions. The ratio for the first guess is 0.5. The actual value is 1.0. (b-

c) the a priori and a posteriori biases calculated by (model-observation)/observation in OSSE-

Full. (d-f) same as panels a-c, but for OSSE-MOPITT. 
 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 8. (a) Biases in monthly initial CO conditions in 2015 in the original GEOS-Chem 

simulation. (b) same as panel a, but with optimized initial CO conditions provided by 

suboptimal sequential Kalman filter. The biases are calculated by (model-MOPITT)/MOPITT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 9. (a) A priori anthropogenic CO emissions in 2015 with unit molec/cm2/s; (b) Annual 

scaling factors for CO emissions in 2015. The scaling factors represent the ratio of the estimated 

to true emissions. (c-d) the a priori and a posteriori biases calculated by (model-

MOPITT)/MOPITT. 


