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Abstract. Two recently proposed variants of CD-type discretizations of sea-ice dynamics on triangular meshes are imple-

mented in the Finite volumE Sea ice - Ocean Model (FESOM version 2). The implementations use the finite element method

in spherical geometry with longitude-latitude coordinates. Both are based on the edge-based sea-ice velocity vectors, but dif-

fer in the basis functions used to represent the velocities. The first one uses nonconforming linear (Crouzeix–Raviart) basis

functions, and the second one uses continuous linear basis functions on subtriangles obtained by splitting parent triangles5

into four smaller triangles. Test simulations are run to show how the performance of the new discretizations compares with

the A-grid discretization using linear basis functions. Both the CD discretizations are found to simulate a finer structure of

linear kinematic features (LKFs). Both show some sensitivity to the representation of scalar fields (sea-ice concentration and

thickness). Cell-based scalars lead to a finer LKF structure for the first CD discretization, but the vertex-based scalars may be

advantageous in the second case.10

1 Introduction

The emergence of several global ocean models formulated on unstructured (triangular or hexagonal) meshes, such as FESOM

(Wang et al., 2014; Danilov et al., 2017), MPAS-Ocean (Ringler et al., 2013; Petersen et al., 2019) and ICON-O (Korn,

2017) triggered the development of sea-ice models tailored to such meshes. Very recently, the sea-ice component of FESOM

(FESIM, Danilov et al. (2015)), MPAS-Ocean (MPAS-Seaice, Turner et al. (2021) and Capodaglio et al. (2022)) and ICON-O15

(Mehlmann and Korn, 2021; Mehlmann and Gutjahr, 2022) have been documented. FESIM (Danilov et al., 2015) is based on

the finite element method and the collocated piecewise linear P1−P1 discretization. In this case, the discrete sea-ice velocities

and scalar quantities (concentration, thickness) are placed at mesh vertices, and the discrete fields are assumed to be linear

functions on triangles. This is an example of an A-grid discretization, in the terminology of Mehlmann et al. (2021). The

original formulation of MPAS-Seaice of Turner et al. (2021) follows the B-grid discretization. In this case, the discrete sea-ice20

velocities are placed at the vertices of the hexagons and scalars are placed at the hexagon centers. This corresponds to the

cell (triangle) placement of the velocity and the vertex placement of the scalars on dual triangular meshes. Several variants

of discretization are proposed by Turner et al. (2021), based either on variational principles or on the finite volume method.

The new MPAS-Seaice variational discretization developed by Capodaglio et al. (2022) places sea-ice velocity vectors at mesh

edges. The same staggering is used by Mehlmann and Korn (2021) to discretize the sea-ice module of ICON-O on triangular25
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meshes. The discretization by Mehlmann and Korn (2021) uses linear nonconforming (Crouzeix–Raviart) finite elements, while

the approximation by Capodaglio et al. (2022) uses either Wachspress (Dasgupta (2003)) or piecewise linear representation on

sub-polygons into which the mesh cells are additionally subdivided. The discretizations with velocity at the edges are called

CD-grid discretizations (Mehlmann et al., 2021).

On triangular meshes, the A, B and CD placements of the discrete sea-ice velocity result in different numbers of discrete30

degrees of freedom (DOF), with a ratio of 1:2:3. The CD placement implies three times more degrees of freedom than the A-

grid discretization used by FESOM (Danilov et al. (2015)), and thus finer effective resolution. An elementary Fourier analysis

of the accuracy of the discrete stress divergence operator on triangular A, B and CD grids (see Danilov et al. (2022)) also shows

that the accuracy correlates with the number of DOF. This is the main motivation for considering CD-type of discretizations

for sea-ice dynamics. However, the numerical efficiency, robustness and the ability to resolve sea ice leads of a particular35

placement depends on the implementation details.

This paper presents the new implementation of two CD-grid discretizations in the sea-ice component of FESOM. Both are

based on the standard Hibler viscous-plastic (VP) rheology (Hibler, 1979) and use the modified elastic viscous plastic (mEVP)

method (Bouillon et al., 2013; Kimmritz et al., 2015). The first, hereafter referred to as CD1, follows Mehlmann and Korn

(2021), but is formulated in longitude–latitude coordinates. This formulation includes additional metric terms, but does not40

need to transform velocities between local tangent coordinate systems (Mehlmann and Gutjahr, 2022). CD1 discretization is

based on the nonconforming linear (Crouzeix–Raviart) finite elements. These elements require stabilization when applied to

problems with full stress divergence (Falk, 1991). The stabilizing term in sea-ice momentum equation used by Mehlmann and

Korn (2021) is similar to that proposed in Hansbo and Larson (2003). The strength of the stabilization is well defined in the

case of VP method, but requires adjustments in the case of the mEVP method.45

The second CD-grid discretization, referred to as CD2, is similar to that used by Capodaglio et al. (2022), but differs in a

systematic finite element derivation based on piecewise linear basis functions defined on sub-triangles obtained by splitting the

mesh triangles into four equal smaller triangles, and the reconstruction of velocities at vertex locations based on edge velocities.

The option of Capodaglio et al. (2022) using the Wachspress basis is not pursued. Some other (minor) differences are due to

our use of locally flat triangles.50

We use the test case proposed by Mehlmann et al. (2021) to compare the performance of the CD1 and CD2 discretizations and

the existing A-grid discretization of FESOM. In fact, the results of FESOM simulations based on CD1 were already presented

in Mehlmann et al. (2021), but the description of the implementation in FESOM was missing. Since CD-discretizations use

3 times more discrete velocities than the A-grid, we also compare the performance of CD1 and CD2 discretizations with the

performance of a
√
3 finer A-grid.55

The following sections describe main equations (Section 2), the implementation and the Fourier analysis (Section 3), and

test simulations (Secton 4). They are followed by Discussions (Secton 5) and Conclusions (Section 6).
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2 Equations of sea ice dynamics

The sea-ice momentum equation is written as

m(∂t + f×)u= aiceτ − aCdρo(u−uo)|u−uo|+F−mg∇H. (1)60

Here, m= ρicehice + ρshs is the total mass of ice and snow per unit area, with ρice and ρs the sea ice and snow densities

and hice and hs the respective mean thicknesses (volumes per unit area), Cd is the ice-ocean drag coefficient, ρo is the water

density, aice is the sea ice concentration, u= (u,v) and uo are the sea ice and ocean velocities, τ is the wind stress applied to

sea ice, H is the sea surface elevation, g is the acceleration due to gravity and F=∇ ·σ is the force from the internal stresses

in ice (Hibler, 1979),65

σ = 2ηϵ̇+(ζ − η)Itrϵ̇− 1

2
IP0

∆

∆+∆min
, (2)

where

ϵ̇=
1

2

(
∇u+(∇u)T

)
(3)

is the strain rate tensor, η and ζ are the viscosities,

∆2 = (ϵ̇211 + ϵ̇222)(1+ e−2)+ 4ϵ̇212 e
−2 +2ϵ̇11ϵ̇22(1− e−2), (4)70

I is the identity matrix and P0 is the ice strength. Here, ϵ̇11, ϵ̇12 and ϵ̇22 are the components of the symmetric tensor ϵ̇ (3) with

respect to the orthogonal basis given by unit zonal (with index 1) and meridional (with index 2) vectors and

P0 = hicep
∗e−C(1−aice), ζ =

P0

2(∆+∆min)
, η =

ζ

e2
. (5)

The default parameters are e= 2, C = 20, ∆min = 2 ·10−9 s−1, and p∗ = 27500 N/m2. ∆min regularizes plastic behavior if ∆

is very small, replacing it with a viscous flow. To suppress sea ice motion in the absence of forcing, the last term in (2) contains75

an additional factor (after P0), i.e. the replacement pressure (Hibler and Ip, 1995).

The modified elastic viscous plastic method (mEVP) is used to solve for the sea ice dynamics in the same form as in

Danilov et al. (2015) and Koldunov et al. (2019b). This method is a reformulation of the original EVP method described

by Hunke and Dukowicz (1997), and is preferred here because it removes the association of sub-cycling time step of the

standard elastic viscous plastic method with numerical stability (Lemieux et al., 2012; Bouillon et al., 2013; Kimmritz et al.,80

2015). The stability is governed by additional dimensionless parameters α and β. The product αβ should be sufficiently large

compared to π2P0∆t(∆+∆min)
−1m−1∆x−2 (Bouillon et al., 2013; Kimmritz et al., 2015) for numerical stability of the

iterative procedure. Even though the number of iterations NEV P should be formally larger than α,β to ensure convergence to

VP, it has been demonstrated by, e.g., Kimmritz et al. (2017) and Koldunov et al. (2019b), that much smaller NEV P is often

sufficient in practice. Simulations reported below use NEV P = 100 and α,β are adjusted to ensure stability for the resolution85

and discretization used.
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3 Discretizations

3.1 Spherical geometry

In the discretization of the sea-ice momentum equation, spherical geometry is taken into account similarly to Danilov et al.

(2015), and is consistent with Turner et al. (2021) and Capodaglio et al. (2022) apart from some modifications due to the90

weak formulation in our case and the approximation of locally flat triangles (vs. tangent plane). We use longitude-latitude

coordinates (ϕ,θ). In realistic applications these coordinates are those of a rotated coordinate system with the ’north pole’

displaced to the Greenland. The rotation necessitates the transform of forcing and redefines the Coriolis parameter, but has no

other implication for the numerical method. To simplify the description the rotation of the coordinate system is ignored in the

following. The distances ∆x,∆y on mesh triangles are computed with respect to the first triangle vertex using the value of95

cosine at triangle center as ∆x=Re cosθc∆ϕ, ∆y =Re∆θ. The index c implies that the quantity is related to the cell (i.e.

triangle), and Re is Earth’s radius. These distances are used to compute arrays of vertex or edge weights that define derivatives

in zonal and meridional directions on triangles (see sections 3.2 and 3.3). Additional metric terms appear in computations

of strain rates and in computations of stress divergence. They are specified below. Apart from these additional metric terms

and cosines used in computations of relative distances and derivatives, all other computations look as if the geometry were100

flat. Therefore, we use ∂x and ∂y to denote spatial derivatives as defined in ∇= (∂x,∂y) = (1/Re)((1/cosθ)∂ϕ,∂θ) and local

Cartesian coordinates on triangles. Under this convention the previously introduced indices 1 and 2 in equation (4) are x and

y. The FESOM simulations described below are carried out using a flat geometry which is achieved by setting the values of

cosθc to 1 and the metric factor to zero. The cosines and metric factors are stored in arrays which are filled before the time

stepping, so switching between flat and spherical geometries does not affect the code.105

3.2 Case CD1: A CD-discretisation based on non-conforming linear finite elements

For brevity, we will begin with the VP momentum equation (1), and then explain the modifications needed for the mEVP

method. The momentum equation is first projected on some sufficiently smooth test functions w. The internal stress is inte-

grated by parts to obtain a weak formulation∫
mw · ∂tudS =

∫
w ·RdS−

∫
∇w : σdS−

∫
mgw · ∇HdS. (6)110

Here R combines all other terms except for those that are explicitly written, and the colon implies a tensor product. The sea

ice velocity is approximated by a series in nonconforming (Crouzeix–Raviart) linear basis functions,

uh =
∑
e

ue(t)Ne(x,y).

Here, the summation is over all mesh edges, and Ne(x,y) is the nonconforming linear basis function. It is equal 1 on edge e

and varies linearly to −1 on the vertex v opposite to edge e. In Fig. 1, Ne1 = 1 on edge e1, is 0 at midpoints of edges e2 and

e3, −1 at v1 and similarly on the other triangle opposite to the yellow one. Ne is zero outside two triangles sharing edge e.
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Note that the nonconforming basis function coincides with the standard linear function defined on a small triangle formed by

connecting mid-edge points and then continued to the primary triangle. For this reason, if the set of triangle edges {e1,e2,e3}
is ordered so that e1 is opposite to v1 of the set of triangle vertices {v1,v2,v3}, see Fig. 1, the derivatives of Ne can be obtained

from the (already available in FESOM sea ice module) derivatives of standard linear basis functions by multiplication with −2.

A lumped approximation is used for R,

Rh =
∑
e

ReNe.

We will further suppress the upper index h used to denote discrete approximations. The components of strain rate tensor are

written as

ϵ̇11 = ∂xu− vmf , ϵ̇22 = ∂yv, ϵ̇12 = (1/2)(∂yu+ ∂xv+umf ),

where mf = tanθ/R is the metric factor. To simplify computations, we approximate metric terms by constants on triangles.

The discrete strain rates on triangle c become

(ϵ̇11)c =
∑

e∈E(c)

(ue∂xNe − (mf )cve/3), (7)

(ϵ̇22)c =
∑

e∈E(c)

ve∂yNe, (8)

(ϵ̇12)c = (1/2)
∑

e∈E(c)

(ue∂yNe + ve∂xNe +(mf )cue/3). (9)115

They are are constant on triangles. Here, E(c) is the set of edges of triangle c.

The stresses are also considered to be constant on triangles, which requires that the ice strength P0 is constant too. If the

scalar degrees of freedom are placed on cells, which is one option in our implementation, the discrete P0 is constant on triangles

without additional approximations. If scalar fields are linear on triangles with the discrete degrees of freedom on vertices, as in

Danilov et al. (2015), which is the second option here, P0 is computed at the central quadrature point, i.e. using mean aice and120

hice on triangle. Note that because the concentration aice enters the exponent in P0 (5), this may reduce P0 in places where the

concentration varies strongly.

The next step is to obtain the Galerkin approximation. The above polynomial approximations are inserted in (6), and the test

function is taken as w =Nj =wjNj , where j is the edge index, and wj is an arbitrary weight vector. The equations for sea

ice velocity are obtained by requiring that the result holds for any wj . However, since the nonconforming function Ne(x,y) is125

discontinuous at edges other than e (except for mid-points), one restricts the integration to triangle interiors and adds penalty

(stabilization) terms that effectively connect the triangles:∑
c,e∈E(c)

∫
c

(mNj · ∂tueNe −Nj ·ReNe +∇Nj : σc +mgNj · ∇H)dSc +Sj = 0. (10)

As shown by Hansbo and Larson (2003) (see also Mehlmann and Korn (2021)), the stabilization term is

Sj =
∑
e

(2Cζe/le)

∫
e

∫
[u] · [Nj ]dl,
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with C an order one constant, le the length of edge e, [q] the jump of quantity q across the edge, and ζe the estimate of viscosity

ζ on edge e, which is taken as mean over triangles sharing e.130

The nonconforming functions are orthogonal on elements, so
∫
c
NjNedSc = δjeSc/3, for j,e ∈ E(c) and zero otherwise.

The edge value of mass is obtained as half sum of two vertex or two cell values depending on the discretization of scalar fields.

The computations of the third and fourth terms on the left hand side of equation (10) are similar to the computations in Danilov

et al. (2015), but we repeat them here for completeness. In spherical geometry, there are metric terms in ∇Nj , leading to∫
c

(∇Nj)c : σcdSc = Scwj · ((σ11)c∂xNj +(σ12)c∂yNj +(σ12mf )c/3,(σ12)c∂xNj +(σ22)c∂yNj − (σ11mf )c/3). (11)135

The metric contributions initially contained Nj , which left Sc/3 after integration over the cell area. Note that compared to the

case when the stresses are differenced directly, some metric terms are absent in the weak formulation. The reason is that they

originate from the differentiation of cosθ which is hidden in dSc in (11). Even if we used a linear representation for cosθ on

triangle c, the result would be the mean cosine on triangle (absorbed in Sc on the rhs of (11)) because stresses are constant on

triangles for linear basis functions.140

Computations of ∇H in the fourth term on the lhs of (10) do not involve differentiation of metrics. In FESOM, H is known

at vertices. The mass at edge j, as above, is the mean of two vertex values for the vertex-based scalars, and two cell values for

the cell-based scalars. The result is∫
c

mg∇HNjdSc = gmj(Sc/3)wj · ∇H, (12)

where ∇H =
∑

v∈V (c)Hv∇Mv , with Mv the standard linear basis function on triangle c, and V (c) the set of vertices of145

triangle c.

The integration over edges in the stabilization term involves
∫
e
(2l/le − 1)2dl = le/3, so that le drops out of the final result.

The stabilization term is computed through two cycles over triangles, similar to Mehlmann and Korn (2021). The first cycle

collects the contributions from the velocity on the triangle into the edge velocity differences, and the second one adds these

contributions to the equations for edge j. The presence of the stabilization term is critical. As shown by the elementary Fourier150

analysis (Danilov et al., 2022), there is no approximation for the eigenvalues of discrete divergence of stresses if this term is

absent.

The extension of this discretization to the mEVP method requires empirical adjustment of the strength of the stabilization.

The point is that stresses in this method are iterative EVP approximations to the VP stresses. The stabilization term is the

contribution to the stress divergence, it does not appear in the iterative cybcycling of stresses in the mEVP method. It has155

been empirically found that the stabilization pre-factor has to be essentially smoother than 2Cζe/le of the VP method and

that its amplitude has to be tuned for numerical stability of mEVP method. Instead of 2Cζe we take CP0Se/∆t, where

Se = (1/3)(Sc1 +Sc2) the area associated with the edge (with c1 and c2 the triangles sharing the edge). C is dimensional in

this case and is taken as C = 2.5 s2/m2. Apart from the intention to make stability of iterative process less sensitive to ∆t and

changes in mesh resolution, the selection is purely empirical. It was tested in the range of resolutions 2−8 km in computations160
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reported in Mehlmann et al. (2021), but may need additional tuning in other situations. A VP implementation can be a safer way

to proceed with the stabilization, but it is not pursued in this work as we employ the EVP or mEVP methods in our practical

applications.

As mentioned above, both vertex (P1) and cell representation of scalar fields is supported in the sea ice code. In the first case

we use the FCT-FEM method of Löhner et al. (1987) as described in Danilov et al. (2015) to advect the tracers. Because of the165

use of consistent mass matrices its high-order part is nominally fourth order in space and second order in time. For the cell-

wise constant scalars we use the first-order upwind method, which will be replaced by an FCT method with the second-order

high-order part for practical applications in the future.

3.3 Case CD2: A CD-grid discretization with conforming linear elements on sub triangles

The difference from the previous (CD1) case lies in the selection of basis and test functions. Consider triangle c with vertices170

V (c) = {v1,v2,v3} and edges E(c) = {e1,e2,e3}, as shown in Fig 1. As mentioned above, the convention is that e1 is opposite

to v1 and so on. The notation e1,e2 and e3 for edges will be also used to denote the mid-edge points, which should not lead to

ambiguities. By connecting the mid-edge points, each primary mesh triangle is subdivided into four smaller triangles. Triangle

c in Fig. 1 is subdivided into triangles s1,s2,s3 and s4 with the following ordering of vertices: {e1,e2,e3} for s1, {v1,e3,e2}
for s2, {e3,v2,e1} for s3 and {e2,e1,v3} for s4. The ordering is important, because it allows us to use the array of derivatives175

computed for the primary triangle. The velocity field is assumed to be linear on each sub-triangle. We store the derivatives

of standard linear basis functions Mv , v ∈ V (c) for each c as matrices Gx
vc and Gy

vc. The derivatives of linear functions on

sub-triangles, by virtue of the ordering described above, are obtained by multiplication of these values with −2 for s1 and 2

for s2,s3 and s4 for given c. Note that compared to the nonconforming linear basis functions of the previous section, only the

representation on sub-triangle s1 remains the same.180

The available degrees of freedom are associated with edge velocities, same as in the previous section. The edge velocity is

interpreted as a mid-edge value. Values of velocity at mesh vertices are reconstructed as a weighted mean of edge velocities,

uv =
∑

e∈E(v)

Wveue. (13)

The weights are normalized so as
∑

e∈E(v)Wve = 1 for each v. They are first taken as inverse of edge lengths, and then

normalized. This reconstruction rule and linear representation on sub-triangles imply that for each edge e we are working with185

a piecewise linear basis function Ne which equals 1 at midpoint of e, goes linearly to 0 at other edge mid-points in triangles

sharing e, goes linearly to Wve at the edge vertices, and linearly to 0 at mid-points of other edges joining at vertices. The

support of Ne1 in Fig. 1 is the combination of sub-triangles meeting at e1 or v2 or v3.

In terms of thus defined Ne, the velocity field is written as

u=
∑
e

ueNe.

In practice, we use two separate arrays, one to store the resolved velocities ue and another one to store their vertex recon-

structions uv . Same as for the CD1 discretization, the strain rates are assumed to be constant on sub-triangles, and the metric190
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v2v3

v1

e1

e2 e3

s1

s2

s3s4

Figure 1. CD1: The nonconforming linear function Ne1 on yellow triangle equals 1 on edge e1, −1 at v1, and 0 on the line connecting the

mid-points of e2 and e3. CD2: Triangle c (shaded yellow) is split into four sub-triangles s1,s2,s3 and s4 by connecting mid-edge points. The

set of triangle edges (edge mid-points) {e1,e2,e3} is ordered such that they are opposite to triangle vertices {v1,v2,v3}. The basis function

at e1 is non-zero at the set of sub-triangles that meet at e1, v2 or v3. This basis function equals 1 at e1, We1v2 at v2 and We1v3 at v3, where

We1v2 and We1v2 are scalar weights given by (13). It decays linearly to 0 at all other green points of the stencil.

terms are approximated by constants to achieve this. The ice strength is taken constant on primary triangles, which leads to

stresses that are constant on subtriangles. Since there are four sub-triangles in each triangle c, four times more discrete stresses

are iterated in the mEVP procedure. This increases computational load compared with the case of nonconforming functions,

where the computation cycle is limited to the primary triangles of the mesh.

To obtain the Galerkin approximation, the test function is taken to be any of Nj =wjNj . Since Nj now is continuous, no195

additional penalty terms are present, in contrast to the CD1 discretization of the previous section, and we get, for edge j∑
c,e

∫
c

(mNj · ∂tueNe −Nj ·ReNe +∇Nj : σc +mgNj · ∇H)dSc = 0. (14)

In the terms with the time derivative and Re,
∫
NjNedS are the components of mass matrix. In contrast to the case of

nonconforming functions, this matrix is not diagonal now. Similar to Danilov et al. (2015), it is replaced by its diagonally

lumped approximation for numerical efficiency, ∫
NjNedS ≈ δjeSe,

where Se is the row sum of mass matrix entries. It is equal to

Se = (1/4)
∑

c∈C(e)

Sc +
∑

v∈V (e)

WveSv,

where Sv =
∑

c∈C(v)Sc/12.

The computations of the third and fourth terms on the left hand side of (14) are done in the double cycle over triangles

(external) and sub-triangles (internal). Each term is computed as explained above for the case of nonconforming functions, but
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now the standard P1 functions on sub-triangles are used instead of nonconforming functions. The contributions from the stress

divergence from sub-triangles are first collected in an auxiliary edge-based (Fe) and vertex-based (Fv) arrays. For example,

the sub-triangle s2 in Fig. 1 contributes to the edges e2 and e3 and to the vertex v1. On completing the cycle over triangles, the

edge-based result Fe is updated by two vertex based contributions Fv as

Fe → Fe +
∑

v∈V (e)

WveFv.

We see that actual basis and test functions Ne are not used in computations. They are, however, needed for the consistent

Galerkin formulation, in particular, for defining how to compute Se. The procedure used by Capodaglio et al. (2022) to deter-200

mine consistent areas associated with edge degrees of freedom is similar to the one used here, but the finite-element approach

automatically determines the areas associated with the computational nodes. Once again, we note that the presence of sub-

triangles increases the computational load in finding the stress divergence.

3.4 Fourier analysis of CD2

It is instructive to perform the Fourier analysis of CD2. It will provide an independent argument on the accuracy of this205

discretization, similarly to the analysis in Danilov et al. (2022).

Consider an infinite triangular mesh made of equilateral triangles with side length a and height h= a
√
3/2. Let the axis x

be directed along one of the triangle sides, and the y axis along the height drawn to that side. The discrete velocities are located

at mid-edges. For the Fourier analysis they are naturally split into three families related to sides with the same orientation. A

degree of freedom associated with a particular side of triangle has a neighborhood with the stencil which is oriented differently

compared to those associated with other sides. This is why one needs to introduce six (three for u and three for v) separate

velocity amplitudes in order to perform the Fourier analysis,

ue = uaeik·xe , e ∈ Ea,

ue = ubeik·xe , e ∈ Eb,

ue = uceik·xe , e ∈ Ec

Here, the subscript e denotes edges, and Ea,Eb and Ec are the sets containing edges oriented as e1,e2 and e3 (Fig. 1) respec-

tively, k= (k, l) is the wave vector, and xe is the location of mid-edge point of edge e.

A vertex velocity is reconstructed from the edge velocities. The amplitude of vertex velocity is

uv = (1/3)(ua cos(ka/2)+ub cos(ka/4+ lh/2)+uc cos(−ka/4+ lh/2)).

The cosines contain phase shifts between a vertex and respective mid-edge points of edges emanating from this vertex.

Same as in Danilov et al. (2022), the stress divergence operator is linearized, the sea-ice strength (and hence the viscosities210

η and ζ) is taken constant and the geometry is assumed to be flat. One is interested in the eigenvalues of stress divergence

operator V =∇ ·σ. We take z = η/ζ = 1 to ensure that the eigenvalues are sufficiently close to each other in plots.
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Figure 2. Left panel: The eigenvalues of the (dimensionless) Fourier symbol of a2η−1∇·σ (thick gray lines) for the discretization CD2 as

a function of dimensionless wavenumber |k|a for the wavevector oriented at π/6 to the x-axis and ζ = η. The thin dashed lines show the

dimensionless eigenvalues −(k2 + l2)a2 and −2(k2 + l2)a2 of the continuous case. Thick black lines show the spurious branches. Right

panel: Comparison with physical eigenvalues of other discretizations (Danilov et al. (2022)). In order of increasing accuracy: A-grid (red),

B-grid (Turner et al. (2021), PWL basis) (magenta), CD2 (gray), CD1 (green). B-grid of FESOM is nearly identical to CD2 and is barely

seen (orange cast).

We first compute the strain rates on each of the four subtriangles of a primary mesh triangle, see Fig. 1, counting the phases

relative to their centers. For example, for subtriangle s1, formed by the vertices at e1,e2 and e3, the gradients of basis functions

on this triangle are 2(0,−1)/h, (−
√
3,1)/h and (

√
3,1)/h respectively, so that the amplitude of ε̇11 on this triangle is

(ε̇11)s1 = (−
√
3/h)ube−ika/4+ilh/6 +(

√
3/h)uceika/4+ilh/6,

and similarly for all other strain rate components on subtriangle s1, and also for the strain rates on other subtriangles. Note that

the expressions for the gradients and phase shifts depend on the orientation of primary triangles. The expression above is valid

for triangles that are oriented as the yellow triangle in Fig. 1. For the primary triangles of opposite orientation (the neighbors215

of the yellow triangle in Fig. 1) the strain rate amplitudes are minus complex conjugate of the respective results for the triangle

(v1,v2,v3). In numerical computations this complication is automatically taken into account when the arrays of derivatives are

computed. After the strain rates on subtriangles are computed, the direct stress divergence contributions to edges and vertices

are found, and then the edge expressions are updated for vertex contributions, just as done in numerical computations. The

resulting Fourier symbol of discrete stress divergence is a 6 by 6 matrix, the eigenvalues of which are found numerically and220

plotted in the left panel of Fig. 2.

They have to be compared with the eigenvalues of CD1 and other discretizations given in Danilov et al. (2022). Same as

in the case of CD1, there are two physical (thick gray) and four numerical (thick black) branches. The numerical branches

are strongly dissipative in the limit of small wavenumbers and do not require any special care. There is no kernel (no zero

eigenvalues except for zero wavenumbers), so no stabilization is needed. The right panel of Fig 2 plots the physical eigenvalues225
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found in Danilov et al. (2022) for other discretizations together with those of CD2 discretization. The range of wavenumbers

where the stress divergence eigenvalues give accurate representation of continuous eigenvalues is noticeably narrower for CD2

than for CD1 discretization. We thus expect to see lower resolving power for CD2 compared to CD1. The eigenvalues of CD2

are more accurate than those of the B-grid discretization of Turner et al. (2021) and the A-grid discretization of FESOM. The

Fourier analysis only shows that different discretizations have potentially different accuracy. Full nonlinear simulations are230

needed to judge about their real performance.

4 Comparison of performance

Since this work relies on the already existing discretizations, we only compare the performance of the two new CD methods

in FESOM with respect to their numerical efficiency and ability to represent linear kinematic features (LKF) based on the

test case proposed by Mehlmann et al. (2021). Their comparison under realistic conditions will be carried out in a separate235

work. The representation of LKFs is judged qualitatively by their fine structure, and quantitatively, by computing the number

of simulated LKFs using the method of Hutter et al. (2019). CD1 and CD2 discretizations are run in two options with the

cell-based and vertex-based scalars. One expects that the ability to represent fine structure of LKFs is mainly governed by the

number of degrees of freedom used to resolve velocities. However, on triangular meshes, the number of cells is twice that of

vertices, which may lead to a more detailed representation of sea ice concentration and thickness. Furthermore, computations240

of mean ice strength on triangles in our implementations imply averaging for the vertex-based scalars to cells, whereas no

averaging is applied in the cell-based case. For more details on the influence of the tracer placement on the resolution of LKFs,

see Mehlmann and Danilov (2022). We also compare the CD-grid simulations with those performed with the default A-grid

sea-ice discretization of FESOM on a finer mesh with the same number of degrees of freedom as for the CD discretizations.

The test case is run on a triangular mesh occupying a rectangular domain of 512 by 512 km. Except for western and eastern245

boundaries, the triangles are equilateral. Smaller rectangular triangles are added along the western and eastern boundaries to

make these boundaries straight. The side of equilateral triangles is 2 km for CD discretizations. The A-grid simulation is run on

the mesh with a triangle side 2/
√
3 km. The test case describes the initial phase of sea ice deformation under the forcing of a

cyclone moving diagonally to the north-eastern corner. Precise formulation of the test case and forcing parameters can be found

in Mehlmann et al. (2021). All simulations use the same external time step ∆t= 2 min. While a larger time step is possible,250

the selected time step would be typical if the sea-ice model is run together with an ocean model at such spatial resolution.

The simulated sea ice patterns at the end of the second day of the model integration are compared. We use α,β = 800 on

A-grid, but increase them to 1500 on CD grids to maintain numerical stability. Our other runs (not shown here) indicate that

the sensitivity of the simulations to the precise values of α,β is weak if these values are sufficiently large for stability of the

iterative procedure. All runs use NEV P = 100, as mentioned earlier.255

Figure 3 presents the field of sea ice concentration (top row) and ∆ (see expression 4) (bottom row) for CD1 (nonconforming

basis functions) in the left column and for CD2 (linear basis functions on sub-triangles) in the right column. In both cases the
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Figure 3. Sea ice concentration (top row) and ∆ (bottom row) in the test case described by Mehlmann et al. (2021), simulated with CD1

discretization (left column) and CD2 discretization (right column) with the cell-based sea-ice concentration and thickness.

scalars are placed on cells, and the first-order upwind advection is used. It can be seen that the CD1 simulates more LKFs. The

LKFs are wider and have less small-scale details in CD2.

Figure 4 presents the same fields as Fig. 3 in the first two columns, but for vertex-based scalars. Here too, the ability of CD1260

to simulate finer scales is clearly seen in both the concentration and ∆. However, by comparison with the patterns of Fig. 3 we

conclude that the vertex placement of scalars leads to some reduction in details in the western parts of the domain for CD1,

despite the fact that the high-order advection scheme (see Danilov et al. (2015)) is used in this case in contrast to the highly

dissipative first-order upwind scheme used for the cell-based scalars. For CD2, almost no difference is seen between the cell

and vertex placement.265

The third column in Fig. 4 displays the sea-ice concentration and ∆ for the vertex (A-grid) velocity placement but on a finer

mesh. The number of velocity degrees of freedom in this case is approximately the same as in the CD cases. Fine scales are

better simulated than in the case of CD2, but still less resolved than in the case of CD1. The number of LKFs diagnosed with

the algorithm of Hutter et al. (2019) are 114 for the A-grid, and 73 and 75 for CD2 with cell and vertex scalars respectively, to

be compared with ≈ 200 for CD1 with cell scalars.270

Mehlmann et al. (2023) compare the performance of the CD discretizations in ICON-o, MPAS and FESOM frameworks.

They show that the number of LKFs simulated by the FESOM CD2 discretization is lower compared to that simulated in the

MPAS framework. Further experiments carried out after the present paper has been submitted show that the CD2 discretization

is sensitive to the representation of the ice strength for the vertex-based scalars, which correspond to the cell scalars of hexag-

onal meshes. The ice strength P0 (5) in the FESOM implementation was taken constant on primary mesh triangles (e.g., the275

triangle with vertices v1,v2 and v3 in Fig. 1) in the simulations shown in Fig. 4 and used in Mehlmann et al. (2023). This choice
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Figure 4. Same as in Fig. 3, but for the cases with vertex-based scalars, for CD1 discretization (the left column), CD2 discretization (the

middle column) and fine A-grid discretization (right column). The two CD cases are for a mesh with triangle side of 2 km, while the A-grid

case is for a mesh with triangle side of 2/
√
3 km.

was inherited from the A-grid and CD1 discretizations, where it led to elementwise constant strain rates and stresses. For the

CD2 discretization, a more accurate choice is possible for vertex scalars. The ice strength is still elementwise constant, but on

small triangles. Returning to Fig. 1, P0 is based on the mean thickness and concentration on the triangle (v1,v2,v3) only for

s1; the values of P0 on triangles s2,s3 and s4 are estimated at vertices v1,v2 and v3 respectively. This treatment increases the280

number of simulated LKFs (not shown), which becomes closer to that of MPAS simulations. The vertex placement of scalars

leads in this case to a finer detail than the cell placement, despite the twice larger number of DOF for the cell placement.

This observation indicates that not only the representation of scalars, but also the representation of P0 is important. A detailed

analysis is the subject of future work.

5 Discussion285

The higher resolving capability of the CD (edge) placement of velocity compared to the vertex (A-grid) placement is related to

its three times larger number of discrete velocities. The larger number of degrees of freedom implies shorter distances between

their locations and may potentially lead to a more accurate approximation of differential operators. The gain in accuracy

depends on the discretization, and an elementary Fourier analysis of the eigenvalues of the linearized stress divergence operator

in Danilov et al. (2022) and in section 3.3 here indicates that CD1 is more accurate than CD2 and both outperform the A-grid290

discretization. This result agrees with the behaviour of discretizations in the simple test simulations above. We also note that

CD1 outperforms A-grid even in terms of LKFs per degree of freedom, as mentioned in Mehlmann and Danilov (2022) and

also illustrated above by the A-grid run on a
√
3 times finer mesh.
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A caveat of the CD1 discretization is that it needs stabilization to remove kernels in differential operators, as discussed by

Mehlmann and Korn (2021). The stabilization constant C requires tuning with the methods of EVP type, and although the295

empirically found value ensures a reliable work across some tested range of mesh resolutions, it may still need some attention

on highly variable meshes. In contrast, CD2 does not require stabilization. From this perspective, it can be viewed as a more

robust alternative to CD1.

We also note that CD1 shows a tendency to simulate very close LKFs, separated by several mesh cells. They are well seen in

Fig. 3 for cell-based scalars, but become less apparent in Fig. 4 for the vertex-based scalars. It is difficult to judge whether such300

scales are already affected by numerical errors in full nonlinear case (the accuracy of linear stress divergence operator remains

high for |ka|< 2.5, see Fig. 2). It remains to be seen which of the two CD discretizations on triangular meshes is more reliable

in real-world applications on general unstructured meshes.

In our implementation CD1 is approximately two times and CD2 approximately four times more expensive than the A-grid

code on the same mesh. In all cases there are two basic cycles over triangles. The stresses are computed in the first cycle and305

the divergence of stresses is computed in the second cycle. For the A-grid discretization these two cycles take most of CPU

time. In CD1, there are two additional cycles over triangles to compute the contribution of stabilization, which largely explains

the CPU time doubling. The cycles over triangles in CD2 include an inner cycle over four sub-triangles, which is the main

reason for the observed increase in the computational load in this case. We speculate that some optimization is still possible,

so these numbers can only be treated as preliminary estimates. In addition to the increase in the time needed for computations,310

the number of halo exchanges in parallel implementation also increases in the CD cases. As compared to the A-grid code, in

our implementation the CD1 discretization requires an additional halo exchange for edge velocity differences. The CD2 case

needs additional exchanges for vertex velocities and for the contributions to the divergence of stresses that are assembled at

vertices. As demonstrated by Koldunov et al. (2019a), the halo exchanges in sea-ice module is the factor limiting the scalability

of FESOM in massively parallel applications. This raises a question on the effect of CD discretizations on scalability, which315

also requires further work.

The A-grid run on a
√
3 times finer mesh, which ensures the same number of degrees of freedom as in the CD cases, is

approximately as computationally expensive as CD2. The fact that it simulates more LKFs than CD2 might be related to much

more accurate representation of scalars in this case. However, sea-ice simulations are generally run on the surface mesh of the

ocean model, and the potential possibility of using a separate finer mesh for sea ice is not always feasible. One would opt for320

using CD1 or CD2 instead of A-grid discretization if better resolution of LKFs is required than the one provided by A-grid.

There is a possible extension of CD2 discretization. Instead of considering vertex velocities as dependent variables one

treats them as independent ones, in addition to the edge velocities, and uses P1 finite elements on sub-triangles. The scalars are

treated as previously on the original mesh. This extension is equivalent to considering the sea-ice dynamics on a virtual twice

finer mesh. The increase in the numerical work is negligible compared to the case of CD2 discretization, but the advantage325

is the smaller support of basis functions, hence better resolution. Also, as follows from the Fourier analysis (the right panel

of Fig. 2), the B-grid implementation of FESOM, briefly sketched in Danilov et al. (2022), is nearly as accurate as CD2. It is

nearly as expensive as CD1. A detailed comparison of these possibilities in realistic simulation deserves further work.
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6 Conclusions

We describe implementation of two CD-type discretization of sea-ice mEVP dynamics in FESOM2. They are based on330

the finite-element method and the use of longitude-latitude coordinates. Both discretizations have been proposed earlier by

Mehlmann and Korn (2021) (CD1) and Capodaglio et al. (2022) (CD2), respectively. In the first case, the difference to the

original implementation lies in using the longitude-latitude coordinates and the addition of metric terms, which eliminates the

need to transform velocities between local tangent coordinate systems. In the second case, the difference lies in using the finite

element approach, which makes the derivation more compact and automatically determines the surface area associated with335

the velocity degree of freedom.

Both CD1 and CD2 demonstrate higher LKF-resolving capability than the A-grid discretization. Although CD2 shows lower

resolving capacity than CD1, it may be more robust in (m)EVP dynamics as it does not need much additional adjustment. The

new discretizations can be sensitive to particular implementation details. It also remains to be seen how these new discretiza-

tions behave in realistic global climate simulations compared to the standard A-grid discretization of FESOM, which is the340

subject of our future work.
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