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We would like to thank the reviewers and editor for their helpful comments and feedback. Our response to
their points are outlined below. An updated version of the article with highlights of the changes made has been
uploaded.

1 Reviewer 3

I appreciate the authors’ responses in answering my questions in the previous iteration. The revised manuscript
addresses most of my concerns. In my opinion, the manuscript is nearly ready for publication, with a few minor
issues below that need addressing.

1.

Line 336: I am curious about why the locally optimal proposal cannot be applied for the
non-linear observation operator? Even if the linear assumption is invalid, shouldn’t it still
be applicable? (like we can still apply the ensemble Kalman filter to assimilate non-linear
observation even if it’s not optimal) Please clarify if there’s anything that I might be missing
here.

Author’s response: This is an interesting question, and in part depends what is specifically meant by the
locally optimal proposal.

If we take the locally optimal proposal to specifically refer to the distribution with density defined by
equation (8) in the paper, then assuming a non-linear observation model (but continuing to assume
Gaussian observation noise with a fixed variance), that is y, | &z ~ N (hi(x;:), R), an immediate issue in
evaluating the density in equation (8) or sampling from the corresponding distribution is that we now have
a nonlinear operator h; : R% — R% rather than a linear operator represented by a matrix H € R% X4y,
One obvious approach to evaluating the matrix products involving H in equation (8) would be to use a
linearization of h; around the input as a substitute for H, that is H ~ 0h(x:), the Jacobian of h; evaluated
at x;. If we adopted this approach then we could evaluate the density in equation (8) and sample from
the corresponding distribution, however, the resulting proposal distribution would no longer be the locally
optimal (in the sense of minimising the variance of the importance weights) nor would the expression
for the importance weights in equation (9) be valid (as terms in the density ratio which exactly cancel
in the linear case would no longer do so in the non-linear approximation). We could use the underlying
definition of the importance weights as a density ratio given in the equation in step 5 of Algorithm 1 to
compute valid importance weights, but importantly these would depend on both x; and a;_; (sampled
state proposal and previous state) unlike the true locally optimal proposal, for which by construction the
importance weights depend only on the previous state (and so have no variance contribution from the
proposal distribution). So we can use a proposal which is an approximation to the locally optimal proposal
for the linear-Gaussian observation case, but the resulting proposal is not the locally optimal proposal for
the model.

If we instead consider the general definition of the density of the locally optimal proposal in equation (6)
and corresponding expression for the importance weights in equation (7), then for an observation model
Yy, | ® ~ N(hi(x:), R), the integral appearing in both equations (6) and (7) is analytically intractable.
We could potentially estimate this integral and use this to form an approximation to the locally optimal
proposal distribution, with in comparison to the approach above we at least in this situation directly
approximating the distribution of interest, rather than a proxy to that distribution. Depending on exactly
on how we estimate the integral though, the resulting proposal distribution may no longer be from a
known parametric family and so it may be challenging to generate independent samples from.

Line 344: “The time averaged RMSE results are plotted in 5.” -; Figure 5.

Author’s response: The missing Fig. has been added.



Line 344-345: “The effect of the non-linear observation operator can be clearly seen, where the
time averaged RMSE for the linear case is lower in all set-ups”.

This statement is inaccurate. There are a lot of factors determining the magnitude of RMSE. As-
similating a linear observation (i.e., with linear observation operator) with very large observation
error standard deviation can also lead to a large RMSE. When the observation error standard
deviation is fixed, using different observation operator leads to different shape of likelihood func-
tion, and therefore different magnitude of RMSE. I recommend rephrasing this sentence or just
removing it.

Author’s response: Thank you for pointing this out, this statement has now been dropped.

Line 449: what are the units for the standard deviation (especially for ps)?

Author’s response: The units have been added.

Line 459: “10 hPa” noises in ps seems to be quite large

Author’s response: Please see the response below.

Figure 9: I am still skeptical about the RMSE values in these experiments. Even in a model
run without DA (the lower left panel), the RMSE are unrealistically large, suggesting the large
RMSE is not related to the observing system. I suspect that this is a result of the experiment
setup that the ps standard deviation in Q is set to 100 (hPa) and the observation error is set
to 10 (hPa). I think setting the standard deviation as 100 (Pa) = 1 (hPa) and 10 (Pa) = 0.1
(hPa) could lead to a more realistic representation.

Author’s response: To clarify the existing experiment was run with the ps standard deviation in Q set to
100 Pa and the standard deviation of the additive observation noise set to 1000 Pa. The authors apologise
for the confusion and have added the units to the appropriate section. The authors would also like to
further highlight a mistake made in the previous round. As stated by the reviewer the Lo error is indeed
too large. Unfortunately, the appropriate scaling of the pressure fields was not carried out correctly when
producing the figures. The corrected figure (Fig. [1)) is produced below. We would like to thank the
reviewer for pointing this out and apologise for the oversight.

To ensure that we have fully engaged with the reviewer’s feedback Fig. [2|is the output of the suggested
set up, where the observation error standard deviation is set to 10 Pa. Differences between Fig. [1| and
Fig. [2 can be seen but when assessing the estimated ensemble size for this run (not shown here) we see
occurrences of particle degeneracy. Therefore the original setup with the updated figure (Fig. [1)) has been
retained in the manuscript.
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Figure 1: Corrected Fig 9. from the manuscript.
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Figure 2: Reviewer’s suggested setup with the standard deviation of the additive observation noise set to 10 Pa.
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