The Teddy-Tool v1.0: temporal disaggregation of daily climate model data for climate impact analysis

3 Florian Zabel¹, Benjamin Poschlod²

- Ludwig-Maximilians-Universität München (LMU), Department of Geography, Luisenstr. 37, 80333 Munich,
 Germany
- 7 2 Research Unit Sustainability and Climate Risks, Center for Earth System Research and Sustainability, Universität
- 8 Hamburg, Grindelberg 5, 20144 Hamburg, Germany
- 9 Correspondence to: Florian Zabel (f.zabel@lmu.de)

Abstract

1

2

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Climate models provide required input data for global or regional climate impact analysis in temporally aggregated form, often in daily resolution to save space on data servers. Today, many impact models work with daily data, however, sub-daily climate information is getting increasingly important for more and more models from different sectors, such as the agricultural, the water, and the energy sector. Therefore, the open source Teddy-Tool (temporal disaggregation of daily climate model data) has been developed to disaggregate (temporally downscale) daily climate data to sub-daily hourly values. Here, we describe and validate the temporal disaggregation, which is based on the choice of daily climate analogues. In this study, we apply the Teddy-Tool to disaggregate bias-corrected climate model data from the Coupled Model Intercomparison Project Phase 6 (CMIP6). We choose to disaggregate temperature, precipitation, humidity, longwave radiation, shortwave radiation, surface pressure, and wind speed. As a reference, globally available bias-corrected hourly reanalysis WFDE5 data from 1980-2019 are used to take specific local and seasonal features of the empirical diurnal profiles into account. For a given location and day within the climate model data, the Teddy-Tool screens the reference data set to find the most similar meteorological day based on rank statistics. The diurnal profile of the reference data is then applied on the climate model. The physical dependency between variables is preserved, since the diurnal profile of all variables is taken from the same, most similar meteorological day of the historical reanalysis dataset. Mass and energy are strictly preserved by the Teddy-Tool to exactly reproduce the daily values from the climate models.

For evaluation, we aggregate the hourly WFDE5 data to daily values and apply the Teddy-Tool for disaggregation. Thereby, we compare the original hourly data with the data disaggregated by Teddy. We perform a sensitivity analysis of different time window sizes used for finding the most similar meteorological day in the past. In addition, we perform a cross-validation and autocorrelation analysis for 30 globally distributed samples around the world, representing different climate zones. The validation shows that Teddy is able to reproduce historical diurnal courses with high correlations >0.9 for all variables, except for wind speed (>0.75) and precipitation (>0.5). We discuss limitations of the method regarding the reproduction of precipitation extremes, inter-day connectivity, and disaggregation of end-of-century projections with strong warming. Depending on the use case, subdaily data provided by the Teddy-Tool could make climate impact assessments more robust and reliable.

Introduction

Gelöscht: on a daily basis

Gelöscht: for temperature, precipitation, humidity, longwave radiation, shortwave radiation, surface pressure and wind speed.

[5] nach unten verschoben: Thereby, mass and energy are strictly preserved by the Teddy-Tool to exactly reproduce the daily values from the climate models.

Gelöscht: document

Formatiert: Schriftfarbe: Automatisch

Gelöscht: Therefore

Formatiert: Schriftfarbe: Automatisch

Gelöscht: course

Gelöscht: empirically

Gelöscht: Thereby,

[5] verschoben (Einfügung)

Gelöscht: mMass and energy are strictly preserved by the Teddy-Tool to exactly reproduce the daily values from the climate models.

Gelöscht:

Gelöscht:

Gelöscht: and extreme value

Gelöscht: However,

Gelöscht: w

Gelöscht: also

Gelöscht: Consequently

Sub-daily climate data is becoming increasingly important in climate impact analysis. This type of data, which captures variations in temperature, precipitation, and other weather variables at intervals of less than a day, can provide a more detailed representation of local and regional climate conditions and temporal variations. This information can be crucial for evaluating the impacts of climate change on various sectors, such as agriculture, water resources, energy production, and human health (Golub et al., 2022; Trinanes and Martinez-Urtaza, 2021; Colón-González et al., 2021; Tittensor et al., 2021; Byers et al., 2018; Jägermeyr et al., 2021; Poschlod and Ludwig, 2021; Degife et al., 2021). A better representation of the diurnal course of temperature, extreme precipitation events, and other weather variables are also important for adaptation assessments which depend on behavior or processes with high temporal dynamics, such as the energy demand, labor activity, the heat stress of crops or flood events (Minoli et al., 2022; Zabel et al., 2021; Reed et al., 2022; Orlov et al., 2021; Franke et al., 2022; Poschlod 2022). Research has shown that using sub-daily climate data can result in more robust and reliable impact assessments compared to using daily data (Orlov et al. 2023).

Today, most climate model data are available for download at daily resolution because of the high storage requirements for sub-daily climate data. However, the demand for sub-daily data is increasing due to lower costs for storage and computing resources. Different methods exist to disaggregate available daily climate data to sub-daily, most often hourly values. These can be roughly divided into statistical methods, weather generators, and mechanistic approaches, although mixed forms also exist (Förster et al., 2016).

Mechanistic methods use regional climate models to dynamically downscale atmospheric conditions in time and space, usually for a limited area (Vormoor and Skaugen, 2013; Liu et al., 2011; Kunstmann and Stadler, 2005). Weather generators generate synthetic sequences of hourly weather variables by using random number generators that match statistics (Ailliot et al., 2015; Mezghani and Hingray, 2009). Various statistical methods exist for temporal disaggregation of daily climate data, ranging from simple interpolations or deterministic approaches to non-parametric approaches and methods that derive statistical relationships from historical data or look for climate analogues (Bennett et al., 2020; Breinl and Di Baldassarre, 2019; Chen, 2016; Debele et al., 2007; Förster et al., 2016; Görner et al., 2021; Liston and Elder, 2006; Park and Chung, 2020; Verfaillie et al., 2017; Poschlod et al., 2018; Zhao et al., 2021). Each of these methods has its own advantages and limitations, and the choice of method depends on factors such as the specific needs of the impact assessment, the quality of the available data, and computational resources.

Here, we introduce the Teddy-Tool (temporal disaggregation of daily climate model data), which uses statistical methods for temporal disaggregation of daily climate model data. Existing statistical approaches are often only valid for a specific location and cannot be applied globally. In addition, available disaggregation tools often focus on only one variable and therefore do not consider physical interdependencies between different variables, such as precipitation, humidity, temperature, and radiation. Teddy has been specifically developed as a globally applicable tool for climate impact studies. For this purpose, Teddy strictly preserves mass and energy of daily climate model data for each variable throughout the disaggregation procedure. Teddy additionally aims at taking regional and seasonal climate characteristics into account and considers the physical consistency between variables.

Teddy represents an easy-to-use tool that can be applied for climate impact assessments in different sectors that allows a physically consistent temporal disaggregation of daily climate model data. The

[3] nach unten verschoben: In principal, the Teddy-Tool can be used with any climate input, but has particularly been used so far with bias corrected daily CMIP6 climate data (Eyring et al., 2016) for historical time periods and future scenarios from the ISIMIP (Inter-Sectoral Impact Model Intercomparison Project), which provides bias corrected and trend-preserved climate data (Lange, 2019) and offers a framework for consistently projecting the impacts of climate change across affected sectors and spatial scales (Warszawski et al., 2014). To guarantee cross-sectoral consistency, all sectors are provided with the same climate data. Within ISIMIP, some models from different sectors have expressed their need for sub-daily climate data, including the agricultural and the energy sector.

Gelöscht: the

Gelöscht: ISIMIP

Teddy-Tool has been written in Matlab and is available open source via Zenodo (https://doi.org/10.5281/zenodo.7679149).

Data and data requirements

0-LL.

In principal, the Teddy-Tool can be used with any climate input, but has specifically been developed to be used with daily climate data for historical time periods and future scenarios from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which offers a framework for consistently projecting the impacts of climate change across affected sectors and spatial scales (Warszawski et al., 2014). To guarantee cross-sectoral consistency in ISIMIP, all sectors are provided with the same climate data. ISIMIP provides bias-corrected climate model data from the Coupled Model Intercomparison Project Phase 6 (CMIP6) and trend-preserving reanalysis climate data (Lange, 2019). Within ISIMIP, some modeling communities from different sectors have expressed their need for sub-daily climate data, including the agricultural and the energy sector.

Daily bias-corrected climate model data are provided by ISIMIP at 0.5° spatial resolution for air temperature (tas), humidity (hurs), shortwave radiation (rsds), longwave radiation (rlds), air pressure (ps), wind speed (sfcwind), and precipitation (pr) (Lange, 2019). For air temperature, the daily maximum (tasmax) and minimum (tasmin) values are additionally provided. ISIMIP provides CMIP6 data for the climate models GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM1-

Teddy requires hourly climate data as a reference for temporal disaggregation. Therefore, we use the WFDE5 dataset, which has been gererated using the WATCH Forcing Data (WFD) methodology applied to ERA5 reanalysis data (Cucchi et al., 2020). The bias-adjusted hourly WFDE5 data is globally available for the time period between 1979 and 2019 at 0.5° spatial resolution. It is consistent with the bias-adjustment procedure within ISIMIP (Lange, 2019) and thus provides a consistent hourly reference data for Teddy.

<u>Table 1 gives an overview of the available variables and the required datasets at their temporal resolution.</u> The temporal resolution of the Teddy output is adjustable by the user and can be set to 1-, 2-, 3-, 4-, 6-, 8-, or 12-hourly values.

Table 1: Variables and units of used hourly (h) and daily (d) climate data and the Teddy output. For WFDE5, the specific variable name is provided in brackets. WFDE5 variables have instantaneous values, while SWdown, LWdown, Rainf and Snowf have average values over the next hour at each time step.

<u>Variable</u>	WFDE5 (h)	ISIMIP Climate Model (d)	Teddy (flexible)
<u>tas</u>	K (Tair)	<u>K</u>	<u>K</u>
<u>tasmin</u>	=	<u>K</u>	=
<u>tasmax</u>	=	<u>K</u>	=
hurs/huss	kg/kg (Qair)	<u>%</u>	<u>%</u>
<u>rsds</u>	W m ⁻² (SWdown)	<u>W m⁻²</u>	W m ⁻²

Formatiert: Schriftart: Fett
Formatiert: Schriftart: Fett
[3] verschoben (Einfügung)
Gelöscht: particularly
Gelöscht: used
Gelöscht: so far
Gelöscht: bias corrected
Gelöscht: CMIP6
Gelöscht: (Eyring et al., 2016)
Gelöscht: ISIMIP (
Gelöscht: ,
Gelöscht: provides bias corrected and trend-preserved climate data (Lange, 2019) and
Gelöscht: ed
Gelöscht: To guarantee cross-sectoral consistency, all sectors are provided with the same climate data.
Gelöscht:
[2] verschoben (Einfügung)
Gelöscht: Teddy uses an empirical approach, which applies the region-specific diurnal course from the most similar day in the past to daily climate model data for a day of interest. Teddy has been developed specifically to disaggregate
Gelöscht: daily
Gelöscht: from
Gelöscht: the
Gelöscht: project
Gelöscht: for
Gelöscht: (tasmax, tasmin)
Gelöscht: different historical and future time periods and scenarios
Gelöscht: for the
Gelöscht:
Gelöscht: As a reference,
Gelöscht: globally available hourly bias-corrected reanalysis WFDE5 data (1980-2019) are used at 0.5° spatial resolution to identify the most similar meteorological day in the past for a specific location (Cucchi et al., 2020).
[4] verschoben (Einfügung)
Formatiert: Links
Formatierte Tabelle
Formatiert: Links

Formatiert: Links
Formatiert: Links
Formatiert: Links
Formatiert: Links

<u>rlds</u>	W m ⁻² (LWdown)	W m ⁻²	<u>W m⁻²</u>
<u>pr</u>	kg m ⁻² s ⁻¹ (Rainf+Snowf)	<u>kg m⁻² s⁻¹</u>	mm timestep ⁻¹
<u>ps</u>	Pa (PSurf)	<u>Pa</u>	<u>hPa</u>
<u>sfcwind</u>	m s ⁻¹ (Wind)	<u>m s⁻¹</u>	<u>m s⁻¹</u>

Formatiert: Links

Formatiert: Links

Formatiert: Links

Formatiert: Links

185 186

187

188

189

190

191

192

193

194

195

196

197

198

199 200

201

202203

204

205

206

207

Methods

Teddy uses an empirical approach, which 1) selects the 'most similar meteorological day' for the daily climate model data (here: ISIMIP CMIP6 data) within the reference climate data (here: WFDE5) at the same location. 2) Teddy applies the location-specific diurnal course to each variable of the daily climate model data for a day of interest. In the following, the procedure is explained in detail, where the example case of ISIMIP climate data and WFDE5 reference data is used for further illustration:

In a first precalculation step, in order to minimize computational resources, hourly WFDE5 data are aggregated to daily values and stored as NetCDF files. The daily aggregation uses mean values for all variables and daily sums for precipitation. In addition, rainfall and snowfall fluxes must be summed up for WFDE5. Daily maximum and minimum temperature are calculated from the hourly data. Units of climate inputs are converted to match the Teddy output (see Tab. 1). For the conversion of specific humidity to relative humidity, the Buck equation is applied (Buck, 1981),

After reading the daily climate model data for the selected location (latitude/longitude) that determines a specific grid cell at 0.5° resolution, the daily mean values of all ISIMIP variables (see Tab. 1) are compared to the aggregated daily values of WFDE5 for a specific time step in order to identify the most similar meteorological day. For the comparison, a day-of-year (DOY) window can be selected by the user that allows for a selection of days around the DOY of the actual time step. By default, the DOY window size is set to 11, which means a sequence of ± 11 days around the actual DOY. As a result, 23 days are selected from each of the 40 WFDE5 reference years (1980-2019). These 920 days now serve as the <u>statistical population</u> for further calculations (Fig. 1). In a next step, the climate model day of interest and the <u>statistical population</u> of 920 WFDE5 days are classified according to their precipitation state. As climate models tend to produce too many days with low-intensity precipitation

Gelöscht: ¶

Formatiert: Schriftart: Fett

Gelöscht: Temporal disaggregation¶

Gelöscht: region

Gelöscht: from the most similar meteorological day in the past

[2] nach oben verschoben: Teddy uses an empirical approach, which applies the region-specific diurnal course from the most similar day in the past to daily climate model data for a day of interest. Teddy has been developed specifically to disaggregate daily bias-corrected climate model data from the ISIMIP project at 0.5° spatial resolution for air temperature (tas), humidity (hurs), shortwave radiation (rsds), longwave radiation (rlds), air pressure (ps), windspeed (sfcwind), and precipitation (pr) (Lange, 2019). For air temperature, the daily maximum and minimum values (tasmax, tasmin) are additionally provided. ISIMIP provides data for different historical and future time periods and scenarios for the climate models GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM1-0-LL As a reference, globally available hourly bias-corrected reanalysis WFDE5 data (1980-2019) are used at 0.5° spatial resolution to identify the most similar meteorological day in the past for a specific location (Cucchi et al., 2020).

Gelöscht: The diurnal profile of the most similar meteorological day is subsequently applied to the daily climate model data for each of the variables.

Gelöscht: ¶

[4] nach oben verschoben: Table 1: Variables and units of used hourly (h) and daily (d) climate data and the Teddy output. For WFDE5, the specific variable name is provided in brackets. WFDE5 variables have instantaneous values, while SWdown, LWdown, Rainf and Snowf have average values over the next hour at each time step.¶

Gelöscht: basic population

Gelöscht: basic population

called 'drizzle bias' (Chen et al., 2021), days with aggregated daily precipitation values below 1 mm per day are considered as dry days (Sun et al., 2006). Depending on the precipitation state of the previous day, the day of interest and the following day, there are eight classes: dry-dry, dry-dry-wet, wetdry-dry, wet-dry-wet, dry-wet-dry, dry-wet-wet, wet-wet-dry, and wet-wet. This step is included to better reproduce the inter-day connectivity of precipitation (Li et al., 2018). Only days with the same precipitation class as the climate model day of interest are selected for the further course. Next, the absolute error between daily climate model and aggregated daily WFDE5 data for each variable is calculated for the remaining statistical population and ranked in ascending order. The ranking approach is chosen, since the absolute or relative errors of different meteorological variables cannot be compared to each other. The ranks are cumulated with equal weight over all variables for each day of the <u>statistical population</u>. In this context, we define 'the most similar meteorological day' as the day with the minimum sum of ranks (Fig. 1). Thus, the 'most similar meteorological day' refers to the statistical similarity of all available daily near-surface meteorological variables at a given location and time. The approach works under the assumption that similar daily values would have a similar subdaily profile (Li et al., 2018; Pui et al., 2012; Sharma et al., 2006). Finally, the hourly values are taken from the most similar meteorological day of the WFDE5 reference dataset for each variable and are divided by the WFDE5 daily mean value of the selected day, in order to refer to relative diurnal profiles without absolute variations (Fig. 1). The hourly profile is then applied for each variable to the daily mean value from the climate model. Thus, the daily mean value of the climate model is conserved and reproduced by the disaggregated values.

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271 272

273

For temperature, the resulting hourly temperature is further scaled between the provided minimum and maximum. The scaling is performed in a way that the daily mean value is preserved with an accuracy of four decimals. Relative humidity is limited to 100%, <u>considering the preservation of the daily mean value.</u>

Large selected DOY windows increase the <u>statistical population</u>, but on the other sight might distort climatic characteristics with a strong seasonal course such as shortwave radiation values for the actual DOY. Therefore, we preprocessed hourly potential (cloud free) solar radiation for each DOY globally at 0.5° spatial resolution. This data is used as upper bound to limit the resulting hourly values for the corresponding DOY, while the daily mean value is preserved.

In a final step, the hourly values are aggregated to the temporal resolution as set by the user,

Gelöscht: "

Gelöscht: "

Gelöscht: basic population

Gelöscht: over all variables

Gelöscht:

Gelöscht: basic population

Gelöscht: ⊺

Gelöscht: is determined

Gelöscht: the lowest lowest cumulated ranks

Formatiert: Englisch (Vereinigte Staaten)

Gelöscht: '

Formatiert: Englisch (Vereinigte Staaten)

Formatiert: Englisch (Vereinigte Staaten)

Gelöscht: Hence, it does not account for the large-scale

weather system at a given time step.

Gelöscht: is conserved

Gelöscht:

Gelöscht: again under

Gelöscht: preserving

Gelöscht:

Gelöscht: basic population

Gelöscht:

Gelöscht: can again be aggregated to the time step set by the user

Gelöscht: (possible: 1, 2, 3, 4, 6, 8, 12)

Gelöscht:

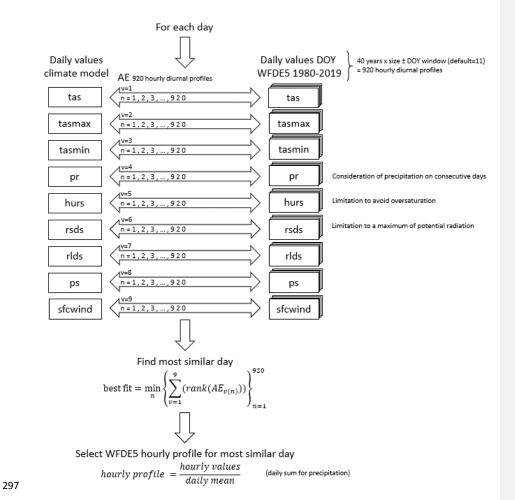


Figure 1: Procedure to identify the most similar meteorological day in the population of $\underline{\text{WFDE5}}$ reference data for the default DOY window of \pm 11 days around the actual DOY.

In rare cases, precipitation cannot be distributed, due to missing precipitation in the reference data. This can happen in dry deserts, where 40 years of WFDE5 data show no precipitation record within the range of the moving DOY window (Supplementary Figure S1). To handle this exception, several options are implemented. First, the DOY window is automatically expanded to +-50 days around the actual DOY in order to increase the statistical population and thus the probability to include a precipitation event. If still no precipitation event is found in the reference, a linear regression between the precipitation amount and the precipitation duration is performed for the specific location across the entire available data spectrum. The linear regression determines the usual duration of the selected precipitation event. Subsequently, an hour is randomly selected for the start of the precipitation event. A goal of Teddy was to consider the physical consistency of inter-variable relationships. Precipitation generally affects other climate variables (e.g. humidity, radiation, temperature, etc.; Meredith et al., 2021). During night, physical interdependencies between precipitation and other variables are

Gelöscht: failing

Gelöscht: ?

Formatiert: Nicht Hervorheben

Gelöscht: see

Gelöscht:

Gelöscht: this doesn't help

Formatiert: Schriftfarbe: Automatisch

generally lower, because radiation is not affected and less energy is available to affect other variables. This might have an effect for impact models, because, as an example, evapotranspiration might be unrealistically high if precipitation occurs at the same time with full solar irradiation during noon. In order to reduce possible inconsistencies with other variables that could lead to implications in impact models, the precipitation is only distributed to hours at nighttime, Alternatively, we implemented the option for the user to write Not a Number (NaN) values instead.

<u>Prizzle precipitation (values below 1 mm day listalised in precipitation event is found for this case, precipitation noise is again randomly distributed to an hour at nighttime. If no hour without radiation occurs (e.g. high latitudes in northern summer), the precipitation is distributed to local midnight.</u>

The calculation procedure can be performed either for universal time (UT) or for local solar time (LST). The latter divides the world into equal time zones of 15° with the central time zone (+-7.5°) at Greenwich.

Results

317

318

319

320

321

322

323

324

325

326

327

328 329

330

331

332

333

334

335

336

337

338

339

340

341

In a first step, Teddy is applied for 30 globally distributed samples (Fig. 2) for the year 2010. To be able to validate the results, we perform a cross-validation. Therefore, WFDE5 data for 2010 aggregated to daily values serve, as an input for Teddy. The same year is excluded from the statistical population during the cross-validation. As a result, it can be tested how well WFDE5 hourly values for the year 2010 are reproduced with the statistical population of the other 39 years. The 30 samples are chosen to represent globally relevant agricultural production regions in different climate zones (Fig. 2). To evaluate the sensitivity of the different DOY window sizes, we run the cross-validation with different DOY window sizes, ranging from 1 to 25, in steps of two, including the option to disable the DOY window (DOY window size = 0). In order to additionally validate the performance for extreme events, we perform a second cross-validation for all available 40 years (1980-2019) with DOY window sizes of 11 and 25 for sample location 29, located in Southern Germany.

Gelöscht: physical

Gelöscht: (without solar radiation)

Gelöscht: "

Gelöscht: bias"

Gelöscht: Precipitation

Gelöscht:

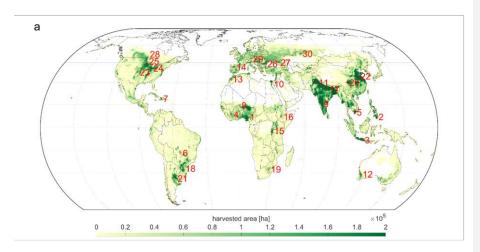
Gelöscht: are

Gelöscht: I

Formatiert: Schriftart: Nicht Fett

[1] nach unten verschoben: Validation¶

Formatiert: Schriftart: Fett


Gelöscht: In a first step, a cross-validation is carried out for 30 globally distributed samples (Fig. 2) for the year 2010.

Gelöscht: s

Gelöscht: basic population

Gelöscht: basic population

Gelöscht: all

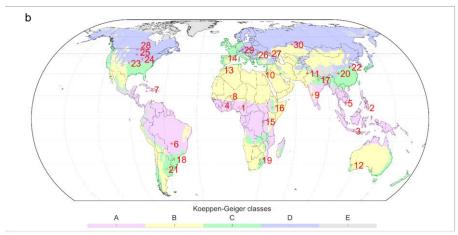


Figure 2: Distribution of 30 global samples used for the cross-validation on (a) annual total harvested area of rainfed and irrigated crops in hectare per pixel at a 30 arc-minute grid (Portmann et al., 2010) and (b) for Koeppen-Geiger climate zones calculated for 1980-2019 WFDE5 temperature and precipitation values (Beck et al., 2018). Samples are ordered by climate zone affiliation and their distance to the equator.

Validation

As an <u>example</u>, for sample location 16 in Ethiopia, Fig. 3 shows the results of the temporal disaggregation series for the cross-validation for a 10-day time series in 2010 in comparison with the daily climate input and the original hourly WFDE5 data. The hourly courses show high correlations for the randomly selected time series for all variables <u>except for precipitation</u> (Fig. 3 and scatterplots in Fig. 4 for the entire year).

[1] verschoben (Einfügung)

Formatiert: Schriftart: Nicht Fett, Unterstrichen

Gelöscht: example

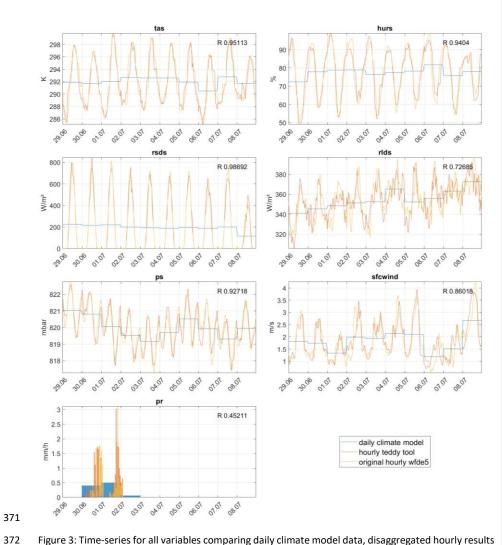


Figure 3: Time-series for all variables comparing daily climate model data, disaggregated hourly results of Teddy from the performed cross-validation and the original hourly WFDE5 data, shown for sample location 16 in Ethiopia with a DOY window size of 7 for the 10-day period 29.06. - 08.07.2010. The Pearson correlation coefficient (R) is displayed for the shown time period for each variable.

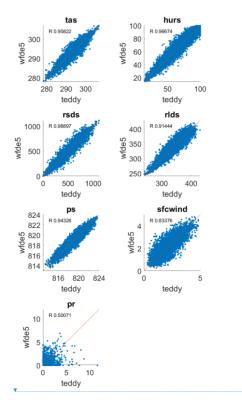


Figure 4: Hourly values for the year 2010 between disaggregated values generated by the Teddy-Tool and the original WFDE5 data used for the cross-validation, exemplarily for sample 16 in Ethiopia with a DOY window size of 7.

Sensitivity analysis DOY window size

376 377

378

379

380

381

382

383

384

385

386

The sensitivity analysis averaged over all 30 samples shows that the Pearson correlation coefficient of hourly values for the year 2010 show high correlations for all variables (r>0.9), except wind_speed (r>0.7) and precipitation (r>0.4), which are generally more difficult to disaggregate (Fig. 5). The selected DOY window size has an effect on the quality of the results. While no DOY window (size=0) results in the lowest correlation coefficient across all variables, the DOY window size does significantly affect the correlation for precipitation and wind speed (Fig. 5).

Gelöscht: ¶

Formatiert: Unterstrichen

Formatiert: Standard, Keine Aufzählungen oder Nummerierungen

Gelöscht: are the most difficult variables for disaggregation

Gelöscht: not

Gelöscht: except

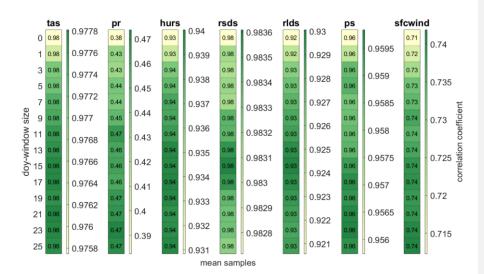


Figure 5: Pearson correlation coefficient for different DOY window sizes averaged over all 30 samples for the year 2010 for all variables being disaggregated to hourly values. The scaling of the colorbar differs between variables.

For precipitation, the impact of the DOY window size on the correlation varies between regions. Larger DOY windows are mainly beneficial for precipitation in arid regions, while showing lower increases in correlation in regions with pronounced seasons, (Fig. 6). The results also show that the correlation for precipitation is generally larger in tropical regions than in continental regions.

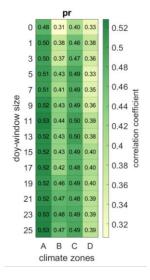


Figure 6: Pearson correlation coefficient for different DOY window sizes averaged over the samples for each Koeppen-Geiger climate zone (A=tropical, B=arid, C=temperate, D=continental).

Gelöscht: tropical and

Gelöscht: , the correlation might decrease with larger DOY window size

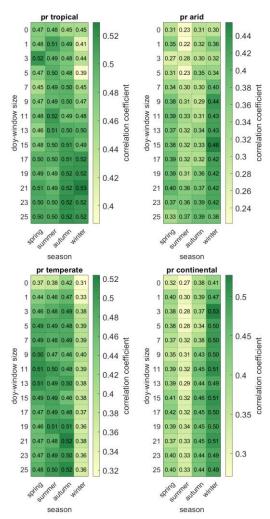


Figure 7: Pearson correlation coefficient for different DOY window sizes averaged over the samples for the four seasons (Northern hemisphere: spring=MAM, summer=JJA, autumn=SON, winter=DJF; Southern hemisphere: spring=SON, summer=DJF, autumn= MAM, winter=JJA). The heatmap is averaged over the samples for each Koeppen-Geiger climate zone (A=tropical, B=arid, C=temperate, D=continental).

Gelöscht: The shift of the seasons between Northern and Southern hemisphere is considered.

Furthermore, we evaluate the sensitivity of the DOY window size to the reproduction of temporal autocorrelation (Fig. 8). Therefore, the autocorrelation over lag times between one and 24 hours is calculated for precipitation and wind speed. Autocorrelation refers to the similarity of a time series to a lag duration shifted version of the same time series. This allows sub-daily patterns and inter-hour connectivity to be statistically captured and validated in time series of precipitation and wind speed. In addition, we also check the reproduction of wet hours (precipitation above 0.1 mm h^{-1}) in 2010 and the number of hours with low wind speeds (sfcwind < 2.5 m s^{-1}) referring to the typical cut-in wind speed of wind turbines.

Here, we find that short DOY window sizes below 5 days are not beneficial to all statistics. The autocorrelation of precipitation (wind speed) is reproduced more accurately with window sizes of 9 days or longer. The number of wet hours is better recreated with window sizes above 15 days. For hours with low wind speed, a minor improvement is found above 9 days.

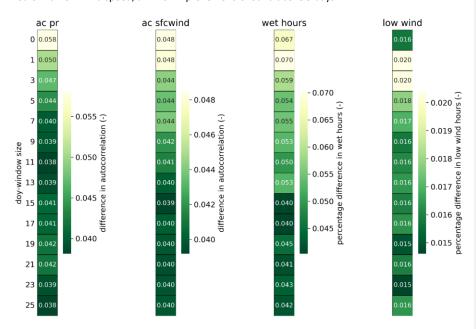


Figure 8: Extended validation statistics for the sensitivity analysis of the DOY window size for the year 2010. The difference in autocorrelation refers to the average over all 30 stations and lag durations between one and 24 hours. Wet hours are defined as precipitation intensities above 0.1 $\underline{\text{mm h}^{-1}}$ and low wind speeds refer to hours with sfcwind < 2.5 $\underline{\text{m s}^{-1}}$.

As the ISIMIP data base is used for future impact modelling and historical attribution science (Mengel et al., 2021), extremes are of major interest for the community. The ability of global climate models to simulate sub-daily extremes is limited and depends on the variable of interest and the spatio-temporal conditions of the extreme and the respective model setup (Wehner et al., 2021; Kumar et al., 2015; Wang and Clow, 2020). However, in this validation, we need to evaluate how the Teddy-Tool is able to preserve the statistics of sub-daily extreme values. Therefore, we select precipitation as variable of interest. Figure 9 shows the reproduction of sub-daily precipitation extremes for 1980 – 2019 for

Gelöscht: mm h-1
Gelöscht: m s-1

sample location 29 in southern Germany, where Teddy is run with a DOY window size of 11 days. The 40 annual maxima are extracted from the original and the disaggregated data. Additionally, the Generalized Extreme Value (GEV) distribution is fitted to these empirical data. Thereby, 95% confidence intervals are generated applying a bootstrap procedure with 1000 iterations to account for extreme value statistical uncertainties. We find that the Teddy-Tool leads to an overestimation of annual maximum precipitation. For the hourly duration, the differences are large with the confidence intervals of the GEV hardly overlapping. For the longer durations, Teddy values approach the original data, with noticeable differences only for the rare events with return periods above 5 years.

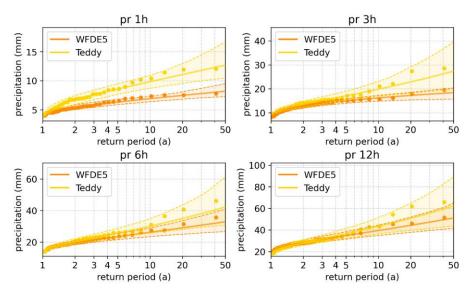


Figure 9: Extreme value statistical evaluation of sub-daily precipitation. The annual maxima of the WFDE5 and Teddy are shown as dots. Additionally, GEV fits (lines) with 95% confidence intervals (transparent areas and dashed lines) account for uncertainties. The Teddy-Tool is run with a DOY window size of 11 days.

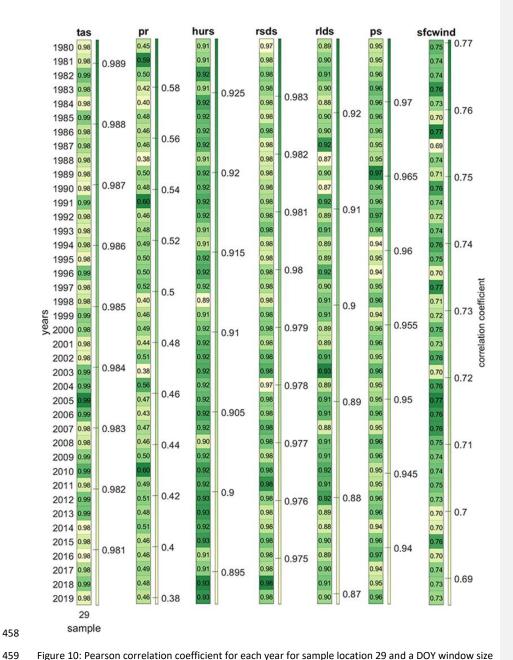


Figure 10: Pearson correlation coefficient for each year for sample location 29 and a DOY window size of 11 days. The scaling of the colorbar differs between variables.

Discussion and Outlook

460

461

Formatiert: Schriftart: Fett

Formatiert: Standard, Keine Aufzählungen oder Nummerierungen

Gelöscht: Conclusions

Formatiert: Schriftart: Fett

463 The Teddy-Tool allows for temporal disaggregation of daily climate model data. The disaggregation is 464 based on location and time specific empirical relationships between variables. The approach is well 465 suitable for all tested variables and results in very high correlations (>0.9), except for precipitation 466 (>0.5) and wind speed (>0.75). We refer the worse performance for precipitation and wind speed to 467 the high intra-day variability for these variables (Watters et al., 2021). Other variables are governed by Gelöscht: er 468 a stronger diurnal cycle (Dai and Trenberth, 2004), which is easier to disaggregate based on empirical Gelöscht: The o 469 diurnal profiles. 470 Compared to other approaches, the advantage of the Teddy-Tool is that no other input data is required 471 rather than the daily climate model data. The Teddy-Tool is relatively simple to apply, considers specific 472 Jocal and seasonal features of the diurnal course of different climate variables, and preserves the Gelöscht: regional 473 physical consistency of inter-variable relationships. Mass and energy are conserved and mean daily Gelöscht: considers 474 values of the climate model are reproduced any time. Gelöscht: 475 The spatial and temporal resolution of the results is determined by the provided temporal and spatial 476 resolution of the chosen reference data (WFDE5 used here). Longer available reanalysis time periods 477 extend the statistical population for identifying the most similar weather conditions in the past and Gelöscht: basic population 478 thus could improve the results. Generally, also other reference data could be used, that provides higher 479 temporal or spatial resolution for a specific region. 480 The <u>DOY</u> window to find the most similar historical weather situations can be chosen in different sizes. Gelöscht: time 481 For most of the variables, we found small effects of time window adjustments, except for precipitation 482 and wind speed. The evaluation of different DOY window sizes reveals that a DOY window size of 11 can generally be recommended across all variables. Larger DOY windows should be avoided mainly in 483 484 arid regions, while shorter DOY windows generally lead to poorer representations of autocorrelation 485 and extreme events. Gelöscht: 486 One limitation of the Teddy-Tool is the representation of extreme events, mainly for precipitation, 487 which is generally the most difficult variable for temporal disaggregation. We found that hourly 488 precipitation extremes are overestimated. For heavy daily precipitation events, Teddy distributes the Gelöscht: not always reproduced 489 24h-sums either correctly, too evenly or on too few hours. When distributing on too few hours, 490 extreme hourly intensities evolve, which may have never occurred or may even be physically 491 implausible. For temporal disaggregation of extreme precipitation, we recommend dynamical 492 downscaling via high-resolution climate models (Poschlod, 2021; Poschlod et al., 2021; Zabel et al., 493 2012; Zabel and Mauser, 2013). Gelöscht: 494 Another limitation of the approach is the reproduction of the inter-day connectivity within the 495 disaggregated time series. When two diurnal profiles are chosen for the disaggregation of adjacent 496 days, which show dissimilar courses in the time steps at the change of the day, abrupt value jumps 497 might occur in the disaggregation. This can be seen in Fig. 3 for rlds from July 4th to July 5th. To illustrate Gelöscht: 4 498 this issue, a disaggregation time series from another location is provided in Supplementary Figure S2. Formatiert: Hochgestellt 499 This limitation does also apply for the Method of Fragments applied on precipitation (Li et al., 2018). Gelöscht: 5 500 Similarly to Li et al. (2018), we also consider the precipitation state of the previous and following day Formatiert: Hochgestellt 501 to improve inter-day connectivity. Without this additional consideration, overnight precipitation Gelöscht: the 502 events would often be 'cut off' in the disaggregation. For the remaining abrupt jumps in the Gelöscht: 503

Gelöscht: '

Gelöscht:

disaggregated time series, we refrain from post-processing with subsequent smoothing, as we want to

preserve both mass and energy and the empirical diurnal profiles.

504

For the disaggregation of future climate projections using of the Teddy-Tool, we have the following remarks: As the Teddy-Tool derives the relationships between sub-daily and daily values empirically based on reanalysis data, future diurnal profiles, which are outside the historical range of diurnal profiles, might possibly be not fully reproduced. However, this limitation is common for statistical approaches, which are to be calibrated on historical data (Papalexiou et al., 2018). Nevertheless, due to energy and mass conservation, climate trends in the daily climate signal are fully preserved. Hence, applying Teddy for temporal disaggregation under climate change holds under the assumption that we select the most similar meteorological day of the historical data and that this diurnal profile is representative for future climatic conditions. However, this assumption might apply to a different degree for different variables. We expect non-stationarity for the diurnal profiles due to changing weather patterns, shifts in rainfall generating processes, and shifts in the seasonality, mainly for precipitation and wind. The daily course of other variables, such as solar radiation and temperature might generally be less affected by a warmer climate. Furthermore, global climate models at coarse resolutions generally do not represent all processes to fully reproduce intra-day variability. Teddy applies the diurnal profiles and intra-day variability from the WFDE5 data, which are bias-adjusted ERA5 reanalysis data that implicitly consider finer scale effects than coarse-resolution global climate models (Cucchi et al., 2020). Thus, the disaggregation process in Teddy is consistent with the bias adjustment in ISIMIP3.

521

522

523

524

525 526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

Another limitation of the methodology could occur in the case of strong climate change signals. In cases of high warming in end-of-century projections, the number of sampled historical days might decrease if the same historical day is sampled repeatedly. This could lead to reductions in diversity of the diurnal profile. Hence, Teddy allows to monitor the number of unique analogue days per year. An additional analysis for SSP3-7.0 using the GFDL-ESM4 climate model shows that the number of unique analogue climate days are declining, as expected, but still the diversity of chosen days is above 300 unique days at the end of the century for a chosen moving-window size of +11 days (Supplementary Fig. S3). A smaller size of the moving window prevents that the same analogue day is chosen over a longer time period. This will increase the diversity of diurnal profiles at the expense of similarity. Even if diurnal profiles are derived from the same analogue day repeatedly, the disaggregated diurnal courses, e.g. for temperature, will show variations (different offset and different amplitude) due to conservation of daily mean energy and mass., From a broader perspective, it is also not clear whether the uncertainties resulting from this limitation are larger than the uncertainties within the climate model projections until the end of the century. Furthermore, in the long term, the basic population for finding analogue climates will continuously increase, since WFDE5 data, which are based on ERA5, are continuously updated. We note that Teddy could be also employed to disaggregate future daily climate projections based on hourly future climate projections as reference,

Further possible developments <u>could</u> include <u>improvements for the reproduction of the</u> inter-day connectivity. Despite the consideration of precipitation classes, still abrupt <u>value jumps</u> over day changes are possible. A future introduction of temperature classes and surface pressure classes in addition to the precipitation classes could help to reduce this effect. Depending on the location of interest, also including climate modes or weather patterns for the choice of the most similar <u>meteorological</u> day could <u>positively affect</u> the performance. <u>Furthermore</u>, depending on the application, it could be reasonable not to screen for the most similar meteorological day, but for the most similar succession of multiple days. This would as a consequence improve the inter-day <u>connectivity as less different profiles are selected</u>.

Formatiert: Standard

Gelöscht: In order to prevent for high warming

Formatiert: Nicht Hervorheben

Formatiert: Nicht Hervorheben

Gelöscht: that

Gelöscht: , which

Formatiert: Nicht Hervorheben

Formatiert: Nicht Hervorheben

Formatiert: Nicht Hervorheben

Gelöscht:

Formatiert: Nicht Hervorheben

Formatiert: Nicht Hervorheben

Formatiert: Nicht Hervorheben

Formatiert: Schriftfarbe: Automatisch

 $\textbf{Gel\"{o}scht:} \ \textbf{Since mass and energy are conserved within the}$

disaggregation approach, the

Gelöscht: might

 $\textbf{Gel\"{o}scht:} \ \text{despite the diurnal profile are derived from the}$

same analogue day

Gelöscht:

Gelöscht: an improved

Gelöscht: changes

Gelöscht: improve

IIP. ty's
ling and are
on,
of
.3,
nd
<u>n</u>
SS

Other optional future developments could include the separation of direct and diffuse radiation, which

578

608

609

610

611

612 613

614

615 616

617

Formatiert: Block

Formatiert: Absatz-Standardschriftart

Buck, A. L.: New Equations for Computing Vapor Pressure and Enhancement Factor, Journal of

A., Johnson, N., Kahil, T., Krey, V., Langan, S., Nakicenovic, N., Novak, R., Obersteiner, M.,

hotspots, Environmental Research Letters, 13, 055012, https://doi.org/10.1088/1748-

Byers, E., Gidden, M., Leclère, D., Balkovic, J., Burek, P., Ebi, K., Greve, P., Grey, D., Havlik, P., Hillers,

Pachauri, S., Palazzo, A., Parkinson, S., Rao, N. D., Rogelj, J., Satoh, Y., Wada, Y., Willaarts, B., and Riahi, K.: Global exposure and vulnerability to multi-sector development and climate change

Applied Meteorology and Climatology, 20, 1527-1532, https://doi.org/10.1175/1520-

https://doi.org/10.1016/j.ejrh.2018.12.002, 2019.

0450(1981)020<1527:Nefcvp>2.0.Co;2, 1981.

9326/aabf45, 2018.

- Chen, D., Dai, A., and Hall, A.: The Convective-To-Total Precipitation Ratio and the "Drizzling" Bias in
 Climate Models, Journal of Geophysical Research: Atmospheres, 126, e2020JD034198,
 https://doi.org/10.1029/2020JD034198, 2021.
 Chen, C. J.: Temporal disaggregation of seasonal forecasting for streamflow simulation. World
 - Chen, C. J.: Temporal disaggregation of seasonal forecasting for streamflow simulation. World Environmental and Water Resources Congress 2016, pp. 63-72, 2016.

- Colón-González, F. J., Sewe, M. O., Tompkins, A. M., Sjödin, H., Casallas, A., Rocklöv, J., Caminade, C., and Lowe, R.: Projecting the risk of mosquito-borne diseases in a warmer and more populated world: a multi-model, multi-scenario intercomparison modelling study, The Lancet Planetary Health, 5, e404-e414, https://doi.org/10.1016/S2542-5196(21)00132-7, 2021.
- Cucchi, M., Weedon, G. P., Amici, A., Bellouin, N., Lange, S., Müller Schmied, H., Hersbach, H., and Buontempo, C.: WFDE5: bias-adjusted ERA5 reanalysis data for impact studies, Earth Syst. Sci. Data, 12, 2097-2120, https://doi.org/10.5194/essd-12-2097-2020, 2020.
- Dai, A. and Trenberth, K. E.: The Diurnal Cycle and Its Depiction in the Community Climate System Model. Journal of Climate, 17, 930-951, https://doi.org/10.1175/1520-0442(2004)017<0930:TDCAID>2.0.CO;2, 2004.
- Debele, B., Srinivasan, R., and Yves Parlange, J.: Accuracy evaluation of weather data generation and disaggregation methods at finer timescales, Advances in Water Resources, 30, 1286-1300, https://doi.org/10.1016/j.advwatres.2006.11.009, 2007.
- Degife, A. W., Zabel, F., and Mauser, W.: Climate change impacts on potential maize yields in Gambella region, Ethiopia, Regional Environmental Change, https://doi.org/10.1007/s10113-021-01773-3, 2021.
- Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937-1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
- Förster, K., Hanzer, F., Winter, B., Marke, T., and Strasser, U.: An open-source MEteoroLOgical observation time series DISaggregation Tool (MELODIST v0.1.1), Geosci. Model Dev., 9, 2315-2333, https://doi.org/10.5194/gmd-9-2315-2016, 2016.
- Franke, J. A., Müller, C., Minoli, S., Elliott, J., Folberth, C., Gardner, C., Hank, T., Izaurralde, R. C., Jägermeyr, J., Jones, C. D., Liu, W., Olin, S., Pugh, T. A. M., Ruane, A. C., Stephens, H., Zabel, F., and Moyer, E. J.: Agricultural breadbaskets shift poleward given adaptive farmer behavior under climate change, Global Change Biol, 28, 167-181, https://doi.org/10.1111/gcb.15868, 2022.
- Golub, M., Thiery, W., Marcé, R., Pierson, D., Vanderkelen, I., Mercado-Bettin, D., Woolway, R. I., Grant, L., Jennings, E., Kraemer, B. M., Schewe, J., Zhao, F., Frieler, K., Mengel, M., Bogomolov, V. Y., Bouffard, D., Côté, M., Couture, R. M., Debolskiy, A. V., Droppers, B., Gal, G., Guo, M., Janssen, A. B. G., Kirillin, G., Ladwig, R., Magee, M., Moore, T., Perroud, M., Piccolroaz, S., Raaman Vinnaa, L., Schmid, M., Shatwell, T., Stepanenko, V. M., Tan, Z., Woodward, B., Yao, H., Adrian, R., Allan, M., Anneville, O., Arvola, L., Atkins, K., Boegman, L., Carey, C., Christianson, K., de Eyto, E., DeGasperi, C., Grechushnikova, M., Hejzlar, J., Joehnk, K., Jones, I. D., Laas, A., Mackay, E. B., Mammarella, I., Markensten, H., McBride, C., Özkundakci, D., Potes, M., Rinke, K., Robertson, D., Rusak, J. A., Salgado, R., van der Linden, L., Verburg, P., Wain, D., Ward, N. K., Wollrab, S., and Zdorovennova, G.: A framework for ensemble modelling of climate change impacts on lakes worldwide: the ISIMIP Lake Sector, Geosci. Model Dev., 15, https://doi.org/4597-4623, 10.5194/gmd-15-4597-2022. 2022.
- Görner, C., Franke, J., Kronenberg, R., Hellmuth, O., and Bernhofer, C.: Multivariate non-parametric Euclidean distance model for hourly disaggregation of daily climate data, Theoretical and Applied Climatology, 143, 241-265, https://doi.org/10.1007/s00704-020-03426-7, 2021.
- Jägermeyr, J., Müller, C., Ruane, A. C., Elliott, J., Balkovic, J., Castillo, O., Faye, B., Foster, I., Folberth, C., Franke, J. A., Fuchs, K., Guarin, J. R., Heinke, J., Hoogenboom, G., Iizumi, T., Jain, A. K., Kelly, D., Khabarov, N., Lange, S., Lin, T.-S., Liu, W., Mialyk, O., Minoli, S., Moyer, E. J., Okada, M., Phillips, M., Porter, C., Rabin, S. S., Scheer, C., Schneider, J. M., Schyns, J. F., Skalsky, R., Smerald, A., Stella, T., Stephens, H., Webber, H., Zabel, F., and Rosenzweig, C.: Climate impacts on global agriculture

Formatiert: Absatz-Standardschriftart

emerge earlier in new generation of climate and crop models, Nature Food, 2, 873-885,
 https://doi.org/10.1038/s43016-021-00400-y, 2021.

- Kumar, D., Mishra, V., and Ganguly, A. R.: Evaluating wind extremes in CMIP5 climate models, Climate Dynamics, 45, 441-453, https://doi.org/10.1007/s00382-014-2306-2, 2015.
- Kunstmann, H. and Stadler, C.: High resolution distributed atmospheric-hydrological modelling for
 Alpine catchments, Journal of Hydrology, 314, 105-124,
 https://doi.org/10.1016/j.jhydrol.2005.03.033, 2005.
 - Lange, S.: Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0), Geosci. Model Dev., 12, 3055-3070, https://doi.org/10.5194/gmd-12-3055-2019, 2019.
 - Li, X., Meshgi, A., Wang, X., Zhang, J., Tay, S. H. X., Pijcke, G., Manocha, N., Ong, M., Nguyen, M. T., and Babovic, V.: Three resampling approaches based on method of fragments for daily-to-subdaily precipitation disaggregation, International Journal of Climatology, 38, e1119-e1138, https://doi.org/10.1002/joc.5438, 2018.
 - Liston, G. E. and Elder, K.: A Meteorological Distribution System for High-Resolution Terrestrial Modeling (MicroMet), Journal of Hydrometeorology, 7, 217-234, https://doi.org/10.1175/jhm486.1, 2006.
 - Liu, C., Ikeda, K., Thompson, G., Rasmussen, R., and Dudhia, J.: High-Resolution Simulations of Wintertime Precipitation in the Colorado Headwaters Region: Sensitivity to Physics Parameterizations, Monthly Weather Review, 139, 3533-3553, https://doi.org/10.1175/MWR-D-11-00009.1. 2011.
 - Mengel, M., Treu, S., Lange, S., and Frieler, K.: ATTRICI v1.1 counterfactual climate for impact attribution, Geosci. Model Dev., 14, 5269-5284, https://doi.org/10.5194/gmd-14-5269-2021, 2021.
 - Meredith, E., Ulbrich, U., Rust, H. W., and Truhetz, H.: Present and future diurnal hourly precipitation in 0.11° EURO-CORDEX models and at convection-permitting resolution, Environmental Research Communications, 3, 055002, https://doi.org/10.1088/2515-7620/abf15e, 2021.
 - Mezghani, A. and Hingray, B.: A combined downscaling-disaggregation weather generator for stochastic generation of multisite hourly weather variables over complex terrain: Development and multi-scale validation for the Upper Rhone River basin, Journal of Hydrology, 377, 245-260, https://doi.org/10.1016/j.jhydrol.2009.08.033, 2009.
 - Minoli, S., Jägermeyr, J., Asseng, S., Urfels, A., and Müller, C.: Global crop yields can be lifted by timely adaptation of growing periods to climate change, Nature Communications, 13, 7079, https://doi.org/10.1038/s41467-022-34411-5, 2022.
 - Orlov, A., Daloz, A. S., Sillmann, J., Thiery, W., Douzal, C., Lejeune, Q., and Schleussner, C.: Global Economic Responses to Heat Stress Impacts on Worker Productivity in Crop Production, Economics of Disasters and Climate Change, 5, 367-390, https://doi.org/10.1007/s41885-021-00091-6, 2021.
 - Orlov, A., et al.: Human heat stress could offset economic benefits of the CO2 fertilisation effect in crop production. Nature Communications: Under Review, 2023.
 - Papalexiou, S. M., Markonis, Y., Lombardo, F., AghaKouchak, A., and Foufoula-Georgiou, E.: Precise Temporal Disaggregation Preserving Marginals and Correlations (DiPMaC) for Stationary and Nonstationary Processes, Water Resources Research, 54, 7435-7458, https://doi.org/10.1029/2018WR022726, 2018.
 - Park, H. and Chung, G.: A Nonparametric Stochastic Approach for Disaggregation of Daily to Hourly Rainfall Using 3-Day Rainfall Patterns, Water, 12, 2306, 2020.
 - Portmann, F. T., Siebert, S., and Döll, P.: MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling, Global Biogeochemical Cycles, 24, https://doi.org/10.1029/2008GB003435, 2010.
- Poschlod, B.: Using high-resolution regional climate models to estimate return levels of daily extreme precipitation over Bavaria, Nat. Hazards Earth Syst. Sci., 21, 3573-3598,
- 719 https://doi.org/10.5194/nhess-21-3573-2021, 2021.

Kommentiert [ZF1]: Currently still under review.

```
<u>Poschlod, B.: Attributing heavy rainfall event in Berchtesgadener Land to recent climate change – Further rainfall intensification projected for the future, Weather Clim Extremes, 38, 100492, https://doi.org/10.1016/j.wace.2022.100492, 2022.</u>
```

- Poschlod, B. and Ludwig, R.: Internal variability and temperature scaling of future sub-daily rainfall return levels over Europe, Environmental Research Letters, 16, 064097, https://doi.org/10.1088/1748-9326/ac0849, 2021.
- Poschlod, B., Ludwig, R., and Sillmann, J.: Ten-year return levels of sub-daily extreme precipitation over Europe, Earth Syst. Sci. Data, 13, 983-1003, https://doi.org/10.5194/essd-13-983-2021, 2021.
- Poschlod, B., Hodnebrog, Ø., Wood, R. R., Alterskjær, K., Ludwig, R., Myhre, G., and Sillmann, J.: Comparison and Evaluation of Statistical Rainfall Disaggregation and High-Resolution Dynamical Downscaling over Complex Terrain, Journal of Hydrometeorology, 19, 1973-1982, https://doi.org/10.1175/jhm-d-18-0132.1, 2018.
- Pui, A., Sharma, A., Mehrotra, R., Sivakumar, B., and Jeremiah, E.: A comparison of alternatives for daily to sub-daily rainfall disaggregation, J. Hydrol., 470, 138–157, https://doi.org/10.1016/j.jhydrol.2012.08.041, 2012.
- Reed, C., Anderson, W., Kruczkiewicz, A., Nakamura, J., Gallo, D., Seager, R., and McDermid, S. S.: The impact of flooding on food security across Africa, Proceedings of the National Academy of Sciences, 119, e2119399119, https://doi.org/10.1073/pnas.2119399119, 2022.
- Sharma, A. and Srikanthan, S.: Continuous Rainfall Simulation: A Nonparametric Alternative, in:
 30th Hydrology & Water Resources Symposium: Past, Present & Future, 4–7 December 2006,
 Launceston, Tasmania, p. 86, 2006.
- Sun, Y., Solomon, S., Dai, A., and Portmann, R. W.: How Often Does It Rain?, Journal of Climate, 19, https://doi.org/916-934, 10.1175/jcli3672.1, 2006.
- Tittensor, D. P., Novaglio, C., Harrison, C. S., Heneghan, R. F., Barrier, N., Bianchi, D., Bopp, L., Bryndum-Buchholz, A., Britten, G. L., Büchner, M., Cheung, W. W. L., Christensen, V., Coll, M., Dunne, J. P., Eddy, T. D., Everett, J. D., Fernandes-Salvador, J. A., Fulton, E. A., Galbraith, E. D., Gascuel, D., Guiet, J., John, J. G., Link, J. S., Lotze, H. K., Maury, O., Ortega-Cisneros, K., Palacios-Abrantes, J., Petrik, C. M., du Pontavice, H., Rault, J., Richardson, A. J., Shannon, L., Shin, Y.-J., Steenbeek, J., Stock, C. A., and Blanchard, J. L.: Next-generation ensemble projections reveal higher climate risks for marine ecosystems, Nat Clim Change, 11, 973-981, https://doi.org/10.1038/s41558-021-01173-9, 2021.
- Trinanes, J. and Martinez-Urtaza, J.: Future scenarios of risk of Vibrio infections in a warming planet: a global mapping study, The Lancet Planetary Health, 5, e426-e435, https://doi.org/10.1016/S2542-5196(21)00169-8, 2021.
- Verfaillie, D., Déqué, M., Morin, S., and Lafaysse, M.: The method ADAMONT v1.0 for statistical adjustment of climate projections applicable to energy balance land surface models, Geosci. Model Dev., 10, 4257-4283, https://doi.org/10.5194/gmd-10-4257-2017, 2017.
- Vormoor, K. and Skaugen, T.: Temporal Disaggregation of Daily Temperature and Precipitation Grid Data for Norway, Journal of Hydrometeorology, 14, 989-999, https://doi.org/10.1175/jhm-d-12-0139.1, 2013.
- Wang, K. and Clow, G. D.: The Diurnal Temperature Range in CMIP6 Models: Climatology, Variability, and Evolution, Journal of Climate, 33, 8261-8279, https://doi.org/10.1175/jcli-d-19-0897.1, 2020.
- Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., and Schewe, J.: The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): Project framework, Proceedings of the National Academy of Sciences, 111, 3228-3232, https://doi.org/10.1073/pnas.1312330110, 2014.
- Watters, D., Battaglia, A., and Allan, R.: The Diurnal Cycle of Precipitation according to Multiple Decades of Global Satellite Observations, Three CMIP6 Models, and the ECMWF Reanalysis, Journal of Climate, 34, 5063-5080, https://doi.org/10.1175/JCLI-D-20-0966.1, 2021.
- Wehner, M., Lee, J., Risser, M., Ullrich, P., Gleckler, P., and Collins, W. D.: Evaluation of extreme subdaily precipitation in high-resolution global climate model simulations, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379, 20190545, https://doi.org/10.1098/rsta.2019.0545, 2021.

Formatiert: Absatz-Standardschriftart

Formatiert: pagelast

Formatiert: Absatz-Standardschriftart

- Zabel, F. and Mauser, W.: 2-way coupling the hydrological land surface model PROMET with the
 regional climate model MM5, Hydrology and Earth System Sciences, 17, 1705–1714,
 https://doi.org/10.5194/hess-17-1705-2013, 2013.
- Zabel, F., Mauser, W., Marke, T., Pfeiffer, A., Zängl, G., and Wastl, C.: Inter-comparison of two land-surface models applied at different scales and their feedbacks while coupled with a regional climate model, Hydrology and Earth System Sciences, 16, 1017–1031, https://doi.org/10.5194/hess-16-1017-2012, 2012.
- Zabel, F., Müller, C., Elliott, J., Minoli, S., Jägermeyr, J., Schneider, J. M., Franke, J. A., Moyer, E., Dury,
 M., Francois, L., Folberth, C., Liu, W., Pugh, T. A. M., Olin, S., Rabin, S. S., Mauser, W., Hank, T.,
 Ruane, A. C., and Asseng, S.: Large potential for crop production adaptation depends on available
 future varieties, Global Change Biol, 27, 3870-3882 https://doi.org/10.1111/gcb.15649, 2021.
- Zhao, W., Kinouchi, T., and Nguyen, H. Q.: A framework for projecting future intensity-duration frequency (IDF) curves based on CORDEX Southeast Asia multi-model simulations: An application
 for two cities in Southern Vietnam, Journal of Hydrology, 598, 126461,
- 786 https://doi.org/10.1016/j.jhydrol.2021.126461, 2021.