
ParticleDA.jl v.1.0: A distributed particle filtering data assimilation
package
Daniel Giles1,2,*, Matthew M. Graham2,*, Mosè Giordano2, Tuomas Koskela2, Alexandros Beskos1,3, and
Serge Guillas1,2,3

1Department of Statistical Sciences, University College London, London, UK
2Centre of Advanced Research Computing (ARC), University College London, London, UK
3The Alan Turing Institute, London, UK
*These authors contributed equally to this work.

Correspondence: Daniel Giles (d.giles@ucl.ac.uk)

Abstract. Digital twins of physical and human systems informed by real-time data, are becoming ubiquitous across weather

forecasting, disaster preparedness, and urban planning, but researchers lack the tools to run these models effectively and effi-

ciently, limiting progress. One of the current challenges is to assimilate observations in highly non-linear dynamical systems,

as the practical need is often to detect abrupt changes. We have developed a software platform to improve the use of real-time

data in non-linear system representations where non-Gaussianity limits the applicability of data assimilation algorithms such as5

the ensemble Kalman filter and variational methods. Particle filter based data assimilation algorithms have been implemented

within a user-friendly open source software platform in Julia – ParticleDA.jl. To ensure the applicability of the developed plat-

form in realistic scenarios, emphasis has been placed on numerical efficiency and scalability on high performance computing

systems. Furthermore, the platform has been developed to be forward model agnostic, ensuring that it is applicable to a wide

range of modelling settings, for instance unstructured and non-uniform meshes in the spatial domain or even state spaces that10

are not spatially organized. Applications to tsunami and numerical weather prediction demonstrate the computational benefits

and ease of using the high-level Julia interface to the package to perform filtering in a variety of complex models.

1 Introduction

Data assimilation (DA) focuses on optimally combining observations with a dynamical model of a physical system to estimate

how the system state evolves over time. The field of research has its origins within the numerical weather prediction (NWP)15

community, where DA techniques are applied iteratively to update current best estimates of the state of the atmosphere. Re-

cently the methods and practices developed have been employed in diverse areas of geosciences, with Carrassi et al. (2018);

Vetra-Carvalho et al. (2018) providing recent overviews. Further DA has seen a huge expansion into other scientific disciplines

with applications in, for example, robotics (Berquin and Zell, 2022), economic modelling (Nadler et al., 2019) and plasma

physics (Sanpei et al., 2021). In the era of digital twinning, which involves combining high-fidelity representations of reality20

with the optimal use of observations, real-time data has become vital and DA frameworks have naturally been incorporated.

1

The area of data learning has also emerged where DA approaches are integrated with machine learning techniques (Buizza

et al., 2022).

There are various popular DA techniques, with variational methods (3DVar and 4DVar) (Thépart et al., 1993) and ensemble

Kalman filters (EnKFs) (Evensen, 1994; Burgers et al., 1998) being extensively used in operational and research settings.25

Bannister (2017) provides a good overview of operational methods. However, these methods have difficulties with handling

non-linear problems and with representing uncertainties accurately (Lei et al., 2010; Bocquet et al., 2010). For instance Miyoshi

(2005); Kondo and Miyoshi (2019) updated an ensemble of 10240 particles using the EnKF to demonstrate the bimodality of

some distributions due to inherent nonlinearities. Furthermore, the continuing growth in compute hardware performance has

allowed running increasingly complex and high resolution models which are able to resolve non-linear processes happening at30

a fine spatial scale (Vetra-Carvalho et al., 2018), creating an increasing demand for DA methods which are able to accurately

quantify uncertainty in such settings. Particle filters (PFs) (Gordon et al., 1993) are an alternative approach which offer the

promise of consistent DA for problems with non-linear dynamics and non-Gaussian noise distributions. Traditionally the main

difficulty with particle filtering techniques has been the ‘curse of dimensionality’ (Bengtsson et al., 2008; Bickel et al., 2008;

Snyder, 2011), where in high dimensional settings filtering leads to degeneracy of the importance weights associated with each35

particle and loss of diversity within an ensemble unless the ensemble size scales exponentially with the observation dimension.

To improve the applicability of PFs there have been many recent developments involving: localization techniques (e.g., the

reviews in Farchi and Bocquet (2018); Graham and Thiery (2019)), incorporation of tempering/mutation steps (e.g., Cotter

et al. (2020); Ruzayqat et al. (2022)), hybrid approaches, improved computational implementations and combination of the

above with improved proposal distributions. The above ongoing efforts have extended the applicability of PF methods within40

geoscientific domains. Leeuwen et al. (2019) provides an overview on the integration of particle filters in high-dimensional

geoscience applications.

The DA paradigm of optimally combining observations and model has a wide range of applications. However, an existing

hurdle impeding the incorporation of data into pre-existing dynamical models is the lack of readily available software packages

capable of bridging the two sources of information: model and observations. This is the motivation behind ParticleDA.jl, to45

provide a generic and user-friendly framework to enable the incorporation of particle filtering techniques with pre-existing nu-

merical models. ParticleDA.jl is an open-source package in Julia which provides efficient implementations of several particle

filter algorithms, and also importantly offers an extensible framework to allow the simple addition of new filter implementa-

tions. It has been developed to be agnostic to the forward model to ensure applicability in a wide range of settings and emphasis

has been placed on computational efficiency and scalability on high-performance computing systems. Initial efforts have been50

focused on the integration with spatially dependent numerical models, however the implementation is applicable to a much

more general class of state space models (see Sect. 2) allowing incorporation in a broad range of applications.

For a specific class of state space models with additive Gaussian state and observation noise, and linear observation oper-

ators, ParticleDA.jl allows particle filtering with the so-called ‘locally optimal’ proposal distribution. Though the latter is not

amongst the latest contributions in the PF literature (e.g., Doucet et al. (2000)), it has not been extensively explored in the55

high-dimensional partial differential equation (PDE) driven systems which we use as case studies in this work. As noted in

2

Package name Algorithms Parallelism

DataAssim.jl (Barth et al., 2016) EnKF, 4DVar

EnKF.jl (Le Provost, 2016) EnKF

Kalman.jl (Schauer et al., 2018) KF

KalmanFilters.jl (Schoenbrod, 2018) KF

LowLevelParticleFilters.jl (Carlson et al., 2018) PF, KF Shared memory

ParticleFilters.jl (Sunberg et al., 2017) PF

SequentialMonteCarlo.jl (Lee and Piibeleht, 2017) PF (SMC) Shared memory

ParticleDA.jl PF, KF Shared and distributed memory
Table 1. Summary of algorithms implemented and parallelism support in existing Julia data assimilation packages.

Snyder (2011), improved proposals used within PFs can in practice significantly improve the performance of the algorithm, but

by themselves do not overcome the curse of dimensionality. Our numerical experiments illustrate that ParticleDA.jl can already

be usefully applied in practice to models with moderately high dimensions, however, an important line of future work will be

extending the framework with additional filter implementation incorporating approaches such as localization and tempering to60

allow scaling to very high-dimensional settings.

Within the Julia ecosystem, there are several existing packages which implement data assimilation algorithms. DataAssim.jl

(Barth et al., 2016) provides implementations of a range of EnKF and extended Kalman filter (KF) methods and an incremental

variant of 4DVar. EnKF.jl (Le Provost, 2016) implements stochastic and deterministic (square-root) variants of the EnKF which

can be combined with various approaches (e.g. covariance inflation) to avoid ensemble collapse in models with deterministic65

dynamics. Kalman.jl (Schauer et al., 2018) and KalmanFilters.jl (Schoenbrod, 2018) both provide implementations of the exact

KF algorithm for linear Gaussian models, with KalmanFilters.jl additionally implementing unscented variants of the KF for

use in models with non-linear dynamics or observation operators. ParticleFilters.jl (Sunberg et al., 2017) and LowLevelPar-

ticleFilters.jl (Carlson et al., 2018) both provide PF implementations, with LowLevelParticleFilters.jl additionally providing

KF implementations. SequentialMonteCarlo.jl (Lee and Piibeleht, 2017) provides an interface for implementing (and example70

implementations of) the wider class of sequential Monte Carlo (SMC) methods, of which PFs can be considered a special case,

with the ability to run particle ensembles in parallel on multiple threads. EnsembleKalmanProcesses.jl (Dunbar et al., 2022)

implements several derivative-free optimization algorithms based on the EnKF mainly targeted at Bayesian inverse problem

settings. Another package to note in the Julia ecosystem is DataAssimilationBenchmarks.jl (Grudzien and Bocquet, 2022;

Grudzien et al., 2022) which offers a framework to empirically validate and develop novel DA techniques.75

Table 1 summarizes the algorithm and parallelism support of existing Julia data assimilation packages along with our package

ParticleDA.jl. The existing packages, LowLevelParticleFilters.jl and SequentialMonteCarlo.jl, which support parallelization

of operations across ensemble members both use shared-memory parallelism, with tasks run simultaenously across multiple

threads on the same device. In contrast, as described in Sect. 3.3, our package ParticleDA.jl supports both shared and distributed

memory parallelism which enables efficient deployment on high performance computing (HPC) systems.80

3

We implemented ParticleDA.jl in the Julia programming language (Bezanson et al., 2017) because of its combination of

performance and productivity, which enables rapid prototyping and development of high-performance numerical applica-

tions (Churavy et al., 2022; Giordano et al., 2022), with the possibility of using both shared and distributed memory parallelism

strategies. In particular, Julia makes use of the multiple-dispatch programming paradigm, which is particularly well-suited for

designing a program which combines different models with different filtering algorithms, keeping the two concerns separated.85

This allows domain experts and software engineers to collaborate on the code using the same high-level language.

The rest of this manuscript is organized as follows. The mathematical set-up of the particle filtering algorithm is defined

in Sect. 2 along with the various filtering proposal distributions implemented. Section 3 outlines the code structure and par-

allelization schemes. Sections 4 and 5 illustrate applications of the framework to simple low-dimensional state space models,

namely a stochastically driven damped simple harmonic oscillator model and a stochastic variant of the Lorenz ’63 chaotic90

attractor model (Lorenz, 1963). Section 6 introduces an application to a spatially extended state space model, specifically a

tsunami modelling test case formulated as a linear Gaussian state space model, with validation of the filtering approaches and

parallel performance scaling results. In Sect. 7 the incorporation with a more complex non-linear atmospheric dynamical model

is investigated along with some results. Finally in Sect. 8 concluding remarks and future work are outlined.

2 Particle filtering95

Let xt ∈ Rdx represent the state of the model at an integer time index t and yt ∈ Rdy the vector of observations of the system

at this time index. We assume a state space model formulation, with the states following a Markov process and the observations

depending only on the state at the corresponding time index, that is

x0 ∼ p0(·); xt ∼ pt(· | xt−1), yt ∼ gt(· | xt), t≥ 1; (1)

where p0 : Rdx → R≥0 is the density of the initial state distribution, pt : Rdx ×Rdx → R≥0, t≥ 1 are the densities of the state100

transition distributions and gt : Rdy ×Rdx → R≥0, t≥ 1 are the densities of the conditional distribution of the observations

given the current states.

A key assumption of the state space model formulation is that the state of the system evolves stochastically in time. In

geophysical applications, commonly the models of interest are specified as the solution to time-dependent PDEs or systems

of ordinary differential equations (ODEs), for which the state dynamics are inherently deterministic. Without a stochastic105

element to the dynamics the evolution of the state over time is entirely determined by the initial state. To perform particle

filtering in such models we must therefore augment the deterministic dynamics of the model with stochastic updates. These

stochastic updates can be considered as random forcings of the model representing physical processes not modelled in the

deterministic model as well as the discretization errors introduced when simulating ODE and PDE models (Leeuwen et al.,

2019). Importantly the stochastic updates should maintain any constraints or relationships between the state variables in the110

underlying physical phenomena being modelled – for example for state vectors corresponding to spatial discretizations of a

continuous field, the stochastic updates should maintain any assumed smoothness properties of the field.

4

For the most part, we will concentrate on a specialization of this general state space model class, whereby the state and

observations are both subject to additive Gaussian noise and the observations depend linearly on the state, which covers a wide

range of modelling scenarios in practice. Concretely we consider a state update of the form115

xt = Ft(xt−1)+ut, ut ∼N (0,Q), t≥ 1, (2)

where Ft : Rdx → Rdx is the forward operator at time index t, representing the deterministic dynamics of the system and

ut ∈ Rdx is the additive Gaussian state noise at time index t, representing stochastic aspects of the system dynamics. The

observations are modelled as being generated according to

yt =H(xt)+vt, vt ∼N (0,R), t≥ 1, (3)120

where H ∈Rdy×dx is a linear observation operator and vt ∈ Rdy is the additive Gaussian observation noise. The distributions

of the state and observation noise are parameterized by positive-definite covariance matrices Q ∈ Rdx×dx and R ∈ Rdy×dy

respectively.

The objective of the particle filter is to estimate the filtering distribution for each time index t which is the conditional prob-

ability distribution of the state xt given observations y1, ...,yt up to time index t, with the density of the filtering distribution125

at time index t denoted πt(xt|y1:t).

The particle filtering algorithm builds on sequential importance sampling by introducing additional resampling steps. See

Doucet et al. (2000) for an in-depth introduction but the key features are introduced in Algorithm 1. An ensemble of particles

{x(i)
t }Ni=1 represents an approximation to the filtering distribution at each time index t≥ 1 as πt(dxt|y1:t)≈ 1

N

∑N
i=1 δx(i)

t
(dxt).

In each filtering step, new values for the particles are sampled from a proposal distribution (more details about the proposals130

implemented in ParticleDA.jl are given in Sect. 2.1) and importance weights computed for each proposed particle value. At the

end of the filtering step, the weighted proposed particle ensemble is resampled to produce a new uniformly weighted ensemble

to use as the input to the next filtering step.

2.1 Proposal distributions

Two forms of proposal distributions are implemented in ParticleDA.jl: the ‘naive’ bootstrap proposal, applicable to general state135

space models described by Eq. (1), and the ‘locally optimal’ proposal, which can be tractably computed only for a restricted

class of state space models, including importantly those described by Eqs. (2) and (3).

The bootstrap proposal ignores the observations with the particle proposals sampled from the state transition distributions,

qt(xt |xt−1,yt) = pt(xt |xt−1), (4)

with the unnormalized importance weights at time index t≥ 1 then simplifying to140

Wt(xt,xt−1,yt) = gt(yt |xt) (=Wt(xt,yt)). (5)

While appealingly simple and applicable to a wide class of models, the bootstrap particle filter performs poorly when observa-

tions are informative about the state due to the observations being ignored in the proposal. In such cases the proposed particles

5

Algorithm 1 Particle filter

1: Initialize particles {x(i)
0 }Ni=1, with x

(i)
0 ∼ p0(·), for 1≤ i≤N .

2: for time index t= 1 to T do

3: for particle index i= 1 to N do

4: Sample proposed particle x̃
(i)
t ∼ qt(· |x(i)

t−1,yt).

5: Compute (unnormalized) importance weight w(i)
t =Wt(x̃

(i)
t ,x

(i)
t−1,yt) =

pt(x̃
(i)
t |x(i)

t−1)gt(yt | x̃
(i)
t)

qt(x̃
(i)
t |x(i)

t−1,yt)
.

6: end for

7: Generate new (equally weighted) particles {x(i)
t }Ni=1 by resampling from the weighted empirical distribution

x
(i)
t ∼

∑N
i=1w

(i)
t δ

x̃
(i)
t

(·)∑N
i=1w

(i)
t

8: end for

will typically be far away from the mass of the true filtering distribution, with the importance weights in this setting tending to

have high variance leading to weight degeneracy whereby all the normalized importance weights but one are close to zero.145

To alleviate the tendency to weight degeneracy we can use alternative proposal distributions which decrease the variance

of the importance weights. For proposals distributions qt(xt |xt−1,yt) which condition only on the previous state xt−1 and

current observation yt, the optimal proposal, in the sense of minimising the variance of the importance weights, can be shown

(Doucet et al., 2000) to be

qt(xt |xt−1,yt) =
pt(xt|xt−1)gt(yt |xt)∫
pt(x̃t|xt−1)gt(yt | x̃t)dx̃t

, (6)150

with corresponding unnormalized importance weights

Wt(xt,xt−1,yt) =

∫
pt(x̃t|xt−1)gt(yt | x̃t)dx̃t (=Wt(xt−1,yt)). (7)

Note that in this case the importance weights are independent of the sampled values of the particle proposals.

For general state space models, sampling from this locally optimal proposal and computing the importance weights can be

infeasible due to the integral in Eq. (6) and Eq. (7) not having a closed form solution. However, for the specific case of a state155

space model of the form described by Eqs. (2) and (3), the proposal distribution has the tractable form

qt(xt |xt−1,yt) =N
(
xt |Ft(xt−1)+QHT(HQHT +R)−1(yt −HFt(xt−1)),Q−QHT(HQHT +R)−1HQ

)
, (8)

with corresponding importance weights

Wt(xt,xt−1,yt) =N
(
yt |HFt(xt−1),HQHT +R

)
. (9)

To generate samples from the locally optimal proposal distribution, we exploit that for x̃t ∼N (Ft(xt−1),Q) and ỹt ∼160

N (Hx̃t,R) – that is (x̃t, ỹt) sampled from the joint distribution on the state and observation given the previous state xt−1

6

under the state space model – then

xt = x̃t +QHT(HQHT +R)−1(yt − ỹt), (10)

is distributed according to the locally optimal proposal distribution in Eq. (8). Importantly this means that to use the locally

optimal proposal distribution when filtering we only need to implement functions for sampling from the state transition and165

observation models, and functions for evaluating the matrix terms in Eq. (10) – that is QHT and HQHT+R. Note that unlike

a direct implementation of sampling from Eq. (8) by performing a Cholesky factorization of the proposal covariance matrix,

we do not need to explicitly evaluate or store a dx × dx covariance matrix, and only need to perform a O(d3y) linear solver

and O(dxdy) matrix-vector multiplication rather than a O(d3x) Cholesky decomposition. As well as reducing the time and

memory complexity of the linear algebra operations, this approach reduces the implementation burden on a user wishing to170

apply the locally optimal proposal, by reusing functions required for simulating the forward model, and ensures any algorithmic

efficiencies used in the implementation of simulating the forward model are also leveraged in sampling from the locally optimal

proposal distribution.

In both the bootstrap and locally optimal proposal, the stochastic nature of the state transitions are essential to maintaining

diversity in to the ensemble, ensuring any particles duplicated in the previous resampling step give rise to distinct proposals.175

For state space models with state update and observation model described by Eqs. (2) and (3) specifically, we can see that the

bootstrap and locally optimal proposals converge to the same degenerate distribution δFt(xt−1) as the state noise vanishes, that

is Q→ 0. This emphasises the importance of using stochastic state dynamics for the PF algorithms used here to remain valid.

2.2 Resampling

A vital aspect of all PF algorithms is the resampling step shown in Algorithm 1. Resampling multiplies particles found at good180

positions in space that agree with observations and removes unwanted particles, concentrating computational effort on the

more plausible ensemble members. It is key for establishing analytical results showing that Monte-Carlo errors in estimates of

expectations under the filtering distribution are controlled uniformly in time, see, e.g., the standard reference Del Moral (2004).

Such a result provides a critical justification for the powerful performance of PF-based algorithms in many applications.

ParticleDA.jl implements a systematic resampling scheme (Douc and Cappé, 2005), which uses a single uniform random185

variate to resample all the particle indices.

A useful metric for capturing the variability of the weights before resampling, and indicating whether weight degeneracy

has occurred, is the estimated effective sample size (ESS), which is defined as

ESSt =

{∑N
i=1w

(i)
t

}2∑N
i=1{w

(i)
t }2

. (11)

where {w(i)
t }Ni=1 are the unnormalized particle importance weights. The estimated ESS approximates the number of indepen-190

dent samples that would produce estimates of similar variance as the ones obtained by the available (correlated) particles.

7

Algorithm 2 Structure of ParticleDA.jl run_particle_filter function

1: Initialize model

2: Initialize states (∥)

3: Initialize filter

4: Initialize summary statistics (∥)

5: for time index t= 1 to T do

6: Sample proposal and compute (unnormalized) particle weights for current observation yt (∥)

7: Gather particle weights (↔)

8: Normalize particle weights (◦)

9: Resample particle indices according to weights (◦)

10: Broadcast new particle indices (↔)

11: Copy particle states according to new indices (↔)

12: Update summary statistics (↔,∥)

13: Write outputs (◦)

14: end for

3 Code structure

As previously stated, ParticleDA.jl is designed to be forward model agnostic (i.e. capable of running with arbitrary state space

models). To enable this the model and filter portions of ParticleDA.jl are carefully delineated. The high-level structure of the

main run_particle_filter function used to perform filtering with a state space model given a sequence of observations195

y1, . . . ,yT is summarized in Algorithm 2, where T is the total number of observation times. Operations which use thread-based

parallelism are labelled with (∥). When run across multiple processes, operations involving communication across ranks are

labelled with (↔) and those which only run on the coordinating rank are labelled with (◦). Further details on the filter and

model interface and parallelization implementation are given in the following sections.

3.1 Filter interface200

Implementing a filtering algorithm in ParticleDA.jl requires providing implementations of two functions, init_filter

and sample_proposal_and_compute_log_weights!, with the corresponding methods dispatched on a filter type

argument which is a concrete subtype of the ParticleFilter abstract type. Implementations are currently provided for

particle filters with bootstrap proposals (with corresponding type BootstrapFilter) and locally optimal proposals (with

corresponding type OptimalFilter).205

The init_filter method deals with initializing any filter specific data structures, including allocating arrays to hold

the particle weights, resampling indices and ensemble summary statistics. A set of shared filter parameters are passed to the

init_filter method as an instance of a dedicated FilterParameters type, with functionality provided for reading

these parameters from a YAML file. Key parameters include the number of particles in the ensemble, number of tasks used

8

Function name Description

get_state_dimension Get value of dx

get_observation_dimension Get value of dy

sample_initial_state! Sample x0 ∼ p0(·)

sample_observation_given_state! Sample yt ∼ gt(· | xt)

get_log_density_observation_given_state Get value of loggt(yt | xt)

update_state_deterministic!
}

Sample xt ∼ pt(· | xt−1)
update_state_stochastic!

get_observation_mean_given_state! Get value of Hxt ⋆

get_covariance_state_noise Get value of Qi,j ⋆

get_covariance_observation_noise Get value of Ri,j ⋆

get_covariance_state_observation_given_previous_state Get value of (HQ)i,j ⋆

get_covariance_observation_observation_given_previous_state Get value of (HQHT +R)i,j ⋆

Table 2. Summary of main functions defining model interface. Functions in rows marked ⋆ only required when using locally optimal proposal.

when scheduling parallelizable operations in multi-threaded code segments (see Sect. 3.3), the seed for the pseudo random210

number generator used to generate random variates during filtering and the file path to write filtering outputs to, as well as

options for controlling the verbosity of the filter output.

The sample_proposal_and_compute_log_weights! method provides an implementation of generating new val-

ues for an ensemble of particles from the proposal distribution associated with the filter type and computing the corresponding

unnormalized particle weights (in particular their logarithms to maintain numerical stability), corresponding to respectively215

lines 4 and 5 in Algorithm 1. As hinted by the presence of an ! suffix in the function name, a convention in Julia for indi-

cating functions which mutates one or more of its arguments, the sample_proposal_and_compute_log_weights!

function computes the updates to the arrays representing the particle states and weights in place. The proposal generation and

weight computation stages are combined into a single rather than two separate functions, to allow the filter implementation to

avoid redundant computations of quantities required in both sampling the proposals and computing the weights. For example,220

both the locally optimal proposal distribution in Eq. (8) and corresponding weights in Eq. (9) require the values of the particles

after the deterministic update Ft but before addition of the state noise.

3.2 Model interface

To support filtering in general state space models while still allowing filters to exploit additional structure in the model when

present, we define an extensible model interface, with a core set of functions requiring implementation for all state space225

models, with model classes with additional structure able to extend this core interface. In particular we exploit this approach

for conditionally Gaussian state space models having a state update and observation models of the form described by Eq. (2)

and Eq. (3) respectively, to allow filtering using the locally optimal proposal distribution in Eq. (8). Table 2 summarizes the key

9

functions requiring implementation both within the core interface for general state space models, and for the restricted class of

models for which the locally optimal proposal can be applied, along with a brief description of what operations they perform230

in the notation of Sect. 2.

A key pair of functions in Table 2 are update_state_deterministic! and update_state_stochastic!,

which for general state space models when applied in sequence correspond to sampling from the state transition distribution

xt ∼ pt(· | xt−1), while for models with state updates of the specific form in Eq. (2), correspond respectively to updating the

state by applying the deterministic forward operator Ft and incrementing by a state noise vector ut ∼N (0,Q). While the235

state transitions for general state space models may not factor into a composition of deterministic and stochastic updates, full

generality is still maintained as update_state_deterministic! can leave the state vector unchanged (corresponding

to an identity operation) with update_state_stochastic! then solely responsible for sampling from the state transition

distribution.

The functions get_covariance_state_observation_given_previous_state and240

get_covariance_observation_observation_given_previous_state are required for computing the lo-

cally optimal proposal update in Eq. (10). In both cases the models’ implementations of these functions are required to evaluate

a scalar covariance value for a pair of integer state or observation indices in 1:dx and 1:dy respectively. Providing the state

noise covariance Qij can be evaluated in O(1) (with respect to dx and dy) operations for pairs of state indices i, j ∈ 1:dx,

which will typically be the case if the state noise corresponds to the discretisation of a Gaussian random field with an explicit245

covariance function, and the observation operator H is sparse (for example each observation depends on the state at only one

or a few indices), then both functions can be evaluated in O(1) cost. The dy×dx and dy×dy matrices HQ and HQHT+R are

then evaluated by calling the functions for grids of state and observation indices, with O(dydx) and O(d2y) costs respectively,

without requiring explicit construction of the dx × dx matrix Q, which is particularly important when dx is large.

As a further optimization, models can implement a get_state_indices_correlated_to_observations func-250

tion which returns a subset of the state indices 1:dx which excludes indices for which the corresponding state variable is

uncorrelated to all observation variables (that is i ∈ 1:dx such that (HQ)ij = 0 for all j ∈ 1:dy). For example, if the state cor-

responds to the discretisation of a set of spatial fields with the observations corresponding to only one of these fields, then only

the state indices corresponding to the observed field would need to be returned. This is then used to avoid needing to compute

the known zero covariance terms.255

The functions get_covariance_observation_noise and get_covariance_state_noise are not required

directly for the locally optimal proposal update. However, typically they will be used in the definitions of other model methods

and models are required to provide implementations to allow testing the model methods for internal consistency, and to support

a Kalman filter implementation for linear-Gaussian models.

As well as providing implementation of the function in Table 2, models are required to implement an initialization function260

which is passed to the top-level run_particle_filter function and used to initialize an instance of the model data

structure type the model interface functions are dispatched on. This initialization function is passed a dictionary of model

specific parameter values read from a YAML file, and the number of tasks that may be simultaneously scheduled when running

10

Rank 0

Task 0

Particle 0 Particle 1

Task 1

Particle 2 Particle 3

Task 2

Particle 4 Particle 5

Task 3

Particle 6 Particle 7

Rank 1

Task 0

Particle 8 Particle 9

Task 1

Particle 10 Particle 11

Task 2

Particle 12 Particle 13

Task 3

Particle 14 Particle 15

Rank 2

Task 0

Particle 16 Particle 17

Task 1

Particle 18 Particle 19

Task 2

Particle 20 Particle 21

Task 3

Particle 22 Particle 23

Figure 1. Visualization of the hierarchical parallelization model in ParticleDA.jl for an example case where updates to 24 particles are

distributed across 3 MPI ranks. Each rank splits the particles across 4 tasks, with these tasks scheduled to run in parallel across 2 or more

threads on each rank.

model functions in parallel (see Sect. 3.3), allowing the assignment of per-task buffers for use in computing intermediate results

while remaining thread-safe.265

3.3 Parallelization scheme

As stated both shared and distributed memory parallelization approaches can be leveraged within ParticleDA.jl, to exploit both

multiple processing elements sharing memory on a single node (for example central processing unit (CPU) cores) and multiple

nodes (potentially each with multiple processing elements) in a cluster. Particle and weight updates are parallelized across

multiple threads on shared memory systems using the native task-based multi-threading support in Julia. In distributed memory270

environments ParticleDA.jl allows parallelizing across processes (ranks) with communication between processes performed

using the Julia package MPI.jl (Byrne et al., 2021), which acts as a wrapper around a message passing interface (MPI)

implementation installed on the system. MPI.jl has been found to be able to achieve little to no overhead in applications with

thousands of MPI ranks (Giordano et al., 2022). ParticleDA.jl uses HDF5 files for file based input (of the observed data used

for filtering) and output (of statistics computed during filtering), using the HDF5.jl Julia package; when running in distributed275

setting file input-output is performed only on a single coordinating rank.

11

Rank 1:R-1

Rank 0

Sample proposals &
compute weights

Gather
weights

Broadcast
indices

Copy
states

Update
statistics

Sample proposals &
compute weights

Gather
weights

Normalize
weights

Resample
indices

Broadcast
indices

Copy
states

Update
statistics

Write
outputs

Figure 2. An overview of how the key stages in the filtering loop are distributed across R ranks in ParticleDA.jl. Rank 0 is the coordinating

rank which mediates communication across ranks and performs file input and output. Shaded nodes indicate stages which are run in parallel

across multiple threads on each rank. Edges between nodes indicate stages which involve communication across ranks.

An illustration of how per-particle operations are distributed in the two-level parallelization scheme is illustrated in Fig. 1.

Each MPI rank is assigned an equal proportion of the total number of particles in the ensemble. Within each MPI rank,

operations which can be parallelized across particles are scheduled across multiple tasks each associated with a subset of the

particles assigned to the rank. The tasks are run simultaneously across multiple threads, with the flexibility in number of tasks280

per rank allowing a trade off between improved load balancing across processing elements on a rank by having multiple tasks

scheduled per parallel thread, and the increased overhead involved in scheduling more tasks.

A sketch of the key operations in the main filtering loop and how they are distributed across multiple ranks is shown in Fig. 2.

A key principle is to reduce as much as possible the requirement to communicate the full particle state vectors between ranks.

Particles remain local to specific ranks for all operations other than when copying states as part of the resampling step, with this285

step potentially requiring particles with large weight which are duplicated after resampling to be copied point-to-point to other

ranks. Communication between ranks is also required when gathering the unnormalized particle weights to the coordinating

rank to allow normalization and when broadcasting the resampled particle indices from the coordinating rank to other ranks,

however these operations only require communicating a single scalar per particle.

Communication between ranks is also required when computing any summary statistics of the estimated filtering distri-290

butions at each time index. ParticleDA.jl currently supports estimating the mean and, optionally, the variance of the filtering

distributions for each state dimension, with a summary statistic type argument to the top-level run_particle_filter

function allowing specification of which summary statistics to compute. Sufficient statistics of the local particles for the rele-

vant summary statistics are computed on each rank, before these local sufficient statistics are accumulated on the coordinating

rank using an MPI reduce operation and used to compute the statistics of interest. For CPU architectures for which MPI.jl295

supports using custom reductions1, a more numerically stable ‘pooled’ algorithm (Chan et al., 1982) is used for computing the

mean and variance (adapting the example code given in Byrne et al. (2021)); implementations of the less numerically stable

1https://github.com/JuliaParallel/MPI.jl/issues/404.

12

https://github.com/JuliaParallel/MPI.jl/issues/404

Figure 3. RMSE in particle filter estimates of filtering distribution means and (log) variances against number of particles for the damped

simple harmonic oscillator model. The RMSE values are calculated against ground truth values computed using a Kalman filter and are

computed for the mean of the squared errors across all state components and time steps.

‘naive’ algorithms which directly accumulates the sum and sum of squares, which can be performed using standard MPI sum

reductions, are also provided as a fallback for running on other CPU architectures.

4 Stochastically driven damped simple harmonic oscillator300

As a tractable first test case we consider a two-dimensional state space model corresponding to the time discretization of a

stochastic differential equation

dx(τ) =

 0 1

−ω2
0 −ω0/Q

x(τ)dτ +

0

1

dW (τ),

representing a damped simple harmonic oscillator driven by a Wiener noise process W (τ), with τ the (continuous) time

coordinate, ω0 the frequency of the undamped oscillator and Q a quality factor for the oscillator. This process has been

proposed as a model for astronomical time series data (Foreman-Mackey et al., 2017), with details of its formulation as a state

space model given in Jordán et al. (2021). Importantly, the state space model is linear-Gaussian so we can use a Kalman filter

to exactly compute the true Gaussian filtering distributions.305

We use an instance of the model with parameters ω0 = 1 and Q= 2. We assume an observation model yt ∼N (xt,0.5
2I),

with xt = x(0.2t) (that is a fixed time step 0.2 between observation times), and simulate observations from the model for T =

200 time steps with initial state distribution x0 ∼N (0, I). Fig. 3 shows the root mean squared errors (RMSEs) in particle filter

estimates of the means and log-variances of the Gaussian filtering distributions (compared to ground truth values computed

13

using a Kalman filter), as a function of the number of particles used in the ensemble, for filters using both the bootstrap and310

locally optimal proposal. We see that the locally optimal proposal gives a small but consistent improvement in RMSE for a

given ensemble size, reflecting the lower variance in the empirical estimates to the filtering distributions. As expected the errors

in the filter estimates appear to be asymptotically tending to zero at a polynomial rate in the ensemble size, providing some

assurance of the correctness of the ParticleDA.jl filter implementations.

5 Lorenz system315

The Lorenz 63 system was introduced by Lorenz (1963) and is a non-linear dynamical model capturing simplified representa-

tion of thermal convection. The model is defined by the ODE system

dx1(τ)

dτ
= σ(x2(τ)−x1(τ)),

dx2(τ)

dτ
= ρx1(τ)−x2(τ)−x1(τ)x3(τ),

dx3(τ)

dτ
= x1(τ)x2(τ)−βx3(τ), (12)

where τ is the time coordinate, x1(τ),x2(τ) and x3(τ) are the prognostic variables of the model and σ, ρ and β are free

parameters. As outlined by Lorenz (1963) we have set the free parameters to σ = 10, ρ= 28 and β = 8
3 as this set up will lead320

to chaotic behaviour. To formulate as a state space model with state transitions of the form described by Eq. (2), we set Ft to

the flow map corresponding to numerically solving the initial value problem for the ODE system in Eq. (12) over a fixed inter-

observation time interval of 0.1 time units such that xt = (x1(0.1t),x2(0.1t),x3(0.1t)) and use additive isotropic state noise

with covariance Q= 0.52I . The Tsit5 solver with adaptive time-stepping from the Julia package DifferentialEquations.jl

(Rackauckas and Nie, 2017) is used to solve the ODE system. The initial state distribution is taken to be x0 ∼N (0,0.52I).325

We assume an observation model yt ∼N (xt,1.0
2I) and simulate observations for T = 500 times from the model to use for

filtering.

Fig. 4 illustrates the performance of a filtering run with N = 100 particles on the simulated observations using the locally

optimal proposal. The left subplot shows the (noisy) observations and estimated mean of the filtering distributions at each of the

observation times, note the appearance of the Lorenz attractor. The right subplot shows the evolution of the RMSE calculated330

for the estimated mean against the observations for different number of particles (N) with the locally optimal proposal.

5.1 Nonlinear observation operator

The effect of a nonlinear observation operator on the performance of the bootstrap filter proposal is explored, note that the

locally optimal proposal can not be readily applied in this set up and therefore only the bootstrap filter is used. Two observation

operators are introduced: the linear H(xt) = xt and the nonlinear H(xt) = log |xt| case.335

Simulations of the Lorenz system (Eq. 12) are carried out with a similar set up as in section 5, an initial state distribution

taken to be x0 ∼N (0,0.52I), an observation model yt ∼N (H(xt),1.0
2I) and additive isotropic state noise with covariance

Q= 0.52I . The bootstrap filter is used and the observations are assimilated every 0.1 time units. For the non-linear case the

observation operator acts upon the observation values which are then perturbed by draws from the independent observation

error.340

14

Figure 4. Left: Mean of the particles and the observations at each time step in state space for N = 100. Right: The RMSE calculated through

time for different number of particles (N).

Figure 5. Time averaged RMSE for three different runs with various number of particles: a naive ensemble (no assimilation), the linear

observation case H(xt) = xt and the non-linear observation case H(xt) = log |xt|.

The system is simulated for T = 5000 time steps and a time averaged RMSE is calculated for the last 4500 steps for the

linear observation, the non-linear observation and a no assimilation case. The time averaged RMSE results are plotted in Fig.

5.

15

6 Tsunami model

As a more complex test case, we now consider a tsunami modelling example. Tsunamis are rare events which have the capacity345

of causing severe loss of life and damages. At present, tsunami warning centres rely on crude decision matrices, pre-computed

databases of high resolution simulations or ‘on-the-fly’ real-time simulations to rapidly deduce the hazard associated with

an event (Gailler et al., 2013). These existing approaches have been developed with seismically generated tsunamis in mind

and the alternative tsunamigenic sources (landslide and volcanic eruptions) are less well constrained. The ongoing efforts of

incorporating data assimilation techniques within tsunami modelling could augment warning centres capability in this regard350

(Maeda et al., 2015; Gusman et al., 2016). It should be noted that the tsunami model built into ParticleDA.jl is a drastic

simplification to tsunami models used in operational practice but provides a useful test case for users and showcases the

potential of particle filters within tsunami modelling efforts. Further, it allows for direct validation with a Kalman filter as the

resulting state space model is linear-Gaussian.

As a first order approximation, two-dimensional linear long-wave equations (Goto, 1984), corresponding to a linearization355

of the shallow water equations, are used to capture the tsunami dynamics. Assuming a state space model with state transitions

of the form described in Eq. (2), the (linear) deterministic forward operator Ft(xt) for the test case is defined by numerically

solving the PDEs

∂η(τ,s1,s2)

∂τ
=−∂u(τ,s1,s2)

∂s1
− ∂v(τ,s1,s2)

∂s2
,

∂u(τ,s1,s2)

∂τ
=−gh(s1,s2)

∂η(τ,s1,s2)

∂s1
,

∂v(τ,s1,s2)

∂τ
=−gh(s1,s2)

∂η(τ,s1,s2)

∂s2
, (13)

where τ is the time coordinate, (s1,s2) are the spatial coordinates, η(τ,s1,s2) is the free surface elevation (wave height),360

h(s1,s2) is the (static) water depth, g is the acceleration due to gravity and u(τ,s1,s2) and v(τ,s1,s2) are the components of

the depth averaged horizontal velocities. The system of linear PDEs in Eq. (13) is solved using a first order finite difference

scheme with absorbing boundary conditions, using a Julia reimplementation of the tsunami data assimilation code (TDAC)

accompanying Gusman et al. (2016).

The state vector xt is defined as the concatenation of the flattened vectors formed by the spatial discretizations of the fields η,365

u and v on a 51×51 uniform grid over a square spatial domain [0,2×105]× [0,2×105] (resulting in an overall state dimension

dx = 3× 512 = 7803), with uniform interval of 2 time units between observation times, that is

xt =
(
η(2t,0,0),η(2t,0,4× 103), . . . ,η(2t,0,2× 105),η(2t,4× 103,0), . . . ,η(2t,2× 105,2× 105),

u(2t,0,0),u(2t,0,4× 103), . . . ,u(2t,0,2× 105),u(2t,4× 103,0), . . . ,u(2t,2× 105,2× 105),

v(2t,0,0),v(2t,0,4× 103), . . . ,v(2t,0,2× 105),v(2t,4× 103,0), . . . ,v(2t,2× 105,2× 105)
)
.

The additive state noise is chosen as the spatial discretizations of independent Gaussian random fields for each of the variables

η, u and v, with a Matérn covariance kernel with length scale parameter λ= 500, smoothness parameters µ= 2.5 and marginal370

16

standard deviation parameter σ = 0.01 used for all three fields. The spatially correlated nature of the state noise distribution

ensures the perturbed spatial fields remain smooth. A circulant embedding method (Dietrich and Newsam, 1997) implemented

in the Julia package GaussianRandomFields.jl (Robbe, 2017) is used to efficiently simulate Gaussian random fields on a

uniform grid using fast Fourier transforms, resulting in a O(dx logdx) operation cost complexity for each realisation. For

filtering the initial state distribution is also chosen to correspond to a zero-mean Gaussian distribution corresponding the375

spatial discretizations of independent Gaussian random fields for each of the variables η, u and v, with a Matérn covariance

kernel with the same parameters (λ,µ,σ) as above.

We assumed noisy point-wise observations of the free surface elevation field η at 15 ‘station’ locations {s(m)
1 ,s

(m)
2 }15m=1,

chosen as grid points randomly sampled from a uniform distribution over the spatial grid for simplicity, with independent

observation noise with standard deviation 0.01, that is yt ∼N
(
(η(2t,s

(m)
1 ,s

(m)
2))15m=1,0.01

2I
)

. For the simulation of the380

observations, to produce an initial wave producing perturbation, the mean of the initial state distribution for the free surface

elevation components is altered to correspond to the function

η̄0(s1,s2) =

((1+ cos(π(s1 − a)/c))(1+ cos(π(s2 − a)/c)))d/4 (s1 − a)2 +(s2 − a)2 ≤ c2,

0 otherwise,
(14)

evaluated at the grid points with a= 104, b= 104, c= 3× 104, d= 30, with the mean of the velocity components left as

zero. As the initial state distribution assumed when filtering differs we therefore have a small degree of model mismatch. The385

observations are simulated for T = 640 times, with the PDE system numerically integrated in time for 4 time steps of 0.5 time

units between each pair of observation times.

6.1 Validation

We performed an initial filtering run on the simulated observations using an ensemble of N = 50 particles using the locally

optimal proposals. Snapshots of the simulated free surface elevation field used to generate the observations and corresponding390

particle estimate of the mean of the filtering distribution on the free surface elevation field are shown in Fig. 6.

As the tsunami state space model implemented here is linear-Gaussian a Kalman filter was used to compute ground truth

values for the means (and covariances) of the filtering distributions, and these were then compared to the filtering estimates for

various ensemble sizes N and proposal distributions. Fig. 7 (left) shows the RMSE in the estimate of the filtering distribution

mean for each observation time time for PF using both the locally optimal and bootstrap proposals with the same ensemble size395

(N = 50). The filter using the locally optimal proposal can be observed to give a consistent improvement in the accuracy of the

filtering distribution estimates across time. Fig. 7 (right) instead shows the RMSE in the estimate of the filtering distribution

mean at a single observation time τ = 200, for filtering runs with varying ensemble sizes N for both bootstrap and locally

optimal proposals, the results indicate a consistent gain in accuracy of the filtering estimates when using the locally optimal

compared to bootstrap proposal, across a range of different ensemble sizes N .400

17

Figure 6. Snapshots of the surface elevation used to generate the simulated observations (left) and the corresponding estimated filtering

distribution means using N = 50 particles (right).

18

Figure 7. Left: RMSE in particle filter estimates of filtering distribution across observation times for the tsunami models with a fixed

ensemble size of N = 50 for filters using both bootstrap and locally optimal proposals. Right: RMSEs in particle filter estimates of the

filtering distribution mean for both the bootstrap and locally optimal proposal at τ = 200 for varying ensemble size N . Note: The RMSE

values are calculated against the true mean of the filtering distributions coming from a Kalman filter run.

6.2 Parallelization performance

As discussed in Sect. 3.3 ParticleDA.jl is capable of leveraging both shared and distributed parallelism. Scaling runs on

ARCHER2, which is the UK’s Tier-1 supercomputer, have been carried out to highlight the performance in practice. A weak

scaling study, using the same experimental set up as described in section 6.1 is run with the bootstrap proposal keeping the

number of particles per core constant while increasing the number of nodes. The compute nodes on ARCHER2 consist of 2 ×405

AMD EPYC 7742, 2.25 GHz, 64-core, with 8 non uniform memory access (NUMA) regions per node (16 cores per NUMA

region, 8 cores per core complex die (CCD) and 4 cores per core complex (CCX) (shared L3 cache)). The weak scaling runs

try to optimize for this hardware architecture with various runs targeting a MPI rank per NUMA / CCD / CCX region and an

appropriate number of threads per MPI rank (Fig. 8). The weak scaling efficiency is defined as E(N) = T (2)
T (N) , where T (N) is

the wall time for running on N MPI ranks. There are 2 particles per core so at the maximum number of cores (2048) and ranks410

(128) tested here there are 4096 particles.

As stated in Sect. 3.3 the main performance bottleneck are the communication steps: the copying of states and the gathering

of particle weights which require point-to-point communications and a global communication step respectively. Another com-

ponent which contributes to poor scaling for large node counts is updating the summary statistics, which requires a reduction

of the mean and optionally the variance for each state dimension over all MPI ranks. For the results presented here we have415

mostly remedied this loss of performance by collecting statistics at the final filtering iteration only. However, it should be noted

that for cases which need frequent outputted statistics this will contribute to a degradation of the parallel performance.

19

2 4 8 16 32 64 128
Number of Ranks

0.2

0.4

0.6

0.8

1.0

W
ea

k
Sc

al
in

g
Ef

fic
ie

nc
y

32 ranks per node, 4 cores per rank
16 ranks per node, 8 cores per rank
8 ranks per node, 16 cores per rank

Figure 8. Weak scaling parallel efficiency for the tsunami model test case with different set ups of ranks per node and cores per rank on

ARCHER2. A drop off in performance can be seen when moving from single to multi-node runs.

7 Atmospheric general circulation model (AGCM)

An integration of ParticleDA.jl with an atmospheric dynamical model, simplified parameterizations primitive equation dynam-

ics (SPEEDY), showcases the efforts involved in coupling the software with pre-existing model implementations. SPEEDY is420

an AGCM which was developed by Molteni (2003) and consists of a spectral primitive-equation dynamic core along with a set

of simplified physical parameterization schemes. The SPEEDY model retains the core characteristics of the current state-of-the-

art AGCMs but requires drastically less (orders of magnitude) computational resources (Molteni, 2003). This computational

efficiency allows one to utilize the model to carry out large ensemble and/or data assimilation experiments. According to

Molteni (2003) the SPEEDY model accurately simulates the general structure of global atmospheric circulation and exhibits425

similar systematic errors to the state-of-the-art AGCM, albeit with larger error amplitudes. The model implementation used

here (Hatfield, 2018) is written in Fortran and provides an interesting example of the integration steps required to interface

with ParticleDA.jl. The coupling with ParticleDA.jl relies on the SPEEDY implementation being set up to output its data fields

at set intervals.

As stated SPEEDY is a simplified AGCM model. The prognostic variables consist of the zonal and meridional wind velocity430

components (u,v), temperature (T), specific humidity (q) and surface pressure (ps). A T30 resolution of the model is used here

which corresponds to a horizontal grid size of 96× 48 with 8 vertical layers. The vertical layers are defined by sigma levels,

where the pressure is normalized by the surface pressure (p/ps).

20

We extend the deterministic SPEEDY model to a state space model setting, by using a state transition update of the form

described by Eq. (2), with numerical simulation of the SPEEDY model forward in time by 6 simulated hours corresponding to435

the deterministic forward operator Ft. The state vector xt is defined as the concatenation of the flattened vectors corresponding

to the spatial discretizations of the prognostic variable fields u, v, T , q and ps, with each of the first four variables being defined

in three dimensions across a 96× 48× 8 spatial grid, while the final surface pressure variable ps is defined in two dimensions

on a 96× 48 spatial grid, resulting in an overall state dimension of dx = 4× 96× 48× 8+96× 48 = 152064.

The additive Gaussian state noise is assumed to correspond to spatial discretizations of independent two-dimensional Gaus-440

sian random fields for the surface pressure ps and for each vertical level for the prognostic variables u, v, T and q. To reflect

the underlying spherical geometry over which the spatial grid is defined, a non-stationary covariance function using a Matérn

kernel on the geodesic (great-circle) distance between the points on the sphere the grid points correspond to is used, with the

Matérn kernels using common values of λ= 1 and µ= 2.5 for the length scale and smoothness parameters respectively, while

the marginal standard deviation parameter σ is set separately for each prognostic variable, with σ = 1 m/s for u, v, σ = 1 K for445

T , σ = 0.001 kg/kg for q and σ = 100 Pa for ps. The GaussianRandomFields.jl package is again used to generate realizations

of the (spatially discretized) random fields, with the use of a non-stationary covariance function in this case necessitating an

approach which uses an eigendecomposition of the full 4608× 4608 covariance matrix for each discretized two-dimensional

field to generate the samples. The geodesic distance based covariance function used is not guaranteed to be positive definite

which is heuristically dealt with by setting all negative eigenvalues to zero. We recognize that this approach of introducing450

state noise into the dynamics has some limitations but for the purposes here is sufficient.

The data assimilation experiments carried out here followed a similar set-up to that used in Miyoshi (2005). A linear-

Gaussian observation model of the form described by Eq. (3) is used, with observations assumed to be available only for the

surface pressure field (in this regard differing from the set-up used by Miyoshi (2005)) at 50 spatial locations corresponding to

randomly sampled grid points, with additive independent observation noise with standard deviation 1000 Pa. The initial state455

used to generate the simulated observations is generated by performing a one simulated year ‘spin-up’ of the deterministic

SPEEDY model from a resting atmosphere (u= v = 0) initial condition, with simulated observations then generated for 250

observation times at 6 hourly intervals using the state space model. Initial state values for a filtering run using N = 256 particles

and locally optimal proposals were generated by performing a long-term (10 simulated years) run of the deterministic SPEEDY

model, with the state selected randomly from the simulated times in the final month of simulation and state noise of the same460

distribution used in state transitions added.

7.1 Results

In Fig. 9 snapshots of the true surface pressure (top left) and the ensemble estimate of the mean surface pressure (top right)

after 250 assimilation cycles are shown. Minimal differences can be observed. The sub-plots in the bottom row showcase

the time averaged L2 error for ensemble mean estimates with and without assimilation. The L2 error is calculated against465

the true surface pressure fields used to simulate the observations at each grid cell over the 250 assimilation cycles. The time

21

averaged errors are dominated by mid-latitude patterns but the ensemble run without assimilation exhibits larger errors. This

error comparison validates that the assimilation is giving improved estimates of the state of the system.

As stated in the introduction, one of the key benefits of particle filters is to provide the promise of non-linear and non-

Gaussian DA. To highlight this sample distributions of the surface pressure at various observation locations at different time470

points are shown in Fig. 10. The distributions across the N = 256 particles exhibit heavy tails towards the true surface pressure

at the given locations. It should be noted that similar non-Gaussian distributions were showcased by (Miyoshi et al., 2014;

Kondo and Miyoshi, 2019) in a near identical experimental set-up but with an ensemble Kalman filter. However, a key differ-

ence to be highlighted here is the relative size of the ensembles used, 256 particles here versus a 10,240 ensemble size used by

(Miyoshi et al., 2014) to generate the non-Gaussian distributions.475

8 Conclusions

We have developed a flexible Julia package, ParticleDA.jl, for performing particle-filter based data assimilation, with the poten-

tial of offering improved filtering accuracy when working with models exhibiting non-Gaussianity in the filtering distributions.

The use of a high-level language Julia, both simplifies the process for users wanting to apply the package to their own models

and for developers wishing to extend the package with new filter implementations, while still maintaining similar computational480

efficiency to lower level compiled languages like Fortran and C++.

Particular attention has been paid to ensuring ParticleDA.jl is suitable for performing filtering on HPC systems, with a ver-

satile two-level model used to support both shared and distributed memory parallelism. This is important in allowing efficient

exploitation of the typically complex hierarchies of processing elements used in modern HPC systems (see for example the

description of the hardware architecture of ARCHER2 in Section 6.2), both when running large ensembles of models where485

each particle can be simulated on a single processing element, but also for the perhaps more practically relevant setting of

running smaller ensembles of more complex models which require multiple processing elements to simulate a single particle.

ParticleDA.jl currently provides implementations of particle filters using bootstrap and locally optimal proposals, with the

former applicable to general state space models and the latter to a more restricted subset of state space models with Gaussian

state transition distributions and linear-Gaussian observation models. As illustrated in our numerical experiments, particle filters490

using the locally optimal proposal distributions can offer significantly improvements in the accuracy of filtering estimates

for a given ensemble size where applicable. However, as noted in the introduction, particle filters using the locally optimal

proposal distribution are known to still suffer from a ‘curse of dimensionality’ requiring the ensemble size to scale exponentially

with the system dimension to avoid weight degeneracy (Snyder, 2011). An important future extension to ParticleDA.jl will

therefore be in providing implementations of filtering algorithms exploiting approaches such as spatial localization (Farchi495

and Bocquet, 2018) to allow scaling to very high dimensional geophysical applications. Implementations of filters exploiting

spatial localization will be necessarily applicable to a restricted subclass of spatially extended state space models; similar to the

approach used for implementing the locally optimal proposal filter, the extensible nature of the model interface in ParticleDA.jl

22

Figure 9. Top Row: Snapshot of the true surface pressure (left) and mean assimilated surface pressure (right) (N = 256) after 250 assimilation

cycles (12:00:00 04/03/1982 UTC). Bottom Row: Time averaged L2 error for the mean of the assimilation run (left) and for the mean of an

ensemble run without assimilation (right). The 50 observation locations are highlighted by the black stars.

23

Figure 10. Normalized histograms corresponding to the estimates of the marginal filtering distributions of the surface pressure at various

observation locations and at different points in time from a filtering run with an ensemble of N = 256 particles. The true surface pressures

are highlighted by the vertical red line and the mean surface pressure of the particles are highlighted by the black vertical line. The green line

represents a fitted Gaussian distribution.

24

should allow model agnostic localized filter implementations to be added by simply defining additional functions required to

be implemented by the model interface.500

Another key element that a user should be aware of is the generation of state noise and the role that it plays (Evensen et al.,

2022). For some geophysical applications this can be a non-trivial task as the definition of the state noise should respect the

smoothness of the state variable and any underlying physical constraints. For example, particular efforts have been made in the

AGCM case (section 7) to capture the underlying spherical geometry by implementing a non-stationary covariance function

using a Matérn kernel based on the geodesic distance between points on the sphere. This approach of introducing state noise505

into the dynamics offers an improvement to a stationary covariance function but still has limitations and does not guarantee

that physical constraints are conserved. This example highlights the important role of the state noise and potential users should

be aware of the efforts needed to accurately capture this in their systems of interest.

Overall, the aim of our platform is to enable easily accessible and accurate, fast DA for a wide range of users. We hope that

various scientific communities will adopt ParticleDA.jl, possibly leading to fast step-changes in some geoscientific investiga-510

tions and beyond.

Code availability. The code is freely available at https://github.com/Team-RADDISH/ParticleDA.jl

Author contributions. DG lead the computations and applications. TK, MMG and MG created the Julia platform, its I/O and computational

acceleration. AB led the design of the locally optimal proposal implementation. SG directed the overall research.

Competing interests. There are no competing interests at present515

Acknowledgements. The RADDISH (Real-time Advanced Data assimilation for Digital Simulation of numerical twins on HPC) project

supported this research. RADDISH was part of The Tools, Practice and Systems programme of the AI for Science and Government (ASG),

UKRI’s Strategic Priorities Fund awarded to the Alan Turing Institute, UK (EP/T001569/1). We also acknowledge funding for this research

from UKAEA (T/AW085/21) for the project Advanced Quantification of Uncertainties In Fusion modelling at the Exascale with model order

Reduction (AQUIFER).520

25

References

Bannister, R. N.: A review of operational methods of variational and ensemble-variational data assimilation, Quarterly Journal of the Royal

Meteorological Society, 143, 607–633, https://doi.org/10.1002/qj.2982, 2017.

Barth, A., Saba, E., Carlsson, K., and Kelman, T.: DataAssim.jl: Implementation of various ensemble Kalman Filter data assimilation methods

in Julia, https://github.com/Alexander-Barth/DataAssim.jl, 2016.525

Bengtsson, T., Bickel, P., and Li, B.: Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems, in: Proba-

bility and statistics: Essays in honor of David A. Freedman, pp. 316–334, Institute of Mathematical Statistics, 2008.

Berquin, Y. and Zell, A.: A physics perspective on LIDAR data assimilation for mobile robots, Robotica, 40, 862–887,

https://doi.org/10.1017/S0263574721000850, 2022.

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.: Julia: A Fresh Approach to Numerical Computing, SIAM Review, 59, 65–98,530

https://doi.org/10.1137/141000671, 2017.

Bickel, P., Li, B., and Bengtsson, T.: Sharp failure rates for the bootstrap particle filter in high dimensions, in: Pushing the limits of contem-

porary statistics: Contributions in honor of Jayanta K. Ghosh, pp. 318–329, Institute of Mathematical Statistics, 2008.

Bocquet, M., Pires, C. A., and Wu, L.: Beyond Gaussian statistical modeling in geophysical data assimilation, Monthly Weather Review,

138, 2997–3023, 2010.535

Buizza, C., Quilodrán Casas, C., Nadler, P., Mack, J., Marrone, S., Titus, Z., Le Cornec, C., Heylen, E., Dur, T., Baca Ruiz, L., Heaney,

C., Díaz Lopez, J. A., Kumar, K. S., and Arcucci, R.: Data Learning: Integrating Data Assimilation and Machine Learning, Journal of

Computational Science, 58, https://doi.org/10.1016/j.jocs.2021.101525, 2022.

Burgers, G., van Leeuwen, P. J., and Evensen, G.: Analysis scheme in the ensemble Kalman filter, Monthly weather review, 126, 1719–1724,

1998.540

Byrne, S., Wilcox, L. C., and Churavy, V.: MPI.jl: Julia bindings for the Message Passing Interface, Proceedings of the JuliaCon Conferences,

1, 68, https://doi.org/10.21105/jcon.00068, 2021.

Carlson, F. B., Roy, P., and Lu, Y.: LowLevelParticleFilters.jl: State estimation, smoothing and parameter estimation using Kalman and

particle filters, https://github.com/baggepinnen/LowLevelParticleFilters.jl, 2018.

Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G.: Data assimilation in the geosciences: An overview of methods, issues, and perspec-545

tives, Wiley Interdisciplinary Reviews: Climate Change, 9, e535, https://doi.org/10.1002/wcc.535, 2018.

Chan, T. F., Golub, G. H., and LeVeque, R. J.: Updating formulae and a pairwise algorithm for computing sample variances, in: COMPSTAT

1982 5th Symposium held at Toulouse 1982: Part I: Proceedings in Computational Statistics, pp. 30–41, Springer, 1982.

Churavy, V., Godoy, W. F., Bauer, C., Ranocha, H., Schlottke-Lakemper, M., Räss, L., Blaschke, J., Giordano, M., Schnetter, E.,

Omlin, S., Vetter, J. S., and Edelman, A.: Bridging HPC Communities through the Julia Programming Language, arXiv e-prints,550

https://doi.org/10.48550/arXiv.2211.02740, 2022.

Cotter, C., Crisan, D., Holm, D., Pan, W., and Shevchenko, I.: Data assimilation for a quasi-geostrophic model with circulation-preserving

stochastic transport noise, Journal of Statistical Physics, 179, 1186–1221, 2020.

Del Moral, P.: Feynman-Kac formulae, Springer, 2004.

Dietrich, C. R. and Newsam, G. N.: Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance555

matrix, SIAM Journal on Scientific Computing, 18, 1088–1107, 1997.

26

https://doi.org/10.1002/qj.2982
https://github.com/Alexander-Barth/DataAssim.jl
https://doi.org/10.1017/S0263574721000850
https://doi.org/10.1137/141000671
https://doi.org/10.1016/j.jocs.2021.101525
https://doi.org/10.21105/jcon.00068
https://github.com/baggepinnen/LowLevelParticleFilters.jl
https://doi.org/10.1002/wcc.535
https://doi.org/10.48550/arXiv.2211.02740

Douc, R. and Cappé, O.: Comparison of resampling schemes for particle filtering, in: Proceedings of the 4th International Symposium on

Image and Signal Processing and Analysis, pp. 64–69, IEEE, 2005.

Doucet, A., Godsill, S., and Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering, Statistics and Computing, 10,

197–208, https://doi.org/10.1023/A:1008935410038, 2000.560

Dunbar, O. R. A., Lopez-Gomez, I., Garbuno-Iñigo, A., Huang, D. Z., Bach, E., and long Wu, J.: EnsembleKalmanProcesses.jl: Derivative-

free ensemble-based model calibration, Journal of Open Source Software, 7, 4869, https://doi.org/10.21105/joss.04869, 2022.

Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics,

Journal of Geophysical Research: Oceans, 99, 10 143–10 162, 1994.

Evensen, G., Vossepoel, F. C., and van Leeuwen, P. J.: Fully Nonlinear Data Assimilation, pp. 95–110, Springer International Publishing,565

Cham, https://doi.org/10.1007/978-3-030-96709-3_9, 2022.

Farchi, A. and Bocquet, M.: Comparison of local particle filters and new implementations., Nonlinear Processes in Geophysics, 25, 2018.

Foreman-Mackey, D., Agol, E., Ambikasaran, S., and Angus, R.: Fast and Scalable Gaussian Process Modeling with Applications to Astro-

nomical Time Series, The Astronomical Journal, 154, 220, https://doi.org/10.3847/1538-3881/aa9332, 2017.

Gailler, A., Hébert, H., Loevenbruck, A., and Hernandez, B.: Simulation systems for tsunami wave propagation forecasting within the French570

tsunami warning center, Natural Hazards and Earth System Sciences, 13, 2465–2482, https://doi.org/10.5194/nhess-13-2465-2013, 2013.

Giordano, M., Klöwer, M., and Churavy, V.: Productivity meets Performance: Julia on A64FX, in: 2022 IEEE International Conference on

Cluster Computing (CLUSTER), pp. 549–555, https://doi.org/10.1109/CLUSTER51413.2022.00072, 2022.

Gordon, N. J., Salmond, D. J., and Smith, A. F.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation, in: IEE Proceedings

F (Radar and Signal Processing), vol. 140, pp. 107–113, IET, 1993.575

Goto, C.: Equations of nonlinear dispersive long waves for a large Ursell number, Doboku Gakkai Ronbunshu, 1984, 193–201, 1984.

Graham, M. M. and Thiery, A. H.: A scalable optimal-transport based local particle filter, arXiv preprint arXiv:1906.00507, 2019.

Grudzien, C. and Bocquet, M.: A fast, single-iteration ensemble Kalman smoother for sequential data assimilation, Geoscientific Model

Development, 15, 7641–7681, https://doi.org/10.5194/gmd-15-7641-2022, 2022.

Grudzien, C., Merchant, C., and Sandhu, S.: DataAssimilationBenchmarks.jl: a data assimilation research framework., Journal of Open580

Source Software, 7, 4129, https://doi.org/10.21105/joss.04129, 2022.

Gusman, A. R., Sheehan, A. F., Satake, K., Heidarzadeh, M., Mulia, I. E., and Maeda, T.: Tsunami data assimilation of Cas-

cadia seafloor pressure gauge records from the 2012 Haida Gwaii earthquake, Geophysical Research Letters, 43, 4189–4196,

https://doi.org/10.1002/2016GL068368, 2016.

Hatfield, S.: samhatfield/letkf-speedy, https://doi.org/10.5281/zenodo.1198432, 2018.585

Jordán, A., Eyheramendy, S., and Buchner, J.: State-space Representation of Matérn and Damped Simple Harmonic Oscillator Gaussian

Processes, Research Notes of the AAS, 5, 107, https://doi.org/10.3847/2515-5172/abfe68, 2021.

Kondo, K. and Miyoshi, T.: Non-Gaussian statistics in global atmospheric dynamics: a study with a 10240-member ensemble

Kalman filter using an intermediate atmospheric general circulation model, Nonlinear Processes in Geophysics, 26, 211–225,

https://doi.org/10.5194/npg-26-211-2019, 2019.590

Le Provost, M.: EnKF.jl: A framework for data assimilation with ensemble Kalman filter, https://github.com/mleprovost/EnKF.jl, 2016.

Lee, A. and Piibeleht, M.: SequentialMonteCarlo.jl: A light interface to serial and multi-threaded Sequential Monte Carlo, https://github.

com/awllee/SequentialMonteCarlo.jl, 2017.

27

https://doi.org/10.1023/A:1008935410038
https://doi.org/10.21105/joss.04869
https://doi.org/10.1007/978-3-030-96709-3_9
https://doi.org/10.3847/1538-3881/aa9332
https://doi.org/10.5194/nhess-13-2465-2013
https://doi.org/10.1109/CLUSTER51413.2022.00072
https://doi.org/10.5194/gmd-15-7641-2022
https://doi.org/10.21105/joss.04129
https://doi.org/10.1002/2016GL068368
https://doi.org/10.5281/zenodo.1198432
https://doi.org/10.3847/2515-5172/abfe68
https://doi.org/10.5194/npg-26-211-2019
https://github.com/mleprovost/EnKF.jl
https://github.com/awllee/SequentialMonteCarlo.jl
https://github.com/awllee/SequentialMonteCarlo.jl
https://github.com/awllee/SequentialMonteCarlo.jl

Leeuwen, P. J., Künsch, H. R., Nerger, L., Potthast, R., and Reich, S.: Particle filters for high-dimensional geoscience applications: A review,

Quarterly Journal of the Royal Meteorological Society, 145, 2335–2365, https://doi.org/10.1002/qj.3551, 2019.595

Lei, J., Bickel, P., and Snyder, C.: Comparison of ensemble Kalman filters under non-Gaussianity, Monthly Weather Review, 138, 1293–1306,

2010.

Lorenz, E. N.: Deterministic Nonperiodic Flow, Journal of Atmospheric Sciences, 20, 130–141, https://doi.org/10.1175/1520-

0469(1963)020<0130:DNF>2.0.CO;2, 1963.

Maeda, T., Obara, K., Shinohara, M., Kanazawa, T., and Uehira, K.: Successive estimation of a tsunami wavefield without earth-600

quake source data: A data assimilation approach toward real-time tsunami forecasting, Geophysical Research Letters, 42, 7923–7932,

https://doi.org/10.1002/2015GL065588, 2015.

Miyoshi, T.: Ensemble Kalman Filter Experiments with a Primitive-equation Global Model, Ph.D. thesis, University of Maryland, College

Park, 2005.

Miyoshi, T., Kondo, K., and Imamura, T.: The 10,240-member ensemble Kalman filtering with an intermediate AGCM, Geophysical Re-605

search Letters, 41, 5264–5271, https://doi.org/10.1002/2014GL060863, 2014.

Molteni, F.: Atmospheric simulations using a GCM with simplified physical parametrizations. I: Model climatology and variability in multi-

decadal experiments, Climate Dynamics, 20, 175–191, https://doi.org/10.1007/s00382-002-0268-2, 2003.

Nadler, P., Arcucci, R., and Guo, Y. K.: Data assimilation for parameter estimation in economic modelling, Proceedings

- 15th International Conference on Signal Image Technology and Internet Based Systems, SISITS 2019, pp. 649–656,610

https://doi.org/10.1109/SITIS.2019.00106, 2019.

Rackauckas, C. and Nie, Q.: DifferentialEquations.jl – a performant and feature-rich ecosystem for solving differential equations in Julia,

Journal of Open Research Software, 5, 15, 2017.

Robbe, P.: GaussianRandomFields.jl: A package for Gaussian random field generation in Julia, https://github.com/PieterjanRobbe/

GaussianRandomFields.jl, 2017.615

Ruzayqat, H., Er-Raiy, A., Beskos, A., Crisan, D., Jasra, A., and Kantas, N.: A lagged particle filter for stable filtering of certain high-

dimensional state-space models, SIAM/ASA Journal on Uncertainty Quantification, 10, 1130–1161, 2022.

Sanpei, A., Okamoto, T., Masamune, S., and Kuroe, Y.: A data-assimilation based method for equilibrium reconstruction of magnetic fusion

plasma and its application to reversed field pinch, IEEE Access, 9, 74 739–74 751, 2021.

Schauer, M., Gagnon, Y. L., St-Jean, C., and Cook, J.: Kalman.jl: Flexible filtering and smoothing in Julia, https://github.com/mschauer/620

Kalman.jl, 2018.

Schoenbrod, S.: KalmanFilters.jl, https://github.com/JuliaGNSS/KalmanFilters.jl, 2018.

Snyder, C.: Particle filters, the “optimal” proposal and high-dimensional systems, Proceedings of the ECMWF Seminar on Data Assimilation

for Atmosphere and Ocean, pp. 6–9, http://www2.mmm.ucar.edu/people/snyder/papers/Snyder_ECMWFSem2011.pdf, 2011.

Sunberg, Z., Lasse, P., Bouton, M., Fischer, J., Becker, T., Saba, E., Moss, R., Gupta, J. K., Dressel, L., Kelman, T., Wu, C., and Thibaut, L.:625

ParticleFilters.jl: Simple particle filter implementation in Julia, https://github.com/JuliaPOMDP/ParticleFilters.jl, 2017.

Thépart, J.-N., Vasiljevic, D., Courtier, P., and Pailleux, J.: Variational assimilation of conventional meteorological observations with a

multilevel primitive-equation model., Q.J.R. Meteorol. Soc., 119, 153–186, https://doi.org/10.1002/qj.49711950907, 1993.

Vetra-Carvalho, S., van Leeuwen, P. J., Nerger, L., Barth, A., Altaf, M. U., Brasseur, P., Kirchgessner, P., and Beckers, J. M.: State-of-

the-art stochastic data assimilation methods for high-dimensional non-Gaussian problems, Tellus, Series A: Dynamic Meteorology and630

Oceanography, 70, 1–38, https://doi.org/10.1080/16000870.2018.1445364, 2018.

28

https://doi.org/10.1002/qj.3551
https://doi.org/{10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2}
https://doi.org/{10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2}
https://doi.org/{10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2}
https://doi.org/10.1002/2015GL065588
https://doi.org/10.1002/2014GL060863
https://doi.org/10.1007/s00382-002-0268-2
https://doi.org/10.1109/SITIS.2019.00106
https://github.com/PieterjanRobbe/GaussianRandomFields.jl
https://github.com/PieterjanRobbe/GaussianRandomFields.jl
https://github.com/PieterjanRobbe/GaussianRandomFields.jl
https://github.com/mschauer/Kalman.jl
https://github.com/mschauer/Kalman.jl
https://github.com/mschauer/Kalman.jl
https://github.com/JuliaGNSS/KalmanFilters.jl
http://www2.mmm.ucar.edu/people/snyder/papers/Snyder_ECMWFSem2011.pdf
https://github.com/JuliaPOMDP/ParticleFilters.jl
https://doi.org/10.1002/qj.49711950907
https://doi.org/10.1080/16000870.2018.1445364

