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Abstract

Climate models provide required input data for global or regional climate impact analysis in temporally
aggregated form, often jn daily resolution to save space on data servers. Today, many impact models

work with daily data, however, sub-daily climate information is getting increasingly important for more
and more models from different sectors, such as the agricultural, the water, and the energy sector.
Therefore, the open source Teddy-Tool (temporal disaggregation of daily climate model data) has been

developed to disaggregate (temporally downscale) daily climate data to sub-daily hourly values. Here, .-

we describe and yalidate the temporal disaggregation, which is based on the choice of daily climate

analogues. In this study, we apply the Teddy-Tool to disaggregate bias-corrected climate model data '

from the Coupled Model Intercomparison Project Phase 6 (CMIP6). We choose to disaggregate

temperature, precipitation, humidity, longwave radiation, shortwave radiation, surface pressure, and

wind speed. As a reference, globally available bias-corrected hourly reanalysis WFDES5 data from 1980-

2019 are used to take specific local and seasonal features of the empirical diurnal profiles jnto account. .
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For a given location and day within the climate model data, the Teddy-Tool screens the reference data
set to find the most similar meteorological day based on rank statistics. The diurnal profile of the

reference data is then applied on the climate model. The physical dependency between variables is

preserved, since the diurnal profile of all variables is taken from the same, most similar meteorological

day of the historical reanalysis dataset. Mass and energy are strictly preserved by the Teddy-Tool to

exactly reproduce the daily values from the climate models

For evaluation, we aggregate the hourly WFDES data to daily values and apply the Teddy-Tool for

disaggregation. Thereby, we compare the original hourly data with the data disaggregated by Teddy.
We perform a sensitivity analysis of different time window sizes used for finding the most similar

meteorological day in the past. In addition, we perform a cross-validation .and autocorrelation analysis

for 30 globally distributed samples around the world, representing different climate zones. The
validation shows that Teddy is able to reproduce historical diurnal courses with high correlations >0.9

for all variables, except for wind speed (>0.75) and precipitation (>0.5), We discuss limitations of the .

method regarding the reproduction of precipitation extremes, inter-day connectivity, and

disaggregation of end-of-century projections with strong warming. Depending on the use case, sub-

daily data provided by the Teddy-Tool could make climate impact assessments more robust and
reliable.
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Sub-daily climate data is becoming increasingly important in climate impact analysis. This type of data,
which captures variations in temperature, precipitation, and other weather variables at intervals of
less than a day, can provide a more detailed representation of local and regional climate conditions
and temporal variations. This information can be crucial for evaluating the impacts of climate change
on various sectors, such as agriculture, water resources, energy production, and human health (Golub
et al., 2022; Trinanes and Martinez-Urtaza, 2021; Colén-Gonzalez et al., 2021; Tittensor et al., 2021;
Byers et al., 2018; Jagermeyr et al., 2021; Poschlod and Ludwig, 2021; Degife et al., 2021). A better
representation of the diurnal course of temperature, extreme precipitation events, and other weather
variables are also important for adaptation assessments which depend on behavior or processes with
high temporal dynamics, such as the energy demand, labor activity, the heat stress of crops or flood
events (Minoli et al., 2022; Zabel et al., 2021; Reed et al., 2022; Orlov et al., 2021; Franke et al., 2022;
Poschlod 2022). Research has shown that using sub-daily climate data can result in more robust and
reliable impact assessments compared to using daily data (Orlov et al. 2023).

Today, most climate model data are available for download at daily resolution because of the high
storage requirements for sub-daily climate data_(Juckes et al., 2020). However, the demand for sub-
daily data is increasing with future developments of data management expected to handle this

demand with decreasing costs for storage and computing resources (Liittgau & Kunkel, 2018). Different

methods exist to disaggregate available daily climate data to sub-daily, most often hourly values. These
can be roughly divided into statistical methods, weather generators, and mechanistic approaches,
although mixed forms also exist (Forster et al., 2016).

Mechanistic methods use regional climate models to dynamically downscale atmospheric conditions
in time and space, usually for a limited area (Vormoor and Skaugen, 2013; Liu et al., 2011; Kunstmann
and Stadler, 2005). Weather generators generate synthetic sequences of hourly weather variables by
using random number generators that match statistics (Ailliot et al., 2015; Mezghani and Hingray,
2009). Various statistical methods exist for temporal disaggregation of daily climate data, ranging from
simple interpolations or deterministic approaches to non-parametric approaches and methods that
derive statistical relationships from historical data_or look for climate analogues (Bennett et al., 2020;
Breinl and Di Baldassarre, 2019; Chen, 2016; Debele et al., 2007; Forster et al., 2016; Gorner et al.,
2021; Liston and Elder, 2006; Park and Chung, 2020; Verfaillie et al., 2017; Poschlod et al., 2018; Zhao
et al., 2021). Each of these methods has its own advantages and limitations, and the choice of method

depends on factors such as the specific needs of the impact assessment, the quality of the available
data, and computational resources.

Here, we introduce the Teddy-Tool (temporal disaggregation of daily climate model data), which uses
statistical methods for temporal disaggregation of daily climate model data. Existing statistical
approaches are often only valid for a specific location and cannot be applied globally. In addition,
available disaggregation tools often focus on only one variable_(e.g. Pui et al., 2012) and therefore do
not consider physical interdependencies between different variables, such as precipitation, humidity,
temperature, and radiation. Teddy has been specifically developed as a globally applicable tool for
climate impact studies. For this purpose, Teddy strictly preserves mass and energy of daily climate
model data for each variable throughout the disaggregation procedure. Teddy additionally aims at
taking regional and seasonal climate characteristics into account and considers the physical
consistency between variables.
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Teddy represents an easy-to-use tool that can be applied for climate impact assessments in different

sectors that allows a physically consistent temporal disaggregation of daily climate model data. The

Teddy-Tool has been written in Matlab and is available open source via Zenodo (see code availability).

2. Data and data requirements «

be used with daily climate data for historical time periods and future scenarios from the Jnter-Sectoral
Impact Model Intercomparison Project (ISIMIP) _ISIMIP offers a framework for consistent| j

the impacts of climate change across affected sectors and spatial scales (Warszawski et al., 2014). To

historical (1850-2014) and future time periods (2015-2100) for different scenarios (SSP126, SSP370,
SSP585). ISIMIP provides bias-corrected climate model data from the Coupled Model Intercomparison
Project Phase 6 (CMIP6) and trend-preseryjng reanalysis climate data (Lange, 2019). Within ISIMIP,

\
I\
guarantee cross-sectoral consistency in ISIMIP, all sectors are provided with the same climate data for |

i
i
i
i
i

some modeling communities from different sectors have expressed their need for sub-daily climate
data, including the agricultural and the energy sector,,

longwave radiation (rlds), air pressure

temperature (tas), humidity (hurs), shortwave radiation (rsds

(ps), wind speed (sfcwind), and precipitation (pr) (Lange, 2019). For air temperature, the daily
maximum (tasmax) and minimum (tasmin) values are additionally provided. ISIMIP provides CMIP6

Teddy requires hourly climate data as a reference for temporal disaggregation. Therefore, we use the

WEFDES dataset, which has been gererated using the WATCH Forcing Data (WFD) methodology applied

to ERAS reanalysis data (Cucchi et al., 2020). The bias-adjusted hourly WFDES5 data is globally available
for the time period between 1979 and 2019 at 0.5° spatial resolution. It is consistent with the bias-
adjustment procedure within ISIMIP (Lange, 2019) and thus provides a consistent hourly reference
data for Teddy. JTable 1 gives an overview of the available variables and the required datasets at their

temporal resolution. The temporal resolution of the Teddy output is adjustable by the user and can be *

setto1-, 2-, 3-, 4-, 6-, 8-, or 12-hourly values.

Table 1: Variables and units of used hourly (h) and daily (d) climate data and the Teddy output. For
WEFDES, the specific variable name is provided in brackets. WFDES variables have instantaneous values,

while SWdown, LWdown, Rainf and Snowf have average values over the next hour at each time step.
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3. Methods

Teddy uses an empirical approach, which 1) selects the ‘most similar meteorological day’ for the daily

. [Formatiert: Links
# [Formatiert: Links

(Formatiert: Links

[hat formatiert: Schriftart: Fett
7, (hat gel6scht: Temporal disaggregation
4 (hat geldscht: region

(Formatiert: Links

( hat gel6scht: <it>

A A AN AN AN A

hat gel6scht: from the most similar meteorological day in
the past ...

climate model data (here: ISIMIP CMIP6 data) within the reference climate data (here: WFDES) at the
same location. 2) Teddy applies the Jocation-specific diurnal course to each variable of the daily climate

model data for a day of interest. Jn the following, the procedure is explained in detail, where the

example case of ISIMIP climate data and WFDES reference data is used for further illustration:

In a first precalculation step, in order to minimize computational resources, hourly WFDES data are
aggregated to daily values and stored as NetCDF files. The daily aggregation uses mean values for all
variables and daily sums for precipitation. In addition, rainfall and snowfall fluxes must be summed up
for WFDES. Daily maximum and minimum temperature are calculated from the hourly data. Units of
climate inputs are converted to match the Teddy output (see Tab. 1). For the conversion of specific
'humidity to relative humidity, the Buck equation is applied (Buck, 1981),

After reading the daily climate model data for the selected location (latitude/longitude) that
determines a specific grid cell at 0.5° resolution, the daily mean values of all ISIMIP variables (see Tab.
1) are compared to the aggregated daily values of WFDES for a specific time step in order to identify
the most similar meteorological day. For the comparison, a day-of-year (DOY) window can be selected
by the user that allows for a selection of days around the DOY of the actual time step. By default, the
DOY window size is set to 11, which means a sequence of + 11 days around the actual DOY. As a result,
23 days are selected from each of the 40 WFDES reference years (1980-2019). These 920 days now
serve as the statistical population for further calculations (Fig. 1). In a next step, the climate model day
of interest and the statistical population of 920 WFDE5 days are classified according to their |

precipitation state_(wet / dry). As climate models tend to produce too many days with low-intensity A

precipitation called /drizzle bias, (Chen et al., 2021), days with aggregated daily precipitation values

below 1 mm per day are considered as dry days (Sun et al., 2006). Depending on the precipitation state
of the previous day, the day of interest and the following day, there are eight classes: dry-dry-dry, dry-
dry-wet, wet-dry-dry, wet-dry-wet, dry-wet-dry, dry-wet-wet, wet-wet-dry, and wet-wet-wet. This
step is included to better reproduce the inter-day connectivity of precipitation (Li et al., 2018). Only
days with the same precipitation class as the climate model day of interest are selected for the further
course. Next, the absolute error (AE) between daily climate model and aggregated daily WFDES5 data
for each variable is calculated for the remaining statistical population and ranked in ascending order.

The ranking approach is chosen, since the absolute or relative errors of different meteorological

variables cannot be compared to each other. The ranks are cumulated_with equal weight over all

variables for each day of the statistical population. In this context, we define ‘the most similar ,-' )

meteorological day’ as the day with the minimum sum of ranks (Fig. 1). Thus, the ‘most similar

meteorological day’, refers to the statistically derived, similarity of all available daily near-surface

meteorological variables at a given location and time _The approach works under the assumption that
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similar daily values would have a similar sub-daily profile (Li et al., 2018; Pui et al., 2012; Sharma et al.,

2006). Finally, the hourly values are taken from the most similar meteorological day of the WFDE5
reference dataset for each variable and are divided by the WFDES daily mean_(sum for precipitation)
Vvalue of the selected day, in order to refer to relative diurnal profiles without absolute variations (Fig.

1). The hourly profile is then applied for each variable to the daily mean_(sum for precipitation) value

from the climate model. Thus, the daily mean_value (sum for precipitation) of the climate model is
conserved and reproduced by the disaggregated values,,

For temperature, the resulting hourly temperature is further scaled between the provided minimum
and maximum. The scaling is performed in a way that the daily mean value is preserved with an
accuracy of four decimals. Relative humidity is limited to 100%, considering the preservation of the

daily mean value,,

Large selected DOY windows increase the statistical population, but on the other sight might distort

climatic characteristics with a strong seasonal course such as shortwave radiation values for the actual
DOY. Therefore, we preprocessed hourly potential (cloud free) solar radiation for each DOY globally at
0.5° spatial resolution. This data is used as upper bound to limit the resulting hourly values for the
corresponding DOY, while the daily mean value is preserved.,

In a final step, the hourly values are aggregated to the temporal resolution as set by the user,
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Figure 1: Procedure to identify the most similar meteorological day in the population of WFDE5
reference data for the default DOY window of + 11 days around the actual DOY._Daily values refer to
daily sum for precipitation and daily mean values for all other variables.

In rare cases, precipitation cannot be distributed, due to no precipitation in the reference data. This

can happen in dry deserts, where 40 years of WFDES data show no precipitation record within the

range of the moving DOY window (Supplementary Fig, S1 shows a map where this is the case). To
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expanded to +-50 days around the actual DOY in order to increase the statistical population and thus -

the probability to include a precipitation event. If still no precipitation event is found in the reference,

a linear regression between the precipitation amount and the precipitation duration is performed for
the specific location across the entire available data spectrum. The linear regression determines the
usual duration of the selected precipitation event. Subsequently, an hour is randomly selected for the
start of the precipitation event. A goal of Teddy was to consider the physical consistency of inter-

variable relationships. Precipitation generally affects other climate variables (e.g. humidity, radiation,
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temperature, etc.; Meredith et al., 2021). During night, physical interdependencies between

precipitation and other variables are generally lower, because radiation is not affected and less energy

is available to affect other variables. This might have an effect for impact models, because, as an

example, evapotranspiration might be unrealistically high if precipitation occurs at the same time with

full solar irradiation during noon. In order to reduce possible jnconsistencies with other variables that

could lead to implications in impact models, the precipitation is only distributed to hours at nighttime,
Alternatively, we implemented the option for the user to write Not a Number (NaN) values instead.

Drizzle precipitation (values below 1 mm day™) js also disaggregated to sub-daily values in order to

ensure mass and energy conservation. If no historical precipitation event is found for this case,

precipitation noise is again randomly distributed to an hour at nighttime. If no hour without radiation

occurs (e.g. high latitudes in northern summer), the precipitation is distributed to local midnight.

The calculation procedure can be performed either for universal time (UT) or for local solar time (LST).
The latter divides the world into equal time zones of 15° with the central time zone (+-7.5°) at
Greenwich.

4. Results -

2. AESUTLS

In a first step, Teddy is applied for 30 globally distributed samples (Fig. 2) for the year 2010. To be able
to validate the results, we perform a cross-validation. Therefore, WFDES5 data for 2010 aggregated to

daily values serve,as an input for Teddy. The same year is excluded from the statistical population
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during the cross-validation. As a result, it can be tested how well WFDE5 hourly values for the year *

2010 are reproduced with the statistical population of the other 39 years. The 30 samples are chosen

to represent globally relevant agricultural production regions in different climate zones (Fig. 2). To H

evaluate the sensitivity of the different DOY window sizes, we run the cross-validation with different
DOY window sizes, ranging from 1 to 25, in steps of two, including the option to disable the DOY
window (DOY window size = 0). In order to additionally validate the performance for extreme events,
we perform a second cross-validation for all available 40 years (1980-2019) with DOY window sizes of
11 for sample location 29, located in Southern Germany.
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Figure 2: Distribution of 30 global samples used for the cross-validation on (a) annual total harvested
area of rainfed and irrigated crops in hectare per pixel at a 30 arc-minute grid (Portmann et al., 2010)
and (b) for Koeppen-Geiger climate zones calculated for 1980-2019 WFDE5 temperature and
precipitation values (Beck et al., 2018). Samples are ordered by climate zone affiliation and their
distance to the equator.

4.1 Validation

As an example, for sample location 16 in Ethiopia, Fig. 3 shows the results of the temporal

disaggregation series for the cross-validation for a 10-day time series in 2010 in comparison with the
daily climate input and the original hourly WFDES data. The hourly courses show high correlations for
the randomly selected time series for all variables_except for precipitation (Fig. 3 and scatterplots in
Fig. 4 for the entire year; Supplementary Fig. S2 and S3 alternatively show sample location 22 in China).
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462 Figure 3: Time-series for all variables comparing daily climate model data, disaggregated hourly results
463 of Teddy from the performed cross-validation and the original hourly WFDES5 data, shown for sample
464  location 16 in Ethiopia with a DOY window size of 7 for the 10-day period 29.06. — 08.07.2010. The
465 Pearson correlation coefficient (R), the Nash-Sutcliffe model efficiency coefficient (NSE), the root mean hat aeléscht:
466  squared error (RMSE) and the mean absolute error (MAE) are displayed for the shown time period for (hat geldscht: is ]
467  each variable.
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Figure 4: Hourly values for the year 2010 between disaggregated values generated by the Teddy-Tool
and the original WFDES data used for the cross-validation, exemplarily for sample_location 16 in
Ethiopia with a DOY window size of 7. The Pearson correlation coefficient (R), the Nash-Sutcliffe model
efficiency coefficient (NSE), the root mean squared error (RMSE) and the mean absolute error (MAE)
are displayed for each variable.

4.2 Sensitivity analysis DOY window size .

The sensitivity analysis averaged over all 30 samples shows that the Pearson correlation coefficient of
hourly values for the year 2010 show high correlations for all variables (r>0.9), except wind_speed

(r>0.7) and precipitation (r>0.4), which are generally more difficult to disaggregate (Fig. 5;
Supplementary Fig. 54 additionally shows the Nash-Sutcliffe model efficiency coefficient). The selected

DOY window size has an effect on the quality of the results. While no DOY window (size=0) results in
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489 Figure 5: Pearson correlation coefficient between disaggregated hourly values generated by the Teddy-
490  Tool and the original WFDE5 data used for the cross-validation for different DOY window sizes

491  averaged over all 30 samples for the year 2010 for all variables, The scaling of the colorbar differs "[hat gelbscht: being disaggregated to hourly values )

492 between variables, [hat formatiert: Schriftart: 11 Pt. ]

493  For precipitation, the impact of the DOY window size on the correlation varies between regions. Larger

494 DOY windows are mainly beneficial for precipitation in arid regions, while showing lower increases in (hat geldscht: tropical and )

495 correlation in regions with pronounced seasons, (Fig. 6). The results also show that the correlation for i o [hat gelbscht: ]

496  precipitation is generally larger in tropical regions than in continental regions. : [hat gelbscht: , the correlation might decrease with larger }
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Figure 6: Pearson correlation coefficient between disaggregated hourly values generated by the Teddy-

Tool and the original WFDES5 data used for the cross-validation for different DOY window sizes
averaged over the samples for each Koeppen-Geiger climate zone (A=tropical, B=arid, C=temperate,
D=continental).

While hourly precipitation can be best reproduced for winter seasons in continental and arid regions,
winter seasons show the lowest correlation for temperate regions. Tropical regions only show
relatively low variations over the year, independently from the selected DOY window size (Fig. 7).
Especially in arid regions, the length of the DOY window size affects the results differently in different
seasons. Here, larger DOY windows decrease the correlation during the rainy season (winter and
spring), while correlation is increased during the dry season (summer and autumn).
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Figure 7: Pearson correlation coefficient between disaggregated hourly values generated by the Teddy-

Tool and the original WFDES5 data used for the cross-validation for different DOY window sizes
averaged over the samples for the four seasons (Northern hemisphere: spring=MAM, summer=JJA,
autumn=SON, winter=DJF; Southern hemisphere: spring=SON, summer=DJF, autumn=_MAM,

winter=JJA). The heatmap is averaged over the samples for each Koeppen-Geiger climate zone

(A=tropical, B=arid, C=temperate, D=continental).

Furthermore, we evaluate the sensitivity of the DOY window size to the reproduction of temporal
autocorrelation (Fig. 8). Therefore, the autocorrelation over lag times between one and 24 hours is
calculated for precipitation and wind speed. Autocorrelation refers to the similarity of a time series to
a lag duration shifted version of the same time series. This allows sub-daily patterns and inter-hour
connectivity to be statistically captured and validated in time series of precipitation and wind speed.
In addition, we also check the reproduction of wet hours (precipitation above 0.1 mm h') in 2010 and
the number of hours with low wind speeds (sfcwind < 2.5 m s) referring to the typical cut-in wind
speed of wind turbines.

Here, we find that short DOY window sizes below 5 days are not beneficial to all statistics. The
autocorrelation of precipitation (wind speed) is reproduced more accurately with window sizes of 9
days or longer. The number of wet hours is better recreated with window sizes above 15 days. For
hours with low wind speed, a minor improvement is found above 9 days.
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Figure 8: Extended validation statistics for the sensitivity analysis of the DOY window size for the year
2010. The difference in autocorrelation refers to the average over all 30 samples and lag durations
between one and 24 hours. Wet hours are defined as precipitation intensities above 0.1 mm h™ and
low wind speeds refer to hours with sfewind <2.5ms™,
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4.3 Multi-year evaluation

The previous validation has assessed the disaggregation performance for all sample locations for the

year 2010 and different DOY window sizes. For the analysis of the whole time period 1980 — 2019, we b

evaluate each year of the 40-year timeseries for sample location 29 and a window size of 11 days.

Figure 9 and Supplementary Fig. S5 show, the correlation coefficient and mean absolute error,

respectively, for each year to assess the jnterannual variability of disaggregation performance. For tas, &

hurs, rsds, rlds, and ps the performance shows only very minor differences, whereas sfcwind and pr
show a higher degree of interannual fluctuations.
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For the further evaluation of precipitation characteristics, we additionally assess the disaggregated

timeseries over the whole period 1980 — 2019 for sample location 29, In order to evaluate the

reproduction of wet/dry proportions, the monthly cycle of wet hours is provided (Fig. 10). Wet hours

above 0.1 mm h™are recreated by the Teddy-Tool with minor differences for the median over 40 years

(Fig. 10). The error measures are calculated for every year separately amounting to a mean absolute

error of 13.02 h equaling 7.8 %.

For the evaluation of the range of precipitation intensities, Fig, 11 shows intensities above 1 mm h

plotted against its percentage of exceedance for sub-daily durations. We find that the disaggregated

precipitation intensities match the original data except for extreme precipitation. ,
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RMSE are calculated separately for every year and averaged over 40 years.
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Figure 11; Exceedance probability of precipitation intensities for sub-daily durations for sample

location 29 in Germany.

4.5 Fvaluation of precipitation extremes,

As the ISIMIP data base is used for future impact modelling and historical attribution science (Mengel
etal., 2021), extremes are of major interest for the community. The ability of global climate models to
simulate sub-daily extremes is limited and depends on the variable of interest and the spatio-temporal
conditions of the extreme and the respective model setup (Wehner et al., 2021; Kumar et al., 2015;
Wang and Clow, 2020). However, in this validation, we evaluate how the Teddy-Tool is able to preserve

the statistics of sub-daily extreme values. Therefore, we select precipitation as variable of interest.
Figure 12 shows the reproduction of sub-daily precipitation extremes for 1980 — 2019 for sample

location 29 in southern Germany, where Teddy is run with a DOY window size of 11 days. The 40 annual
maxima are extracted from the original and the disaggregated data. Additionally, the Generalized
Extreme Value (GEV) distribution is fitted to these empirical data. GEV parameters are estimated via
Maximum _Likelihood Estimation (Coles, 2001), where the goodness-of-fit_is assessed with the

Anderson-Darling test at 95% significance level (Stephens, 1986). Thereby, 95% confidence intervals

are generated applying a bootstrap procedure with 1000 iterations to account for extreme value
statistical uncertainties. We find that the Teddy-Tool leads to an overestimation of annual maximum
precipitation. For the hourly duration, the differences are large with the confidence intervals of the
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GEV hardly overlapping. For the longer durations, Teddy values approach the original data, with
noticeable differences only for the rare events with return periods above 5 years.
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Figure 12; Extreme value statistical evaluation of sub-daily precipitation_for sample location 29 in

Germany. The annual maxima of the WFDES5 and Teddy are shown as dots. Additionally, GEV fits (lines)
with 95% confidence intervals (transparent areas and dashed lines) account for uncertainties. The
Teddy-Tool is run with a DOY window size of 11 days,,

5. Discussion and Outlook -,

The Teddy-Tool allows for temporal disaggregation of daily climate model data. The disaggregation is
based on location and time specific empirical relationships between variables. The approach is well
suitable for all tested variables and results in very high correlations (>0.9), except for precipitation
(>0.5) and wind speed (>0.75). We refer the worse performance for precipitation and wind speed to
the high intra-day variability for these variables (Watters et al., 2021). Other variables are governed by

a stronger diurnal cycle (Dai and Trenberth, 2004), which is easier to disaggregate based on empirical
diurnal profiles.

Compared to other approaches, the advantage of the Teddy-Tool is that no other input data is required
rather than the daily climate model data. The Teddy-Tool is relatively simple to apply, considers specific
Jocal and seasonal features of the diurnal course of different climate variables, and preserves the

physical consistency of inter-variable relationships. Mass and energy are conserved and mean daily

values of the climate model are reproduced any time,,

The spatial and temporal resolution of the results is determined by the provided temporal and spatial
resolution of the chosen reference data (WFDES used here). Longer available reanalysis time periods
extend the statistical population for identifying the most similar weather conditions in the past and

thus could improve the results. Generally, also other reference data could be used, that provides higher
temporal or spatial resolution for a specific region.
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655  The DOY window to find the most similar historical weather situations can be chosen in different sizes. [hat geldscht: time

656  For most of the variables, we found small effects of time window adjustments, except for precipitation
657  and wind speed. The evaluation of different DOY window sizes reveals that a DOY window size of 11
658  can generally be recommended across all variables. Larger DOY windows should be avoided mainly in
659  arid regions, while shorter DOY windows generally lead to poorer representations of autocorrelation

‘660 and extreme events, Chat geloscht:

661  One limitation of the Teddy-Tool is the representation of extreme events, mainly for precipitation,
662  which is generally the most difficult variable for temporal disaggregation. We found that hourly

|663 precipitation extremes are overestimated. For heavy daily precipitation events, Teddy distributes the (hat geldscht: not always reproduced

664  24h-sums either correctly, too evenly or on too few hours. When distributing on too few hours,
665 extreme hourly intensities evolve, which may have never occurred or may even be physically
666  implausible. For temporal disaggregation of extreme precipitation, we recommend dynamical
667 downscaling via high-resolution climate models (Poschlod, 2021; Poschlod et al., 2021; Zabel et al.,

668  2012; Zabel and Mauser, 2013), ( hat geléscht:

669 Another limitation of the approach is the reproduction of the inter-day connectivity within the

670 disaggregated time series. When two diurnal profiles are chosen for the disaggregation of adjacent
671 days, which show dissimilar courses in the time steps at the change of the day, abrupt value jumps

672  might occur in the disaggregation. This can be seen in Fig. 3 for rlds from July 4™ to July 5% To illustrate Chat gelbscht: 4

673 this issue, a disaggregation time series from another location is provided in Supplementary Fig,S2. This A [hat geléscht: 5

674 limitation does also apply for the Method of Fragments applied on precipitation (Li et al., 2018). B
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675 Similarly to Li et al. (2018), we also consider the precipitation state of the previous and following day
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676  to improve inter-day connectivity. Without this additional consideration, overnight precipitation
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677  events would often be /cut off in the disaggregation. For the remaining abrupt jumps in the
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% e
678 disaggregated time series, we refrain from post-processing with subsequent smoothing, as we want to
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679 preserve both mass and energy and the empirical diurnal profiles

) ‘ Chat gel6scht: “
680  For the disaggregation of future climate projections using of the Teddy-Tool, we have the following ™, “‘[hat geldscht: ”
681  remarks: As the Teddy-Tool derives the relationships between sub-daily and daily values empirically [hat geléscht:
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682  based on reanalysis data, future diurnal profiles, which are outside the historical range of diurnal
683 profiles, might possibly be not fully reproduced. However, this limitation is common for statistical
684  approaches, which are to be calibrated on historical data (Papalexiou et al., 2018). Nevertheless, due
685  to energy and mass conservation, climate trends in the daily climate signal are fully preserved. Hence,
686  applying Teddy for temporal disaggregation under climate change holds under the assumption that we
687  select the most similar meteorological day of the historical data and that this diurnal profile is
688  representative for future climatic conditions. However, this assumption might apply to a different
689  degree for different variables. We expect non-stationarity for the diurnal profiles due to changing
690  weather patterns, shifts in rainfall generating processes, and shifts in the seasonality, mainly for
691  precipitation and wind. The daily course of other variables, such as solar radiation and temperature
692  might generally be less affected by a warmer climate. Furthermore, global climate models at coarse
693 resolutions generally do not represent all processes to fully reproduce intra-day variability. Teddy

694  applies the diurnal profiles and intra-day variability from the WFDES data, which are bias-adjusted
695 ERAS reanalysis data that implicitly consider finer scale effects than coarse-resolution global climate
696 models (Cucchi et al., 2020). Thus, the disaggregation process in Teddy is consistent with the bias
‘697 adjustment in ISIMIP3.
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Another limitation of the methodology could occur in the case of strong climate change signals. In case+

of high warming in gnd-of-century projections, the number of sampled historical days might decrease
if the same historical day is sampled repeatedly, This could lead to reductions in diversity of the diurnal

profile. Hence, Teddy allows to monitor the number of unigue analogue days per year. An additional

analysis for SSP3-7.0 using the GFDL-ESM4 climate model shows that the number of unique analogue * '

climate days are declining, as expected, but still the diversity of chosen days is above 300 unique days

at the end of the century for a chosen moving-window size of +-11 days (Supplementary Fig. S6). A

smaller size of the moving window prevents that the same analogue day is chosen over a longer time
S Chat gelbscht:

period. This will increase the diversity of diurnal profiles at the expense of similarity. Even if diurnal
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for temperature, will show variations (different offset and different amplitude) due to conservation of
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daily mean energy and mass. From a broader perspective, it is also not clear whether the uncertainties * - k [hat formatiert: Nicht Hervorheben

resulting from this limitation are larger than the uncertainties within the climate model projections

until the end of the century. Furthermore, in the long term, the basic population for finding analogue
climates will continuously increase, since WFDE5 data, which are based on ERAS5, are continuously
updated. We note that Teddy could be also employed to disaggregate future daily climate projections

based on hourly future climate projections as reference,

Further possible developments could include jmprovements for the reproduction of the inter-day
connectivity. Despite the consideration of precipitation classes, still abrupt yalue jumps over day

changes are possible. A future introduction of temperature classes and surface pressure classes in
addition to the precipitation classes could help to reduce this effect. Depending on the location of
interest, also including climate modes or weather patterns for the choice of the most similar
meteorological day could positively affect the performance. Furthermore, depending on the
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application, it could be reasonable not to screen for the most similar meteorological day, but for the
most_similar succession of multiple days. This would as a consequence improve the inter-day
connectivity as less different profiles are selected.

Other optional future developments could include the separation of direct and diffuse radiation, which
is also a required information for some impact models which is currently not provided by ISIMIP.
However, we would make further development with more options dependent on the community's
adoption of the current executable tool.

Code availability

The source code of the Teddy-Tool (v1,1) and a parallelized version of the Teddy-Tool (v1.1p), including<-.

a precompiled executable file for Windows, preprocessed data, results of the cross-validation and
exemplary results for SSP 585 (2015 — 2100) and the UKESM1-0-L climate model for 30 samples are
provided via Zenodo (https://doi.org/10.5281/zeno0d0.8124111).
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