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Abstract. Digital twins of physical and human systems informed by real-time data, are becoming ubiquitous across weather

forecasting, disaster preparedness, and urban planning, but researchers lack the tools to run these models effectively and effi-

ciently, limiting progress. One of the current challenges is to assimilate observations in highly nonlinear dynamical systems,

as the practical need is often to detect abrupt changes. We developed a software platform to improve the use of real-time data

in highly nonlinear system representations where non-Gaussianity prevents the use of more standard Data Assimilation. Opti-5

mal Particle filtering data assimilation (DA) techniques have been implemented within an user-friendly open source software

platform in Julia - ParticleDA.jl. To ensure the applicability of the developed platform in realistic scenarios, emphasis has been

placed on numerical efficiency, scalability and optimisation for high performance computing frameworks. Furthermore, the

platform has been developed to be forward model agnostic, ensuring that it is applicable to a wide range of modelling settings,

for instance unstructured and non-uniform meshes in the spatial domain or even state spaces that are not spatially organised.10

Applications to tsunami and numerical weather prediction demonstrate the computational benefits in terms of lower errors,

lower computational costs (due to ensemble size and the algorithm’s overheads being minimised) and versatility thanks to

flexible I/O in a high level language Julia.

1 Introduction

Data assimilation (DA) focuses on optimally combining observations with a dynamical model of a physical system to estimate15

how the system state evolves over time. The field of research has its origins within the numerical weather prediction (NWP)

community, where DA techniques are applied iteratively to update current best estimates of the state of the atmosphere. Re-

cently the methods and practices developed have been employed in diverse areas of geosciences, with Carrassi et al. (2018);

Vetra-Carvalho et al. (2018) providing recent overviews. Further DA has seen a huge expansion into other scientific disciplines

with applications in, for example, robotics (Berquin and Zell, 2022), economic modelling (Nadler et al., 2019) and plasma20

physics (Sanpei et al., 2021). In the era of digital twinning, which involves combining high-fidelity representations of reality

with the optimal use of observations, real time data has become vital and DA frameworks have naturally been incorporated.

The area of data learning has also emerged where DA approaches are integrated with machine learning techniques (Buizza

et al., 2022).
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There are various popular data assimilation techniques, with variational methods (3DVar and 4DVar) and ensemble Kalman25

filters (EnKFs) (Evensen, 1994; Burgers et al., 1998) being extensively used in operational and research settings. However,

these methods have difficulties with handling nonlinear problems and with representing uncertainties accurately (Lei et al.,

2010; Bocquet et al., 2010). For instance Miyoshi et al. (2014); Kondo and Miyoshi (2019) updated an ensemble of 10240

particles using the EnKF to demonstrate the bimodality of some distributions due to inherent nonlinearities. Furthermore, the

continuing growth in compute hardware performance has allowed running increasingly complex and high resolution models30

which are able to resolve non-linear processes happening at a fine spatial scale (Vetra-Carvalho et al., 2018), creating an in-

creasing demand for data assimilation methods which are able to accurately quantify uncertainty in such settings. Particle

filters (PFs) (Gordon et al., 1993) are an alternative approach which offer the promise of consistent DA for problems with

non-linear dynamics and non-Gaussian noise distributions. Traditionally the main difficulty with particle filtering techniques

has been the ‘curse of dimensionality’ (Bengtsson et al., 2008; Bickel et al., 2008; Snyder, 2011), where in high dimensional35

settings filtering leads to degeneracy of the importance weights associated with each particle and loss of diversity within an en-

semble. To improve the applicability of PFs there have been many recent developments involving; localisation techniques (e.g.,

the reviews in Farchi and Bocquet (2018); Graham and Thiery (2019)), incorporation of tempering/mutation steps (e.g., Cotter

et al. (2020); Ruzayqat et al. (2022)), hybrid approaches, improved computational implementations and combination of the

above with improved proposal distributions. The above ongoing efforts have extended the applicability of PF methods within40

geoscientific domains. Leeuwen et al. (2019) provides an overview on the integration of particle filters in high-dimensional

geoscience applications.

This paper presents PF algorithms that will often make use of the so-called ‘optimal’ proposal distribution. Though the latter

is not amongst the latest contributions in the PF literature (e.g., Doucet et al. (2000)), it has not been extensively explored

in the high-dimensional PDE-driven systems which we use as case studies in this work. As also noted in Snyder (2011),45

improved proposals used within PF can in practice dramatically effect the performance of the algorithm, thus providing working

algorithms for wide classes of high-dimensional filtering applications, even if from a theoretical viewpoint computational costs

for standard PF implementations (not incorporating some of the extra tools mentioned above, e.g. localisation) might still be

required to scale exponentially fast with the number of observations.

The data assimilation paradigm of optimally combining observations and model has a wide range of applications. How-50

ever, an existing hurdle impeding the incorporation of real-time data into pre-existing dynamical models is the lack of readily

available software packages capable of bridging the two sources of information: model and observations. This is the motiva-

tion behind ParticleDA.jl, to provide a generic and user friendly framework to enable the incorporation of particle filtering

techniques with pre-existing numerical models. ParticleDA.jl is an open-source package in Julia which provides efficient im-

plementations of several particle filter algorithms, and also importantly offers an extensible framework to allow the simple55

addition of new filter implementations. It has been developed to be agnostic to the forward model to ensure applicability in a

wide range of settings and emphasis has been placed on computational efficiency to be ready to enable, in a follow-up version,

real-time applications. Initial efforts have been focused on the integration with spatially dependent numerical models, however
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Package name Algorithms Parallelism

DataAssim.jl (Barth et al., 2016) EnKF, 4DVar

EnKF.jl (Le Provost, 2016) EnKF

Kalman.jl (Schauer et al., 2018) KF

KalmanFilters.jl (Schoenbrod, 2018) KF

LowLevelParticleFilters.jl (Carlson et al., 2018) PF, KF Multi-threading

ParticleFilters.jl (Sunberg et al., 2017) PF

SequentialMonteCarlo.jl (Lee and Piibeleht, 2017) PF (SMC) Multi-threading

ParticleDA.jl PF Multi-threading and multi-node (MPI)
Table 1. Summary of algorithms implemented and parallelism support in existing Julia data assimilation packages.

the implementation is applicable to a much more general class of state space models (see Section 2) allowing incorporation in

a broad range of applications.60

Within the Julia ecosystem, there are several existing packages which implement data assimilation algorithms. DataAssim.jl

(Barth et al., 2016) provides implementations of a range of EnKF and extended Kalman filter (KF) methods and an incremental

variant of 4DVar. EnKF.jl (Le Provost, 2016) implements stochastic and deterministic (square-root) variants of the EnKF which

can be combined with various approaches (e.g. covariance inflation) to avoid ensemble collapse in models with determinis-

tic dynamics. EnsembleKalmanProcesses.jl (Dunbar et al., 2022) implements several derivative-free optimization algorithms65

based on the EnKF mainly targetted at Bayesian inverse problem settings. Kalman.jl (Schauer et al., 2018) and KalmanFilters.jl

(Schoenbrod, 2018) both provide implementations of the exact KF algorithm for linear Gaussian models, with KalmanFilters.jl

additionally implementing unscented variants of the KF for use in models with non-linear dynamics or observation operators.

ParticleFilters.jl (Sunberg et al., 2017) and LowLevelParticleFilters.jl (Carlson et al., 2018) both provide PF implementations,

with LowLevelParticleFilters.jl additionally providing KF implementations. SequentialMonteCarlo.jl (Lee and Piibeleht, 2017)70

provides an interface for implementing (and example implementations of) the wider class of sequential Monte Carlo (SMC)

methods, of which PFs can be considered a special case, with the ability to run particle ensembles in parallel on multiple

threads. Table 1 summarizes the algorithm and parallelism support of existing Julia data assimilation packages.

We implemented ParticleDA.jl in the Julia programming language (Bezanson et al., 2017) because of its combination of

performance and productivity, which enables rapid prototyping and development of high-performance numerical applica-75

tions (Churavy et al., 2022; Giordano et al., 2022), with the possibility of using both shared and distributed memory parallelism

strategies. In particular, Julia makes use of the multiple-dispatch programming paradigm, which is particularly well-suited for

designing a program which combines different models with different filtering algorithms, keeping the two concerns separated.

This allowed domain experts and software engineers to collaborate on the code using the same high-level language.

The rest of this manuscript is organized as follows. The mathematical set-up of the particle filtering algorithm is defined80

in section 2 along with the various filtering proposal distributions implemented. Section 3 outlines the code structure and

parallelisation schemes. Sections 4 and 5 illustrate applications of the framework to simple low-dimensional state space models,
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namely a stochastically driven damped simple harmonic oscillator model and a stochastic variant of the Lorenz ’63 chaotic

attractor model. Section 6 introduces an application to a spatially extended state space model, specifically a tsunami modelling

test case formulated as a linear Gaussian state space model, with validation of the filtering approaches and highlights the scaling85

performance. In section 7 the incorporation with a more complex non-linear atmospheric dynamical model is investigated along

with some results. Finally in section 8 concluding remarks and future work are outlined.

2 Particle filtering

Let xt ∈ Rdx represent the state of the model at an integer time index t and yt ∈ Rdy the vector of observations of the system

at this time index. We assume a state space model formulation, with the states following a Markov process and the observations90

depending only on the state at the corresponding time index, that is

x0 ∼ p0(·); xt ∼ pt(· |xt−1), yt ∼ gt(· |xt), t≥ 1; (1)

where p0 : Rdx → R≥0 is the density of the initial state distribution, pt : Rdx ×Rdx → R≥0, t≥ 1 are the densities of the state

transition distributions and gt : Rdy ×Rdx → R≥0, t≥ 1 are the densities of the conditional distribution on the observations

given the current states.95

For the most part, we will concentrate on a specialisation of this general state space model class, whereby the state and

observations are both subject to additive Gaussian noise and the observations depend linearly on the state, which covers a wide

range of modelling scenarios in practice. Concretely we consider a state update of the form

xt = Ft(xt−1) +ut, ut ∼N (0,Q), t≥ 1, (2)

where Ft : Rdx → Rdx is the forward operator at time index t, representing the deterministic dynamics of the system and100

ut ∈ Rdx is the additive Gaussian state noise at time index t, representing stochastic aspects of the system dynamics. The

observations are modelled as being generated according to

yt = H xt + vt, vt ∼N (0,R), t≥ 1, (3)

where H ∈Rdy×dx is a linear observation operator and vt ∈ Rdy is the additive Gaussian observation noise. The distributions

of the state and observation noise are parameterized by positive-definite covariance matrices Q ∈ Rdy×dy and R ∈ Rdx×dx105

respectively.

The objective of the particle filter is to estimate the filtering distribution for each time index t which are the conditional prob-

ability distributions of the state xt given observations y1, ...,yt up to time index t, with the density of the filtering distribution

at time index t denoted πt(xt|y1:t).

The particle filtering algorithm builds on sequential importance sampling by introducing additional resampling steps. See110

Doucet et al. (2000) for an in-depth introduction but the key features are introduced in Algorithm 1. An ensemble of particles

{x(i)
t }N

i=1 represents an approximation to the filtering distribution at each time index t≥ 1 as πt(dxt|y1:t)≈ 1
N

∑N
i=1 δ

x
(i)
t

(dxt).
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In each filtering step, new values for the particles are sampled from a proposal distribution (more details about the proposals

implemented in ParticleDA.jl are given in section 2.1) and importance weights computed for each proposed particle value.

At the end of the filtering step, the weighted proposed particle ensemble is resampled to produce a new uniformly weighted115

ensemble to use as the input to the next filtering step.

Algorithm 1 Particle filter

1: Initialise particles {x(i)
0 }N

i=1, with x
(i)
0 ∼ p0(·), for 1≤ i≤N .

2: for time index t = 1 to T do

3: for particle index i = 1 to N do

4: Sample proposed particle x̃
(i)
t ∼ qt(· |x(i)

t−1,yt).

5: Compute (unnormalized) importance weight w
(i)
t = Wt(x̃

(i)
t ,x

(i)
t−1,yt) =

pt(x̃
(i)
t |x(i)

t−1)gt(yt | x̃(i)
t )

qt(x̃
(i)
t |x(i)

t−1,yt)
.

6: end for

7: Generate new (equally weighted) particles {x(i)
t }N

i=1 by resampling from the weighted empirical distribution

x
(i)
t ∼

∑N
i=1 w

(i)
t δ

x̃
(i)
t

(·)∑N
i=1 w

(i)
t

8: end for

2.1 Proposal distributions

Two forms of proposal distributions are implemented in ParticleDA.jl: the ‘naive’ bootstrap proposal, applicable to general

state space models described by (1), and the ‘locally optimal’ proposal, applicable to the restricted class of state space models

described by (2) and (3).120

The bootstrap proposal ignores the observations with the particle proposals sampled from the state transition distributions,

qt(xt |xt−1,yt) = pt(xt |xt−1), (4)

with the unnormalized importance weights at time index t≥ 1 then simplifying to

Wt(xt,xt−1,yt) = gt(yt |xt) (= Wt(xt,yt)). (5)

While appealingly simple and applicable to a wide class of models, the bootstrap particle filter performs poorly when observa-125

tions are informative about the state due to the observations being ignored in the proposal. In such cases the proposed particles

will typically be far away from the mass of the true filtering distribution, with the importance weights in this setting tending to

have high variance leading to weight degeneracy whereby all the normalized importance weights but one are close to zero.

To alleviate the tendency to weight degeneracy we can use alternative proposal distributions which decrease the variance

of the importance weights. For proposals distributions qt(xt |xt−1,yt) which condition only on the previous state xt−1 and130

current observation yt, the optimal, in the sense of minimising the variance of the importance weights, proposal can be shown
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(Doucet et al., 2000) to be

qt(xt |xt−1,yt) =
pt(xt|xt−1)gt(yt |xt)∫

pt(x̃t|xt−1)gt(yt | x̃t)dx̃t
, (6)

with corresponding unnormalized importance weights

Wt(xt,xt−1,yt) =
∫

pt(x̃t|xt−1)gt(yt | x̃t)dx̃t (= Wt(xt−1,yt)). (7)135

Note that in this case the importance weights are independent of the sampled values of the particle proposals.

For general state space models, sampling from this locally optimal proposal and computing the importance weights can be

infeasible due to the integral in (6) and (7) not having a closed form solution. However, for the specific case of a state space

model of the form described by (2) and (3), the proposal distribution has the tractable form

qt(xt |xt−1,yt) =N
(
xt |Ft(xt−1) +QHT(HQHT + R)−1(yt−HFt(xt−1)),Q−QHT(HQHT + R)−1HQ

)
, (8)140

with corresponding importance weights

Wt(xt,xt−1,yt) =N
(
yt |HFt(xt−1),HQHT + R

)
. (9)

2.2 Resampling

A resampling step similar to the one shown in Algorithm 1 is included in all implementations of PF methodology. Resampling

multiplies particles found at good positions in space that agree with observations and removes unwanted particles. It is key for145

establishing analytical theory showing that Monte-Carlo errors in estimates of expectations under the filtering distribution are

controlled uniformly in time, see, e.g., the standard reference Del Moral (2004). Such a result provides a critical justification

for the powerful performance of PF-based algorithms in many applications.

In this paper, we make use of standard multinomial resampling, though more sophisticated options that lead to PFs of

improved performance are available (Douc and Cappé, 2005). In what follows, we will often show the value of the Effective150

Sample Size (ESS), capturing the variability of the weights before resampling. ESS is defined as follows:

ESSt =

{∑N
i=1 w

(i)
t

}2

∑N
i=1{w

(i)
t }2

.

ESS is used as a proxy for the number of iid samples that would produce estimates of similar precision as the ones obtained by

the available (correlated) particles.

3 Code Structure155

As stated ParticleDA.jl is designed to be forward model agnostic (i.e. capable of running with arbitrary state space forward

models). To enable this support the model and filter portions of ParticleDA.jl are carefully delineated. The main structure of

the code is given as follows in Algorithm 2, where T is the total number of filtering steps. The steps marked with an asterisk

(∗) are related to the parallelisation framework and more details will be given in section 3.3. Further details on the filter and

model components are given as follows.160
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Algorithm 2 Code Structure of ParticleDA.jl

Initialize particles and model data which is defined by the user

Initialize filter data which is dependent on the choice of filter type

for time index t = 1 to T do

Update the observations of the truth

Update the particle dynamics

Update particle proposals

Get particle observations

Calculate particle weights

Gather particle weights* and re-sample

Broadcast new sampling indices* and copy particle states

calculate population statistics*

end for

3.1 Filter

The default parameters for the filter can be altered by passing values within a configurable YAML file. Parameters to be set

include the number of particles, number of assimilation time steps, I/O options and output file names. When running the particle

filter the key setting is the choice of filtering proposal (Bootstrap or Optimal).

3.2 Model165

By construction the model set up will be defined by the user. The current implementation provides a template for model in-

tegration. However, one of the key commonalities across forward model integrations will be the definition of model noise. At

present the model noise is generated from realisations of Gaussian Random Fields, ParticleDA.jl makes use of the Gaussian-

RandomFileds.jl package for this. The user is required to define the choice of covariance kernel and the associated parameters.

For a Matérn covariance kernel this will include: the length scale (λ), the smoothness (µ) and the standard deviation (σ). The170

number of observations and the indices of the observed variables within a multiple dimensional state space model are needed.

The locations of the observation stations can be passed within a simple .txt file. The observations can come from an online

integration of the state space model or read in from file/sensor.

3.3 Parallelisation scheme

As each particle update and (unnormalized) weight calculation can be computed independently, many of the steps in Algo-175

rithm 2 can be performed in parallel. Both shared and distributed memory parallelisation approaches are leveraged within

ParticleDA.jl. Particle and weight updates are parallelised across multiple threads on shared memory systems using the native

@threads macro in Julia. In distributed memory environments ParticleDA.jl uses the message passing interface (MPI) library

through the MPI.jl Julia library (Byrne et al., 2021), which has been found by Giordano et al. (2022) to have little to no over-
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head in applications with thousands of MPI ranks. Input and outputs (I/O) in ParticleDA.jl are supported through the HDF5180

library and are carried out on the master rank.

The distributed parallelisation scheme is sketched out in Figure 1. The principle is simply to keep the large particle state

vectors distributed to MPI ranks, only copying them point-to-point when required by particle duplication, and use quantities

derived from the local particle ensemble in global communications. The parallel algorithm requires three global steps: a Gather

of particle weights, a Scatter of particle indices (one integer per particle) and a Reduction of population statistics, highlighted by185

asterisks in Algorithm 2. The gather and scatter communicate one floating point and integer number per particle, respectively.

The Reduction is performed on the state vectors, the output being the size of a single state vector per rank. The mean of states

is a simple sum reduction, implemented in the MPI library.

We have implemented several reductions for the variance of states. By default, the variance is reduced as a custom reduction

that only requires a single global communication step and computes the sum and sum of squares within the reduction. For a190

discussion on the implementation in MPI.jl, see Byrne et al. (2021). Custom reductions are currently not supported by MPI.jl on

all CPU architectures,1 therefore we also provide a variance reduction using native sum reductions and a single communication

step. However, this algorithm can be numerically unstable for large ensembles or state components with large values. The

reduction becomes the main bottleneck when scaling up, we discuss the performance impacts in Section 6.2.

4 Stochastically driven damped simple harmonic oscillator195

As a tractable first test case we consider a two-dimensional state space model corresponding to the time discretisation of a

stochastic differential equation

dx(t) =


 0 1

−ω2
0 −ω0/Q


x(t)dt +


0

1


dW (t),

representing a damped simple harmonic oscillator driven by a Wiener noise process W (t). This process has been proposed as

a model for astronomical time series data (Foreman-Mackey et al., 2017), with details of its formulation as a state space model

given in Jordán et al. (2021). Importantly, the state space model is linear-Gaussian and so we can use a Kalman filter to exactly

compute the true Gaussian filtering distributions.

We use an instance of the model with parameters ω0 = 1, Q = 2. and time discretisation step δt = 0.2. We assume an200

observation model yt ∼N (xt,σ
2I) with σ = 0.5 and simulate observations from the model for T = 200 time steps with

initial state distribution x0 ∼N (0, I). Figure 2 shows the root mean squared errors (RMSEs) in particle filter estimates of the

means and log-variances of the Gaussian filtering distributions (compared to ground truth values computed using a Kalman

filter), as a function of the number of particles used in the ensemble, for filters using both the bootstrap and locally optimal

proposal. We see that the locally optimal proposal gives a small but consistent improvement in RMSE for a given ensemble205

size, reflecting the lower variance in the empirical estimates to the filtering distributions. As expected the errors in the filter

1https://github.com/JuliaParallel/MPI.jl/issues/404.
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Figure 1. A sketch of the parallelisation framework in ParticleDA.jl. Serial operations are represented by red boxes, and the communication

operations by blue boxes. Each rank updates particle states and weights independently. The communication between parallel processes

requires three global communication steps and a point-to-point communication step. The impact on performance is discussed in Section 6.2.

Figure 2. RMSE in particle filter estimates of filtering distribution means and (log) variances against number of particles for the damped

simple harmonic oscillator model. The RMSEs compute the mean of the squared errors across all state components and time steps.
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estimates appear to be asymptotically tending to zero at a polynomial rate in the ensemble size, providing some assurance of

the correctness of the ParticleDA.jl filter implementations.

5 Lorenz ’63

The Lorenz ’63 model was introduced by Lorenz (1963) and is a nonlinear dynamical model which has been used to test data210

assimilation methods. The system consists of three nonlinear differential equations which capture a simplified representation

of thermal convection. The differential equations are as follows:

dx1

dt
= σ(x2−x1),

dx2

dt
= ρx1−x2−x1x3,

dx3

dt
= x1x2−βx3, (10)

where x1(t),x2(t) and x3(t) are the prognostic variables of the model and σ, ρ and β are the free parameters. As outlined by

Lorenz (1963) we have set the free parameters to σ = 10, ρ = 28 and β = 8
3 as this set up will lead to chaotic behaviour.215

The system is simulated for T = 500 time steps and with a time step size of 0.1 s. The state variables are assimilated at

each time step. The observation noise standard deviation is set to 0.1 and the state noise standard deviation is 0.5. The initial

conditions of both the observations run and particles are drawn from an initial state distribution x0 ∼N (0,σ2I) with σ = 0.5.

Fig. 3 showcases the performance of an ensemble of N = 20 particles using the locally optimal proposal. The left subplot

of Fig. 3 shows the observations and the mean of the particles at each of the time steps, note the appearance of the Lorenz220

attractor. The right subplot of Fig. 3 is the estimated effective sample size (ESS) at each time step of the simulation, where

the ESS at time index t is estimated as
(∑N

i=1 w
(i)
t

)2

/
∑N

i=1

(
w

(i)
t

)2

with {w(i)
t }N

i=1 the unnormalized particle importance

weights. The estimated ESS remains close to the number of particles (N = 20) for the duration of the simulation therefore

particle degeneracy has been avoided. The distributions of the particle states were observed to showcase some non-Gaussian

characteristics with absolute skewness values of 1.1.225

6 Tsunami Modelling

One of the built-in test cases in ParticleDA.jl focuses on tsunami modelling. Tsunamis are rare events which have the capacity

of causing severe loss of life and damages. At present, tsunami warning centres rely on crude decision matrices, pre-computed

databases of high resolution simulations or ‘on-the-fly’ real time simulations to rapidly deduce the hazard associated with

an event (Gailler et al., 2013). These existing approaches have been developed with seismically generated tsunamis in mind230

and the alternative tsunamigenic sources (landslide and volcanic eruptions) are less well constrained. The ongoing efforts of

incorporating data assimilation techniques within tsunami modelling could augment a warning centres capability in this regard

(Maeda et al., 2015; Gusman et al., 2016). It should be noted that the tsunami model built into ParticleDA.jl is a drastic
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Figure 3. Left: Mean of the particles and the observations at each time step in state space. Right: The estimated ESS at each time step.

simplification to industry used tsunami models but provides a useful test case for users and showcases the potential of particle

filters within tsunami modelling efforts. Further, it allows for direct validation with a Kalman filter as the model is linear and235

Gaussian.

To a first order approximation the linear shallow water equations are used to capture the tsunami dynamics. The forward

model Ft(xt) for the test case is therefore an inbuilt solver of the linear shallow water equations:

∂η

∂t
+

∂(hu)
∂s1

+
∂(hv)
∂s2

=−∂h

∂t
,

∂(hu)
∂t

=−gh
∂η

∂s1
,

∂(hv)
∂t

=−gh
∂η

∂s2
, (11)

where η(s1,s2) is the free surface elevation (wave height), h(s1,s2) is the water depth, g is the acceleration due to gravity and240

u = (u,v) are the depth averaged horizontal velocities. Eqs. 11 are solved using a first order finite difference scheme which is

based on TDAC (Maeda et al., 2015).

6.1 Validation

The experimental set-up consists of a square domain Ω = [0,200 km]× [0,200 km] with 15 observation locations (Fig. 4) and a

uniform grid of 51×51 in the spatial domain. The initial condition in the observations run is a Gaussian shaped wave centred on245

(1 km,1 km). The observation run is integrated forward in time for 1280s with the observations at the gauge locations extracted

and stored. The observation error standard deviation for both the observation run and particles is set to 0.1. The particles are

initialised with a randomly perturbed free surface elevation and velocities (realisations of a Gaussian random field with zero

mean and standard deviation of 0.01). The particle states are integrated for 1280s, with the assimilation of the surface elevation

occurring every dt = 2s. Figure 4 showcases snapshots of the experiment with the locally optimal proposal and 50 particles250

(N = 50). The surface elevation coming from the observations run is plotted on the left while the mean of the particles is on

the right.
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Figure 4. Snapshots of the surface elevation as simulated by the observations run (left) and the mean of the particles (N = 50) (right).

As the tsunami model implemented here is linear and Gaussian one can compare the obtained distributions with a ground

truth Kalman filter. Fig. 5 (left) highlights the RMSE error through time of both the locally optimal and bootstrap proposals with

the same number of particles (N = 50), it can be clearly seen that the locally optimal proposal performs better through time.255

Fig. 5 (right) showcases the error at 200s with increasing number of particles for both proposals. The asymptotic behaviour of

the two approaches again highlights the benefits of the locally optimal over the bootstrap proposal.
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Figure 5. Left: RMSE (50 particles) for both the bootstrap and locally optimal proposal at each time step, tsunami modelling. Right: RMSE

for both the bootstrap and locally optimal proposal at t = 200s for increasing number of particles.

6.2 Parallelisation Performance

As discussed in section 3.3 ParticleDA.jl is capable of leveraging both shared and distributed parallelism. Scaling runs on

ARCHER2, which is the UK’s Tier-1 supercomputer, have been carried out to highlight the performance in practice. A weak260

scaling study, using the same experimental set up as described in section 6.1 is run with the Bootstrap proposal keeping the

number of particles per compute node constant while increasing the number of nodes. The compute nodes on ARCHER2

consist of 2× AMD EPYC 7742, 2.25 GHz, 64-core, with 8 NUMA regions per node (16 cores per NUMA region, 8 cores per

core complex die (CCD) and 4 cores per core complex (CCX) (shared L3 cache)). The weak scaling runs try to optimise for

this hardware architecture with various runs targeting a MPI rank per NUMA/CCD/CCX region and an appropriate number of265

threads per MPI rank (Fig. 6 left subplot). There are 2,048 particles per MPI rank so at the maximum number of ranks tested

here (128) there are 262,144 particles. Based on these findings the set up of 32 ranks per node and 4 threads per rank (targeting

the CCX) scales best for higher number of ranks.

To investigate the scalings further, the right subplot in Fig. 6 highlights the breakdown per function call for the 32 ranks per

node and 4 threads per rank results. The proposals and weights, green line in Fig. 6 (right) accounts for the following steps in270

Algorithm 2: Update particle dynamics, Update Particle Proposals, Get particle observations and Calculate particle weights. As

one would expect from the description of Algorithm 2, the proposals and weights component of the run time scales extremely

well due to particles updating their proposals independently. The main bottleneck becomes the update of the global statistics

over all particles, because this requires a reduction of the mean and optionally the variance at every grid point over all MPI

ranks. We can partially remedy this loss of performance by collecting the global statistics less frequently, but the required275

frequency will depend on the scientific use case of the simulation. The gather of particle weights and resampling of particle

indices is similarly a global communication step that deteriorates the scaling, but they have less impact on total performance

because only one number per particle is communicated. After the indices have been broadcast in Resample, the particle states

are copied via point-to-point communications, which also contributes to the loss in performance.
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Figure 6. Left: Weak scaling parallel efficiency for different set ups of ranks per node and threads per rank. Right: A breakdown of run time

spent in different function calls for the 32 ranks per node and 4 threads per rank set up. The functions shown here correspond to steps of

Algorithm 2, with Proposals and Weights encompassing steps 1-5 of the time loop.

7 Atmospheric General Circulation Model (AGCM)280

An integration of ParticleDA.jl with an atmospheric dynamical model simplified parameterizations primitive equation dynam-

ics (SPEEDY) showcases the efforts involved in coupling the software with pre-existing model implementations. SPEEDY

is an atmospheric general circulation model (AGCM) which was developed by Molteni (2003) and it consists of a spectral

primitive-equation dynamic core along with a set of simplified physical parameterization schemes. The SPEEDY model retains

the core characteristics of the current state-of-the-art AGCMs but requires drastically less (order of magnitude) computational285

resources (Molteni, 2003). This computational efficiency allows one to utilize the model to carry out large ensemble and/or

data assimilation experiments. According to Molteni (2003) the SPEEDY model accurately simulates the general structure

of global atmospheric circulation and exhibits similar systematic errors to the state-of-the-art AGCM, albeit with larger error

amplitudes obtained. The model version (Hatfield, 2018) used here is written in Fortran and provides an interesting example

of the integration steps required to interface with ParticleDA.jl, the coupling between the two relies on SPEEDY being set up290

to output its data fields at set intervals.

As stated SPEEDY is a simplified AGCM model. The prognostic variables consist of the zonal and meridional wind velocity

components (u,v), temperature (T ), specific humidity (q) and surface pressure (p). A T30 resolution of the model is used here

which corresponds to a grid size of 96×48×8. The vertical layers are defined by sigma levels, where the pressure is normalized

by the surface pressure (p/ps).295

The atmospheric modelling undertaken here can be considered within the same framework as defined in Eq. 2 and Eq. 3 but

with the dynamical operator/forward model (Ft) now defined to be the SPEEDY model. The SPEEDY model is set up to output

its state vectors at 6 hour intervals. This I/O allows for the two codes to be coupled together. As the dynamics are simulated

on the globe a bespoke covariance function dependent on the geodesic distance is used to generated the model and observation

errors. The authors recognise that this approach has certain limitations but nevertheless for the purpose of showcasing the300

integration with ParticleDA.jl is sufficient.
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Figure 7. Snapshot of the mean assimilated surface pressure (left) and the corresponding percentage error when compared to the nature run

(right) (n = 256). The 50 observation locations are highlighted by the black stars.

7.1 Results

The data assimilation experiments carried out here were introduced by Miyoshi (2005). An observation (nature) run is generated

after an initial one year spin-up. The nature run is launched on the date of January 1, 1981 with the atmosphere at rest (u = v =

0). The data assimilation experiments start on January 1, 1982.305

Differing to the experimental set-up introduced by Miyoshi (2005), only the surface pressure (ps) at 50 observation locations

(see Fig. 7) is assimilated. The observational data is obtained by adding random noise to the nature run at the observation

locations. The observational errors are generated from independent Gaussian numbers and the observational error standard

deviations is fixed to 10 hPa.The particles (n = 256) are initialised from randomly selected dates within the month of December

from a long-term (10-year) nature run. The standard deviation of the model and observation errors are set to 1 and 10 hPa310

respectively. In Fig. 7 (left) a snapshot of the mean assimilated surface pressure is shown. The mean surface pressure is

compared to the nature run and a percentage error is plotted in Fig. 7 (right). It can be seen that the areas of greatest percentage

error coincide with areas that lack observation stations.

As stated in the introduction, one of the key benefits of particle filters is to provide the promise of non-linear and non-

Gaussian DA. To highlight this sample distributions of the surface pressure at various observation locations at different time315

points are shown in Fig. 8. The distributions across the n = 256 particles exhibit heavy tails towards the true surface pressure

at the given locations.

8 Conclusions

Our particle filter software in Julia shows versatility by being able to interact with any model structure with an inherent ability

to represent and sample nonlinearities and thus non-Gaussianity. By being written in Julia it allows users to understand and320
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Figure 8. Normalised histograms of the surface pressure at various observation locations and at different points in time (n = 256). The true

surface pressures are highlighted by the vertical red line and the mean surface pressure of the particles are highlighted by the black vertical

line. The green line represents a fitted Gaussian distribution.
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manipulate the code more easily than traditional packages in C++ or Fortran at similar speeds. The package offers both shared

and distributed parallelism which are necessary when large ensembles are needed to combat particle degeneracy in some cases.

The various test case models shown here validate the implementation and highlight the strengths of ParticleDA. Errors

remain small and the method is as computationally efficient as EnKF, but with the ability to tackle nonlinear processes better,

thereby allowing much more accurate DA, especially.325

Challenges remain to deploy this framework at scale in terms of model dimensions and speed, say towards exascale. In

particular, the scalability of the method when the state space becomes large. Opportunities exists in terms of smart and efficient

approaches to design and enrich the ensemble in these situations where state space dimension may create a difficult degeneracy

issue.

Overall, the aim of our platform is to enable easily accessible and accurate, fast DA for a wide range of users. We hope that330

various scientific communities will adopt ParticleDA, possibly leading to fast step-changes in some geoscientific investigations

and beyond.
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