
ParticleDA.jl v.1.0: A real-time
:::::::::::::::::
distributed

::::::::::::
particle

::::::::::::
filtering

:
data

assimilation software platform
::::::::::::
package

Daniel Giles1,2, Matthew M. Graham2, Mosè Giordano2, Tuomas Koskela2, Alexandros Beskos1,3, and
Serge Guillas1,2,3

1Department of Statistical Sciences, University College London, London, UK
2Centre of Advanced Research Computing (ARC), University College London, London, UK
3The Alan Turing Institute, London, UK

Correspondence: Daniel Giles (d.giles@ucl.ac.uk)

Abstract. Digital twins of physical and human systems informed by real-time data, are becoming ubiquitous across weather

forecasting, disaster preparedness, and urban planning, but researchers lack the tools to run these models effectively and effi-

ciently, limiting progress. One of the current challenges is to assimilate observations in highly nonlinear
::::::::
non-linear dynamical

systems, as the practical need is often to detect abrupt changes. We
::::
have

:
developed a software platform to improve the use of

real-time data in highly nonlinear
:::::::::
non-linear system representations where non-Gaussianity prevents the use of more standard5

Data Assimilation. Optimal Particle filtering data assimilation (DA) techniques
::::
limits

:::
the

:::::::::::
applicability

::
of

::::
data

:::::::::::
assimilation

:::::::::
algorithms

::::
such

::
as

:::
the

::::::::
ensemble

:::::::
Kalman

::::
filter

::::
and

:::::::::
variational

:::::::
methods.

:::::::
Particle

::::
filter

:::::
based

::::
data

::::::::::
assimilation

:::::::::
algorithms

:
have

been implemented within an
:
a
:
user-friendly open source software platform in Julia - ParticleDA.jl. To ensure the applicability

of the developed platform in realistic scenarios, emphasis has been placed on numerical efficiency , scalability and optimisation

for
:::
and

:::::::::
scalability

::
on

:
high performance computing frameworks

:::::::
systems. Furthermore, the platform has been developed to be10

forward model agnostic, ensuring that it is applicable to a wide range of modelling settings, for instance unstructured and non-

uniform meshes in the spatial domain or even state spaces that are not spatially organised
::::::::
organized. Applications to tsunami and

numerical weather prediction demonstrate the computational benefits in terms of lower errors, lower computational costs (due

to ensemble size and the algorithm’s overheads being minimised) and versatility thanks to flexible I/O in a high level language

Julia
:::
and

::::
ease

::
of

:::::
using

:::
the

::::::::
high-level

::::
Julia

::::::::
interface

::
to

:::
the

:::::::
package

::
to

:::::::
perform

:::::::
filtering

::
in

:
a
::::::
variety

::
of

::::::::
complex

::::::
models.15

1 Introduction

Data assimilation (DA) focuses on optimally combining observations with a dynamical model of a physical system to estimate

how the system state evolves over time. The field of research has its origins within the numerical weather prediction (NWP)

community, where DA techniques are applied iteratively to update current best estimates of the state of the atmosphere. Re-

cently the methods and practices developed have been employed in diverse areas of geosciences, with Carrassi et al. (2018);20

Vetra-Carvalho et al. (2018) providing recent overviews. Further DA has seen a huge expansion into other scientific disciplines

with applications in, for example, robotics (Berquin and Zell, 2022), economic modelling (Nadler et al., 2019) and plasma

physics (Sanpei et al., 2021). In the era of digital twinning, which involves combining high-fidelity representations of reality

1

with the optimal use of observations, real time data has become vital and DA frameworks have naturally been incorporated.

The area of data learning has also emerged where DA approaches are integrated with machine learning techniques (Buizza25

et al., 2022).

There are various popular data assimilation DA techniques, with variational methods (3DVar and 4DVar)
:::::::::::::::::
(Thépart et al., 1993)

and ensemble Kalman filters (EnKFs) (Evensen, 1994; Burgers et al., 1998) being extensively used in operational and research

settings.
::::::::::::::
Bannister (2017)

:::::::
provides

::
a
::::
good

::::::::
overview

:::
of

:::::::::
operational

::::::::
methods.

:
However, these methods have difficulties with

handling nonlinear
::::::::
non-linear

:
problems and with representing uncertainties accurately (Lei et al., 2010; Bocquet et al., 2010)30

::::::::::::::::::::::::::::::
(Lei et al., 2010; Bocquet et al., 2010). For instance Miyoshi et al. (2014); Kondo and Miyoshi (2019)

:::::::::::::::::::::::::::::::::::
Miyoshi (2005); Kondo and Miyoshi (2019)

updated an ensemble of 10240 particles using the EnKF to demonstrate the bimodality of some distributions due to inherent

nonlinearities. Furthermore, the continuing growth in compute hardware performance has allowed running increasingly com-

plex and high resolution models which are able to resolve non-linear processes happening at a fine spatial scale (Vetra-Carvalho

et al., 2018), creating an increasing demand for data assimilation DA methods which are able to accurately quantify uncer-35

tainty in such settings. Particle filters (PFs) (Gordon et al., 1993) are an alternative approach which offer the promise of con-

sistent DA for problems with non-linear dynamics and non-Gaussian noise distributions. Traditionally the main difficulty with

particle filtering techniques has been the ‘curse of dimensionality’ (Bengtsson et al., 2008; Bickel et al., 2008; Snyder, 2011)

::
(Bengtsson et al., 2008; Bickel et al., 2008; Snyder, 2011), where in high dimensional settings filtering leads to degeneracy of

the importance weights associated with each particle and loss of diversity within an ensemble
:::::
unless

:::
the

::::::::
ensemble

:::
size

::::::
scales40

:::::::::::
exponentially

::::
with

:::
the

::::::::::
observation

:::::::::
dimension. To improve the applicability of PFs there have been many recent developments

involving; localisation :
::::::::::

localization
:

techniques (e.g., the reviews in Farchi and Bocquet (2018); Graham and Thiery (2019)

::
Farchi and Bocquet (2018); Graham and Thiery (2019)), incorporation of tempering/mutation steps (e.g., Cotter et al. (2020); Ruzayqat et al. (2022)

::::::::::::::::::::::::::::::::::
Cotter et al. (2020); Ruzayqat et al. (2022)), hybrid approaches, improved computational implementations and combination

of the above with improved proposal distributions. The above ongoing efforts have extended the applicability of PF meth-45

ods within geoscientific domains. Leeuwen et al. (2019) provides an overview on the integration of particle filters in high-

dimensional geoscience applications.

This paper presents PF algorithms that will often make use of the so-called ‘optimal’ proposal distribution. Though the latter

is not amongst the latest contributions in the PF literature (e.g., Doucet et al. (2000)), it has not been extensively explored

in the high-dimensional PDE-driven systems which we use as case studies in this work. As also noted in Snyder (2011),50

improved proposals used within PF can in practice dramatically effect the performance of the algorithm, thus providing working

algorithms for wide classes of high-dimensional filtering applications, even if from a theoretical viewpoint computational costs

for standard PF implementations (not incorporating some of the extra tools mentioned above, e.g. localisation) might still be

required to scale exponentially fast with the number of observations.

The data assimilation
:::
The DA paradigm of optimally combining observations and model has a wide range of applications.55

However, an existing hurdle impeding the incorporation of real-time data into pre-existing dynamical models is the lack of

readily available software packages capable of bridging the two sources of information: model and observations. This is the

motivation behind ParticleDA.jl, to provide a generic and user friendly
:::::::::::
user-friendly framework to enable the incorporation

2

Package name Algorithms Parallelism

DataAssim.jl (Barth et al., 2016) EnKF, 4DVar

EnKF.jl (Le Provost, 2016) EnKF

Kalman.jl (Schauer et al., 2018) KF

KalmanFilters.jl (Schoenbrod, 2018) KF

LowLevelParticleFilters.jl (Carlson et al., 2018) PF, KF Multi-threading
:::::
Shared

::::::
memory

:

ParticleFilters.jl (Sunberg et al., 2017) PF

SequentialMonteCarlo.jl (Lee and Piibeleht, 2017) PF (SMC) Multi-threading
:::::
Shared

::::::
memory

:

ParticleDA.jl PF
:
, KF Multi-threading and multi-node ()

:::::
Shared

:::
and

::::::::
distributed

::::::
memory

:

Table 1. Summary of algorithms implemented and parallelism support in existing Julia data assimilation packages.

of particle filtering techniques with pre-existing numerical models. ParticleDA.jl is an open-source package in Julia which

provides efficient implementations of several particle filter algorithms, and also importantly offers an extensible framework to60

allow the simple addition of new filter implementations. It has been developed to be agnostic to the forward model to ensure

applicability in a wide range of settings and emphasis has been placed on computational efficiency to be ready to enable, in

a follow-up version, real-time applications
::
and

:::::::::
scalability

:::
on

:::::::::::::::
high-performance

:::::::::
computing

:::::::
systems. Initial efforts have been

focused on the integration with spatially dependent numerical models, however the implementation is applicable to a much

more general class of state space models (see Section ??
::::
Sect.

::
2) allowing incorporation in a broad range of applications.65

:::
For

:
a
:::::::
specific

::::
class

::
of

::::
state

:::::
space

::::::
models

::::
with

:::::::
additive

:::::::
Gaussian

::::
state

::::
and

:::::::::
observation

:::::
noise,

::::
and

:::::
linear

:::::::::
observation

:::::::::
operators,

::::::::::
ParticleDA.jl

::::::
allows

::::::
particle

:::::::
filtering

::::
with

:::
the

::::::::
so-called

::::::
‘locally

:::::::
optimal’

::::::::
proposal

::::::::::
distribution.

::::::
Though

:::
the

:::::
latter

::
is

:::
not

:::::::
amongst

::
the

:::::
latest

:::::::::::
contributions

::
in

:::
the

::
PF

::::::::
literature

::::
(e.g.,

:::::::::::::::::
Doucet et al. (2000)

:
),

:
it
:::
has

:::
not

:::::
been

:::::::::
extensively

:::::::
explored

::
in

:::
the

::::::::::::::
high-dimensional

partial differential equation (PDE)
:::::
driven

:::::::
systems

::::::
which

:::
we

:::
use

:::
as

::::
case

::::::
studies

:::
in

:::
this

::::::
work.

::
As

::::::
noted

::
in

::::::::::::
Snyder (2011)

:
,

::::::::
improved

::::::::
proposals

::::
used

:::::
within

:
PFs

:::
can

::
in

:::::::
practice

::::::::::
significantly

::::::::
improve

::
the

:::::::::::
performance

::
of

:::
the

:::::::::
algorithm,

:::
but

::
by

::::::::::
themselves70

::
do

:::
not

:::::::::
overcome

:::
the

::::
curse

:::
of

::::::::::::
dimensionality.

::::
Our

:::::::::
numerical

::::::::::
experiments

::::::::
illustrate

:::
that

:::::::::::
ParticleDA.jl

::::
can

::::::
already

:::
be

:::::::
usefully

::::::
applied

::
in

:::::::
practice

::
to

::::::
models

::::
with

:::::::::
moderately

::::
high

::::::::::
dimensions,

::::::::
however,

::
an

::::::::
important

::::
line

::
of

:::::
future

:::::
work

:::
will

:::
be

::::::::
extending

:::
the

:::::::::
framework

::::
with

::::::::
additional

:::::
filter

:::::::::::::
implementation

:::::::::::
incorporating

:::::::::
approaches

:::::
such

::
as

::::::::::
localization

:::
and

:::::::::
tempering

::
to

:::::
allow

::::::
scaling

::
to

::::
very

::::::::::::::
high-dimensional

:::::::
settings.

:

Within the Julia ecosystem, there are several existing packages which implement data assimilation algorithms. DataAs-75

sim.jl (Barth et al., 2016) provides implementations of a range of EnKF and extended KF methods and an incremental vari-

ant of 4DVar. EnKF.jl (Le Provost, 2016) implements stochastic and deterministic (square-root) variants of the EnKF which

can be combined with various approaches (e.g. covariance inflation) to avoid ensemble collapse in models with determinis-

tic dynamics. EnsembleKalmanProcesses.jl (Dunbar et al., 2022) implements several derivative-free optimization algorithms

based on the mainly targetted at Bayesian inverse problem settings. Kalman.jl (Schauer et al., 2018) and KalmanFilters.jl80

(Schoenbrod, 2018) both provide implementations of the exact KF algorithm for linear Gaussian models, with Kalman-

Filters.jl additionally implementing unscented variants of the KF for use in models with non-linear dynamics or observa-

3

tion operators. ParticleFilters.jl (Sunberg et al., 2017) and LowLevelParticleFilters.jl (Carlson et al., 2018) both provide PF

implementations, with LowLevelParticleFilters.jl additionally providing KF implementations. SequentialMonteCarlo.jl (Lee

and Piibeleht, 2017) provides an interface for implementing (and example implementations of) the wider class of SMC85

methods, of which PFs can be considered a special case, with the ability to run particle ensembles in parallel on mul-

tiple threads.
::::::::::::::::::::::::
EnsembleKalmanProcesses.jl

::::::::::::::::::
(Dunbar et al., 2022)

:::::::::
implements

::::::
several

:::::::::::::
derivative-free

::::::::::
optimization

::::::::::
algorithms

:::::
based

::
on

:::
the

:
EnKF

::::::
mainly

:::::::
targeted

::
at

::::::::
Bayesian

::::::
inverse

:::::::
problem

::::::::
settings.

:::::::
Another

:::::::
package

::
to

::::
note

::
in
:::
the

:::::
Julia

:::::::::
ecosystem

::
is

::::::::::::::::::::::::::
DataAssimilationBenchmarks.jl

:::
(Grudzien and Bocquet, 2022; Grudzien et al., 2022)

:::::
which

:::::
offers

:
a
:::::::::
framework

::
to

::::::::::
empirically

::::::
validate

::::
and

::::::
develop

:::::
novel

:
DA

:::::::::
techniques.

:
90

Table 1 summarizes the algorithm and parallelism support of existing Julia data assimilation packages .
::::
along

::::
with

::::
our

:::::::
package

:::::::::::
ParticleDA.jl.

:::
The

:::::::
existing

::::::::
packages,

::::::::::::::::::::::
LowLevelParticleFilters.jl

:::
and

::::::::::::::::::::
SequentialMonteCarlo.jl,

::::::
which

::::::
support

::::::::::::
parallelization

::
of

:::::::::
operations

:::::
across

::::::::
ensemble

::::::::
members

:::::
both

:::
use

:::::::::::::
shared-memory

::::::::::
parallelism,

::::
with

:::::
tasks

:::
run

:::::::::::::
simultaenously

:::::
across

::::::::
multiple

::::::
threads

::
on

:::
the

:::::
same

::::::
device.

::
In

:::::::
contrast,

::
as

::::::::
described

::
in

::::
Sect.

::::
3.3,

:::
our

:::::::
package

:::::::::::
ParticleDA.jl

:::::::
supports

::::
both

::::::
shared

:::
and

:::::::::
distributed

:::::::
memory

:::::::::
parallelism

:::::
which

:::::::
enables

:::::::
efficient

::::::::::
deployment

::
on

:
high performance computing (HPC)

:::::::
systems.

:
95

We implemented ParticleDA.jl in the Julia programming language (Bezanson et al., 2017) because of its combination

of performance and productivity, which enables rapid prototyping and development of high-performance numerical appli-

cations (Churavy et al., 2022; Giordano et al., 2022)
:::::::::::::::::::::::::::::::::::
(Churavy et al., 2022; Giordano et al., 2022), with the possibility of using

both shared and distributed memory parallelism strategies. In particular, Julia makes use of the multiple-dispatch programming

paradigm, which is particularly well-suited for designing a program which combines different models with different filtering100

algorithms, keeping the two concerns separated. This allowed
:::::
allows

:
domain experts and software engineers to collaborate on

the code using the same high-level language.

The rest of this manuscript is organized as follows. The mathematical set-up of the particle filtering algorithm is defined

in section ??
::::
Sect.

:
2
:

along with the various filtering proposal distributions implemented. Section ??
:
3

:
outlines the code

structure and parallelisation
::::::::::::
parallelization schemes. Sections 4 and ??

:
5 illustrate applications of the framework to simple105

low-dimensional state space models, namely a stochastically driven damped simple harmonic oscillator model and a stochastic

variant of the Lorenz ’63 chaotic attractor model . Section ??
::::::::::::
(Lorenz, 1963)

:
.
::::::
Section

::
6
:
introduces an application to a spa-

tially extended state space model, specifically a tsunami modelling test case formulated as a linear Gaussian state space model,

with validation of the filtering approaches and highlights the scaling performance . In section ??
::::::
parallel

:::::::::::
performance

::::::
scaling

::::::
results.

::
In

::::
Sect.

::
7
:
the incorporation with a more complex non-linear atmospheric dynamical model is investigated along with110

some results. Finally in section ??
::::
Sect.

:
8
:
concluding remarks and future work are outlined.

2 Particle filtering

Let xt ∈ Rdx represent the state of the model at an integer time index t and yt ∈ Rdy the vector of observations of the system

at this time index. We assume a state space model formulation, with the states following a Markov process and the observations

4

depending only on the state at the corresponding time index, that is115

x0 ∼ p0(·); xt ∼ pt(· | |xt−1), yt ∼ gt(· | |xt), t≥ 1; (1)

where p0 : Rdx → R≥0 is the density of the initial state distribution, pt : Rdx ×Rdx → R≥0, t≥ 1 are the densities of the state

transition distributions and gt : Rdy ×Rdx → R≥0, t≥ 1 are the densities of the conditional distribution on the observations

given the current states.

:
A
::::

key
::::::::::
assumption

::
of

:::
the

:::::
state

:::::
space

::::::
model

::::::::::
formulation

::
is

::::
that

:::
the

::::
state

:::
of

:::
the

::::::
system

:::::::
evolves

:::::::::::
stochastically

:::
in

::::
time.

:::
In120

::::::::::
geophysical

::::::::::
applications,

:::::::::
commonly

:::
the

::::::
models

:::
of

::::::
interest

:::
are

::::::::
specified

::
as

:::
the

:::::::
solution

::
to

:::::::::::::
time-dependent PDEs

::
or

:::::::
systems

::
of

ordinary differential equations (ODEs),
:::
for

:::::
which

:::
the

::::
state

:::::::::
dynamics

::
are

:::::::::
inherently

:::::::::::
deterministic.

:::::::
Without

::
a

::::::::
stochastic

:::::::
element

::
to

::
the

::::::::
dynamics

:::
the

::::::::
evolution

::
of

:::
the

::::
state

::::
over

::::
time

::
is

::::::
entirely

::::::::::
determined

::
by

:::
the

:::::
initial

::::
state.

:::
To

:::::::
perform

::::::
particle

:::::::
filtering

::
in

::::
such

::::::
models

:::
we

::::
must

::::::::
therefore

:::::::
augment

:::
the

:::::::::::
deterministic

::::::::
dynamics

::
of

:::
the

::::::
model

::::
with

::::::::
stochastic

:::::::
updates.

::::::
These

::::::::
stochastic

:::::::
updates

:::
can

::
be

::::::::::
considered

::
as

:::::::
random

:::::::
forcings

::
of

:::
the

::::::
model

::::::::::
representing

:::::::
physical

:::::::::
processes

:::
not

::::::::
modelled

::
in

:::
the

:::::::::::
deterministic

::::::
model125

::
as

::::
well

::
as

:::
the

::::::::::::
discretization

:::::
errors

::::::::::
introduced

:::::
when

:::::::::
simulating

:
ODE

:::
and

:
PDE

::::::
models

:::::::::::::::::::
(Leeuwen et al., 2019)

:
.
::::::::::
Importantly

::
the

:::::::::
stochastic

:::::::
updates

::::::
should

:::::::
maintain

::::
any

:::::::::
constraints

::
or

:::::::::::
relationships

:::::::
between

:::
the

::::
state

::::::::
variables

::
in

:::
the

:::::::::
underlying

::::::::
physical

:::::::::
phenomena

:::::
being

::::::::
modelled

::
-
:::
for

:::::::
example

:::
for

::::
state

:::::::
vectors

::::::::::::
corresponding

::
to

::::::
spatial

::::::::::::
discretizations

::
of

::
a

:::::::::
continuous

:::::
field,

:::
the

::::::::
stochastic

::::::
updates

::::::
should

::::::::
maintain

:::
any

::::::::
assumed

:::::::::
smoothness

:::::::::
properties

::
of

:::
the

:::::
field.

For the most part, we will concentrate on a specialisation
:::::::::::
specialization of this general state space model class, whereby130

the state and observations are both subject to additive Gaussian noise and the observations depend linearly on the state, which

covers a wide range of modelling scenarios in practice. Concretely we consider a state update of the form

xt = Ft(xt−1) +ut, ut ∼N (0,Q), t≥ 1, (2)

where Ft : Rdx → Rdx is the forward operator at time index t, representing the deterministic dynamics of the system and

ut ∈ Rdx is the additive Gaussian state noise at time index t, representing stochastic aspects of the system dynamics. The135

observations are modelled as being generated according to

yt =Hxt +vt, vt ∼N (0,R), t≥ 1, (3)

where H ∈Rdy×dx is a linear observation operator and vt ∈ Rdy is the additive Gaussian observation noise. The distributions

of the state and observation noise are parameterized by positive-definite covariance matrices Q ∈ Rdy×dy and R ∈ Rdx×dx

::::::::::
Q ∈ Rdx×dx

:::
and

:::::::::::
R ∈ Rdy×dy respectively.140

The objective of the particle filter is to estimate the filtering distribution for each time index t which are
:
is

:
the conditional

probability distributions
:::::::::
distribution

:
of the state xt given observations y1, ...,yt up to time index t, with the density of the

filtering distribution at time index t denoted πt(xt|y1:t).

The particle filtering algorithm builds on sequential importance sampling by introducing additional resampling steps. See

Doucet et al. (2000) for an in-depth introduction but the key features are introduced in Algorithm ??
:
1. An ensemble of particles145

{x(i)
t }Ni=1 represents an approximation to the filtering distribution at each time index t≥ 1 as πt(dxt|y1:t)≈ 1

N

∑N
i=1 δx(i)

t
(dxt).

5

Algorithm 1 Particle filter

1: Initialise
::::::
Initialize

:
particles {x(i)

0 }Ni=1, with x
(i)
0 ∼ p0(·), for 1≤ i≤N .

2: for time index t= 1 to T do

3: for particle index i= 1 to N do

4: Sample proposed particle x̃
(i)
t ∼ qt(· |x

(i)
t−1,yt).

5: Compute (unnormalized) importance weight w(i)
t =Wt(x̃

(i)
t ,x

(i)
t−1,yt) =

pt(x̃
(i)
t |x

(i)
t−1)gt(yt | x̃

(i)
t)

qt(x̃
(i)
t |x

(i)
t−1,yt)

.

6: end for

7: Generate new (equally weighted) particles {x(i)
t }Ni=1 by resampling from the weighted empirical distribution

x
(i)
t ∼

∑N
i=1w

(i)
t δ

x̃
(i)
t

(·)∑N
i=1w

(i)
t

8: end for

In each filtering step, new values for the particles are sampled from a proposal distribution (more details about the proposals

implemented in ParticleDA.jl are given in section ??
::::
Sect.

:::
2.1) and importance weights computed for each proposed particle

value. At the end of the filtering step, the weighted proposed particle ensemble is resampled to produce a new uniformly

weighted ensemble to use as the input to the next filtering step.150

2.1 Proposal distributions

Two forms of proposal distributions are implemented in ParticleDA.jl: the ‘naive’ bootstrap proposal, applicable to general

state space models described by
:::
Eq. (1), and the ‘locally optimal’ proposal, applicable to the

:::::
which

:::
can

:::
be

:::::::
tractably

:::::::::
computed

::::
only

::
for

::
a restricted class of state space modelsdescribed by and ,

::::::::
including

::::::::::
importantly

:::::
those

::::::::
described

::
by

::::
Eqs.

:
(2)

:::
and (3).

The bootstrap proposal ignores the observations with the particle proposals sampled from the state transition distributions,155

qt(xt |xt−1,yt) = pt(xt |xt−1), (4)

with the unnormalized importance weights at time index t≥ 1 then simplifying to

Wt(xt,xt−1,yt) = gt(yt |xt) (=Wt(xt,yt)). (5)

While appealingly simple and applicable to a wide class of models, the bootstrap particle filter performs poorly when observa-

tions are informative about the state due to the observations being ignored in the proposal. In such cases the proposed particles160

will typically be far away from the mass of the true filtering distribution, with the importance weights in this setting tending to

have high variance leading to weight degeneracy whereby all the normalized importance weights but one are close to zero.

To alleviate the tendency to weight degeneracy we can use alternative proposal distributions which decrease the variance

of the importance weights. For proposals distributions qt(xt |xt−1,yt) which condition only on the previous state xt−1 and

current observation yt, the optimal, in the sense of minimising the variance of the importance weights, proposal can be shown165

6

(Doucet et al., 2000) to be

qt(xt |xt−1,yt) =
pt(xt|xt−1)gt(yt |xt)∫
pt(x̃t|xt−1)gt(yt | x̃t)dx̃t

, (6)

with corresponding unnormalized importance weights

Wt(xt,xt−1,yt) =

∫
pt(x̃t|xt−1)gt(yt | x̃t)dx̃t (=Wt(xt−1,yt)). (7)

Note that in this case the importance weights are independent of the sampled values of the particle proposals.170

For general state space models, sampling from this locally optimal proposal and computing the importance weights can be

infeasible due to the integral in
:::
Eq.

:
(6) and

:::
Eq. (7) not having a closed form solution. However, for the specific case of a state

space model of the form described by and
:::
Eqs.

:
(2)

:::
and (3), the proposal distribution has the tractable form

qt(xt |xt−1,yt) =N
(
xt |Ft(xt−1) +QHT(HQHT +R)−1(yt−HFt(xt−1)),Q−QHT(HQHT +R)−1HQ

)
, (8)

with corresponding importance weights175

Wt(xt,xt−1,yt) =N
(
yt |HFt(xt−1),HQHT +R

)
. (9)

::
To

:::::::
generate

:::::::
samples

::::
from

:::
the

::::::
locally

::::::
optimal

::::::::
proposal

::::::::::
distribution,

::
we

::::::
exploit

::::
that

::
for

:::::::::::::::::::
x̃t ∼N (Ft(xt−1),Q)

:::
and

:::::::::::::::
ỹt ∼N (Hx̃t,R)

::
—

:::
that

::
is
:::::::
(x̃t, ỹt):::::::

sampled
:::::
from

::
the

:::::
joint

:::::::::
distribution

:::
on

:::
the

::::
state

:::
and

::::::::::
observation

:::::
given

:::
the

:::::::
previous

::::
state

:::::
xt−1 :::::

under
:::
the

::::
state

::::
space

::::::
model

::
—

::::
then

:

xt = x̃t +QHT(HQHT +R)−1(yt− ỹt),
:::::::::::::::::::::::::::::::::::

(10)180

:
is
:::::::::
distributed

:::::::::
according

::
to

:::
the

::::::
locally

:::::::
optimal

:::::::
proposal

::::::::::
distribution

::
in
::::

Eq. (8).
::::::::::
Importantly

::::
this

::::::
means

:::
that

::
to

::::
use

:::
the

::::::
locally

::::::
optimal

::::::::
proposal

:::::::::
distribution

:::::
when

:::::::
filtering

:::
we

::::
only

:::::
need

::
to

:::::::::
implement

::::::::
functions

:::
for

::::::::
sampling

:::::
from

:::
the

::::
state

::::::::
transition

::::
and

:::::::::
observation

:::::::
models,

:::
and

::::::::
functions

:::
for

:::::::::
evaluating

:::
the

::::::
matrix

:::::
terms

::
in

:::
Eq. (10)

:
-
:::
that

::
is

:::::
QHT

:::
and

:::::::::::
HQHT +R.

:::::
Note

:::
that

::::::
unlike

:
a
:::::
direct

:::::::::::::
implementation

::
of

::::::::
sampling

:::::
from

:::
Eq.

:
(8)

::
by

:::::::::
performing

::
a
::::::::
Cholesky

::::::::::
factorization

:::
of

:::
the

:::::::
proposal

:::::::::
covariance

:::::::
matrix,

::
we

:::
do

:::
not

::::
need

::
to

::::::::
explicitly

:::::::
evaluate

:::
or

::::
store

::
a

:::::::
dx× dx :::::::::

covariance
::::::
matrix,

::::
and

::::
only

::::
need

:::
to

:::::::
perform

:
a
::::::
O(d3y)

:::::
linear

::::::
solver185

:::
and

::::::::
O(dxdy)

:::::::::::
matrix-vector

::::::::::::
multiplication

::::::
rather

::::
than

:
a
::::::
O(d3x)

:::::::::
Cholesky

:::::::::::::
decomposition.

:::
As

::::
well

::
as

::::::::
reducing

:::
the

::::
time

::::
and

:::::::
memory

:::::::::
complexity

:::
of

:::
the

:::::
linear

::::::
algebra

::::::::::
operations,

:::
this

::::::::
approach

:::::::
reduces

:::
the

:::::::::::::
implementation

::::::
burden

:::
on

::
a

::::
user

:::::::
wishing

::
to

::::
apply

:::
the

::::::
locally

:::::::
optimal

:::::::
proposal,

:::
by

::::::
reusing

::::::::
functions

:::::::
required

:::
for

:::::::::
simulating

:::
the

::::::
forward

::::::
model,

:::
and

:::::::
ensures

:::
any

::::::::::
algorithmic

:::::::::
efficiencies

::::
used

::
in

:::
the

:::::::::::::
implementation

::
of

:::::::::
simulating

:::
the

::::::
forward

::::::
model

:::
are

:::
also

::::::::
leveraged

::
in
::::::::
sampling

::::
from

:::
the

::::::
locally

:::::::
optimal

:::::::
proposal

::::::::::
distribution.

:
190

::
In

::::
both

:::
the

::::::::
bootstrap

:::
and

::::::
locally

:::::::
optimal

::::::::
proposal,

:::
the

::::::::
stochastic

::::::
nature

::
of

:::
the

::::
state

:::::::::
transitions

:::
are

::::::::
essential

::
to

::::::::::
maintaining

:::::::
diversity

::
in

::
to

:::
the

:::::::::
ensemble,

:::::::
ensuring

::::
any

:::::::
particles

:::::::::
duplicated

::
in

:::
the

::::::::
previous

:::::::::
resampling

::::
step

::::
give

:::
rise

::
to
:::::::

distinct
:::::::::
proposals.

:::
For

::::
state

:::::
space

::::::
models

::::
with

::::
state

::::::
update

::::
and

::::::::::
observation

:::::
model

::::::::
described

:::
by

::::
Eqs. (2)

:::
and

:
(3)

:::::::::
specifically,

:::
we

:::
can

:::
see

::::
that

:::
the

:::::::
bootstrap

::::
and

::::::
locally

::::::
optimal

:::::::::
proposals

:::::::
converge

::
to

:::
the

:::::
same

:::::::::
degenerate

::::::::::
distribution

:::::::
δFt(xt−1):::

as
:::
the

::::
state

::::
noise

::::::::
vanishes,

::::
that

:
is
:::::::
Q→ 0.

::::
This

:::::::::
emphasises

:::
the

::::::::::
importance

::
of

:::::
using

::::::::
stochastic

::::
state

:::::::::
dynamics

::
for

:::
the

:
PF

::::::::
algorithms

::::
used

::::
here

::
to

::::::
remain

:::::
valid.

:
195

7

2.2 Resampling

A resampling step similar to the one
::::
vital

:::::
aspect

:::
of

::
all PF

:::::::::
algorithms

::
is

::
the

::::::::::
resampling

::::
step shown in Algorithm ?? is included

in all implementations of PF methodology
:
1. Resampling multiplies particles found at good positions in space that agree with

observations and removes unwanted particles
:
,
:::::::::::
concentrating

::::::::::::
computational

:::::
effort

::
on

:::
the

:::::
more

::::::::
plausible

::::::::
ensemble

::::::::
members. It

is key for establishing analytical theory
:::::
results showing that Monte-Carlo errors in estimates of expectations under the filtering200

distribution are controlled uniformly in time, see, e.g., the standard reference Del Moral (2004). Such a result provides a critical

justification for the powerful performance of PF-based PF
::::::
-based algorithms in many applications.

::::::::::
ParticleDA.jl

::::::::::
implements

::
a

::::::::
systematic

::::::::::
resampling

::::::
scheme

::::::::::::::::::::
(Douc and Cappé, 2005)

:
,
:::::
which

::::
uses

:
a
:::::
single

:::::::
uniform

:::::::
random

:::::
variate

::
to
::::::::
resample

::
all

:::
the

:::::::
particle

::::::
indices.

:

In this paper, we make use of standard multinomial resampling , though more sophisticated options that lead to PFs of205

improved performance are available (Douc and Cappé, 2005). In what follows, we will often show the value of the Effective

Sample Size (ESS),
::
A

:::::
useful

::::::
metric

::
for

:
capturing the variability of the weights before resampling. ESS is defined as follows:

ESSt =

{∑N
i=1w

(i)
t

}2∑N
i=1{w

(i)
t }2

.

ESS is used as a proxy for the number of iid
:
,
:::
and

::::::::
indicating

:::::::
whether

::::::
weight

::::::::::
degeneracy

:::
has

::::::::
occurred,

:
is
:::
the

::::::::
estimated

:
effective

sample size (ESS),
:::::
which

::
is
:::::::
defined

::
as210

ESSt =

{∑N
i=1w

(i)
t

}2∑N
i=1{w

(i)
t }2

.

:::::::::::::::::::

(11)

:::::
where

::::::::
{w(i)

t }Ni=1:::
are

:::
the

:::::::::::
unnormalized

::::::
particle

:::::::::
importance

:::::::
weights.

::::
The

::::::::
estimated ESS

:::::::::::
approximates

:::
the

::::::
number

::
of

:::::::::::
independent

samples that would produce estimates of similar precision
::::::
variance

:
as the ones obtained by the available (correlated) particles.

3 Code Structure
::::::::
structure

As stated
:::::::::
previously

::::::
stated, ParticleDA.jl is designed to be forward model agnostic (i.e. capable of running with arbitrary215

state space forward models). To enable this support the model and filter portions of ParticleDA.jl are carefully delineated. The

main
::::::::
high-level structure of the code is given as follows in Algorithm ??

::::
main

:::::::::::::::::::::::
run_particle_filter

::::::
function

:::::
used

::
to

::::::
perform

:::::::
filtering

::::
with

::
a
::::
state

:::::
space

::::::
model

:::::
given

:
a
::::::::
sequence

::
of

:::::::::::
observations

:::::::::
y1, . . . ,yT ::

is
::::::::::
summarized

::
in

:::::::::
Algorithm

::
2, where

T is the total number of filtering steps. The steps marked with an asterisk (∗) are related to the parallelisation framework and

more details will be given in section ??
:::::::::
observation

:::::
times.

::::::::::
Operations

::::::
which

:::
use

:::::::::::
thread-based

:::::::::
parallelism

:::
are

:::::::
labelled

:::::
with220

:::
(‖).

:::::
When

::::
run

:::::
across

::::::::
multiple

::::::::
processes,

:::::::::
operations

::::::::
involving

::::::::::::::
communication

:::::
across

:::::
ranks

:::
are

:::::::
labelled

::::
with

::::
(↔)

::::
and

:::::
those

:::::
which

::::
only

:::
run

:::
on

:::
the

::::::::::
coordinating

::::
rank

:::
are

:::::::
labelled

::::
with

:::
(◦). Further details on the filter and model components are given as

follows
:::::::
interface

:::
and

::::::::::::
parallelization

:::::::::::::
implementation

:::
are

:::::
given

::
in

:::
the

::::::::
following

:::::::
sections.

8

Algorithm 2 Code Structure of ParticleDA.jl
::::::::::::::::::::::
run_particle_filter

:::::::
function

1: Initialize particles and model data which is defined by the user
:::::
model

2: Initialize filter data which is dependent on the choice of filter type
::::
states

::
(‖)

:

3:
::::::
Initialize

::::
filter

:

4:
::::::
Initialize

::::::::
summary

::::::
statistics

:::
(‖)

5: for time index t= 1 to T do

6: Update the observations of the truth
::::::
Sample

::::::
proposal

:::
and

:::::::
compute

::::::::::::
(unnormalized)

:::::
particle

::::::
weights

:::
for

::::::
current

::::::::
observation

:::
yt ::

(‖)
:

7: Update the particle dynamics
:::::
Gather

::::::
particle

::::::
weights

::::
(↔)

8: Update particle proposals
:::::::
Normalize

::::::
particle

::::::
weights

:::
(◦)

9: Get particle observations
::::::::
Resample

:::::
particle

::::::
indices

:::::::
according

::
to
::::::
weights

:::
(◦)

10: Calculate particle weights
:::::::
Broadcast

::::
new

::::::
particle

:::::
indices

::::
(↔)

11: Gather particle weights* and re-sample Broadcast new sampling indices* and copy particle states
::::
Copy

::::::
particle

::::
states

::::::::
according

::
to

:::
new

::::::
indices

:::
(↔)

12: calculate population statistics*
:::::

Update
:::::::
summary

:::::::
statistics

:::::
(↔,‖)

13:
::::
Write

::::::
outputs

::
(◦)

:

14: end for

3.1 Filter
:::::::
interface

The default parameters for the filter can be altered by passing values within a configurable
::::::::::::
Implementing

:
a
:::::::
filtering

::::::::
algorithm

::
in225

::::::::::
ParticleDA.jl

:::::::
requires

::::::::
providing

::::::::::::::
implementations

::
of

::::
two

::::::::
functions,

:::::::::::::
init_filter

:::
and

::
sample_proposal_and_compute_log_weights!

:
,

::::
with

:::
the

::::::::::::
corresponding

:::::::
methods

:::::::::
dispatched

:::
on

:
a
::::
filter

::::
type

::::::::
argument

::::::
which

::
is

:
a
:::::::
concrete

:::::::
subtype

::
of

:::
the

::::::::::::::::::
ParticleFilter

::::::
abstract

:::::
type.

::::::::::::::
Implementations

:::
are

::::::::
currently

::::::::
provided

:::
for

:::::::
particle

:::::
filters

::::
with

::::::::
bootstrap

:::::::::
proposals

::::
(with

:::::::::::::
corresponding

::::
type

::::::::::::::::::
BootstrapFilter

:
)
:::
and

::::::
locally

:::::::
optimal

::::::::
proposals

::::
(with

::::::::::::
corresponding

::::
type

::::::::::::::::
OptimalFilter

::
).

:::
The

::::::::::::::
init_filter

::::::
method

::::
deals

:::::
with

:::::::::
initializing

::::
any

::::
filter

:::::::
specific

::::
data

:::::::::
structures,

::::::::
including

:::::::::
allocating

:::::
arrays

::
to
:::::

hold230

::
the

:::::::
particle

:::::::
weights,

::::::::::
resampling

::::::
indices

::::
and

::::::::
ensemble

::::::::
summary

::::::::
statistics.

::
A

:::
set

::
of

::::::
shared

::::
filter

::::::::::
parameters

:::
are

::::::
passed

::
to

:::
the

:::::::::::::
init_filter

::::::
method

::
as

:::
an

:::::::
instance

::
of

::
a

::::::::
dedicated

::::::::::::::::::::
FilterParameters

::::
type,

:::::
with

::::::::::
functionality

::::::::
provided

:::
for

:::::::
reading

::::
these

::::::::::
parameters

::::
from

::
a YAML file. Parameters to be set

:::
Key

:::::::::
parameters

:
include the number of particles

::
in

:::
the

::::::::
ensemble,

number of assimilation time steps, I/O options and output file names. When running the particle filter the key setting is the

choice of filtering proposal (Bootstrap or Optimal).
::::
tasks

:::
use

:::::
when

:::::::::
scheduling

:::::::::::
parallelizable

:::::::::
operations

::
in

::::::::::::
multi-threaded

:::::
code235

:::::::
segments

::::
(see

:::::
Sect.

::::
3.3),

:::
the

::::
seed

:::
for

:::
the

::::::
pseudo

:::::::
random

:::::::
number

::::::::
generator

::::
used

::
to

::::::::
generate

::::::
random

:::::::
variates

::::::
during

:::::::
filtering

:::
and

:::
the

:::
file

::::
path

::
to

::::
write

:::::::
filtering

:::::::
outputs

::
to,

::
as

::::
well

:::
as

::::::
options

:::
for

:::::::::
controlling

:::
the

::::::::
verbosity

::
of

:::
the

::::
filter

::::::
output.

:

:::
The

:::
sample_proposal_and_compute_log_weights!

::::::
method

::::::::
provides

::
an

::::::::::::::
implementation

::
of

::::::::::
generating

::::
new

:::::
values

:::
for

::
an

::::::::
ensemble

::
of

:::::::
particles

::::
from

:::
the

::::::::
proposal

:::::::::
distribution

:::::::::
associated

::::
with

::
the

:::::
filter

:::
type

::::
and

:::::::::
computing

::
the

::::::::::::
corresponding

:::::::::::
unnormalized

:::::::
particle

:::::::
weights

::
(in

:::::::::
particular

::::
their

:::::::::
logarithms

:::
to

:::::::
maintain

:::::::::
numerical

::::::::
stability),

::::::::::::
corresponding

::
to
:::::::::::

respectively240

::::
lines

:
4
::::
and

:
5
::
in

:::::::::
Algorithm

::
1.

:::
As

:::::
hinted

:::
by

::
the

::::::::
presence

::
of

::
an

::
!

::::
suffix

::
in

:::
the

:::::::
function

::::::
name,

:
a
:::::::::
convention

::
in

::::
Julia

:::
for

:::::::::
indicating

9

:::::::
Function

::::
name

:::::::::
Description

:::::::::::::::::::::
get_state_dimension

:::
Get

::::
value

::
of

::
dx:

:::::::::::::::::::::::::::
get_observation_dimension

:::
Get

::::
value

::
of

::
dy:

:::::::::::::::::::::::
sample_initial_state!

::::::
Sample

::::::::
x0 ∼ p0(·):

::::::::::::::::::::::::::::::::::
sample_observation_given_state!

::::::
Sample

:::::::::::
yt ∼ gt(· | xt)

::
get_log_density_observation_given_state

:::
Get

::::
value

::
of

:::::::::::
loggt(yt | xt):

:::::::::::::::::::::::::::::
update_state_deterministic!

}
Sample xt ∼ pt(· | xt−1)

::::::::::::::::::::::::::
update_state_stochastic!

::::::::::::::::::::::::::::::::::::
get_observation_mean_given_state!

:::
Get

::::
value

::
of

::::
Hxt: :

?
:

::::::::::::::::::::::::::::
get_covariance_state_noise

:::
Get

::::
value

::
of

::::
Qi,j :

?
:

:::::::::::::::::::::::::::::::::::
get_covariance_observation_noise

:::
Get

::::
value

::
of

::::
Ri,j :

?
:

:::
get_covariance_state_observation_given_previous_state

:::
Get

::::
value

::
of

:::::::
(HQ)i,j :

?
:

::
get_covariance_observation_observation_given_previous_state

:::
Get

::::
value

::
of

:::::::::::::
(HQHT +R)i,j :

?
:

Table 2.
:::::::
Summary

::
of

::::
main

:::::::
functions

::::::
defining

:::::
model

:::::::
interface.

::::::::
Functions

:
in
::::
rows

::::::
marked

:
?
::::
only

::::::
required

::::
when

:::::
using

:::::
locally

::::::
optimal

:::::::
proposal.

:::::::
functions

::::::
which

::::::
mutates

::::
one

::
or

::::
more

::
of

::
its

::::::::::
arguments,

::
the

:::
sample_proposal_and_compute_log_weights!

:::::::
function

::::::::
computes

:::
the

::::::
updates

:::
to

:::
the

:::::
arrays

:::::::::::
representing

:::
the

::::::
particle

:::::
states

::::
and

:::::::
weights

::
in

:::::
place.

::::
The

:::::::
proposal

:::::::::
generation

::::
and

::::::
weight

::::::::::
computation

:::::
stages

:::
are

:::::::::
combined

::::
into

:
a
:::::
single

::::::
rather

::::
than

:::
two

:::::::
separate

:::::::::
functions,

::
to

:::::
allow

:::
the

::::
filter

::::::::::::::
implementation

::
to

:::::
avoid

::::::::
redundant

:::::::::::
computations

:::
of

::::::::
quantities

:::::::
required

::
in

::::
both

::::::::
sampling

:::
the

:::::::::
proposals

:::
and

:::::::::
computing

:::
the

:::::::
weights.

::::
For

::::::::
example,

::::
both245

::
the

::::::
locally

:::::::
optimal

:::::::
proposal

::::::::::
distribution

::
in

:::
Eq.

:
(8)

:::
and

::::::::::::
corresponding

:::::::
weights

::
in

:::
Eq. (9)

::::::
require

:::
the

:::::
values

::
of

:::
the

::::::::
particles

::::
after

::
the

:::::::::::
deterministic

::::::
update

:::
Ft :::

but
:::::
before

:::::::
addition

:::
of

:::
the

::::
state

:::::
noise.

3.2 Model

By construction the model set up will be defined by the user. The current implementation provides a template for model

integration. However, one of the key commonalities across forward model integrations will be the definition of model noise.250

At present the model noise is generated from realisations of Gaussian Random Fields, ParticleDA. jl makes use of the

GaussianRandomFileds. jl package for this. The user is required to define the choice of covariance kernel and

3.2
:::::

Model
::::::::
interface

::
To

:::::::
support

:::::::
filtering

::
in

::::::
general

::::
state

:::::
space

:::::::
models

:::::
while

:::
still

::::::::
allowing

:::::
filters

::
to

::::::
exploit

:::::::::
additional

:::::::
structure

::
in

:::
the

::::::
model

:::::
when

::::::
present,

:::
we

::::::
define

:::
an

::::::::
extensible

::::::
model

::::::::
interface,

:::::
with

:
a
::::

core
:::

set
:::

of
::::::::
functions

::::::::
requiring

:::::::::::::
implementation

:::
for

:::
all

:::::
state

:::::
space255

::::::
models,

::::
with

::::::
model

::::::
classes

::::
with

:::::::::
additional

:::::::
structure

::::
able

::
to
::::::

extend
::::
this

::::
core

::::::::
interface.

::
In

::::::::
particular

:::
we

::::::
exploit

::::
this

::::::::
approach

::
for

:::::::::::
conditionally

::::::::
Gaussian

:::::
state

:::::
space

::::::
models

::::::
having

:
a
:::::
state

:::::
update

::::
and

::::::::::
observation

::::::
models

::
of

:::
the

:::::
form

::::::::
described

:::
by

:::
Eq. (2)

:::
and

:::
Eq. (3)

::::::::::
respectively,

::
to

:::::
allow

:::::::
filtering

:::::
using

::
the

::::::
locally

:::::::
optimal

:::::::
proposal

::::::::::
distribution

::
in

:::
Eq. (8).

:::::
Table

::
2

::::::::::
summarizes

::
the

::::
key

:::::::
functions

::::::::
requiring

:::::::::::::
implementation

::::
both

::::::
within

:::
the

::::
core

:::::::
interface

:::
for

::::::
general

:::::
state

::::
space

:::::::
models,

::::
and

::
for

:::
the

::::::::
restricted

:::::
class

::
of

10

::::::
models

:::
for

:::::
which

:::
the

::::::
locally

:::::::
optimal

:::::::
proposal

::::
can

::
be

:::::::
applied,

:::::
along

::::
with

:
a
:::::

brief
:::::::::
description

::
of

:::::
what

:::::::::
operations

::::
they

:::::::
perform260

::
in

:::
the

::::::::
notation

::
of

::::
Sect.

::
2.

:

:
A
::::

key
::::
pair

::
of

::::::::
functions

:::
in

:::::
Table

::
2

:::
are

:::::::::::::::::::::::::::::::::
update_state_deterministic!

:::
and

:::::::::::::::::::::::::::::
update_state_stochastic!

:
,

:::::
which

:::
for

::::::
general

:::::
state

:::::
space

::::::
models

:::::
when

::::::
applied

:::
in

:::::::
sequence

::::::::::
correspond

::
to

::::::::
sampling

::::
from

::::
the

::::
state

::::::::
transition

::::::::::
distribution

::::::::::::::
xt ∼ pt(· | xt−1),

:::::
while

:::
for

::::::
models

:::::
with

::::
state

::::::
updates

:::
of

:::
the

::::::
specific

:::::
form

::
in

:::
Eq.

:
(2)

:
,
:::::::::
correspond

::::::::::
respectively

::
to

::::::::
updating

:::
the

::::
state

::
by

::::::::
applying

:::
the

:::::::::::
deterministic

:::::::
forward

::::::::
operator

::
Ft::::

and
:::::::::::
incrementing

:::
by

::
a

::::
state

:::::
noise

:::::
vector

:::::::::::::
ut ∼N (0,Q).

::::::
While

:::
the265

::::
state

:::::::::
transitions

::
for

:::::::
general

::::
state

:::::
space

::::::
models

::::
may

:::
not

::::::
factor

:::
into

::
a
::::::::::
composition

::
of

:::::::::::
deterministic

::::
and

::::::::
stochastic

:::::::
updates,

::::
full

::::::::
generality

::
is

:::
still

::::::::::
maintained

::
as

:::::::::::::::::::::::::::::::::
update_state_deterministic!

::
can

:::::
leave

:::
the

::::
state

::::::
vector

:::::::::
unchanged

:::::::::::::
(corresponding

::
to

::
an

::::::
identity

:::::::::
operation)

::::
with

:::::::::::::::::::::::::::::
update_state_stochastic!

:::
then

:::::
solely

::::::::::
responsible

:::
for

:::::::
sampling

:::::
from

:::
the

::::
state

::::::::
transition

::::::::::
distribution.

::
As

::::
well

:::
as

::::::::
providing

:::::::::::::
implementation

:::
of the associated parameters. For a Matérn covariance kernel this will include: the270

length scale (λ), the smoothness (µ) and the standard deviation (σ). The number of observations and the indices of the observed

variables within a multiple dimensional state space model are needed. The locations of the observation stations can be passed

within a simple .txt file. The observations can come from an online integration of the state space model or read in from

file/sensor.
:::::::
function

::
in

:::::
Table

::
2,
:::::::
models

:::
are

:::::::
required

::
to
::::::::::

implement
::
an

:::::::::::
initialization

:::::::
function

::::::
which

::
is

::::::
passed

::
to

:::
the

::::::::
top-level

:::::::::::::::::::::::
run_particle_filter

:::::::
function

::::
and

::::
used

::
to

::::::::
initialize

::
an

::::::::
instance

::
of

:::
the

::::::
model

::::
data

:::::::
structure

::::
type

:::
the

::::::
model

::::::::
interface275

:::::::
functions

:::
are

::::::::::
dispatched

:::
on.

::::
This

::::::::::
initialization

::::::::
function

:
is
::::::
passed

::
a
::::::::
dictionary

:::
of

:::::
model

:::::::
specific

::::::::
parameter

::::::
values

::::
read

::::
from

::
a

::::::
YAML

:::
file,

::::
and

::
the

:::::::
number

::
of

:::::
tasks

:::
that

::::
may

::
be

:::::::::::::
simultaneously

::::::::
scheduled

:::::
when

:::::::
running

:::::
model

::::::::
functions

::
in

:::::::
parallel

:::
(see

:::::
Sect.

::::
3.3),

:::::::
allowing

:::
the

::::::::::
assignment

::
of

:::::::
per-task

::::::
buffers

:::
for

:::
use

::
in

:::::::::
computing

::::::::::
intermediate

::::::
results

:::::
while

:::::::::
remaining

:::::::::
thread-safe.

:

3.3 Parallelisation scheme

As each particle update and (unnormalized)weight calculation can be computed independently, many of the steps in Algorithm ??280

can be performed in parallel. Both

3.3
::::::::::::

Parallelization
:::::::
scheme

::
As

:::::
stated

::::
both

:
shared and distributed memory parallelisation approaches are

:::::::::::
parallelization

::::::::::
approaches

:::
can

::
be leveraged within

ParticleDA.jl
:
,
::
to

::::::
exploit

::::
both

::::::::
multiple

:::::::::
processing

:::::::
elements

:::::::
sharing

:::::::
memory

:::
on

:
a
:::::
single

:::::
node

:::
(for

::::::::
example central processing

unit (CPU)
:::::
cores)

:::
and

:::::::
multiple

::::::
nodes

::::::::::
(potentially

::::
each

::::
with

:::::::
multiple

::::::::::
processing

::::::::
elements)

::
in

::
a
::::::
cluster. Particle and weight285

updates are parallelised
::::::::::
parallelized across multiple threads on shared memory systems using the native @threads macro

::::::::
task-based

::::::::::::::
multi-threading

::::::
support

:
in Julia. In distributed memory environments ParticleDA.jl uses the library through the

:::::
allows

:::::::::::
parallelizing

:::::
across

::::::::
processes

::::::
(ranks)

::::
with

:::::::::::::
communication

:::::::
between

::::::::
processes

:::::::::
performed

:::::
using

:::
the

::::
Julia

:::::::
package

:
MPI.jl

Julia library (Byrne et al., 2021), which
:::
acts

:::
as

:
a
:::::::
wrapper

::::::
around

::
a message passing interface (MPI)

::::::::::::
implementation

::::::::
installed

::
on

:::
the

:::::::
system.

:::::
MPI.jl

:
has been found by Giordano et al. (2022) to have

::
to

::
be

::::
able

::
to

:::::::
achieve little to no overhead in applica-290

tions with thousands of MPI ranks . Input and outputs (I/O) in MPI
:::::
ranks

:::::::::::::::::::
(Giordano et al., 2022).

:
ParticleDA.jl are supported

through the
:::
uses HDF5 library and are carried out on the master

:::
files

:::
for

:::
file

:::::
based

::::
input

:::
(of

:::
the

::::::::
observed

:::
data

:::::
used

::
for

::::::::
filtering)

11

Rank 0

Task 0

Particle 0 Particle 1

Task 1

Particle 2 Particle 3

Task 2

Particle 4 Particle 5

Task 3

Particle 6 Particle 7

Rank 1

Task 0

Particle 8 Particle 9

Task 1

Particle 10 Particle 11

Task 2

Particle 12 Particle 13

Task 3

Particle 14 Particle 15

Rank 2

Task 0

Particle 16 Particle 17

Task 1

Particle 18 Particle 19

Task 2

Particle 20 Particle 21

Task 3

Particle 22 Particle 23

Figure 1.
:::::::::
Visualization

::
of
:::

the
:::::::::

hierarchical
:::::::::::

parallelization
::::::

model
::
in

::::::::::
ParticleDA.jl

::
for

:::
an

:::::::
example

:::
case

:::::
where

:::::::
updates

::
to

::
24

:::::::
particles

:::
are

::::::::
distributed

:::::
across

:
3
:
MPI

:::::
ranks.

::::
Each

::::
rank

::::
splits

:::
the

::::::
particles

:::::
across

::
4
::::
tasks,

::::
with

::::
these

:::::
tasks

:::::::
scheduled

::
to

:::
run

::
in

::::::
parallel

:::::
across

:
2
::

or
:::::

more

:::::
threads

::
on

::::
each

::::
rank.

Rank 1:R-1

Rank 0

Sample proposals &
compute weights

Gather
weights

Broadcast
indices

Copy
states

Update
statistics

Sample proposals &
compute weights

Gather
weights

Normalize
weights

Resample
indices

Broadcast
indices

Copy
states

Update
statistics

Write
outputs

Figure 2.
:::
An

:::::::
overview

::
of

:::
how

:::
the

:::
key

:::::
stages

:
in
:::

the
::::::
filtering

::::
loop

:::
are

::::::::
distributed

:::::
across

::
R

::::
ranks

::
in

::::::::::
ParticleDA.jl.

::::
Rank

::
0
:
is
:::

the
::::::::::
coordinating

:::
rank

:::::
which

:::::::
mediates

::::::::::::
communication

::::
across

:::::
ranks

:::
and

:::::::
performs

:::
file

::::
input

:::
and

:::::
output.

::::::
Shaded

:::::
nodes

::::::
indicate

:::::
stages

:::::
which

::
are

:::
run

::
in

::::::
parallel

::::
across

:::::::
multiple

::::::
threads

::
on

::::
each

::::
rank.

:::::
Edges

::::::
between

:::::
nodes

::::::
indicate

:::::
stages

::::
which

::::::
involve

::::::::::::
communication

:::::
across

:::::
ranks.

:::
and

::::::
output

:::
(of

:::::::
statistics

::::::::
computed

::::::
during

::::::::
filtering),

:::::
using

:::
the

::::::::
HDF5.jl

::::
Julia

::::::::
package;

:::::
when

::::::
running

:::
in

:::::::::
distributed

::::::
setting

:::
file

::::::::::
input-output

::
is

:::::::::
performed

::::
only

::
on

:
a
::::::
single

::::::::::
coordinating

:
rank.

The distributed parallelisation scheme is sketched out in Figure ??. The principle is simply to keep the large295

12

::
An

::::::::::
illustration

::
of

::::
how

::::::::::
per-particle

:::::::::
operations

:::
are

:::::::::
distributed

::
in

:::
the

::::::::
two-level

::::::::::::
parallelization

::::::
scheme

::
is
:::::::::
illustrated

::
in

::::
Fig.

::
1.

::::
Each

:
MPI

::::
rank

::
is

:::::::
assigned

:::
an

:::::
equal

:::::::::
proportion

:::
of

:::
the

:::::
total

::::::
number

:::
of

:::::::
particles

:::
in

:::
the

:::::::::
ensemble.

::::::
Within

:::::
each MPI

::::
rank,

::::::::
operations

::::::
which

:::
can

:::
be

:::::::::
parallelized

::::::
across

:::::::
particles

:::
are

:::::::::
scheduled

::::::
across

:::::::
multiple

::::
tasks

::::
each

::::::::
associated

::::
with

::
a
:::::
subset

:::
of

:::
the

:::::::
particles

:::::::
assigned

::
to

:::
the

:::::
rank.

:::
The

:::::
tasks

:::
are

:::
run

:::::::::::::
simultaneously

:::::
across

:::::::
multiple

:::::::
threads,

::::
with

:::
the

::::::::
flexibility

::
in
:::::::
number

::
of

:::::
tasks

:::
per

::::
rank

:::::::
allowing

:
a
:::::

trade
:::
off

:::::::
between

::::::::
improved

::::
load

::::::::
balancing

::::::
across

:::::::::
processing

::::::::
elements

::
on

::
a

::::
rank

::
by

::::::
having

:::::::
multiple

:::::
tasks300

::::::::
scheduled

:::
per

:::::::
parallel

::::::
thread,

:::
and

:::
the

::::::::
increased

::::::::
overhead

:::::::
involved

::
in

:::::::::
scheduling

:::::
more

:::::
tasks.

:
A
::::::

sketch
:::

of
:::
the

::::
key

:::::::::
operations

::
in

:::
the

:::::
main

:::::::
filtering

:::::
loop

:::
and

:::::
how

::::
they

:::
are

:::::::::
distributed

::::::
across

::::::::
multiple

:::::
ranks

::
is

::::::
shown

::
in

:::
Fig.

:::
2.

::
A

:::
key

::::::::
principle

::
is
:::

to
::::::
reduce

::
as

:::::
much

:::
as

:::::::
possible

:::
the

:::::::::::
requirement

::
to

:::::::::::
communicate

::::
the

:::
full

:
particle state vectors

distributed to MPI ranks , only copying them
:::::::
between

:::::
ranks.

::::::::
Particles

::::::
remain

:::::
local

::
to

:::::::
specific

::::
ranks

:::
for

:::
all

:::::::::
operations

:::::
other

:::
than

:::::
when

:::::::
copying

:::::
states

::
as
::::

part
::
of

:::
the

::::::::::
resampling

::::
step,

::::
with

::::
this

:::
step

:::::::::
potentially

::::::::
requiring

::::::::
particles

::::
with

::::
large

::::::
weight

::::::
which305

::
are

:::::::::
duplicated

:::::
after

:::::::::
resampling

::
to

:::
be

::::::
copied point-to-point when required by particle duplication, and use quantities derived

from the local particle ensemble in global communications. The parallel algorithm requires three global steps: a Gather of

particle weights, a Scatter of particle indices (one integer per particle) and a Reduction of population statistics , highlighted by

asterisks in Algorithm ??. The gather andscatter communicate one floating point and integer number per particle, respectively.

The Reduction is performed on the state vectors, the output being the size of a single state vector per rank. The mean of states310

is a simple sum reduction, implemented in the MPI library.
:
to

:::::
other

:::::
ranks.

::::::::::::::
Communication

:::::::
between

:::::
ranks

::
is
::::

also
::::::::

required

::::
when

::::::::
gathering

:::
the

::::::::::::
unnormalized

::::::
particle

:::::::
weights

::
to

:::
the

:::::::::::
coordinating

::::
rank

::
to

:::::
allow

::::::::::::
normalization

:::
and

:::::
when

:::::::::::
broadcasting

:::
the

::::::::
resampled

:::::::
particle

::::::
indices

::::
from

:::
the

:::::::::::
coordinating

::::
rank

::
to

:::::
other

:::::
ranks,

::::::::
however

::::
these

:::::::::
operations

::::
only

::::::
require

:::::::::::::
communicating

::
a

:::::
single

:::::
scalar

:::
per

:::::::
particle.

We have implemented several reductions for the variance of states. By default,
:::::::::::::
Communication

:::::::
between

::::::
ranks

::
is

::::
also315

:::::::
required

:::::
when

:::::::::
computing

::::
any

::::::::
summary

::::::::
statistics

::
of

:::
the

:::::::::
estimated

:::::::
filtering

:::::::::::
distributions

::
at

::::
each

:::::
time

:::::
index.

::::::::::::
ParticleDA.jl

:::::::
currently

::::::::
supports

:::::::::
estimating

:::
the

:::::
mean

::::
and,

:::::::::
optionally,

::::
the

:::::::
variance

::
of

::::
the

:::::::
filtering

::::::::::
distributions

:::
for

:::::
each

::::
state

::::::::::
dimension,

::::
with

:
a
::::::::
summary

:::::::
statistic

::::
type

::::::::
argument

::
to

:::
the

:::::::
top-level

::::::::::::::::::::::::
run_particle_filter

:::::::
function

:::::::
allowing

:::::::::::
specification

::
of

::::::
which

:::::::
summary

::::::::
statistics

:::
to

::::::::
compute.

::::::::
Sufficient

::::::::
statistics

::
of

:
the variance is reduced as a custom reduction that only requires a

single global communication step and computes the sum and sum of squares within the reduction. For a discussion on the320

implementation in
::::
local

::::::::
particles

::
for

:::
the

:::::::
relevant

::::::::
summary

::::::::
statistics

:::
are

::::::::
computed

:::
on

::::
each

:::::
rank,

::::::
before

::::
these

:::::
local

::::::::
sufficient

:::::::
statistics

:::
are

::::::::::
accumulated

:::
on

:::
the

::::::::::
coordinating

::::
rank

:::::
using

::
an

:
MPI

:::::
reduce

::::::::
operation

:::
and

::::
used

::
to

::::::::
compute

::
the

::::::::
statistics

::
of

:::::::
interest.

:::
For CPU

::::::::::
architectures

:::
for

::::::
which

:
MPI.jl , see Byrne et al. (2021). Custom reductionsare currently not supported by MPI.jl

on all CPU architectures,
::::::
supports

:::::
using

:::::::
custom

:::::::::
reductions1therefore we also provide a variance reduction using native sum

reductions and a single communication step. However, this algorithm can be numerically unstable for large ensembles or325

state components with large values. The reduction becomes the main bottleneck when scaling up, we discuss the performance

impacts in Section ??.
:
,
:
a
:::::

more
:::::::::::

numerically
:::::
stable

::::::::
‘pooled’

::::::::
algorithm

::::::::::::::::
(Chan et al., 1982)

::
is

::::
used

:::
for

:::::::::
computing

::::
the

:::::
mean

:::
and

:::::::
variance

::::::::
(adapting

:::
the

::::::::
example

::::
code

:::::
given

::
in

:::::::::::::::
Byrne et al. (2021)

::
);

::::::::::::::
implementations

::
of

:::
the

:::
less

::::::::::
numerically

::::::
stable

::::::
‘naive’

1https://github.com/JuliaParallel/MPI.jl/issues/404.

13

https://github.com/JuliaParallel/MPI.jl/issues/404

Figure 3. rmse in particle filter estimates of filtering distribution means and (log) variances against number of particles for the damped

simple harmonic oscillator model. The compute rmse
:::::
values

::
are

::::::::
calculated

::::::
against

:::::
ground

::::
truth

:::::
values

::::::::
computed

::::
using

::
a

::::::
Kalman

::::
filter

:::
and

::
are

::::::::
computed

::
for

:
the mean of the squared errors across all state components and time steps.

:::::::::
algorithms

:::::
which

::::::
directly

:::::::::::
accumulates

::
the

::::
sum

:::
and

::::
sum

::
of

:::::::
squares,

:::::
which

:::
can

:::
be

::::::::
performed

:::::
using

:::::::
standard

:
MPI

:::
sum

:::::::::
reductions,

::
are

::::
also

::::::::
provided

::
as

:
a
:::::::
fallback

:::
for

:::::::
running

::
on

:::::
other CPU

::::::::::
architectures.

:
330

A sketch of the parallelisation framework in ParticleDA.jl. Serial operations are represented by red boxes, and the communication

operations by blue boxes. Each rank updates particle states and weights independently. The communication between parallel

processes requires three global communication steps and a point-to-point communication step. The impact on performance is

discussed in Section ??.

4 Stochastically driven damped simple harmonic oscillator335

As a tractable first test case we consider a two-dimensional state space model corresponding to the time discretisation
:::::::::::
discretization

of a stochastic differential equation

dx(tτ
:
) =

 0 1

−ω2
0 −ω0/Q

x(tτ
:
)dtτ

:
+

0

1

dW (tτ
:
),

representing a damped simple harmonic oscillator driven by a Wiener noise process W (t)
:::::
W (τ),

:::::
with

::
τ

:::
the

:::::::::::
(continuous)

::::
time

:::::::::
coordinate,

:::
ω0 :::

the
::::::::
frequency

:::
of

:::
the

:::::::::
undamped

::::::::
oscillator

:::
and

::
Q

::
a

::::::
quality

:::::
factor

:::
for

:::
the

::::::::
oscillator. This process has been

proposed as a model for astronomical time series data (Foreman-Mackey et al., 2017), with details of its formulation as a state

space model given in Jordán et al. (2021). Importantly, the state space model is linear-Gaussian and so we can use a Kalman

filter to exactly compute the true Gaussian filtering distributions.340

14

We use an instance of the model with parameters ω0 = 1 , Q= 2. and time discretisation step δt= 0.2
:::
and

::::::
Q= 2. We

assume an observation model yt ∼N (xt,σ
2I) with σ = 0.5

:::::::::::::::
yt ∼N (xt,0.5

2I),
::::
with

::::::::::::
xt = x(0.2t)

::::
(that

::
is

:
a
:::::
fixed

::::
time

::::
step

:::
0.2

:::::::
between

:::::::::
observation

::::::
times),

:
and simulate observations from the model for T = 200 time steps with initial state distribution

x0 ∼N (0, I). Figure
:::
Fig.

:
3 shows the root mean squared errors (RMSEs) in particle filter estimates of the means and log-

variances of the Gaussian filtering distributions (compared to ground truth values computed using a Kalman filter), as a function345

of the number of particles used in the ensemble, for filters using both the bootstrap and locally optimal proposal. We see that

the locally optimal proposal gives a small but consistent improvement in RMSE for a given ensemble size, reflecting the lower

variance in the empirical estimates to the filtering distributions. As expected the errors in the filter estimates appear to be

asymptotically tending to zero at a polynomial rate in the ensemble size, providing some assurance of the correctness of the

ParticleDA.jl filter implementations.350

5 Lorenz ’63
::::::
system

The Lorenz ’63 model

:::
The

:::::::
Lorenz

::::::
system

:
was introduced by Lorenz (1963) and is a nonlinear dynamical model which has been used to test

data assimilation methods. The system consists of three nonlinear differential equations which capture a
::::::::
non-linear

:::::::::
dynamical

:::::
model

:::::::::
capturing

:
simplified representation of thermal convection. The differential equations are as follows:355

:::::
model

:::
is

::::::
defined

:::
by

:::
the ODE

:::::
system

:

dx1(τ)

dτ
= σ(x2(τ)−x1(τ)),

:::::::::::::::::::::::

dx2(τ)

dτ
= ρx1(τ)−x2(τ)−x1(τ)x3(τ),

:::::::::::::::::::::::::::::::::

dx3(τ)

dτ
= x1(τ)x2(τ)−βx3(τ),

::::::::::::::::::::::::::

(12)

where x1(t),x2(t) and x3(t)
::
τ

:
is
:::
the

::::
time

::::::::::
coordinate,

::::::::::
x1(τ),x2(τ)

::::
and

:::::
x3(τ)

:
are the prognostic variables of the model and σ,

ρ and β are the free parameters. As outlined by Lorenz (1963) we have set the free parameters to σ = 10, ρ= 28 and β = 8
3 as

this set up will lead to chaotic behaviour.360

The system is simulated for T = 500 time steps and with a time step size
::
To

::::::::
formulate

:::
as

:
a
::::
state

::::::
space

:::::
model

::::
with

:::::
state

::::::::
transitions

:::
of

:::
the

::::
form

::::::::
described

:::
by

:::
Eq.

:
(2)

:
,
::
we

:::
set

:::
Ft::

to
:::
the

::::
flow

::::
map

::::::::::::
corresponding

::
to

::::::::::
numerically

:::::::
solving

:::
the

:::::
initial

:::::
value

:::::::
problem

::
for

:::
the

:
ODE

::::::
system

::
in

:::
Eq.

:
(12)

::::
over

:
a
:::::
fixed

::::::::::::::
inter-observation

::::
time

::::::
interval

:
of 0.1 s. The state variables are assimilated

at each time step. The observation noise standard deviation is set to 0.1 and the state noise standard deviation is 0.5
:::
time

:::::
units

::::
such

:::
that

:::::::::::::::::::::::::::::
xt = (x1(0.1t),x2(0.1t),x3(0.1t))

::::
and

:::
use

:::::::
additive

::::::::
isotropic

::::
state

:::::
noise

::::
with

::::::::::
covariance

:::::::::
Q= 0.52I .

::::
The

:::::::
Tsit5365

:::::
solver

::::
with

:::::::
adaptive

:::::::::::
time-stepping

:::::
from

:::
the

::::
Julia

:::::::
package

:::::::::::::::::::
DifferentialEquations.jl

::::::::::::::::::::::::
(Rackauckas and Nie, 2017)

:
is

::::
used

::
to

:::::
solve

::
the

:
ODE

:::::
system. The initial conditions of both the observations run and particles are drawn from an initial state distribution

x0 ∼N (0,σ2I) with σ = 0.5. Fig. ?? showcases
:::
state

::::::::::
distribution

::
is

::::
taken

::
to
:::
be

:::::::::::::::
x0 ∼N (0,0.52I).

:::
We

:::::::
assume

::
an

::::::::::
observation

:::::
model

:::::::::::::::::
yt ∼N (xt,0.1

2I)
:::
and

:::::::
simulate

:::::::::::
observations

:::
for

:::::::
T = 500

:::::
times

::::
from

:::
the

::::::
model

::
to

:::
use

:::
for

:::::::
filtering.

:

:::
Fig.

::
4
::::::::
illustrates

:
the performance of an ensemble of a

::::::::
filtering

:::
run

::::
with

:
N = 20 particles

::
on

:::
the

:::::::::
simulated

:::::::::::
observations370

using the locally optimal proposal. The left subplot of Fig. ?? shows the observations and
:::::
shows the

::::::
(noisy)

::::::::::
observations

::::
and

::::::::
estimated mean of the particles

::::::
filtering

:::::::::::
distributions

:
at each of the time steps

:::::::::
observation

:::::
times, note the appearance of the

15

:

Figure 4. Left: Mean of the particles and the observations at each time step in state space. Right: The estimated ESS at each time step.

Lorenz attractor. The right subplot of Fig. ?? is the
:::::
shows

:::
the

:::::::
variation

::
in

:::
the estimated ESSat each time step of the simulation,

where the at time index t is estimated as
(∑N

i=1w
(i)
t

)2
/
∑N

i=1

(
w

(i)
t

)2
with {w(i)

t }Ni=1 the unnormalized particle importance

weights
:
,
::
as

::::::
defined

::
in
::::

Eq. (11)
:::::
during

:::
the

:::::::
filtering

:::
run. The estimated ESS remains close to the number of particles (N = 20)375

for the duration of the simulation therefore
::::::
filtering

::::
run

::::::::
indicating

:
particle degeneracy has been avoided. The distributions of

the particle states were observed to showcase some non-Gaussian characteristics with absolute skewness values of 1.1.

6 Tsunami Modelling
:::::
model

One of the built-in test cases in ParticleDA.jl focuses on tsunami modelling
:::
As

:
a
:::::
more

:::::::
complex

::::
test

::::
case,

:::
we

::::
now

::::::::
consider

:
a
:::::::
tsunami

:::::::::
modelling

:::::::
example. Tsunamis are rare events which have the capacity of causing severe loss of life and damages.380

At present, tsunami warning centres rely on crude decision matrices, pre-computed databases of high resolution simulations

or ‘on-the-fly’ real time simulations to rapidly deduce the hazard associated with an event (Gailler et al., 2013). These exist-

ing approaches have been developed with seismically generated tsunamis in mind and the alternative tsunamigenic sources

(landslide and volcanic eruptions) are less well constrained. The ongoing efforts of incorporating data assimilation techniques

within tsunami modelling could augment a warning centres capability in this regard (Maeda et al., 2015; Gusman et al., 2016).385

It should be noted that the tsunami model built into ParticleDA.jl is a drastic simplification to industry used tsunami models

::::::
tsunami

:::::::
models

::::
used

::
in

::::::::::
operational

:::::::
practice but provides a useful test case for users and showcases the potential of particle

filters within tsunami modelling efforts. Further, it allows for direct validation with a Kalman filter as the model is linear and

Gaussian
:::::::
resulting

::::
state

:::::
space

::::::
model

::
is

:::::::::::::
linear-Gaussian.

To
::
As a first order approximationthe linear

:
,
::::::::::::::
two-dimensional

:::::
linear

:::::::::
long-wave

::::::::
equations

:::::::::::
(Goto, 1984),

::::::::::::
corresponding

::
to

::
a390

::::::::::
linearization

::
of

:::
the

:
shallow water equations

:
, are used to capture the tsunami dynamics. The forward model

::::::::
Assuming

:
a
:::::

state

::::
space

::::::
model

::::
with

::::
state

:::::::::
transitions

:::
of

:::
the

::::
form

::::::::
described

::
in
::::
Eq. (2),

:::
the

:::::::
(linear)

:::::::::::
deterministic

::::::
forward

::::::::
operator Ft(xt) for the

16

test case is therefore an inbuilt solver of the linear shallow water equations:
::::::
defined

::
by

::::::::::
numerically

:::::::
solving

::
the

:
PDEs

∂η(τ,s1,s2)

∂τ
=−∂u(τ,s1,s2)

∂s1
− ∂v(τ,s1,s2)

∂s2
,

∂u(τ,s1,s2)

∂τ
=−gh(s1,s2)

∂η(τ,s1,s2)

∂s1
,

∂v(τ,s1,s2)

∂τ
=−gh(s1,s2)

∂η(τ,s1,s2)

∂s2
, (13)

where η(s1,s2) is the
::
τ

::
is

:::
the

::::
time

::::::::::
coordinate,

::::::
(s1,s2)

:::
are

::::
the

:::::
spatial

:::::::::::
coordinates,

:::::::::
η(τ,s1,s2)

::
is
::::

the free surface elevation395

(wave height), h(s1,s2) is the
::::::
(static) water depth, g

:
g
:
is the acceleration due to gravity and u = (u,v) are the

:::::::::
u(τ,s1,s2)

::::
and

:::::::::
v(τ,s1,s2)

:::
are

:::
the

::::::::::
components

::
of

:::
the

:
depth averaged horizontal velocities. Eqs. ?? are

:::
The

::::::
system

::
of

:::::
linear

:
PDEs

::
in

:::
Eq. (13)

:
is
:
solved using a first order finite difference scheme which is based on TDAC (Maeda et al., 2015)

::::
with

:::::::::
absorbing

::::::::
boundary

:::::::::
conditions,

:::::
using

:
a
::::
Julia

:::::::::::::::
reimplementation

::
of

:::
the

:
tsunami data assimilation code (TDAC)

:::::::::::
accompanying

::::::::::::::::::
Gusman et al. (2016)

.400

6.1 Validation

The experimental set-up consists of
:::
The

:::::
state

:::::
vector

:::
xt ::

is
::::::
defined

::
as

:::
the

::::::::::::
concatenation

::
of

:::
the

::::::::
flattened

::::::
vectors

::::::
formed

:::
by

:::
the

:::::
spatial

::::::::::::
discretizations

::
of

:::
the

:::::
fields

::
η,

::
u

:::
and

::
v

::
on

:
a
:::::::
51× 51

:::::::
uniform

::::
grid

::::
over

:
a
::::::
square

::::::
spatial

::::::
domain

:::::::::::::::::::::
[0,2× 105]× [0,2× 105]

::::::::
(resulting

::
in

::
an

::::::
overall

::::
state

:::::::::
dimension

::::::::::::::::::
dx = 3× 512 = 7803),

::::
with

:::::::
uniform

:::::::
interval

::
of

:
2
::::
time

:::::
units

:::::::
between

:::::::::
observation

::::::
times,

:::
that

::
is405

xt =
(
η(2t,0,0),η(2t,0,4× 103), . . . ,η(2t,0,2× 105),η(2t,4× 103,0), . . . ,η(2t,2× 105,2× 105),

u(2t,0,0),u(2t,0,4× 103), . . . ,u(2t,0,2× 105),u(2t,4× 103,0), . . . ,u(2t,2× 105,2× 105),

v(2t,0,0),v(2t,0,4× 103), . . . ,v(2t,0,2× 105),v(2t,4× 103,0), . . . ,v(2t,2× 105,2× 105)
)
.

:::

:::
The

:::::::
additive

::::
state

:::::
noise

::
is

::::::
chosen

::
as

:::
the

:::::
spatial

::::::::::::
discretizations

:::
of

::::::::::
independent

::::::::
Gaussian

::::::
random

:::::
fields

:::
for

::::
each

::
of

:::
the

::::::::
variables

::
η,

:
u
:::
and

::
v,
::::
with

::
a
::::::
Matérn

:::::::::
covariance

:::::
kernel

::::
with

::::::
length

::::
scale

:::::::::
parameter

:::::::
λ= 500,

::::::::::
smoothness

:::::::::
parameters

:::::::
µ= 2.5

:::
and

::::::::
marginal

:::::::
standard

::::::::
deviation

::::::::
parameter

::::::::
σ = 0.01

:::::
used

::
for

:::
all

:::::
three

:::::
fields.

::::
The

:::::::
spatially

:::::::::
correlated

:::::
nature

:::
of

:::
the

::::
state

:::::
noise

::::::::::
distribution

::::::
ensures

:::
the

::::::::
perturbed

::::::
spatial

:::::
fields

::::::
remain

::::::
smooth.

::
A
::::::::
circulant

:::::::::
embedding

:::::::
method

::::::::::::::::::::::::
(Dietrich and Newsam, 1997)

:::::::::::
implemented410

::
in

:::
the

::::
Julia

::::::::
package

:::::::::::::::::::::
GaussianRandomFields.jl

:::::::::::::
(Robbe, 2017)

:
is
:::::

used
::
to
:::::::::

efficiently
::::::::

simulate
::::::::
Gaussian

:::::::
random

:::::
fields

:::
on

::
a

::::::
uniform

::::
grid

:::::
using

::::
fast

:::::::
Fourier

:::::::::
transforms,

::::::::
resulting

:::
in

:
a
:::::::::::
O(dx logdx)

:::::::::
operation

:::
cost

::::::::::
complexity

:::
for

:::::
each

:::::::::
realisation.

::::
For

::::::
filtering

:::
the

:::::
initial

::::
state

::::::::::
distribution

::
is

:::
also

::::::
chosen

::
to
::::::::::
correspond

::
to

:
a
:::::::::
zero-mean

::::::::
Gaussian

:::::::::
distribution

::::::::::::
corresponding

:::
the

::::::
spatial

::::::::::::
discretizations

::
of

::::::::::
independent

::::::::
Gaussian

:::::::
random

:::::
fields

::
for

:::::
each

::
of

:::
the

::::::::
variables

::
η,

:
u
::::

and
::
v,

::::
with

:
a square domain Ω = [0,200

km]× [0,200 km] with
::::::
Matérn

:::::::::
covariance

:::::
kernel

::::
with

:::
the

:::::
same

:::::::::
parameters

:::::::
(λ,µ,σ)

::
as

::::::
above.

:
415

:::
We

:::::::
assumed

:::::
noisy

:::::::::
point-wise

:::::::::::
observations

::
of

:::
the

::::
free

::::::
surface

::::::::
elevation

::::
field

::
η
::
at

:
15 observation locations (Fig. ??)and a

uniform grid of 51× 51 in the spatial domain. The initial condition in the observations run is a Gaussian shaped wave centred on

(1 km,1 km). The observation run is integrated forward in time for 1280s with the observations at the gauge locations extracted

17

and stored. The observation error standard deviation for both the observation run and particles is set to 0.1. The particles are

initialised with a randomly perturbed
:::::::
‘station’

::::::::
locations

:::::::::::::::
{s(m)

1 ,s
(m)
2 }15m=1,

::::::
chosen

::
as

::::
grid

::::::
points

::::::::
randomly

::::::::
sampled

::::
from

::
a420

::::::
uniform

::::::::::
distribution

:::::
over

:::
the

::::::
spatial

::::
grid

:::
for

:::::::::
simplicity,

::::
with

:::::::::::
independent

::::::::::
observation

:::::
noise

::::
with

::::::::
standard

::::::::
deviation

:::::
0.01,

:::
that

::
is

::::::::::::::::::::::::::::::::::
yt ∼N

(
(η(2t,s

(m)
1 ,s

(m)
2))15m=1,0.012I

)
.
::::
For

:::
the

:::::::::
simulation

::
of

:::
the

:::::::::::
observations,

::
to

:::::::
produce

::
an

:::::
initial

:::::
wave

:::::::::
producing

::::::::::
perturbation,

:::
the

:::::
mean

:::
of

:::
the

:::::
initial

::::
state

::::::::::
distribution

:::
for

:::
the

:
free surface elevation and velocities (realisations of a Gaussian

random field with zero mean and standard deviation of 0.01). The particle states are integrated for 1280s
::::::::::
components

::
is

::::::
altered

::
to

:::::::::
correspond

::
to

:::
the

:::::::
function

:
425

η̄0(s1,s2) =

((1 + cos(π(s1− a)/c))(1 + cos(π(s2− a)/c)))d/4 (s1− a)2 + (s2− a)2 ≤ c2,

0 otherwise,
::

(14)

::::::::
evaluated

::
at

:::
the

::::
grid

::::::
points

::::
with

:::::::
a= 104,

:::::::
b= 104,

:::::::::::
c= 3× 104,

::::::
d= 30,

:::::
with

:::
the

:::::
mean

::
of

:::
the

::::::::
velocity

::::::::::
components

:::
left

:::
as

::::
zero.

:::
As

:::
the

:::::
initial

::::
state

::::::::::
distribution

:::::::
assumed

:::::
when

:::::::
filtering

::::::
differs

::
we

::::::::
therefore

::::
have

::
a
:::::
small

::::::
degree

::
of

:::::
model

:::::::::
mismatch.

::::
The

::::::::::
observations

:::
are

::::::::
simulated

:::
for

:::::::
T = 640

::::::
times, with the assimilation of the surface elevation occurring every dt= 2s. Figure ??

showcases snapshots of the experiment with the locally optimal proposal and 50 particles (PDE
:::::
system

::::::::::
numerically

:::::::::
integrated430

::
in

::::
time

::
for

::
4
::::
time

::::
steps

:::
of

:::
0.5

::::
time

::::
units

:::::::
between

::::
each

::::
pair

::
of

::::::::::
observation

:::::
times.

:

6.1
::::::::

Validation

:::
We

:::::::::
performed

::
an

::::::
initial

:::::::
filtering

:::
run

:::
on

:::
the

::::::::
simulated

:::::::::::
observations

:::::
using

:::
an

::::::::
ensemble

:::
of N = 50). The surface elevation

coming from the observations run is plotted on the left while the
::::::
particles

:::::
using

:::
the

::::::
locally

::::::
optimal

:::::::::
proposals.

:::::::::
Snapshots

::
of

:::
the

::::::::
simulated

:::
free

:::::::
surface

:::::::
elevation

::::
field

:::::
used

::
to

:::::::
generate

:::
the

:::::::::::
observations

:::
and

::::::::::::
corresponding

::::::
particle

::::::::
estimate

::
of

:::
the mean of the435

particles is on the right.
:::::::
filtering

:::::::::
distribution

:::
on

:::
the

:::
free

:::::::
surface

:::::::
elevation

::::
field

:::
are

::::::
shown

::
in

::::
Fig.

::
5.

As the tsunami
:::
state

:::::
space

:
model implemented here is linear and Gaussian one can compare the obtained distributions with

a ground truth Kalman filter
:::::::::::::
linear-Gaussian

:
a
:::::::
Kalman

:::::
filter

:::
was

:::::
used

::
to

::::::::
compute

::::::
ground

:::::
truth

:::::
values

:::
for

::::
the

:::::
means

:::::
(and

::::::::::
covariances)

::
of

:::
the

:::::::
filtering

:::::::::::
distributions,

:::
and

:::::
these

::::
were

::::
then

::::::::
compared

::
to

:::
the

:::::::
filtering

::::::::
estimates

:::
for

::::::
various

::::::::
ensemble

::::
sizes

:::
N

:::
and

:::::::
proposal

:::::::::::
distributions. Fig. ??

:
6
:
(left) highlights the RMSE error through time of

:::::
shows

:::
the

:
RMSE

:
in

:::
the

::::::::
estimate

::
of

:::
the440

::::::
filtering

::::::::::
distribution

:::::
mean

:::
for

::::
each

::::::::::
observation

::::
time

::::
time

:::
for

:
PF

::::
using

:
both the locally optimal and bootstrap proposals with

the same number of particles
:::::::
ensemble

::::
size (N = 50), it can be clearly seen that .

::::
The

::::
filter

:::::
using the locally optimal proposal

performs better through
:::
can

:::
be

:::::::
observed

::
to

::::
give

:
a
:::::::::
consistent

:::::::::::
improvement

::
in

:::
the

:::::::
accuracy

::
of
:::
the

:::::::
filtering

::::::::::
distribution

::::::::
estimates

:::::
across time. Fig. ??

:
6 (right) showcases the error at 200s with increasing number of particles for both proposals. The asymptotic

behaviour of the two approaches again highlights the benefits of the locally optimal over the bootstrap proposal
:::::
instead

::::::
shows445

::
the

:
RMSE

:
in
:::
the

:::::::
estimate

:::
of

:::
the

::::::
filtering

::::::::::
distribution

:::::
mean

::
at

:
a
:::::
single

::::::::::
observation

::::
time

::::::::
τ = 200,

::
for

:::::::
filtering

::::
runs

::::
with

:::::::
varying

::::::::
ensemble

::::
sizes

:::
N

:::
for

::::
both

::::::::
bootstrap

:::
and

:::::::
locally

::::::
optimal

:::::::::
proposals,

:::
the

::::::
results

:::::::
indicate

::
a

::::::::
consistent

::::
gain

:::
in

:::::::
accuracy

:::
of

:::
the

::::::
filtering

::::::::
estimates

:::::
when

:::::
using

:::
the

::::::
locally

:::::::
optimal

::::::::
compared

::
to
::::::::

bootstrap
::::::::

proposal,
::::::

across
:
a
:::::

range
:::

of
:::::::
different

::::::::
ensemble

:::::
sizes

::
N .

18

Figure 5.
:::::::
Snapshots

::
of

:::
the

::::::
surface

:::::::
elevation

::::
used

::
to

:::::::
generate

::
the

::::::::
simulated

::::::::::
observations

::::
(left)

:::
and

:::
the

:::::::::::
corresponding

:::::::
estimated

:::::::
filtering

::::::::
distribution

:::::
means

:::::
using

::::::
N = 50

::::::
particles

::::::
(right).

19

:

Figure 6.
::::
Left: rmse

:
in
::::::
particle

::::
filter

:::::::
estimates

::
of

::::::
filtering

:::::::::
distribution

:::::
across

:::::::::
observation

::::
times

::
for

:::
the

::::::
tsunami

::::::
models

:::
with

::
a

::::
fixed

:::::::
ensemble

:::
size

::
of

::::::
N = 50

:::
for

:::::
filters

:::::
using

::::
both

:::::::
bootstrap

:::
and

::::::
locally

::::::
optimal

::::::::
proposals.

:::::
Right:

:
RMSEs

::
in

::::::
particle

::::
filter

:::::::
estimates

::
of
:::

the
:::::::

filtering

::::::::
distribution

:::::
mean

::
for

::::
both

:::
the

:::::::
bootstrap

:::
and

::::::
locally

::::::
optimal

::::::
proposal

::
at
:::::::
τ = 200

:::
for

::::::
varying

:::::::
ensemble

:::
size

:::
N .

::::
Note:

::::
The rmse

:::::
values

:::
are

:::::::
calculated

::::::
against

::
the

::::
true

::::
mean

::
of

:::
the

::::::
filtering

:::::::::
distributions

::::::
coming

::::
from

:
a
::::::
Kalman

::::
filter

::::
run.

Snapshots of the surface elevation as simulated by the observations run (left) and the mean of the particles (N = 50) (right).450

6.2
::::::::::::

Parallelization
:::::::::::
performance

Left: RMSE (50 particles) for both the bootstrap and locally optimal proposal at each time step, tsunami modelling. Right:

RMSE for both the bootstrap and locally optimal proposal at t = 200s for increasing number of particles.

6.3 Parallelisation Performance455

As discussed in section ??
::::
Sect.

:::
3.3

:
ParticleDA.jl is capable of leveraging both shared and distributed parallelism. Scaling runs

on ARCHER2, which is the UK’s Tier-1 supercomputer, have been carried out to highlight the performance in practice. A weak

scaling study, using the same experimental set up as described in section ??
::
6.1 is run with the Bootstrap

:::::::
bootstrap

:
proposal

keeping the number of particles per compute node
:::
core

:
constant while increasing the number of nodes. The compute nodes

on ARCHER2 consist of 2 × AMD EPYC 7742, 2.25 GHz, 64-core, with 8 NUMA non uniform memory access (NUMA)460

regions per node (16 cores per NUMA NUMA region, 8 cores per core complex die (CCD) core complex die (CCD) and 4

cores per core complex (CCX) (core complex (CCX) (shared L3 cache)). The weak scaling runs try to optimise
:::::::
optimize for

this hardware architecture with various runs targeting a MPI rank per NUMANUMA / CCDCCD / CCX CCX region and an

appropriate number of threads per MPI rank (Fig. ?? left subplot).
::
7).

::::
The

::::
weak

::::::
scaling

:::::::::
efficiency

::
is

::::::
defined

::
as

:::::::::::::
E(N) = T (2)

T (N) ,

:::::
where

:::::
T (N)

::
is

:::
the

::::
wall

::::
time

:::
for

:::::::
running

::
on

:::
N MPI

:::::
ranks. There are 2 ,048 particles per MPI rank

::::::
particles

::::
per

:::
core

:
so at the465

maximum number of ranks tested here
::::
cores

::::::
(2048)

:::
and

:::::
ranks

:
(128) there are 262,144 particles. Based on these findings the

20

set up of 32 ranks per node and 4 threads per rank (targeting the CCX) scales best for higher number of ranks.
::::
tested

::::
here

:::::
there

::
are

:::::
4096

::::::::
particles.

To investigate the scalings further, the right subplot in Fig. ?? highlights the breakdown per function call for the 32 ranks

per node and 4 threads per rank results. The proposals and weights, green line in Fig. ?? (right) accounts for the following470

stepsin Algorithm ??: Update particle dynamics, Update Particle Proposals, Get particle observations and Calculate particle

weights. As one would expect from the description of Algorithm ??, the proposals and weights component of the run time

scales extremely well due to particles updating their proposals independently. The main bottleneck becomes the update of the

global statisticsover all particles, because this
:::
As

:::::
stated

::
in

::::
Sect.

:::
3.3

::::
the

::::
main

:::::::::::
performance

:::::::::
bottleneck

:::
are

:::
the

:::::::::::::
communication

:::::
steps:

:::
the

:::::::
copying

::
of

:::::
states

::::
and

:::
the

::::::::
gathering

::
of

:::::::
particle

:::::::
weights

:::::
which

::::::
require

::::::::::::
point-to-point

::::::::::::::
communications

::::
and

:
a
::::::
global475

::::::::::::
communication

::::
step

:::::::::::
respectively.

:::::::
Another

::::::::::
component

::::::
which

:::::::::
contributes

:::
to

::::
poor

::::::
scaling

::::
for

::::
large

:::::
node

::::::
counts

::
is

::::::::
updating

::
the

:::::::::
summary

::::::::
statistics,

:::::
which

:
requires a reduction of the mean and optionally the variance at every grid point over all MPI

ranks. We can partially remedy
::
for

:::::
each

::::
state

:::::::::
dimension

::::
over

:::
all

:
MPI

:::::
ranks.

:::
For

:::
the

::::::
results

::::::::
presented

::::
here

:::
we

:::::
have

::::::
mostly

:::::::
remedied

:
this loss of performance by collecting the global statistics less frequently, but the required frequency will depend on

the scientific use case of the simulation. The gather of particle weights and resampling of particle indices is similarly a global480

communication step that deteriorates the scaling, but they have less impact on total performance because onlyone number per

particle is communicated. After the indices have been broadcast in Resample, the particle states are copied via point-to-point

communications, which also contributes to the loss in
:::::::
statistics

::
at
:::
the

::::
final

:::::::
filtering

:::::::
iteration

:::::
only.

::::::::
However,

::
it

:::::
should

:::
be

:::::
noted

:::
that

:::
for

:::::
cases

:::::
which

::::
need

:::::::
frequent

::::::::
outputted

::::::::
statistics

:::
this

::::
will

::::::::
contribute

::
to
::
a
::::::::::
degradation

::
of

:::
the

::::::
parallel

:
performance.

7 Atmospheric General Circulation Model
::::::
general

::::::::::
circulation

::::::
model (AGCM)485

An integration of ParticleDA.jl with an atmospheric dynamical model
:
, simplified parameterizations primitive equation dynam-

ics (SPEEDY),
:
showcases the efforts involved in coupling the software with pre-existing model implementations. SPEEDY

is an AGCM which was developed by Molteni (2003) and it consists of a spectral primitive-equation dynamic core along

with a set of simplified physical parameterization schemes. The SPEEDY model retains the core characteristics of the current

state-of-the-art AGCMs but requires drastically less (order
:::::
orders

:
of magnitude) computational resources (Molteni, 2003).490

This computational efficiency allows one to utilize the model to carry out large ensemble and/or data assimilation experiments.

According to Molteni (2003) the SPEEDY model accurately simulates the general structure of global atmospheric circulation

and exhibits similar systematic errors to the state-of-the-art AGCM, albeit with larger error amplitudesobtained. The model

version (Hatfield, 2018) used here
::::::::::::
implementation

:::::
used

::::
here

:::::::::::::
(Hatfield, 2018) is written in Fortran and provides an interesting

example of the integration steps required to interface with ParticleDA.jl, the coupling between the two relies on SPEEDY .
::::
The495

:::::::
coupling

:::::
with

:::::::::::
ParticleDA.jl

:::::
relies

::
on

:::
the

:
SPEEDY

::::::::::::
implementation

:
being set up to output its data fields at set intervals.

As stated SPEEDY SPEEDY is a simplified AGCM AGCM model. The prognostic variables consist of the zonal and merid-

ional wind velocity components (u,v), temperature (T), specific humidity (q) and surface pressure (p
::
ps). A T30 resolution of

21

2 4 8 16 32 64 128
Number of Ranks

0.2

0.4

0.6

0.8

1.0

W
ea

k
Sc

al
in

g
Ef

fic
ie

nc
y

32 ranks per node, 4 cores per rank
16 ranks per node, 8 cores per rank
8 ranks per node, 16 cores per rank

Figure 7. Left: Weak scaling parallel efficiency for
::
the

::::::
tsunami

:::::
model

:::
test

::::
case

::::
with different set ups of ranks per node and threads

::::
cores

per rank
:
on

:::::::::
ARCHER2. Right: A breakdown of run time spent

:::
drop

::
off

:
in different function calls for the 32 ranks per node and 4 threads

per rank set up. The functions shown here correspond
:::::::::
performance

:::
can

:::
be

:::
seen

:::::
when

::::::
moving

::::
from

:::::
single to steps of Algorithm ??, with

Proposals and Weights encompassing steps 1-5 of the time loop
::::::::
multi-node

:::
runs.

the model is used here which corresponds to a
::::::::
horizontal

:
grid size of 96× 48× 8

::::::
96× 48

::::
with

::
8
:::::::
vertical

:::::
layers. The vertical

layers are defined by sigma levels, where the pressure is normalized by the surface pressure (p/ps).500

The atmospheric modelling undertaken here can be considered within the same framework as defined in Eq. ?? and Eq. ??

but with the dynamical operator/forward model (Ft) now defined to be the SPEEDY model. The SPEEDY model is set up to

output its state vectors at
:::
We

::::::
extend

::
the

:::::::::::
deterministic

:
SPEEDY

:::::
model

::
to

:
a
::::
state

:::::
space

::::::
model

::::::
setting,

::
by

:::::
using

::
a

::::
state

::::::::
transition

:::::
update

::
of
:::
the

:::::
form

::::::::
described

::
by

::::
Eq. (2)

:
,
::::
with

::::::::
numerical

:::::::::
simulation

:::
of

::
the

:
SPEEDY

:::::
model

:::::::
forward

::
in

::::
time

::
by

:
6 hour intervals.

This I/O allows for the two codes to be coupled together. As the dynamics are simulated on the globe a bespoke covariance505

function dependent
::::::::
simulated

:::::
hours

::::::::::::
corresponding

::
to

:::
the

:::::::::::
deterministic

:::::::
forward

:::::::
operator

:::
Ft.::::

The
::::
state

::::::
vector

::
xt::

is
::::::
defined

:::
as

::
the

::::::::::::
concatenation

::
of

:::
the

:::::::
flattened

:::::::
vectors

::::::::::::
corresponding

::
to

::
the

::::::
spatial

::::::::::::
discretizations

::
of

:::
the

:::::::::
prognostic

:::::::
variable

:::::
fields

::
u,

::
v,

::
T ,

::
q

:::
and

:::
ps,

::::
with

::::
each

::
of

:::
the

::::
first

::::
four

:::::::
variables

:::::
being

:::::::
defined

::
in

::::
three

::::::::::
dimensions

:::::
across

::
a
::::::::::
96× 48× 8

:::::
spatial

:::::
grid,

:::::
while

:::
the

::::
final

::::::
surface

:::::::
pressure

:::::::
variable

::
ps::

is
:::::::
defined

::
in

:::
two

::::::::::
dimensions

:::
on

:
a
:::::::
96× 48

::::::
spatial

::::
grid,

::::::::
resulting

::
in

::
an

::::::
overall

:::::
state

::::::::
dimension

:::
of

:::::::::::::::::::::::::::::::::::
dx = 4× 96× 48× 8 + 96× 48 = 152064.510

:::
The

:::::::
additive

:::::::::
Gaussian

::::
state

:::::
noise

::
is
::::::::

assumed
:::
to

:::::::::
correspond

:::
to

::::::
spatial

::::::::::::
discretizations

:::
of

::::::::::
independent

:::::::::::::::
two-dimensional

:::::::
Gaussian

:::::::
random

:::::
fields

::
for

:::
the

::::::
surface

:::::::
pressure

:::
ps :::

and
::
for

:::::
each

::::::
vertical

::::
level

:::
for

:::
the

::::::::
prognostic

::::::::
variables

::
u,

::
v,

::
T

:::
and

::
q.

::
To

::::::
reflect

::
the

::::::::::
underlying

:::::::
spherical

:::::::::
geometry

::::
over

:::::
which

:::
the

::::::
spatial

:::
grid

::
is
:::::::
defined,

::
a
::::::::::::
non-stationary

:::::::::
covariance

:::::::
function

:::::
using

:
a
:::::::
Matérn

22

:::::
kernel

:
on the geodesic distance is used to generated the model and observation errors. The authors recognise

:::::::::::
(great-circle)

:::::::
distance

:::::::
between

:::
the

:::::
points

:::
on

:::
the

:::::
sphere

:::
the

::::
grid

:::::
points

::::::::::
correspond

::
to

::
is

::::
used,

::::
with

:::
the

:::::::
Matérn

::::::
kernels

:::::
using

:::::::
common

::::::
values515

::
of

:::::
λ= 1

::::
and

:::::::
µ= 2.5

:::
for

:::
the

::::::
length

:::::
scale

:::
and

::::::::::
smoothness

::::::::::
parameters

:::::::::::
respectively,

:::::
while

:::
the

::::::::
marginal

::::::::
standard

::::::::
deviation

::::::::
parameter

::
σ

::
is

::
set

:::::::::
separately

:::
for

::::
each

:::::::::
prognostic

:::::::
variable,

::::
with

:::::
σ = 1

:::
for

::
u,

::
v
:::
and

:::
T ,

:::::::::
σ = 0.001

::
for

::
q
:::
and

:::::::
σ = 100

:::
for

:::
ps.

::::
The

:::::::::::::::::::::
GaussianRandomFields.jl

:::::::
package

::
is

:::::
again

::::
used

::
to

:::::::
generate

::::::::::
realizations

::
of

:::
the

::::::::
(spatially

::::::::::
discretized)

:::::::
random

::::::
fields,

::::
with

:::
the

:::
use

::
of

:
a
:::::::::::::

non-stationary
:::::::::
covariance

:::::::
function

::
in
::::

this
::::
case

:::::::::::
necessitating

::
an

::::::::
approach

::::::
which

::::
uses

:::
an

::::::::::::::::
eigendecomposition

:::
of

:::
the

:::
full

:::::::::::
4608× 4608

:::::::::
covariance

:::::
matrix

:::
for

::::
each

::::::::::
discretized

::::::::::::::
two-dimensional

::::
field

::
to

:::::::
generate

:::
the

:::::::
samples.

::::
The

::::::::
geodesic

:::::::
distance520

:::::
based

:::::::::
covariance

:::::::
function

::::
used

::
is

:::
not

:::::::::
guaranteed

::
to

:::
be

::::::
positive

:::::::
definite

:::::
which

::
is

::::::::::
heuristically

:::::
dealt

::::
with

::
by

::::::
setting

:::
all

:::::::
negative

:::::::::
eigenvalues

::
to
:::::
zero.

:::
We

::::::::
recognize

:
that this approach has certain limitations but nevertheless for the purpose of showcasing the

integration with ParticleDA.jl
:
of

::::::::::
introducing

::::
state

:::::
noise

::::
into

:::
the

::::::::
dynamics

::::
has

:::::
some

:::::::::
limitations

:::
but

:::
for

:::
the

::::::::
purposes

::::
here is

sufficient.

7.1 Results525

The data assimilation experiments carried out here were introduced by Miyoshi (2005). An observation (nature) run is generated

after an initial one year spin-up. The nature run is launched on the date of January 1, 1981 with the atmosphere at rest (u = v =

0). The data assimilation experiments start on January 1, 1982.

Differing to the experimental
::::::::
followed

:
a
::::::
similar set-up introduced by Miyoshi (2005), only

::
to

:::
that

::::
used

::
in
:::::::::::::
Miyoshi (2005)

:
.
::
A

:::::::::::::
linear-Gaussian

:::::::::
observation

::::::
model

::
of the

::::
form

::::::::
described

:::
by

:::
Eq. (3)

:
is
:::::
used,

::::
with

:::::::::::
observations

:::::::
assumed

::
to

::
be

::::::::
available

::::
only

:::
for530

::
the

:
surface pressure (ps::::

field
::
(in

::::
this

:::::
regard

::::::::
differing

::::
from

:::
the

::::::
set-up

::::
used

::
by

:::::::::::::
Miyoshi (2005)) at 50 observation locations (see

Fig. ??) is assimilated. The observational data is obtained by adding random noise to the nature run at the observation locations.

The observational errors are generated from independent Gaussian numbers and the observational error standard deviations is

fixed to 10 hPa.The particles (n= 256) are initialised from randomly selected dates within the month of December from a

:::::
spatial

::::::::
locations

::::::::::::
corresponding

::
to

:::::::::
randomly

:::::::
sampled

::::
grid

::::::
points,

::::
with

:::::::
additive

::::::::::
independent

::::::::::
observation

:::::
noise

::::
with

::::::::
standard535

:::::::
deviation

:::::::
10hPa.

:::
The

::::::
initial

::::
state

:::::
used

::
to

:::::::
generate

::::
the

::::::::
simulated

:::::::::::
observations

::
is

:::::::::
generated

::
by

::::::::::
performing

::
a

:::
one

:::::::::
simulated

:::
year

::::::::
‘spin-up’

:::
of

:::
the

:::::::::::
deterministic

:
SPEEDY

:::::
model

::::
from

::
a
::::::
resting

::::::::::
atmosphere

::::::::::
(u= v = 0)

:::::
initial

:::::::::
condition,

::::
with

:::::::::
simulated

::::::::::
observations

::::
then

::::::::
generated

:::
for

:::
250

::::::::::
observation

:::::
times

::
at

:
6
::::::
hourly

:::::::
intervals

:::::
using

:::
the

::::
state

:::::
space

::::::
model.

:::::
Initial

::::
state

::::::
values

::
for

::
a

::::::
filtering

:::
run

:::::
using

::::::::
N = 256

:::::::
particles

::::
and

:::::
locally

:::::::
optimal

::::::::
proposals

:::::
were

::::::::
generated

::
by

::::::::::
performing

:
a long-term (10-year) nature

run . The standard deviation of the model and observation errors are set to 1 and 10 hPa respectively.
::::::::
simulated

:::::
years)

:::
run

:::
of540

::
the

:::::::::::
deterministic

:
SPEEDY

:::::
model,

:::::
with

:::
the

::::
state

:::::::
selected

::::::::
randomly

::::
from

:::
the

:::::::::
simulated

:::::
times

::
in

:::
the

::::
final

::::::
month

::
of

:::::::::
simulation

:::
and

::::
state

:::::
noise

::
of

:::
the

::::
same

::::::::::
distribution

::::
used

::
in
:::::
state

::::::::
transitions

::::::
added.

:

7.1
::::::
Results

In Fig. ?? (left) a snapshot
:
8
:::::::::
snapshots

::
of

:::
the

:::
true

::::::
surface

::::::::
pressure

:::
(top

::::
left)

:::
and

:::
the

::::::::
ensemble

:::::::
estimate

:
of the mean assimilated

surface pressure is shown. The mean surface pressure is compared to the nature run and a percentage error is plotted in Fig.545

?? (right). It can be seen that the areas of greatest percentage error coincide with areas that lack observation stations
:::
(top

:::::
right)

23

::::
after

:::
250

:::::::::::
assimilation

:::::
cycles

::::
are

::::::
shown.

::::::::
Minimal

:::::::::
differences

::::
can

::
be

:::::::::
observed.

::::
The

::::::::
sub-plots

::
in

:::
the

:::::::
bottom

:::
row

:::::::::
showcase

::
the

:::::
time

::::::::
averaged

:::
L2 ::::

error
:::
for

::::::::
ensemble

:::::
mean

:::::::::
estimates

::::
with

:::
and

:::::::
without

:::::::::::
assimilation.

::::
The

:::
L2:::::

error
::
is

::::::::
calculated

:::::::
against

::
the

::::
true

:::::::
surface

:::::::
pressure

:::::
fields

::::
used

::
to

:::::::
simulate

::::
the

::::::::::
observations

::
at

::::
each

::::
grid

::::
cell

::::
over

:::
the

::::
250

::::::::::
assimilation

::::::
cycles.

::::
The

::::
time

:::::::
averaged

:::::
errors

:::
are

:::::::::
dominated

:::
by

::::::::::
mid-latitude

:::::::
patterns

:::
but

:::
the

:::::::::
ensemble

:::
run

::::::
without

:::::::::::
assimilation

:::::::
exhibits

:::::
larger

::::::
errors.

::::
This550

::::
error

::::::::::
comparison

:::::::
validates

::::
that

:::
the

::::::::::
assimilation

::
is

:::::
giving

::::::::
improved

::::::::
estimates

:::
of

::
the

:::::
state

::
of

:::
the

::::::
system.

As stated in the introduction, one of the key benefits of particle filters is to provide the promise of non-linear and non-

Gaussian DADA. To highlight this sample distributions of the surface pressure at various observation locations at different

time points are shown in Fig. ??
:
9. The distributions across the n= 256

:::::::
N = 256

:
particles exhibit heavy tails towards the

true surface pressure at the given locations.
:
It

::::::
should

::
be

::::::
noted

:::
that

:::::::
similar

:::::::::::
non-Gaussian

:::::::::::
distributions

:::::
were

:::::::::
showcased

:::
by555

::
(Miyoshi et al., 2014; Kondo and Miyoshi, 2019)

:
in
::

a
::::
near

:::::::
identical

::::::::::::
experimental

:::::
set-up

:::
but

::::
with

:::
an

::::::::
ensemble

:::::::
Kalman

:::::
filter.

::::::::
However,

:
a
:::
key

:::::::::
difference

::
to

:::
be

:::::::::
highlighted

::::
here

::
is

:::
the

::::::
relative

::::
size

::
of

:::
the

:::::::::
ensembles

:::::
used,

:::
256

::::::::
particles

::::
here

:::::
versus

::
a
::::::
10,240

::::::::
ensemble

:::
size

::::
used

:::
by

::::::::::::::::::
(Miyoshi et al., 2014)

::
to

:::::::
generate

:::
the

:::::::::::
non-Gaussian

:::::::::::
distributions.

:

8 Conclusions

Our particle filter software in Julia shows versatility by being able to interact with any model structure with an inherent ability560

to represent and sample nonlinearities and thus
::
We

:::::
have

:::::::::
developed

:
a
:::::::
flexible

::::
Julia

::::::::
package,

::::::::::::
ParticleDA.jl,

:::
for

::::::::::
performing

::::::::::
particle-filter

::::::
based

::::
data

::::::::::
assimilation,

:::::
with

:::
the

:::::::
potential

:::
of

:::::::
offering

::::::::
improved

:::::::
filtering

::::::::
accuracy

:::::
when

:::::::
working

::::
with

:::::::
models

::::::::
exhibiting

:
non-Gaussianity . By being written in Julia it allows users to understand and manipulate the code more easily than

traditional packages in
::
in

:::
the

:::::::
filtering

:::::::::::
distributions.

::::
The

:::
use

:::
of

:
a
:::::::::

high-level
::::::::
language

:::::
Julia,

::::
both

:::::::::
simplifies

:::
the

:::::::
process

:::
for

::::
users

:::::::
wanting

:::
to

:::::
apply

:::
the

:::::::
package

::
to

:::::
their

::::
own

::::::
models

::::
and

:::
for

:::::::::
developers

:::::::
wishing

:::
to

::::::
extend

:::
the

:::::::
package

::::
with

::::
new

:::::
filter565

::::::::::::::
implementations,

:::::
while

:::
still

:::::::::::
maintaining

::::::
similar

::::::::::::
computational

::::::::
efficiency

::
to

:::::
lower

:::::
level

::::::::
compiled

::::::::
languages

::::
like

::::::
Fortran

::::
and

C++or Fortran at similar speeds. The package offers
:
.

::::::::
Particular

:::::::
attention

::::
has

::::
been

:::::
paid

::
to

::::::::
ensuring

:::::::::::
ParticleDA.jl

::
is

:::::::
suitable

:::
for

::::::::::
performing

:::::::
filtering

:::
on HPC

:::::::
systems,

::::
with

::
a

:::::::
versatile

::::::::
two-level

:::::
model

:::::
used

::
to

::::::
support

:
both shared and distributed parallelism which are necessary when large ensembles

are needed to combat particledegeneracy in some cases
::::::
memory

::::::::::
parallelism.

::::
This

::
is

::::::::
important

::
in
::::::::
allowing

:::::::
efficient

::::::::::
exploitation570

::
of

:::
the

:::::::
typically

::::::::
complex

:::::::::
hierarchies

::
of

:::::::::
processing

::::::::
elements

::::
used

::
in

:::::::
modern HPC

::::::
systems

::::
(see

:::
for

:::::::
example

:::
the

::::::::::
description

::
of

::
the

:::::::::
hardware

::::::::::
architecture

::
of

::::::::::
ARCHER2

::
in

:::::::
Section

::::
6.2),

::::
both

:::::
when

:::::::
running

:::::
large

::::::::
ensembles

:::
of

::::::
models

::::::
where

::::
each

:::::::
particle

:::
can

::
be

:::::::::
simulated

::
on

::
a

:::::
single

:::::::::
processing

:::::::
element,

:::
but

::::
also

:::
for

:::
the

:::::::
perhaps

:::::
more

:::::::::
practically

::::::
relevant

::::::
setting

:::
of

::::::
running

:::::::
smaller

::::::::
ensembles

::
of
:::::
more

:::::::
complex

:::::::
models

:::::
which

::::::
require

:::::::
multiple

::::::::::
processing

:::::::
elements

::
to

:::::::
simulate

::
a
:::::
single

:::::::
particle.

The various test case models shown here validate the implementation and highlight the strengths of ParticleDA.Errors remain575

small and the method is as computationally efficient as EnKF, but with the ability to tackle nonlinear processes better, thereby

allowing much more accurate DA, especially.

Challenges remain to deploy this framework at scale in terms of model dimensions and speed, say towards exascale. In

particular,
::::::::::
ParticleDA.jl

::::::::
currently

::::::::
provides

:::::::::::::
implementations

:::
of

::::::
particle

::::::
filters

:::::
using

::::::::
bootstrap

:::
and

::::::
locally

:::::::
optimal

:::::::::
proposals,

24

Figure 8.
:::
Top

::::
Row: Snapshot of the

:::
true

:::::
surface

::::::
pressure

::::
(left)

:::
and

:
mean assimilated surface pressure (

::::
right)

::::::::
(N = 256)

::::
after

:::
250

:::::::::
assimilation

::::
cycles

::::::::
(12:00:00

::::::::
04/03/1982

:::::
UTC).

::::::
Bottom

::::
Row:

::::
Time

:::::::
averaged

:::
L2 ::::

error
::
for

:::
the

::::
mean

::
of

::
the

:::::::::
assimilation

:::
run

:
(left) and

:::
for the corresponding

percentage error when compared to the nature
::::
mean

::
of
::
an

::::::::
ensemble run

::::::
without

:::::::::
assimilation (right)(n= 256). The 50 observation locations

are highlighted by the black stars.

25

Figure 9. Normalised
:::::::::
Normalized histograms

:::::::::::
corresponding

::
to

::
the

:::::::
estimates

:
of the

:::::::
marginal

::::::
filtering

:::::::::
distributions

::
of

:::
the surface pressure at

various observation locations and at different points in time (n= 256)
:::
from

::
a
::::::
filtering

:::
run

:::
with

:::
an

:::::::
ensemble

::
of

:::::::
N = 256

:::::::
particles. The true

surface pressures are highlighted by the vertical red line and the mean surface pressure of the particles are highlighted by the black vertical

line. The green line represents a fitted Gaussian distribution.

26

::::
with the scalability of the method when the state space becomes large. Opportunities exists in terms of smart and efficient580

approaches to design and enrich the ensemble in these situations where state space dimension may create a difficult degeneracy

issue.
::::::
former

:::::::::
applicable

::
to

:::::::
general

::::
state

:::::
space

:::::::
models

:::
and

::::
the

::::
latter

:::
to

:
a
:::::

more
::::::::
restricted

::::::
subset

::
of

:::::
state

:::::
space

::::::
models

:::::
with

:::::::
Gaussian

:::::
state

::::::::
transition

::::::::::
distributions

::::
and

:::::::::::::
linear-Gaussian

::::::::::
observation

:::::::
models.

:::
As

:::::::::
illustrated

::
in

:::
our

:::::::::
numerical

:::::::::::
experiments,

::::::
particle

:::::
filters

:::::
using

:::
the

::::::
locally

::::::
optimal

::::::::
proposal

::::::::::
distributions

::::
can

::::
offer

::::::::::
significantly

::::::::::::
improvements

::
in

:::
the

::::::::
accuracy

::
of

:::::::
filtering

:::::::
estimates

:::
for

::
a
:::::
given

::::::::
ensemble

::::
size

:::::
where

:::::::::
applicable.

:::::::::
However,

::
as

:::::
noted

::
in

:::
the

:::::::::::
introduction,

:::::::
particle

:::::
filters

:::::
using

:::
the

::::::
locally585

::::::
optimal

::::::::
proposal

:::::::::
distribution

::::
are

::::::
known

::
to

:::
still

::::::
suffer

::::
from

::
a
:::::
‘curse

:::
of

:::::::::::::
dimensionality’

::::::::
requiring

:::
the

::::::::
ensemble

::::
size

::
to

:::::
scale

:::::::::::
exponentially

::::
with

:::
the

::::::
system

::::::::
dimension

::
to

:::::
avoid

::::::
weight

:::::::::
degeneracy

:::::::::::::
(Snyder, 2011).

:::
An

::::::::
important

:::::
future

::::::::
extension

::
to

:::::::::::
ParticleDA.jl

:::
will

::::::::
therefore

::
be

::
in

::::::::
providing

::::::::::::::
implementations

::
of

:::::::
filtering

::::::::
algorithms

:::::::::
exploiting

:::::::::
approaches

::::
such

::
as

::::::
spatial

::::::::::
localization

:::::::::::::::::::::::
(Farchi and Bocquet, 2018)

::
to

:::::
allow

::::::
scaling

::
to

::::
very

::::
high

:::::::::::
dimensional

::::::::::
geophysical

:::::::::::
applications.

::::::::::::::
Implementations

::
of

:::::
filters

:::::::::
exploiting

::::::
spatial

::::::::::
localization

:::
will

:::
be

:::::::::
necessarily

:::::::::
applicable

::
to

::
a
::::::::
restricted

:::::::
subclass

::
of

::::::::
spatially

::::::::
extended

::::
state

:::::
space

:::::::
models;

::::::
similar

::
to
:::

the
::::::::

approach
:::::

used590

::
for

::::::::::::
implementing

:::
the

::::::
locally

:::::::
optimal

:::::::
proposal

:::::
filter,

:::
the

::::::::
extensible

::::::
nature

::
of

:::
the

:::::
model

::::::::
interface

::
in

:::::::::::
ParticleDA.jl

::::::
should

:::::
allow

:::::
model

:::::::
agnostic

::::::::
localized

::::
filter

::::::::::::::
implementations

::
to

::
be

:::::
added

::
by

::::::
simply

:::::::
defining

:::::::::
additional

::::::::
functions

:::::::
required

::
to

::
be

:::::::::::
implemented

::
by

:::
the

:::::
model

::::::::
interface.

:

Overall, the aim of our platform is to enable easily accessible and accurate, fast DA DA for a wide range of users. We

hope that various scientific communities will adopt ParticleDA
:
.jl, possibly leading to fast step-changes in some geoscientific595

investigations and beyond.

Code availability. The code is freely available at https://github.com/Team-RADDISH/ParticleDA.jl

Author contributions. DG lead the computations and applications. TK, MMG and MG created the Julia platform, its I/O and computational

acceleration. AB led the design of the locally optimal proposal implementation. SG directed the overall research.

Competing interests. There are no competing interests at present600

Acknowledgements. The RADDISH (Real-time Advanced Data assimilation for Digital Simulation of numerical twins on HPCHPC) project

supported this research. RADDISH was part of The Tools, Practice and Systems programme of the AI for Science and Government (ASG),

UKRI’s Strategic Priorities Fund awarded to the Alan Turing Institute, UK (EP/T001569/1). We also acknowledge funding for this research

from UKAEA (T/AW085/21) for the project Advanced Quantification of Uncertainties In Fusion modelling at the Exascale with model order

Reduction (AQUIFER).605

27

References

Bannister, R. N.: A review of operational methods of variational and ensemble-variational data assimilation, Quarterly Journal of the Royal

Meteorological Society, 143, 607–633, https://doi.org/10.1002/qj.2982, 2017.

Barth, A., Saba, E., Carlsson, K., and Kelman, T.: DataAssim.jl: Implementation of various ensemble Kalman Filter data assimilation methods

in Julia, https://github.com/Alexander-Barth/DataAssim.jl, 2016.610

Bengtsson, T., Bickel, P., and Li, B.: Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems, in: Proba-

bility and statistics: Essays in honor of David A. Freedman, pp. 316–334, Institute of Mathematical Statistics, 2008.

Berquin, Y. and Zell, A.: A physics perspective on LIDAR data assimilation for mobile robots, Robotica, 40, 862–887,

https://doi.org/10.1017/S0263574721000850, 2022.

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.: Julia: A Fresh Approach to Numerical Computing, SIAM Review, 59, 65–98,615

https://doi.org/10.1137/141000671, 2017.

Bickel, P., Li, B., and Bengtsson, T.: Sharp failure rates for the bootstrap particle filter in high dimensions, in: Pushing the limits of contem-

porary statistics: Contributions in honor of Jayanta K. Ghosh, pp. 318–329, Institute of Mathematical Statistics, 2008.

Bocquet, M., Pires, C. A., and Wu, L.: Beyond Gaussian statistical modeling in geophysical data assimilation, Monthly Weather Review,

138, 2997–3023, 2010.620

Buizza, C., Quilodrán Casas, C., Nadler, P., Mack, J., Marrone, S., Titus, Z., Le Cornec, C., Heylen, E., Dur, T., Baca Ruiz, L., Heaney,

C., Díaz Lopez, J. A., Kumar, K. S., and Arcucci, R.: Data Learning: Integrating Data Assimilation and Machine Learning, Journal of

Computational Science, 58, https://doi.org/10.1016/j.jocs.2021.101525, 2022.

Burgers, G., van Leeuwen, P. J., and Evensen, G.: Analysis scheme in the ensemble Kalman filter, Monthly weather review, 126, 1719–1724,

1998.625

Byrne, S., Wilcox, L. C., and Churavy, V.: MPI.jl: Julia bindings for the Message Passing Interface, Proceedings of the JuliaCon Conferences,

1, 68, https://doi.org/10.21105/jcon.00068, 2021.

Carlson, F. B., Roy, P., and Lu, Y.: LowLevelParticleFilters.jl: State estimation, smoothing and parameter estimation using Kalman and

particle filters, https://github.com/baggepinnen/LowLevelParticleFilters.jl, 2018.

Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G.: Data assimilation in the geosciences: An overview of methods, issues, and perspec-630

tives, Wiley Interdisciplinary Reviews: Climate Change, 9, e535, https://doi.org/10.1002/wcc.535, 2018.

Chan, T. F., Golub, G. H., and LeVeque, R. J.: Updating formulae and a pairwise algorithm for computing sample variances, in: COMPSTAT

1982 5th Symposium held at Toulouse 1982: Part I: Proceedings in Computational Statistics, pp. 30–41, Springer, 1982.

Churavy, V., Godoy, W. F., Bauer, C., Ranocha, H., Schlottke-Lakemper, M., Räss, L., Blaschke, J., Giordano, M., Schnetter, E.,

Omlin, S., Vetter, J. S., and Edelman, A.: Bridging HPC Communities through the Julia Programming Language, arXiv e-prints,635

https://doi.org/10.48550/arXiv.2211.02740, 2022.

Cotter, C., Crisan, D., Holm, D., Pan, W., and Shevchenko, I.: Data assimilation for a quasi-geostrophic model with circulation-preserving

stochastic transport noise, Journal of Statistical Physics, 179, 1186–1221, 2020.

Del Moral, P.: Feynman-Kac formulae, Springer, 2004.

Dietrich, C. R. and Newsam, G. N.: Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance640

matrix, SIAM Journal on Scientific Computing, 18, 1088–1107, 1997.

28

https://doi.org/10.1002/qj.2982
https://github.com/Alexander-Barth/DataAssim.jl
https://doi.org/10.1017/S0263574721000850
https://doi.org/10.1137/141000671
https://doi.org/10.1016/j.jocs.2021.101525
https://doi.org/10.21105/jcon.00068
https://github.com/baggepinnen/LowLevelParticleFilters.jl
https://doi.org/10.1002/wcc.535
https://doi.org/10.48550/arXiv.2211.02740

Douc, R. and Cappé, O.: Comparison of resampling schemes for particle filtering, in: Proceedings of the 4th International Symposium on

Image and Signal Processing and Analysis, pp. 64–69, IEEE, 2005.

Doucet, A., Godsill, S., and Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering, Statistics and Computing, 10,

197–208, https://doi.org/10.1023/A:1008935410038, 2000.645

Dunbar, O. R. A., Lopez-Gomez, I., Garbuno-Iñigo, A., Huang, D. Z., Bach, E., and long Wu, J.: EnsembleKalmanProcesses.jl: Derivative-

free ensemble-based model calibration, Journal of Open Source Software, 7, 4869, https://doi.org/10.21105/joss.04869, 2022.

Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics,

Journal of Geophysical Research: Oceans, 99, 10 143–10 162, 1994.

Farchi, A. and Bocquet, M.: Comparison of local particle filters and new implementations., Nonlinear Processes in Geophysics, 25, 2018.650

Foreman-Mackey, D., Agol, E., Ambikasaran, S., and Angus, R.: Fast and Scalable Gaussian Process Modeling with Applications to Astro-

nomical Time Series, The Astronomical Journal, 154, 220, https://doi.org/10.3847/1538-3881/aa9332, 2017.

Gailler, A., Hébert, H., Loevenbruck, A., and Hernandez, B.: Simulation systems for tsunami wave propagation forecasting within the French

tsunami warning center, Natural Hazards and Earth System Sciences, 13, 2465–2482, https://doi.org/10.5194/nhess-13-2465-2013, 2013.

Giordano, M., Klöwer, M., and Churavy, V.: Productivity meets Performance: Julia on A64FX, in: 2022 IEEE International Conference on655

Cluster Computing (CLUSTER), pp. 549–555, https://doi.org/10.1109/CLUSTER51413.2022.00072, 2022.

Gordon, N. J., Salmond, D. J., and Smith, A. F.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation, in: IEE Proceedings

F (Radar and Signal Processing), vol. 140, pp. 107–113, IET, 1993.

Goto, C.: Equations of nonlinear dispersive long waves for a large Ursell number, Doboku Gakkai Ronbunshu, 1984, 193–201, 1984.

Graham, M. M. and Thiery, A. H.: A scalable optimal-transport based local particle filter, arXiv preprint arXiv:1906.00507, 2019.660

Grudzien, C. and Bocquet, M.: A fast, single-iteration ensemble Kalman smoother for sequential data assimilation, Geoscientific Model

Development, 15, 7641–7681, https://doi.org/10.5194/gmd-15-7641-2022, 2022.

Grudzien, C., Merchant, C., and Sandhu, S.: DataAssimilationBenchmarks.jl: a data assimilation research framework., Journal of Open

Source Software, 7, 4129, https://doi.org/10.21105/joss.04129, 2022.

Gusman, A. R., Sheehan, A. F., Satake, K., Heidarzadeh, M., Mulia, I. E., and Maeda, T.: Tsunami data assimilation of Cas-665

cadia seafloor pressure gauge records from the 2012 Haida Gwaii earthquake, Geophysical Research Letters, 43, 4189–4196,

https://doi.org/10.1002/2016GL068368, 2016.

Hatfield, S.: samhatfield/letkf-speedy, https://doi.org/10.5281/zenodo.1198432, 2018.

Jordán, A., Eyheramendy, S., and Buchner, J.: State-space Representation of Matérn and Damped Simple Harmonic Oscillator Gaussian

Processes, Research Notes of the AAS, 5, 107, https://doi.org/10.3847/2515-5172/abfe68, 2021.670

Kondo, K. and Miyoshi, T.: Non-Gaussian statistics in global atmospheric dynamics: a study with a 10 240-member ensemble

Kalman filter using an intermediate atmospheric general circulation model, Nonlinear Processes in Geophysics, 26, 211–225,

https://doi.org/10.5194/npg-26-211-2019, 2019.

Le Provost, M.: EnKF.jl: A framework for data assimilation with ensemble Kalman filter, https://github.com/mleprovost/EnKF.jl, 2016.

Lee, A. and Piibeleht, M.: SequentialMonteCarlo.jl: A light interface to serial and multi-threaded Sequential Monte Carlo, https://github.675

com/awllee/SequentialMonteCarlo.jl, 2017.

Leeuwen, P. J., Künsch, H. R., Nerger, L., Potthast, R., and Reich, S.: Particle filters for high-dimensional geoscience applications: A review,

Quarterly Journal of the Royal Meteorological Society, 145, 2335–2365, https://doi.org/10.1002/qj.3551, 2019.

29

https://doi.org/10.1023/A:1008935410038
https://doi.org/10.21105/joss.04869
https://doi.org/10.3847/1538-3881/aa9332
https://doi.org/10.5194/nhess-13-2465-2013
https://doi.org/10.1109/CLUSTER51413.2022.00072
https://doi.org/10.5194/gmd-15-7641-2022
https://doi.org/10.21105/joss.04129
https://doi.org/10.1002/2016GL068368
https://doi.org/10.5281/zenodo.1198432
https://doi.org/10.3847/2515-5172/abfe68
https://doi.org/10.5194/npg-26-211-2019
https://github.com/mleprovost/EnKF.jl
https://github.com/awllee/SequentialMonteCarlo.jl
https://github.com/awllee/SequentialMonteCarlo.jl
https://github.com/awllee/SequentialMonteCarlo.jl
https://doi.org/10.1002/qj.3551

Lei, J., Bickel, P., and Snyder, C.: Comparison of ensemble Kalman filters under non-Gaussianity, Monthly Weather Review, 138, 1293–1306,

2010.680

Lorenz, E. N.: Deterministic Nonperiodic Flow, Journal of Atmospheric Sciences, 20, 130–141, https://doi.org/10.1175/1520-

0469(1963)020<0130:DNF>2.0.CO;2, 1963.

Maeda, T., Obara, K., Shinohara, M., Kanazawa, T., and Uehira, K.: Successive estimation of a tsunami wavefield without earth-

quake source data: A data assimilation approach toward real-time tsunami forecasting, Geophysical Research Letters, 42, 7923–7932,

https://doi.org/10.1002/2015GL065588, 2015.685

Miyoshi, T.: Ensemble Kalman Filter Experiments with a Primitive-equation Global Model, Ph.D. thesis, University of Maryland, College

Park, 2005.

Miyoshi, T., Kondo, K., and Imamura, T.: The 10,240-member ensemble Kalman filtering with an intermediate AGCM, Geophysical Re-

search Letters, 41, 5264–5271, https://doi.org/10.1002/2014GL060863, 2014.

Molteni, F.: Atmospheric simulations using a GCM with simplified physical parametrizations. I: Model climatology and variability in multi-690

decadal experiments, Climate Dynamics, 20, 175–191, https://doi.org/10.1007/s00382-002-0268-2, 2003.

Nadler, P., Arcucci, R., and Guo, Y. K.: Data assimilation for parameter estimation in economic modelling, Proceedings

- 15th International Conference on Signal Image Technology and Internet Based Systems, SISITS 2019, pp. 649–656,

https://doi.org/10.1109/SITIS.2019.00106, 2019.

Rackauckas, C. and Nie, Q.: DifferentialEquations.jl – a performant and feature-rich ecosystem for solving differential equations in Julia,695

Journal of Open Research Software, 5, 15, 2017.

Robbe, P.: GaussianRandomFields.jl: A package for Gaussian random field generation in Julia, https://github.com/PieterjanRobbe/

GaussianRandomFields.jl, 2017.

Ruzayqat, H., Er-Raiy, A., Beskos, A., Crisan, D., Jasra, A., and Kantas, N.: A lagged particle filter for stable filtering of certain high-

dimensional state-space models, SIAM/ASA Journal on Uncertainty Quantification, 10, 1130–1161, 2022.700

Sanpei, A., Okamoto, T., Masamune, S., and Kuroe, Y.: A data-assimilation based method for equilibrium reconstruction of magnetic fusion

plasma and its application to reversed field pinch, IEEE Access, 9, 74 739–74 751, 2021.

Schauer, M., Gagnon, Y. L., St-Jean, C., and Cook, J.: Kalman.jl: Flexible filtering and smoothing in Julia, https://github.com/mschauer/

Kalman.jl, 2018.

Schoenbrod, S.: KalmanFilters.jl, https://github.com/JuliaGNSS/KalmanFilters.jl, 2018.705

Snyder, C.: Particle filters, the “optimal” proposal and high-dimensional systems, Proceedings of the ECMWF Seminar on Data Assimilation

for Atmosphere and Ocean, pp. 6–9, http://www2.mmm.ucar.edu/people/snyder/papers/Snyder_ECMWFSem2011.pdf, 2011.

Sunberg, Z., Lasse, P., Bouton, M., Fischer, J., Becker, T., Saba, E., Moss, R., Gupta, J. K., Dressel, L., Kelman, T., Wu, C., and Thibaut, L.:

ParticleFilters.jl: Simple particle filter implementation in Julia, https://github.com/JuliaPOMDP/ParticleFilters.jl, 2017.

Thépart, J.-N., Vasiljevic, D., Courtier, P., and Pailleux, J.: Variational assimilation of conventional meteorological observations with a710

multilevel primitive-equation model., Q.J.R. Meteorol. Soc., 119, 153–186, https://doi.org/10.1002/qj.49711950907, 1993.

Vetra-Carvalho, S., van Leeuwen, P. J., Nerger, L., Barth, A., Altaf, M. U., Brasseur, P., Kirchgessner, P., and Beckers, J. M.: State-of-

the-art stochastic data assimilation methods for high-dimensional non-Gaussian problems, Tellus, Series A: Dynamic Meteorology and

Oceanography, 70, 1–38, https://doi.org/10.1080/16000870.2018.1445364, 2018.

30

https://doi.org/{10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2}
https://doi.org/{10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2}
https://doi.org/{10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2}
https://doi.org/10.1002/2015GL065588
https://doi.org/10.1002/2014GL060863
https://doi.org/10.1007/s00382-002-0268-2
https://doi.org/10.1109/SITIS.2019.00106
https://github.com/PieterjanRobbe/GaussianRandomFields.jl
https://github.com/PieterjanRobbe/GaussianRandomFields.jl
https://github.com/PieterjanRobbe/GaussianRandomFields.jl
https://github.com/mschauer/Kalman.jl
https://github.com/mschauer/Kalman.jl
https://github.com/mschauer/Kalman.jl
https://github.com/JuliaGNSS/KalmanFilters.jl
http://www2.mmm.ucar.edu/people/snyder/papers/Snyder_ECMWFSem2011.pdf
https://github.com/JuliaPOMDP/ParticleFilters.jl
https://doi.org/10.1002/qj.49711950907
https://doi.org/10.1080/16000870.2018.1445364

