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Abstract 10 

Climate models provide required input data for global or regional climate impact analysis in aggregated 11 

form, often on a daily basis to save space on data servers. Today, many impact models work with daily 12 

data, however, sub-daily climate information is getting increasingly important for more and more 13 

models from different sectors, such as the agricultural, the water, and the energy sector. Therefore, 14 

the open source Teddy-Tool (temporal disaggregation of daily climate model data) has been developed 15 

to disaggregate (temporally downscale) daily climate data to sub-daily hourly values for temperature, 16 

precipitation, humidity, longwave radiation, shortwave radiation, surface pressure and wind speed. 17 

Thereby, mass and energy are strictly preserved by the Teddy-Tool to exactly reproduce the daily 18 

values from the climate models. Here, we describe and document the temporal disaggregation, which 19 

is based on globally available bias-corrected hourly reanalysis WFDE5 data from 1980-2019 to take 20 

specific local and seasonal features of the diurnal course empirically into account. The physical 21 

dependency between variables is preserved, since the diurnal profile of all variables is taken from the 22 

same, most similar meteorological day of the historical reanalysis dataset. We perform a sensitivity 23 

analysis of different time window sizes used for finding the most similar meteorological day in the past. 24 

In addition, we perform a cross-validation, autocorrelation and extreme value analysis for 30 globally 25 

distributed samples around the world, representing different climate zones. The validation shows that 26 

Teddy is able to reproduce historical diurnal courses with high correlations >0.9 for all variables, except 27 

for wind speed (>0.75) and precipitation (>0.5). Consequently, sub-daily data provided by the Teddy-28 

Tool could make climate impact assessments more robust and reliable. 29 

Introduction 30 

Sub-daily climate data is becoming increasingly important in climate impact analysis. This type of data, 31 

which captures variations in temperature, precipitation, and other weather variables at intervals of 32 

less than a day, can provide a more detailed representation of local and regional climate conditions 33 

and temporal variations. This information can be crucial for evaluating the impacts of climate change 34 

on various sectors, such as agriculture, water resources, energy production, and human health (Golub 35 

et al., 2022; Trinanes and Martinez-Urtaza, 2021; Colón-González et al., 2021; Tittensor et al., 2021; 36 

Byers et al., 2018; Jägermeyr et al., 2021; Poschlod and Ludwig, 2021; Degife et al., 2021). A better 37 

representation of the diurnal course of temperature, extreme precipitation events, and other weather 38 

variables are also important for adaptation assessments which depend on behavior or processes with 39 

high temporal dynamics, such as the energy demand, labor activity, the heat stress of crops or flood 40 

events (Minoli et al., 2022; Zabel et al., 2021; Reed et al., 2022; Orlov et al., 2021; Franke et al., 2022).  41 
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Research has shown that using sub-daily climate data can result in more robust and reliable impact 42 

assessments compared to using daily data (Orlov et al. 2023). 43 

Today, most climate model data are available for download at daily resolution because of the high 44 

storage requirements for sub-daily climate data. However, the demand for sub-daily data is increasing 45 

due to lower costs for storage and computing resources. Different methods exist to disaggregate 46 

available daily climate data to sub-daily, most often hourly values. These can be roughly divided into 47 

statistical methods, weather generators, and mechanistic approaches, although mixed forms also exist 48 

(Förster et al., 2016). 49 

Mechanistic methods use regional climate models to dynamically downscale atmospheric conditions 50 

in time and space, usually for a limited area (Vormoor and Skaugen, 2013; Liu et al., 2011; Kunstmann 51 

and Stadler, 2005). Weather generators generate synthetic sequences of hourly weather variables by 52 

using random number generators that match statistics (Ailliot et al., 2015; Mezghani and Hingray, 53 

2009). Various statistical methods exist for temporal disaggregation of daily climate data, ranging from 54 

simple interpolations or deterministic approaches to non-parametric approaches and methods that 55 

derive statistical relationships from historical data (Breinl and Di Baldassarre, 2019; Debele et al., 2007; 56 

Förster et al., 2016; Görner et al., 2021; Liston and Elder, 2006; Park and Chung, 2020; Verfaillie et al., 57 

2017; Poschlod et al., 2018; Zhao et al., 2021). Each of these methods has its own advantages and 58 

limitations, and the choice of method depends on factors such as the specific needs of the impact 59 

assessment, the quality of the available data, and computational resources. 60 

Here, we introduce the Teddy-Tool (temporal disaggregation of daily climate model data), which uses 61 

statistical methods for temporal disaggregation of daily climate model data. Existing statistical 62 

approaches are often only valid for a specific location and cannot be applied globally. In addition, 63 

available disaggregation tools often focus on only one variable and therefore do not consider physical 64 

interdependencies between different variables, such as precipitation, humidity, temperature, and 65 

radiation. Teddy has been specifically developed as a globally applicable tool for climate impact 66 

studies. For this purpose, Teddy strictly preserves mass and energy of daily climate model data for each 67 

variable throughout the disaggregation procedure. Teddy additionally aims at taking regional and 68 

seasonal climate characteristics into account and considers the physical consistency between 69 

variables. 70 

In principal, the Teddy-Tool can be used with any climate input, but has particularly been used so far 71 

with bias corrected daily CMIP6 climate data (Eyring et al., 2016) for historical time periods and future 72 

scenarios from the ISIMIP (Inter-Sectoral Impact Model Intercomparison Project), which provides bias 73 

corrected and trend-preserved climate data (Lange, 2019) and offers a framework for consistently 74 

projecting the impacts of climate change across affected sectors and spatial scales (Warszawski et al., 75 

2014). To guarantee cross-sectoral consistency, all sectors are provided with the same climate data. 76 

Within ISIMIP, some models from different sectors have expressed their need for sub-daily climate 77 

data, including the agricultural and the energy sector. Teddy represents an easy-to-use tool that can 78 

be applied for climate impact assessments in different sectors that allows a physically consistent 79 

temporal disaggregation of the daily ISIMIP climate model data. The Teddy-Tool has been written in 80 

Matlab and is available open source via Zenodo (https://doi.org/10.5281/zenodo.7679149). 81 

 82 

 83 
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1. Temporal disaggregation 84 

Teddy uses an empirical approach, which applies the region-specific diurnal course from the most 85 

similar day in the past to daily climate model data for a day of interest. Teddy has been developed 86 

specifically to disaggregate daily bias-corrected climate model data from the ISIMIP project at 0.5° 87 

spatial resolution for air temperature (tas), humidity (hurs), shortwave radiation (rsds), longwave 88 

radiation (rlds), air pressure (ps), windspeed (sfcwind), and precipitation (pr) (Lange, 2019). For air 89 

temperature, the daily maximum and minimum values (tasmax, tasmin) are additionally provided. 90 

ISIMIP provides data for different historical and future time periods and scenarios for the climate 91 

models GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM1-0-LL. As a reference, 92 

globally available hourly bias-corrected reanalysis WFDE5 data (1980-2019) are used at 0.5° spatial 93 

resolution to identify the most similar meteorological day in the past for a specific location (Cucchi et 94 

al., 2020). The diurnal profile of the most similar day is subsequently applied to the daily climate model 95 

data for each of the variables. In the following, the procedure is explained: 96 

In a first precalculation step, in order to minimize computational resources, hourly WFDE5 data are 97 

aggregated to daily values and stored as NetCDF files. The daily aggregation uses mean values for all 98 

variables and daily sums for precipitation. In addition, rainfall and snowfall fluxes must be summed up 99 

for WFDE5. Daily maximum and minimum temperature are calculated from the hourly data. Units of 100 

climate inputs are converted to match the Teddy output (see Tab. 1). For the conversion of specific 101 

humidity to relative humidity, the Buck equation is applied (Buck, 1981). 102 

Table 1: Variables and units of used hourly (h) and daily (d) climate data and the Teddy output. For 103 

WFDE5, the specific variable name is provided in brackets. WFDE5 variables have instantaneous values, 104 

while SWdown, LWdown, Rainf and Snowf have average values over the next hour at each time step. 105 

Variable WFDE5 (h) ISIMIP Climate Model (d) Teddy (flexible) 

tas K (Tair) K K 

tasmin - K - 

tasmax - K - 

hurs/huss kg/kg (Qair) % % 

rsds W m-2 (SWdown) W m-2 W m-2 

rlds W m-2 (LWdown) W m-2 W m-2 

pr kg m-2 s-1 (Rainf+Snowf) kg m-2 s-1 mm timestep-1 

ps Pa (PSurf) Pa hPa 

sfcwind m s-1 (Wind) m s-1 m s-1 

 106 

After reading the daily climate model data for the selected location (latitude/longitude) that 107 

determines a specific grid cell at 0.5° resolution, the daily mean values of all ISIMIP variables (see Tab. 108 

1) are compared to the aggregated daily values of WFDE5 for a specific time step in order to identify 109 
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the most similar meteorological day. For the comparison, a day-of-year (DOY) window can be selected 110 

by the user that allows for a selection of days around the DOY of the actual time step. By default, the 111 

DOY window size is set to 11, which means a sequence of ± 11 days around the actual DOY. As a result, 112 

23 days are selected from each of the 40 WFDE5 reference years (1980-2019). These 920 days now 113 

serve as the basic population for further calculations (Fig. 1). In a next step, the climate model day of 114 

interest and the basic population of 920 WFDE5 days are classified according to their precipitation 115 

state. As climate models tend to produce too many days with low-intensity precipitation called “drizzle 116 

bias” (Chen et al., 2021), days with aggregated daily precipitation values below 1 mm per day are 117 

considered as dry days (Sun et al., 2006). Depending on the precipitation state of the previous day, the 118 

day of interest and the following day, there are eight classes: dry-dry-dry, dry-dry-wet, wet-dry-dry, 119 

wet-dry-wet, dry-wet-dry, dry-wet-wet, wet-wet-dry, and wet-wet-wet. This step is included to better 120 

reproduce the inter-day connectivity of precipitation (Li et al., 2018). Only days with the same 121 

precipitation class as the climate model day of interest are selected for the further course. Next, the 122 

absolute error between daily climate model and aggregated daily WFDE5 data for each variable is 123 

calculated for the remaining basic population and ranked in ascending order. The ranks over all 124 

variables are cumulated for each day of the basic population. The most similar meteorological day is 125 

determined as the day with the lowest cumulated ranks (Fig. 1). Finally, the hourly values are taken 126 

from the most similar day of the WFDE5 reference dataset for each variable and divided by the WFDE5 127 

daily mean value of the selected day, in order to refer to relative diurnal profiles without absolute 128 

variations (Fig. 1). The hourly profile is then applied for each variable to the daily mean value from the 129 

climate model. Thus, the daily mean is conserved. 130 

For temperature, the resulting hourly temperature is further scaled between the provided minimum 131 

and maximum. The scaling is performed in a way that the daily mean value is preserved with an 132 

accuracy of four decimals. Relative humidity is limited to 100%, again under preserving the daily mean 133 

value. 134 

Large selected DOY windows increase the basic population, but on the other sight might distort climatic 135 

characteristics with a strong seasonal course such as shortwave radiation values for the actual DOY. 136 

Therefore, we preprocessed hourly potential (cloud free) solar radiation for each DOY globally at 0.5° 137 

spatial resolution. This data is used as upper bound to limit the resulting hourly values for the 138 

corresponding DOY, while the daily mean value is preserved.  139 

In a final step, hourly values can again be aggregated to the time step set by the user (possible: 1, 2, 3, 140 

4, 6, 8, 12).  141 
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 142 

Figure 1: Procedure to identify the most similar meteorological day in the population of reference data 143 

for the default DOY window of ± 11 days around the actual DOY. 144 

In rare cases, precipitation cannot be distributed, due to failing precipitation in the reference data. To 145 

handle this exception, several options are implemented. First, the DOY window is automatically 146 

expanded to +- 50 days around the actual DOY. If this doesn’t help, a linear regression between the 147 

precipitation amount and the duration is performed for the specific location across the entire data 148 

spectrum. The linear regression determines the usual duration of the selected precipitation event. 149 

Subsequently, an hour is randomly selected for the start of the precipitation event. In order to reduce 150 

possible physical inconsistencies with other variables that could lead to implications in impact models, 151 

the precipitation is only distributed to hours at nighttime (without solar radiation).  152 

Precipitation values below 1 mm day-1 are also disaggregated to sub-daily values in order to ensure 153 

mass and energy conservation. If no historical precipitation event is found for this case, precipitation 154 
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noise is randomly distributed to an hour at nighttime. If no hour without radiation occurs (e.g. high 155 

latitudes in northern summer), the precipitation is distributed to local midnight. 156 

The calculation procedure can be performed either for universal time (UT) or for local solar time (LST). 157 

The latter divides the world into equal time zones of 15° with the central time zone (+-7.5°) at 158 

Greenwich. 159 

2. Validation 160 

In a first step, a cross-validation is carried out for 30 globally distributed samples (Fig. 2) for the year 161 

2010. Therefore, WFDE5 data for 2010 aggregated to daily values serves as an input. The same year is 162 

excluded from the basic population during the cross-validation. As a result, it can be tested how well 163 

WFDE5 hourly values for the year 2010 are reproduced with the basic population of all other years. 164 

The 30 samples are chosen to represent globally relevant agricultural production regions in different 165 

climate zones (Fig. 2). To evaluate the sensitivity of the different DOY window sizes, we run the cross-166 

validation with different DOY window sizes, ranging from 1 to 25, in steps of two, including the option 167 

to disable the DOY window (DOY window size = 0). In order to additionally validate the performance 168 

for extreme events, we perform a second cross-validation for all available 40 years (1980-2019) with 169 

DOY window sizes of 11 and 25 for sample location 29, located in Southern Germany. 170 
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171 

 172 

Figure 2: Distribution of 30 global samples used for the cross-validation on (a) annual total harvested 173 

area of rainfed and irrigated crops in hectare per pixel at a 30 arc-minute grid (Portmann et al., 2010) 174 

and (b) for Koeppen-Geiger climate zones calculated for 1980-2019 WFDE5 temperature and 175 

precipitation values (Beck et al., 2018). Samples are ordered by climate zone affiliation and their 176 

distance to the equator. 177 

As an example for sample location 16 in Ethiopia, Fig. 3 shows the results of the temporal 178 

disaggregation series for the cross-validation for a 10-day time series in 2010 in comparison with the 179 

daily climate input and the original hourly WFDE5 data. The hourly courses show high correlations for 180 

the randomly selected time series for all variables (Fig. 3 and scatterplots in Fig. 4 for the entire year). 181 
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 182 

Figure 3: Time-series for all variables comparing daily climate model data, disaggregated hourly results 183 

of Teddy from the performed cross-validation and the original hourly WFDE5 data, shown for sample 184 

location 16 in Ethiopia with a DOY window size of 7 for the 10-day period 29.06. – 08.07.2010. The 185 

Pearson correlation coefficient (R) is displayed for the shown time period for each variable. 186 

 187 
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 188 

Figure 4: Hourly values for the year 2010 between disaggregated values generated by the Teddy-Tool 189 

and the original WFDE5 data used for the cross-validation, exemplarily for sample 16 in Ethiopia with 190 

a DOY window size of 7. 191 

2.1 Sensitivity analysis DOY window size 192 

The sensitivity analysis averaged over all 30 samples shows that the Pearson correlation coefficient of 193 

hourly values for the year 2010 show high correlations for all variables (r>0.9), except windspeed 194 

(r>0.7) and precipitation (r>0.4), which are generally are the most difficult variables for disaggregation 195 

(Fig 5). The selected DOY window size has an effect on the quality of the results. While no DOY window 196 

(size=0) results in the lowest correlation coefficient across all variables, the DOY window size does not 197 

significantly affect the correlation except for precipitation and wind speed (Fig. 5). 198 
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 199 

Figure 5: Pearson correlation coefficient for different DOY window sizes averaged over all 30 samples 200 

for the year 2010 for all variables being disaggregated to hourly values. The scaling of the colorbar 201 

differs between variables. 202 

For precipitation, the impact of the DOY window size on the correlation varies between regions. Larger 203 

DOY windows are mainly beneficial for precipitation in tropical and arid regions, while in regions with 204 

pronounced seasons, the correlation might decrease with larger DOY window size (Fig. 6). The results 205 

also show that the correlation for precipitation is generally larger in tropical regions than in continental 206 

regions. 207 

 208 

Figure 6: Pearson correlation coefficient for different DOY window sizes averaged over the samples for 209 

each Koeppen-Geiger climate zone (A=tropical, B=arid, C=temperate, D=continental). 210 
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While hourly precipitation can be best reproduced for winter seasons in continental and arid regions, 211 

winter seasons show the lowest correlation for temperate regions. Tropical regions only show 212 

relatively low variations over the year, independently from the selected DOY window size (Fig. 7). 213 

Especially in arid regions, the length of the DOY window size affects the results differently in different 214 

seasons. Here, larger DOY windows decrease the correlation during the rainy season (winter and 215 

spring), while correlation is increased during the dry season (summer and autumn).  216 

 217 

Figure 7: Pearson correlation coefficient for different DOY window sizes averaged over the samples for 218 

the four seasons (spring=MAM, summer=JJA, autumn=SON, winter=DJF). The shift of the seasons 219 

between Northern and Southern hemisphere is considered. The heatmap is averaged over the samples 220 

for each Koeppen-Geiger climate zone (A=tropical, B=arid, C=temperate, D=continental). 221 
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Furthermore, we evaluate the sensitivity of the DOY window size to the reproduction of temporal 222 

autocorrelation (Fig. 8). Therefore, the autocorrelation over lag times between one and 24 hours is 223 

calculated for precipitation and wind speed. Autocorrelation refers to the similarity of a time series to 224 

a lag duration shifted version of the same time series. This allows sub-daily patterns and inter-hour 225 

connectivity to be statistically captured and validated in time series of precipitation and wind speed. 226 

In addition, we also check the reproduction of wet hours (precipitation above 0.1 mm h-1) in 2010 and 227 

the number of hours with low wind speeds (sfcwind < 2.5 m s-1) referring to the typical cut-in wind 228 

speed of wind turbines. 229 

Here, we find that short DOY window sizes below 5 days are not beneficial to all statistics. The 230 

autocorrelation of precipitation (wind speed) is reproduced more accurately with window sizes of 9 231 

days or longer. The number of wet hours is better recreated with window sizes above 15 days. For 232 

hours with low wind speed, a minor improvement is found above 9 days. 233 

 234 

Figure 8: Extended validation statistics for the sensitivity analysis of the DOY window size for the year 235 

2010. The difference in autocorrelation refers to the average over all 30 stations and lag durations 236 

between one and 24 hours. Wet hours are defined as precipitation intensities above 0.1 mm h-1 and 237 

low wind speeds refer to hours with sfcwind < 2.5 m s-1. 238 

As the ISIMIP data base is used for future impact modelling and historical attribution science (Mengel 239 

et al., 2021), extremes are of major interest for the community. The ability of global climate models to 240 

simulate sub-daily extremes is limited and depends on the variable of interest and the spatio-temporal 241 

conditions of the extreme and the respective model setup (Wehner et al., 2021; Kumar et al., 2015; 242 

Wang and Clow, 2020). However, in this validation, we need to evaluate how the Teddy-Tool is able to 243 

preserve the statistics of sub-daily extreme values. Therefore, we select precipitation as variable of 244 

interest. Figure 9 shows the reproduction of sub-daily precipitation extremes for 1980 – 2019 for 245 
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sample location 29 in southern Germany, where Teddy is run with a DOY window size of 11 days. The 246 

40 annual maxima are extracted from the original and the disaggregated data. Additionally, the 247 

Generalized Extreme Value (GEV) distribution is fitted to these empirical data. Thereby, 95% 248 

confidence intervals are generated applying a bootstrap procedure with 1000 iterations to account for 249 

extreme value statistical uncertainties. We find that the Teddy-Tool leads to an overestimation of 250 

annual maximum precipitation. For the hourly duration, the differences are large with the confidence 251 

intervals of the GEV hardly overlapping. For the longer durations, Teddy values approach the original 252 

data, with noticeable differences only for the rare events with return periods above 5 years. 253 

 254 

Figure 9: Extreme value statistical evaluation of sub-daily precipitation. The annual maxima of the 255 
WFDE5 and Teddy are shown as dots. Additionally, GEV fits (lines) with 95% confidence intervals 256 
(transparent areas and dashed lines) account for uncertainties. The Teddy-Tool is run with a DOY 257 
window size of 11 days. 258 
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 259 

Figure 10: Pearson correlation coefficient for each year for sample location 29 and a DOY window size 260 
of 11 days. The scaling of the colorbar differs between variables. 261 

 262 

 263 
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3. Discussion 264 

The Teddy-Tool allows for temporal disaggregation of daily climate model data. The disaggregation is 265 

based on location and time specific empirical relationships between variables. The approach is well 266 

suitable for all tested variables and results in high correlations (>0.9), except for precipitation (>0.5) 267 

and wind speed (>0.75). Compared to other approaches, the advantage of the Teddy-Tool is that no 268 

other input data is required rather than the daily climate model data. The Teddy-Tool is relatively 269 

simple to apply, considers specific regional and seasonal features of the diurnal course of different 270 

climate variables. Mass and energy are conserved and mean daily values of the climate model are 271 

reproduced any time.  272 

The spatial and temporal resolution of the results is determined by the provided temporal and spatial 273 

resolution of the chosen reference data (WFDE5 used here). Longer available reanalysis time periods 274 

extend the basic population for identifying the most similar weather conditions in the past and thus 275 

could improve the results. Generally, also other reference data could be used, that provides higher 276 

temporal or spatial resolution for a specific region. 277 

The time window to find the most similar historical weather situations can be chosen in different sizes. 278 

For most of the variables, we found small effects of time window adjustments, except for precipitation 279 

and wind speed. The evaluation of different DOY window sizes reveals that a DOY window size of 11 280 

can generally be recommended across all variables. Larger DOY windows should be avoided mainly in 281 

arid regions, while shorter DOY windows generally lead to poorer representations of autocorrelation 282 

and extreme events.  283 

One limitation of the Teddy-Tool is the representation of extreme events, mainly for precipitation, 284 

which is generally the most difficult variable for temporal disaggregation. We found that hourly 285 

precipitation extremes are not always reproduced. For heavy daily precipitation events, Teddy 286 

distributes the 24h-sums either correctly, too evenly or on too few hours. When distributing on too 287 

few hours, extreme hourly intensities evolve, which may have never occurred or may even be 288 

physically implausible. For temporal disaggregation of extreme precipitation, we recommend 289 

dynamical downscaling via high-resolution climate models (Poschlod, 2021; Poschlod et al., 2021; 290 

Zabel et al., 2012; Zabel and Mauser, 2013).  291 

For the disaggregation of future climate projections using of the Teddy-Tool, we have the following 292 

remarks: As the Teddy-Tool derives the relationships between sub-daily and daily values empirically 293 

based on reanalysis data, future diurnal profiles, which are outside the historical range of diurnal 294 

profiles, might possibly be not fully reproduced. However, this limitation is common for statistical 295 

approaches, which are to be calibrated on historical data (Papalexiou et al., 2018).  Nevertheless, due 296 

to energy and mass conservation, climate trends in the daily climate signal are fully preserved. Hence, 297 

applying Teddy for temporal disaggregation under climate change holds under the assumption that we 298 

select the most similar day of the historical data and that this diurnal profile is representative for future 299 

climatic conditions. However, this assumption might apply to a different degree for different variables. 300 

We expect non-stationarity for the diurnal profiles due to changing weather patterns, shifts in rainfall 301 

generating processes, and shifts in the seasonality, mainly for precipitation and wind. The daily course 302 

of other variables, such as solar radiation and temperature might generally be less affected by a 303 

warmer climate. Furthermore, global climate models at coarse resolutions generally do not represent 304 

all processes to fully reproduce intraday variability. Teddy applies the diurnal profiles and intraday 305 
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variability from the WFDE5 data, which are bias-adjusted ERA5 reanalysis data that implicitly consider 306 

finer scale effects than coarse-resolution global climate models (Cucchi et al., 2020). Thus, the 307 

disaggregation process in Teddy is consistent with the bias adjustment in ISIMIP3. 308 

Further possible developments include an improved inter-day connectivity. Despite the consideration 309 

of precipitation classes, still abrupt changes over day changes are possible. A future introduction of 310 

temperature classes and surface pressure classes in addition to the precipitation classes could help to 311 

reduce this effect. Depending on the location of interest, also including climate modes or weather 312 

patterns for the choice of the most similar day could improve the performance. Other optional future 313 

developments could include the separation of direct and diffuse radiation, which is also a required 314 

information for some impact models which is currently not provided by ISIMIP. 315 
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