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Abstract 10 

Climate models provide required input data for global or regional climate impact analysis in temporally 11 

aggregated form, often in daily resolution to save space on data servers. Today, many impact models 12 

work with daily data, however, sub-daily climate information is getting increasingly important for more 13 

and more models from different sectors, such as the agricultural, the water, and the energy sector. 14 

Therefore, the open source Teddy-Tool (temporal disaggregation of daily climate model data) has been 15 

developed to disaggregate (temporally downscale) daily climate data to sub-daily hourly values. Here, 16 

we describe and validate the temporal disaggregation, which is based on the choice of daily climate 17 

analogues. In this study, we apply the Teddy-Tool to disaggregate bias-corrected climate model data 18 

from the Coupled Model Intercomparison Project Phase 6 (CMIP6). We choose to disaggregate 19 

temperature, precipitation, humidity, longwave radiation, shortwave radiation, surface pressure, and 20 

wind speed. As a reference, globally available bias-corrected hourly reanalysis WFDE5 data from 1980-21 

2019 are used to take specific local and seasonal features of the empirical diurnal profiles into account. 22 

For a given location and day within the climate model data, the Teddy-Tool screens the reference data 23 

set to find the most similar meteorological day based on rank statistics. The diurnal profile of the 24 

reference data is then applied on the climate model. The physical dependency between variables is 25 

preserved, since the diurnal profile of all variables is taken from the same, most similar meteorological 26 

day of the historical reanalysis dataset. Mass and energy are strictly preserved by the Teddy-Tool to 27 

exactly reproduce the daily values from the climate models. 28 

For evaluation, we aggregate the hourly WFDE5 data to daily values and apply the Teddy-Tool for 29 

disaggregation. Thereby, we compare the original hourly data with the data disaggregated by Teddy. 30 

We perform a sensitivity analysis of different time window sizes used for finding the most similar 31 

meteorological day in the past. In addition, we perform a cross-validation and autocorrelation analysis 32 

for 30 globally distributed samples around the world, representing different climate zones. The 33 

validation shows that Teddy is able to reproduce historical diurnal courses with high correlations >0.9 34 

for all variables, except for wind speed (>0.75) and precipitation (>0.5). We discuss limitations of the 35 

method regarding the reproduction of precipitation extremes, inter-day connectivity, and 36 

disaggregation of end-of-century projections with strong warming. Depending on the use case, sub-37 

daily data provided by the Teddy-Tool could make climate impact assessments more robust and 38 

reliable. 39 

1. Introduction 40 
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Sub-daily climate data is becoming increasingly important in climate impact analysis. This type of data, 41 

which captures variations in temperature, precipitation, and other weather variables at intervals of 42 

less than a day, can provide a more detailed representation of local and regional climate conditions 43 

and temporal variations. This information can be crucial for evaluating the impacts of climate change 44 

on various sectors, such as agriculture, water resources, energy production, and human health (Golub 45 

et al., 2022; Trinanes and Martinez-Urtaza, 2021; Colón-González et al., 2021; Tittensor et al., 2021; 46 

Byers et al., 2018; Jägermeyr et al., 2021; Poschlod and Ludwig, 2021; Degife et al., 2021). A better 47 

representation of the diurnal course of temperature, extreme precipitation events, and other weather 48 

variables are also important for adaptation assessments which depend on behavior or processes with 49 

high temporal dynamics, such as the energy demand, labor activity, the heat stress of crops or flood 50 

events (Minoli et al., 2022; Zabel et al., 2021; Reed et al., 2022; Orlov et al., 2021; Franke et al., 2022; 51 

Poschlod 2022). Research has shown that using sub-daily climate data can result in more robust and 52 

reliable impact assessments compared to using daily data (Orlov et al. 2023). 53 

Today, most climate model data are available for download at daily resolution because of the high 54 

storage requirements for sub-daily climate data (Juckes et al., 2020). However, the demand for sub-55 

daily data is increasing with future developments of data management expected to handle this 56 

demand with decreasing costs for storage and computing resources (Lüttgau & Kunkel, 2018). Different 57 

methods exist to disaggregate available daily climate data to sub-daily, most often hourly values. These 58 

can be roughly divided into statistical methods, weather generators, and mechanistic approaches, 59 

although mixed forms also exist (Förster et al., 2016). 60 

Mechanistic methods use regional climate models to dynamically downscale atmospheric conditions 61 

in time and space, usually for a limited area (Vormoor and Skaugen, 2013; Liu et al., 2011; Kunstmann 62 

and Stadler, 2005). Weather generators generate synthetic sequences of hourly weather variables by 63 

using random number generators that match statistics (Ailliot et al., 2015; Mezghani and Hingray, 64 

2009). Various statistical methods exist for temporal disaggregation of daily climate data, ranging from 65 

simple interpolations or deterministic approaches to non-parametric approaches and methods that 66 

derive statistical relationships from historical data or look for climate analogues (Bennett et al., 2020; 67 

Breinl and Di Baldassarre, 2019; Chen, 2016; Debele et al., 2007; Förster et al., 2016; Görner et al., 68 

2021; Liston and Elder, 2006; Park and Chung, 2020; Verfaillie et al., 2017; Poschlod et al., 2018; Zhao 69 

et al., 2021). Each of these methods has its own advantages and limitations, and the choice of method 70 

depends on factors such as the specific needs of the impact assessment, the quality of the available 71 

data, and computational resources. 72 

Here, we introduce the Teddy-Tool (temporal disaggregation of daily climate model data), which uses 73 

statistical methods for temporal disaggregation of daily climate model data. Existing statistical 74 

approaches are often only valid for a specific location and cannot be applied globally. In addition, 75 

available disaggregation tools often focus on only one variable (e.g. Pui et al., 2012) and therefore do 76 

not consider physical interdependencies between different variables, such as precipitation, humidity, 77 

temperature, and radiation. Teddy has been specifically developed as a globally applicable tool for 78 

climate impact studies. For this purpose, Teddy strictly preserves mass and energy of daily climate 79 

model data for each variable throughout the disaggregation procedure. Teddy additionally aims at 80 

taking regional and seasonal climate characteristics into account and considers the physical 81 

consistency between variables. 82 
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Teddy represents an easy-to-use tool that can be applied for climate impact assessments in different 83 

sectors that allows a physically consistent temporal disaggregation of daily climate model data. The 84 

Teddy-Tool has been written in Matlab and is available open source via Zenodo (see code availability). 85 

2. Data and data requirements 86 

In principal, the Teddy-Tool can be used with any climate input, but has specifically been developed to 87 

be used with daily climate data for historical time periods and future scenarios from the Inter-Sectoral 88 

Impact Model Intercomparison Project (ISIMIP). which ISIMIP offers a framework for consistently 89 

projecting the impacts of climate change across affected sectors and spatial scales (Warszawski et al., 90 

2014). To guarantee cross-sectoral consistency in ISIMIP, all sectors are provided with the same climate 91 

data. ISIMIP provides bias-corrected climate model data from the Coupled Model Intercomparison 92 

Project Phase 6 (CMIP6) and trend-preserving reanalysis climate data (Lange, 2019). Within ISIMIP, 93 

some modeling communities from different sectors have expressed their need for sub-daily climate 94 

data, including the agricultural and the energy sector. 95 

Daily bias-corrected climate model data are provided by ISIMIP at 0.5° spatial resolution for air 96 

temperature (tas), humidity (hurs), shortwave radiation (rsds), longwave radiation (rlds), air pressure 97 

(ps), wind speed (sfcwind), and precipitation (pr) (Lange, 2019). For air temperature, the daily 98 

maximum (tasmax) and minimum (tasmin) values are additionally provided. ISIMIP provides CMIP6 99 

data for the climate models GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM1-100 

0-LL. 101 

Teddy requires hourly climate data as a reference for temporal disaggregation. Therefore, we use the 102 

WFDE5 dataset, which has been gererated using the WATCH Forcing Data (WFD) methodology applied 103 

to ERA5 reanalysis data (Cucchi et al., 2020). The bias-adjusted hourly WFDE5 data is globally available 104 

for the time period between 1979 and 2019 at 0.5° spatial resolution. It is consistent with the bias-105 

adjustment procedure within ISIMIP (Lange, 2019) and thus provides a consistent hourly reference 106 

data for Teddy. 107 

Table 1 gives an overview of the available variables and the required datasets at their temporal 108 

resolution. The temporal resolution of the Teddy output is adjustable by the user and can be set to 1-109 

, 2-, 3-, 4-, 6-, 8-, or 12-hourly values. 110 

Table 1: Variables and units of used hourly (h) and daily (d) climate data and the Teddy output. For 111 

WFDE5, the specific variable name is provided in brackets. WFDE5 variables have instantaneous values, 112 

while SWdown, LWdown, Rainf and Snowf have average values over the next hour at each time step. 113 

Variable WFDE5 (h) ISIMIP Climate Model (d) Teddy (flexible) 

tas K (Tair) K K 

tasmin - K - 

tasmax - K - 

hurs/huss kg/kg (Qair) % % 

rsds W m-2 (SWdown) W m-2 W m-2 
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rlds W m-2 (LWdown) W m-2 W m-2 

pr kg m-2 s-1 (Rainf+Snowf) kg m-2 s-1 mm timestep-1 

ps Pa (PSurf) Pa hPa 

sfcwind m s-1 (Wind) m s-1 m s-1 

 114 

3. Methods 115 

Teddy uses an empirical approach, which 1) selects the ‘most similar meteorological day’ for the daily 116 

climate model data (here: ISIMIP CMIP6 data) within the reference climate data (here: WFDE5) at the 117 

same location. 2) Teddy applies the location-specific diurnal course to each variable of the daily climate 118 

model data for a day of interest. In the following, the procedure is explained in detail, where the 119 

example case of ISIMIP climate data and WFDE5 reference data is used for further illustration: 120 

In a first precalculation step, in order to minimize computational resources, hourly WFDE5 data are 121 

aggregated to daily values and stored as NetCDF files. The daily aggregation uses mean values for all 122 

variables and daily sums for precipitation. In addition, rainfall and snowfall fluxes must be summed up 123 

for WFDE5. Daily maximum and minimum temperature are calculated from the hourly data. Units of 124 

climate inputs are converted to match the Teddy output (see Tab. 1). For the conversion of specific 125 

humidity to relative humidity, the Buck equation is applied (Buck, 1981).126 

After reading the daily climate model data for the selected location (latitude/longitude) that 127 

determines a specific grid cell at 0.5° resolution, the daily mean values of all ISIMIP variables (see Tab. 128 

1) are compared to the aggregated daily values of WFDE5 for a specific time step in order to identify 129 

the most similar meteorological day. For the comparison, a day-of-year (DOY) window can be selected 130 

by the user that allows for a selection of days around the DOY of the actual time step. By default, the 131 

DOY window size is set to 11, which means a sequence of ± 11 days around the actual DOY. As a result, 132 

23 days are selected from each of the 40 WFDE5 reference years (1980-2019). These 920 days now 133 

serve as the statistical population for further calculations (Fig. 1). In a next step, the climate model day 134 

of interest and the statistical population of 920 WFDE5 days are classified according to their 135 

precipitation state (wet / dry). As climate models tend to produce too many days with low-intensity 136 

precipitation called ‘drizzle bias’ (Chen et al., 2021), days with aggregated daily precipitation values 137 

below 1 mm per day are considered as dry days (Sun et al., 2006). Depending on the precipitation state 138 

of the previous day, the day of interest and the following day, there are eight classes: dry-dry-dry, dry-139 

dry-wet, wet-dry-dry, wet-dry-wet, dry-wet-dry, dry-wet-wet, wet-wet-dry, and wet-wet-wet. This 140 

step is included to better reproduce the inter-day connectivity of precipitation (Li et al., 2018). Only 141 

days with the same precipitation class as the climate model day of interest are selected for the further 142 

course. Next, the absolute error (AE) between daily climate model and aggregated daily WFDE5 data 143 

for each variable is calculated for the remaining statistical population and ranked in ascending order. 144 

The ranking approach is chosen, since the absolute or relative errors of different meteorological 145 

variables cannot be compared to each other. The ranks are cumulated with equal weight over all 146 

variables for each day of the statistical population. In this context, we define ‘the most similar 147 

meteorological day’ as the day with the minimum sum of ranks (Fig. 1). Thus, the ‘most similar 148 

meteorological day’ refers to the statistical similarity of all available daily near-surface meteorological 149 

variables at a given location and time. The approach works under the assumption that similar daily 150 
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values would have a similar sub-daily profile (Li et al., 2018; Pui et al., 2012; Sharma et al., 2006). 151 

Finally, the hourly values are taken from the most similar meteorological day of the WFDE5 reference 152 

dataset for each variable and are divided by the WFDE5 daily mean (sum for precipitation) value of the 153 

selected day, in order to refer to relative diurnal profiles without absolute variations (Fig. 1). The hourly 154 

profile is then applied for each variable to the daily mean (sum for precipitation) value from the climate 155 

model. Thus, the daily mean value (sum for precipitation) of the climate model is conserved and 156 

reproduced by the disaggregated values. 157 

For temperature, the resulting hourly temperature is further scaled between the provided minimum 158 

and maximum. The scaling is performed in a way that the daily mean value is preserved with an 159 

accuracy of four decimals. Relative humidity is limited to 100%, considering the preservation of the 160 

daily mean value. 161 

Large selected DOY windows increase the statistical population, but on the other sight might distort 162 

climatic characteristics with a strong seasonal course such as shortwave radiation values for the actual 163 

DOY. Therefore, we preprocessed hourly potential (cloud free) solar radiation for each DOY globally at 164 

0.5° spatial resolution. This data is used as upper bound to limit the resulting hourly values for the 165 

corresponding DOY, while the daily mean value is preserved. 166 

In a final step, the hourly values are aggregated to the temporal resolution as set by the user. 167 
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 168 

Figure 1: Procedure to identify the most similar meteorological day in the population of WFDE5 169 

reference data for the default DOY window of ± 11 days around the actual DOY. 170 

In rare cases, precipitation cannot be distributed, due to no precipitation in the reference data. This 171 

can happen in dry deserts, where 40 years of WFDE5 data show no precipitation record within the 172 

range of the moving DOY window (Supplementary Fig. S1 shows a map where this is the case). To 173 

handle this exception, several options are implemented. First, the DOY window is automatically 174 

expanded to +-50 days around the actual DOY in order to increase the statistical population and thus 175 

the probability to include a precipitation event. If still no precipitation event is found in the reference, 176 

a linear regression between the precipitation amount and the precipitation duration is performed for 177 

the specific location across the entire available data spectrum. The linear regression determines the 178 

usual duration of the selected precipitation event. Subsequently, an hour is randomly selected for the 179 

start of the precipitation event. A goal of Teddy was to consider the physical consistency of inter-180 

variable relationships. Precipitation generally affects other climate variables (e.g. humidity, radiation, 181 

temperature, etc.; Meredith et al., 2021). During night, physical interdependencies between 182 
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precipitation and other variables are generally lower, because radiation is not affected and less energy 183 

is available to affect other variables. This might have an effect for impact models, because, as an 184 

example, evapotranspiration might be unrealistically high if precipitation occurs at the same time with 185 

full solar irradiation during noon. In order to reduce possible inconsistencies with other variables that 186 

could lead to implications in impact models, the precipitation is only distributed to hours at nighttime. 187 

Alternatively, we implemented the option for the user to write Not a Number (NaN) values instead. 188 

Drizzle precipitation (values below 1 mm day-1) is also disaggregated to sub-daily values in order to 189 

ensure mass and energy conservation. If no historical precipitation event is found for this case, 190 

precipitation noise is again randomly distributed to an hour at nighttime. If no hour without radiation 191 

occurs (e.g. high latitudes in northern summer), the precipitation is distributed to local midnight. 192 

The calculation procedure can be performed either for universal time (UT) or for local solar time (LST). 193 

The latter divides the world into equal time zones of 15° with the central time zone (+-7.5°) at 194 

Greenwich. 195 

4. Results 196 

In a first step, Teddy is applied for 30 globally distributed samples (Fig. 2) for the year 2010. To be able 197 

to validate the results, we perform a cross-validation. Therefore, WFDE5 data for 2010 aggregated to 198 

daily values serve as an input for Teddy. The same year is excluded from the statistical population 199 

during the cross-validation. As a result, it can be tested how well WFDE5 hourly values for the year 200 

2010 are reproduced with the statistical population of the other 39 years. The 30 samples are chosen 201 

to represent globally relevant agricultural production regions in different climate zones (Fig. 2). To 202 

evaluate the sensitivity of the different DOY window sizes, we run the cross-validation with different 203 

DOY window sizes, ranging from 1 to 25, in steps of two, including the option to disable the DOY 204 

window (DOY window size = 0). In order to additionally validate the performance for extreme events, 205 

we perform a second cross-validation for all available 40 years (1980-2019) with DOY window sizes of 206 

11 for sample location 29, located in Southern Germany. 207 
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208 

 209 

Figure 2: Distribution of 30 global samples used for the cross-validation on (a) annual total harvested 210 

area of rainfed and irrigated crops in hectare per pixel at a 30 arc-minute grid (Portmann et al., 2010) 211 

and (b) for Koeppen-Geiger climate zones calculated for 1980-2019 WFDE5 temperature and 212 

precipitation values (Beck et al., 2018). Samples are ordered by climate zone affiliation and their 213 

distance to the equator. 214 

4.1 Validation 215 

As an example, for sample location 16 in Ethiopia, Fig. 3 shows the results of the temporal 216 

disaggregation series for the cross-validation for a 10-day time series in 2010 in comparison with the 217 

daily climate input and the original hourly WFDE5 data. The hourly courses show high correlations for 218 

the randomly selected time series for all variables except for precipitation (Fig. 3 and scatterplots in 219 

Fig. 4 for the entire year; Supplementary Fig. S2 and S3 alternatively show sample location 22 in China). 220 
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 221 

Figure 3: Time-series for all variables comparing daily climate model data, disaggregated hourly results 222 

of Teddy from the performed cross-validation and the original hourly WFDE5 data, shown for sample 223 

location 16 in Ethiopia with a DOY window size of 7 for the 10-day period 29.06. – 08.07.2010. The 224 

Pearson correlation coefficient (R), the Nash-Sutcliffe model efficiency coefficient (NSE), the root mean 225 

squared error (RMSE) and the mean absolute error (MAE) are displayed for the shown time period for 226 

each variable. 227 
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 228 

Figure 4: Hourly values for the year 2010 between disaggregated values generated by the Teddy-Tool 229 

and the original WFDE5 data used for the cross-validation, exemplarily for sample location 16 in 230 

Ethiopia with a DOY window size of 7. The Pearson correlation coefficient (R), the Nash-Sutcliffe model 231 

efficiency coefficient (NSE), the root mean squared error (RMSE) and the mean absolute error (MAE) 232 

are displayed for each variable. 233 

4.2 Sensitivity analysis DOY window size 234 

The sensitivity analysis averaged over all 30 samples shows that the Pearson correlation coefficient of 235 

hourly values for the year 2010 show high correlations for all variables (r>0.9), except wind speed 236 

(r>0.7) and precipitation (r>0.4), which are generally more difficult to disaggregate (Fig. 5; 237 

Supplementary Fig. S4 additionally shows the Nash-Sutcliffe model efficiency coefficient). The selected 238 

DOY window size has an effect on the quality of the results. While no DOY window (size=0) results in 239 
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the lowest correlation coefficient across all variables, the DOY window size does significantly affect the 240 

correlation for precipitation and wind speed (Fig. 5). 241 

 242 

Figure 5: Pearson correlation coefficient for different DOY window sizes averaged over all 30 samples 243 

for the year 2010 for all variables being disaggregated to hourly values. The scaling of the colorbar 244 

differs between variables. 245 

For precipitation, the impact of the DOY window size on the correlation varies between regions. Larger 246 

DOY windows are mainly beneficial for precipitation in arid regions, while showing lower increases in 247 

correlation in regions with pronounced seasons (Fig. 6). The results also show that the correlation for 248 

precipitation is generally larger in tropical regions than in continental regions. 249 

 250 
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Figure 6: Pearson correlation coefficient for different DOY window sizes averaged over the samples for 251 

each Koeppen-Geiger climate zone (A=tropical, B=arid, C=temperate, D=continental). 252 

While hourly precipitation can be best reproduced for winter seasons in continental and arid regions, 253 

winter seasons show the lowest correlation for temperate regions. Tropical regions only show 254 

relatively low variations over the year, independently from the selected DOY window size (Fig. 7). 255 

Especially in arid regions, the length of the DOY window size affects the results differently in different 256 

seasons. Here, larger DOY windows decrease the correlation during the rainy season (winter and 257 

spring), while correlation is increased during the dry season (summer and autumn).  258 

 259 

Figure 7: Pearson correlation coefficient for different DOY window sizes averaged over the samples for 260 

the four seasons (Northern hemisphere: spring=MAM, summer=JJA, autumn=SON, winter=DJF; 261 

Southern hemisphere: spring=SON, summer=DJF, autumn= MAM, winter=JJA). The heatmap is 262 
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averaged over the samples for each Koeppen-Geiger climate zone (A=tropical, B=arid, C=temperate, 263 

D=continental). 264 

Furthermore, we evaluate the sensitivity of the DOY window size to the reproduction of temporal 265 

autocorrelation (Fig. 8). Therefore, the autocorrelation over lag times between one and 24 hours is 266 

calculated for precipitation and wind speed. Autocorrelation refers to the similarity of a time series to 267 

a lag duration shifted version of the same time series. This allows sub-daily patterns and inter-hour 268 

connectivity to be statistically captured and validated in time series of precipitation and wind speed. 269 

In addition, we also check the reproduction of wet hours (precipitation above 0.1 mm h-1) in 2010 and 270 

the number of hours with low wind speeds (sfcwind < 2.5 m s-1) referring to the typical cut-in wind 271 

speed of wind turbines. 272 

Here, we find that short DOY window sizes below 5 days are not beneficial to all statistics. The 273 

autocorrelation of precipitation (wind speed) is reproduced more accurately with window sizes of 9 274 

days or longer. The number of wet hours is better recreated with window sizes above 15 days. For 275 

hours with low wind speed, a minor improvement is found above 9 days. 276 

 277 

Figure 8: Extended validation statistics for the sensitivity analysis of the DOY window size for the year 278 

2010. The difference in autocorrelation refers to the average over all 30 samples and lag durations 279 

between one and 24 hours. Wet hours are defined as precipitation intensities above 0.1 mm h-1 and 280 

low wind speeds refer to hours with sfcwind < 2.5 m s-1. 281 

4.3 Evaluation of the whole period 1980 – 2019 282 

The previous validation has assessed the disaggregation performance for all sample locations for the 283 

year 2010 and different DOY window sizes. For the analysis of the whole time period 1980 – 2019, we 284 

evaluate the 40-year timeseries for sample location 29 and a window size of 11 days. Figure 9 and 285 
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Supplementary Fig. S5 show the correlation coefficient and mean absolute error, respectively, for each 286 

year to assess the interannual variability of disaggregation performance. For tas, hurs, rsds, rlds, and 287 

ps the performance shows only very minor differences, whereas sfcwind and pr show a higher degree 288 

of interannual fluctuations.  289 

 290 

Figure 9: Pearson correlation coefficient for 1980 – 2019 for sample location 29 and a DOY window 291 
size of 11 days. The scaling of the colorbar differs between variables. 292 
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4.4 Evaluation of precipitation: Wet proportions and intensities 293 

For the further evaluation of precipitation characteristics, also the disaggregated timeseries over the 294 

whole period 1980 – 2019 for sample location 29 is assessed. In order to evaluate the reproduction of 295 

wet/dry proportions, the monthly cycle of wet hours is provided (Fig. 10). Wet hours above 0.1 mm h-296 
1 are recreated by the Teddy-Tool with minor differences for the median over 40 years (Fig. 10). The 297 

error measures are calculated for every year separately amounting to a mean absolute error of 13.02 298 

h equaling 7.8 %.  299 

For the evaluation of the range of precipitation intensities, Fig. 11 shows intensities above 1 mm h-1 300 

plotted against its percentage of exceedance for sub-daily durations. We find that the disaggregated 301 

precipitation intensities match the original data except for extreme precipitation.  302 

 303 

Figure 10: Number of wet hours per month for sample location 29 in Germany. Solid lines show the 304 
median over 40 years, where the dashed lines denote the inner 90% of the 40-year period. MAE and 305 
RMSE are calculated separately for every year and averaged over 40 years. 306 

 307 

 308 
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 309 

Figure 11: Exceedance probability of precipitation intensities for sub-daily durations for sample 310 

location 29 in Germany. 311 

4.5 Evaluation of precipitation extremes 312 

As the ISIMIP data base is used for future impact modelling and historical attribution science (Mengel 313 

et al., 2021), extremes are of major interest for the community. The ability of global climate models to 314 

simulate sub-daily extremes is limited and depends on the variable of interest and the spatio-temporal 315 

conditions of the extreme and the respective model setup (Wehner et al., 2021; Kumar et al., 2015; 316 

Wang and Clow, 2020). However, in this validation, we evaluate how the Teddy-Tool is able to preserve 317 

the statistics of sub-daily extreme values. Therefore, we select precipitation as variable of interest. 318 

Figure 12 shows the reproduction of sub-daily precipitation extremes for 1980 – 2019 for sample 319 

location 29 in southern Germany, where Teddy is run with a DOY window size of 11 days. The 40 annual 320 

maxima are extracted from the original and the disaggregated data. Additionally, the Generalized 321 

Extreme Value (GEV) distribution is fitted to these empirical data. GEV parameters are estimated via 322 

Maximum Likelihood Estimation (Coles, 2001), where the goodness-of-fit is assessed with the 323 

Anderson-Darling test at 95% significance level (Stephens, 1986). Thereby, 95% confidence intervals 324 

are generated applying a bootstrap procedure with 1000 iterations to account for extreme value 325 

statistical uncertainties. We find that the Teddy-Tool leads to an overestimation of annual maximum 326 

precipitation. For the hourly duration, the differences are large with the confidence intervals of the 327 
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GEV hardly overlapping. For the longer durations, Teddy values approach the original data, with 328 

noticeable differences only for the rare events with return periods above 5 years. 329 

 330 

Figure 12: Extreme value statistical evaluation of sub-daily precipitation for sample location 29 in 331 
Germany. The annual maxima of the WFDE5 and Teddy are shown as dots. Additionally, GEV fits (lines) 332 
with 95% confidence intervals (transparent areas and dashed lines) account for uncertainties. The 333 
Teddy-Tool is run with a DOY window size of 11 days. 334 

5. Discussion and Outlook 335 

The Teddy-Tool allows for temporal disaggregation of daily climate model data. The disaggregation is 336 

based on location and time specific empirical relationships between variables. The approach is well 337 

suitable for all tested variables and results in very high correlations (>0.9), except for precipitation 338 

(>0.5) and wind speed (>0.75). We refer the worse performance for precipitation and wind speed to 339 

the high intra-day variability for these variables (Watters et al., 2021). Other variables are governed by 340 

a stronger diurnal cycle (Dai and Trenberth, 2004), which is easier to disaggregate based on empirical 341 

diurnal profiles. 342 

Compared to other approaches, the advantage of the Teddy-Tool is that no other input data is required 343 

rather than the daily climate model data. The Teddy-Tool is relatively simple to apply, considers specific 344 

local and seasonal features of the diurnal course of different climate variables, and preserves the 345 

physical consistency of inter-variable relationships. Mass and energy are conserved and mean daily 346 

values of the climate model are reproduced any time. 347 

The spatial and temporal resolution of the results is determined by the provided temporal and spatial 348 

resolution of the chosen reference data (WFDE5 used here). Longer available reanalysis time periods 349 

extend the statistical population for identifying the most similar weather conditions in the past and 350 

thus could improve the results. Generally, also other reference data could be used, that provides higher 351 

temporal or spatial resolution for a specific region. 352 
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The DOY window to find the most similar historical weather situations can be chosen in different sizes. 353 

For most of the variables, we found small effects of time window adjustments, except for precipitation 354 

and wind speed. The evaluation of different DOY window sizes reveals that a DOY window size of 11 355 

can generally be recommended across all variables. Larger DOY windows should be avoided mainly in 356 

arid regions, while shorter DOY windows generally lead to poorer representations of autocorrelation 357 

and extreme events. 358 

One limitation of the Teddy-Tool is the representation of extreme events, mainly for precipitation, 359 

which is generally the most difficult variable for temporal disaggregation. We found that hourly 360 

precipitation extremes are overestimated. For heavy daily precipitation events, Teddy distributes the 361 

24h-sums either correctly, too evenly or on too few hours. When distributing on too few hours, 362 

extreme hourly intensities evolve, which may have never occurred or may even be physically 363 

implausible. For temporal disaggregation of extreme precipitation, we recommend dynamical 364 

downscaling via high-resolution climate models (Poschlod, 2021; Poschlod et al., 2021; Zabel et al., 365 

2012; Zabel and Mauser, 2013). 366 

Another limitation of the approach is the reproduction of the inter-day connectivity within the 367 

disaggregated time series. When two diurnal profiles are chosen for the disaggregation of adjacent 368 

days, which show dissimilar courses in the time steps at the change of the day, abrupt value jumps 369 

might occur in the disaggregation. This can be seen in Fig. 3 for rlds from July 4th to July 5th. To illustrate 370 

this issue, a disaggregation time series from another location is provided in Supplementary Fig. S2. This 371 

limitation does also apply for the Method of Fragments applied on precipitation (Li et al., 2018). 372 

Similarly to Li et al. (2018), we also consider the precipitation state of the previous and following day 373 

to improve inter-day connectivity. Without this additional consideration, overnight precipitation 374 

events would often be ‘cut off’ in the disaggregation. For the remaining abrupt jumps in the 375 

disaggregated time series, we refrain from post-processing with subsequent smoothing, as we want to 376 

preserve both mass and energy and the empirical diurnal profiles. 377 

For the disaggregation of future climate projections using of the Teddy-Tool, we have the following 378 

remarks: As the Teddy-Tool derives the relationships between sub-daily and daily values empirically 379 

based on reanalysis data, future diurnal profiles, which are outside the historical range of diurnal 380 

profiles, might possibly be not fully reproduced. However, this limitation is common for statistical 381 

approaches, which are to be calibrated on historical data (Papalexiou et al., 2018). Nevertheless, due 382 

to energy and mass conservation, climate trends in the daily climate signal are fully preserved. Hence, 383 

applying Teddy for temporal disaggregation under climate change holds under the assumption that we 384 

select the most similar meteorological day of the historical data and that this diurnal profile is 385 

representative for future climatic conditions. However, this assumption might apply to a different 386 

degree for different variables. We expect non-stationarity for the diurnal profiles due to changing 387 

weather patterns, shifts in rainfall generating processes, and shifts in the seasonality, mainly for 388 

precipitation and wind. The daily course of other variables, such as solar radiation and temperature 389 

might generally be less affected by a warmer climate. Furthermore, global climate models at coarse 390 

resolutions generally do not represent all processes to fully reproduce intra-day variability. Teddy 391 

applies the diurnal profiles and intra-day variability from the WFDE5 data, which are bias-adjusted 392 

ERA5 reanalysis data that implicitly consider finer scale effects than coarse-resolution global climate 393 

models (Cucchi et al., 2020). Thus, the disaggregation process in Teddy is consistent with the bias 394 

adjustment in ISIMIP3. 395 
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Another limitation of the methodology could occur in the case of strong climate change signals. In case 396 

of high warming in end-of-century projections, the number of sampled historical days might decrease 397 

if the same historical day is sampled repeatedly. This could lead to reductions in diversity of the diurnal 398 

profile. Hence, Teddy allows to monitor the number of unique analogue days per year. An additional 399 

analysis for SSP3-7.0 using the GFDL-ESM4 climate model shows that the number of unique analogue 400 

climate days are declining, as expected, but still the diversity of chosen days is above 300 unique days 401 

at the end of the century for a chosen moving-window size of +-11 days (Supplementary Fig. S6). A 402 

smaller size of the moving window prevents that the same analogue day is chosen over a longer time 403 

period. This will increase the diversity of diurnal profiles at the expense of similarity. Even if diurnal 404 

profiles are derived from the same analogue day repeatedly, the disaggregated diurnal courses, e.g. 405 

for temperature, will show variations (different offset and different amplitude) due to conservation of 406 

daily mean energy and mass. From a broader perspective, it is also not clear whether the uncertainties 407 

resulting from this limitation are larger than the uncertainties within the climate model projections 408 

until the end of the century. Furthermore, in the long term, the basic population for finding analogue 409 

climates will continuously increase, since WFDE5 data, which are based on ERA5, are continuously 410 

updated. We note that Teddy could be also employed to disaggregate future daily climate projections 411 

based on hourly future climate projections as reference. 412 

Further possible developments could include improvements for the reproduction of the inter-day 413 

connectivity. Despite the consideration of precipitation classes, still abrupt value jumps over day 414 

changes are possible. A future introduction of temperature classes and surface pressure classes in 415 

addition to the precipitation classes could help to reduce this effect. Depending on the location of 416 

interest, also including climate modes or weather patterns for the choice of the most similar 417 

meteorological day could positively affect the performance. Furthermore, depending on the 418 

application, it could be reasonable not to screen for the most similar meteorological day, but for the 419 

most similar succession of multiple days. This would as a consequence improve the inter-day 420 

connectivity as less different profiles are selected. 421 

Other optional future developments could include the separation of direct and diffuse radiation, which 422 

is also a required information for some impact models which is currently not provided by ISIMIP. 423 

However, we would make further development with more options dependent on the community's 424 

adoption of the current executable tool. 425 

Code availability 426 

The source code of the Teddy-Tool (v1.1) and a parallelized version of the Teddy-Tool (v1.1p), including 427 

a precompiled executable file for Windows, preprocessed data, results of the cross-validation and 428 

exemplary results for SSP 585 (2015 – 2100) and the UKESM1-0-L climate model for 30 samples are 429 

provided via Zenodo (https://doi.org/10.5281/zenodo.8124111). 430 
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