
I appreciate the authors’ efforts to build a parallelizable model-agnostic particle filter 

system, which holds promise for various geoscience applications. Nevertheless, I 

would like to raise some concerns about the state transition density, or the model error 

Q, in the following: 

 

1. The difference of the particle weights between using the bootstrap and using the 

optimal proposal is determined by Q (e.g., see the reference below). Therefore, 

the way that Q is specified determines how much the optimal proposal 

outperforms the bootstrap proposal. This could be added into the discussion to 

emphasize the importance of the choice of Q. 

 

e.g., see Sections 9.2.2-9.2.3 in 

Evensen, Geir, Femke C. Vossepoel, and Peter Jan van Leeuwen. Data assimilation 

fundamentals: A unified formulation of the state and parameter estimation 

problem. Springer Nature, 2022. 

 

2. The particle filter algorithm itself is model-agnostic, while Q is not. Although this 

manuscript has provided examples illustrating the generation of Q, in general this 

is not trivial for many geophysical models. For example, not only do we need to 

consider the smoothness of the state variable, but also the physical constraints 

across different variable types. For example, the wind and pressure should largely 

satisfy the geostrophic balance relation in the AGCM. In addition, for many 

geoscience applications, Q can be state dependent. For example, the model errors 

for predicting a heat wave can be very different from predicting a hurricane. 

Probably beyond the scope of this study, the transition density can also be quite 

non-Gaussian, e.g., for modeling the convection process in weather prediction 

models.  

 

The user might need to build Q for their own model, which again, is not trivial for 

many geophysical models. Since this manuscript is submitted to GMD, I would 

recommend expand the discussions surrounding the construction of Q for 

geoscience applications (e.g., in the conclusion section). 

 

3. I would recommend elaborate more on how get_covariance_state_noise and 

get_covariance_state_observation_given_previous_state are being evaluated. Are 

there any computational challenges to evaluate these two functions for a very 

high-dimensional (e.g., 𝑑𝑥~10
9) model? 

 



I have a few other minor comments: 

1. For a spatially extended model, like a weather prediction model, the dimension 

can be as high as 109 . Will this be an issue when copying a state from one 

processor to another? How does the overall algorithm scale with the dimension of 

the model state 𝑑𝑥? 

 

2. I find it somewhat less convincing that the particle filter can work better than any 

existing linear and Gaussian DA methods in the experiments (e.g., from the results 

in Figs 8-9). Nevertheless, I do understand the primary goal of this manuscript is to 

showcase the capabilities of the package, instead of proposing a novel particle 

filter methodology and conduct comprehensive comparisons with existing 

methods, etc.  

 

Therefore, I do not insist but recommend, e.g., add a new experiment with non-

linear observation operator, and/or compare the performance of PF and an 

ensemble Kalman filter against the ground truth in an OSSE (e.g., in Figure 8, you 

could also add a panel that shows the results from using an ensemble Kalman filter).  

 

3. Figure 8 -> is the unit of the time averaged error correct? An error in surface 

pressure exceeding 50 hPa seems unrealistically large. 


