Rapid O3 assimilations -	- Part 1: <u>background</u> and <u>local contributions to</u>
tropospheri	c O3 changes in China in 2015-2020

Rui Zhu¹, Zhaojun Tang¹, Xiaokang Chen¹, Xiong Liu² and Zhe Jiang¹*

¹School of Earth and Space Sciences, University of Science and Technology of China, Hefei,
Anhui, 230026, China.

²Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA 02138, USA.

10 *Correspondence to: Zhe Jiang (<u>zhejiang@ustc.edu.cn</u>)

11 12

5

13 Abstract

<u>A single ozone (O₃) tracer mode was developed in this work to build the capability of the</u> 14 15 GEOS-Chem model for rapid O3 simulation. The single O3 tracer simulation demonstrates 16 consistency with the GEOS-Chem full chemistry simulation, with dramatic reductions in 17 computational costs of approximately 91-94%. The single O₃ tracer simulation was combined 18 with surface and Ozone Monitoring Instrument (OMI) O3 observations to investigate the 19 changes in tropospheric O_3 over eastern (E.) China in 2015-2020. The assimilated O_3 20 concentrations demonstrate good agreement with O₃ observations: surface O₃ concentrations 21 are 43.2, 41.8 and 42.1 ppb, and tropospheric O₃ columns are 37.1, 37.9 and 38.0 DU in the 22 simulations, assimilations and observations, respectively. The assimilations indicate rapid rises 23 in surface O₃ concentrations by 1.60 (spring), 1.16 (summer), 1.47 (autumn) and 0.80 (winter) 24 ppb yr^{-1} over E. China in 2015-2020, and the increasing trends are underestimated by the a 25 priori simulations. More attention is suggested to the rapid increases in O₃ pollution in spring 26 and autumn. We find stronger rises in tropospheric O_3 columns over highly polluted areas due 27 to larger local contributions, for example, 0.12 DU yr⁻¹ (North China Plain) in contrast to -0.29 28 (Sichuan Basin) -0.25 DU yr⁻¹ (Southern China). Furthermore, our analysis demonstrated 29 noticeable contributions of the interannual variability in background O3 to the trends in surface 30 O₃ (particularly in the summer) and tropospheric O₃ columns over E. China in 2015-2020. This 31 work highlights the importance of rapid simulations and assimilations to extend and interpret

-	Deleted: of O3 observations
-	Deleted: methodology
-	Deleted:
-1	Deleted: and Xiong Liu ²

Deleted: The high computational cost of chemical transport models (CTMs) is a potential bottleneck for the rapid assimilation of	ort
Deleted: observations. Here we	
Deleted: a single tracer tagged-O ₃ mode	
Deleted: of tropospheric	
Deleted: . The tagged-O ₃ mode	
Deleted: high	
Deleted: -	
Deleted: and	
Deleted: by	
Deleted: tagged-	
Deleted: China Ministry of Ecology and Environment (M	(EE)
Deleted: E. Asia	
Deleted: 42.9	
Deleted: ;	
Deleted: increases	

-{	Deleted: thus
-{	Deleted: Furthermore, we
\neg	Deleted: increases
Y	Deleted: , which may reflect the

Deleted: local emissions. The large discrepancy in			
Deleted: by assimilating surface and satellite observations further indicates the possible uncertainties in			
Deleted: derived free tropospheric O ₃ changes. The			
Deleted: O ₃ assimilation capability is a useful tool for the extension			
Deleted: interpretation of			

64 atmospheric O₃ observations.

65

66 1. Introduction

1			
6	7 Tropospheric ozone (O ₃) is produced when volatile organic compounds (VOCs) and		Deleted: an
6	8 <u>carbon monoxide (CO) are photochemically oxidized in the presence of nitrogen oxides (NO_x).</u>		
6	9 <u>Tropospheric O₃ has important influences</u> on the climate (Mickley, 2004; Iglesias-Suarez et al.,		Deleted: pollutant with significant adverse effects
7	2018), atmospheric oxidation capacity (Thompson, 1992; Prinn, 2003), human health and crop		
7	growth (Zhang et al., 2021; Li et al., 2022). <u>The important role of O₃ in the atmosphere has led</u>		Deleted: Tropospheric O ₃ is produced when volatile organic
7	2 to many efforts focusing on O ₃ observations that have improved our understanding of		compounds (VOC) and carbon monoxide (CO) are photochemically oxidized
7	atmospheric O ₃ (Logan et al., 2012; Oetjen et al., 2016; Parrish et al., 2021). The limited spatial		
7	4 <u>coverage of O₃ observations promotes the efforts of spatial extensions of O₃ observations</u>		
7	5 (Chang et al., 2015; Peng et al., 2016). <u>Recent advances in machine learning techniques further</u>		
7	6 provide a new method to extend O_3 observations by fusing satellite and surface observations		
7	7 (Li et al., 2020; Liu et al., 2022; Wei et al., 2022)	_	Deleted: presence of nitrogen oxides (NO _x).
7	8 Chemical transport models (CTMs) as powerful tools, have been widely used to simulate		Deleted:) are
,	Chemical dansport models (Crivite, as powerful tools, have been where a set to simulate		
7	⁹ and interpret observed O ₃ variabilities (Parrington et al., 2012; Jiang et al., 2016; Li, Ke et al.,		Deleted: tropospheric
8	0 = 2019) Despite the advances in CTMs an accurate simulation of observed O ₂ is still challenging		Deleted: and
8	<u>because of</u> uncertainties in physical and chemical processes (Peng et al., 2021; Chen et al.,		Deleted: , remotely sensed O ₃ observations are further applied to improve the modeled O ₃ concentrations via data assimilation techniques
8	2 2022), emission inventories (Elguindi et al., 2020; Jiang et al., 2022), and coarse model		Deleted: In addition to satellite observations, surface stations provide valuable information for air quality by producing
8	3 <u>resolutions</u> (Schaap et al., 2015; Benavides et al., 2021). <u>Furthermore</u> , the high computational		high-accuracy in situ measurements. For example, found that the assimilation of surface observations can effectively improve the predicted surface O ₃ concentrations: obtained
8	4 cost is a bottleneck for rapid <u>simulations</u> , which poses a possible barrier to better understanding		good forecasts in short-term surface O ₃ variabilities by assimilating surface observations.¶
8	tropospheric $O_{3_{4}}$ Alternatively, <u>researchers</u> may consider simulations of atmospheric O_{3} with		useful constraints on O ₃ concentrations in assimilations . However
8	6 the archived Opproduct and loss rates. For example, the tagged-Opproduct of the GEOS-Chem	$(\)$	Deleted: potential
8	7 model has been used to analyze the sources and transport of tronospheric Ω_2 (7hang et al. 2008)		Deleted: assimilations with high spatial resolution and wide spatial coverage
0	, moder has been used to analyze the sources and transport of tropospheric O ₃ (Zhang et al., 2000,		Deleted: the long-term changes in
8	8 Zhu et al., 2017; Han et al., 2018). However, it may not be an ideal choice to perform O_3		Deleted: on continental or global scales.
	-		Deleted: people
	2		

118	<u>simulations</u> based on the tagged- O_x mode because O_x is the combination of multiple species,		Deleted: assimilations
119	including O ₃ , and thus cannot be accurately compared with O ₃ observations.		
120	In this study, we developed the single O_3 tracer mode (tagged- O_3) of the GEOS-Chem	(Deleted: mode
121	model, driven by archived O3 product and loss rates provided by GEOS-Chem full chemistry		
122	simulations, to build the capability of the GEOS-Chem model for rapid simulations of		
123	tropospheric O_3 (rather than O_x). Data assimilations, by combining modeled and observed O_3		
124	concentrations, can take advantage of both simulations and observations to produce more		
125	accurate O ₃ concentrations (Parrington et al., 2008; Ma et al., 2019; Huijnen et al., 2020), The		Deleted: The tagged-O ₃ simulation was then
126	single O3 tracer simulations were thus further combined with the Ozone Monitoring Instrument		
127	(OMI) and China Ministry of Ecology and Environment (MEE) monitoring network O_3		
128	observations (in this paper) and United States (US) Air Quality System (AQS) and European		
129	AirBase network O_3 observations (in the companion paper, Zhu et al. (2023)) via a sequential		Deleted: : Part 2
130	Kalman Filter (KF) assimilation system (Tang et al., 2022; Han et al., 2022) to perform a		Deleted: investigate the performance of single tracer simulation on O_3 assimilations. Furthermore, the rapid
131	comparative analysis to investigate the changes in tropospheric O_3 in <u>eastern (E,)</u> China in		assimilation capability based on the tagged-O ₃ mode allows us to
132	2015-2020 (in this paper) and the US and Europe in 2005-2020 (Zhu et al., 2023),	\nearrow	Deleted: convenient,
100		<u> </u>	Deleted: . Deleted: (in the companion paper: Part 2,). Considering their
133 134	Satellite instruments provide globally covered O_3 observations that are sensitive to O_3 concentrations in the free troposphere. The OMI-based assimilations can thus reflect the		different vertical sensitivities, a comparative analysis by assimilating satellite and surface O ₃ measurements is useful for better characterization of O ₃ changes in the surface and
135	optimized adjustments in both global background and local O ₃ concentrations. On the other		free troposphere and is helpful for better applications of satellite and surface O ₃ measurements in the future.
136	hand, surface observations are sensitive to local O ₃ concentrations. Surface observation-based		
137	assimilations can reflect the optimized adjustments in local contributions, and the information		
138	of local contributions can be transported into the free troposphere via vertical convection in the		
139	assimilation processes, which is different from the fusion of satellite and surface observations		
140	(Li et al., 2020; Liu et al., 2022; Wei et al., 2022). Consequently, a comparative analysis by		
141	assimilating satellite and surface O3 observations is useful for better characterization of O3		
1.40			
142	changes in the surface and free troposphere. Furthermore, the low computational costs of the		

159	single O3 tracer simulations allow us to design and perform different experiments much more
160	efficiently. Multiple simulation and assimilation experiments (see details in Table 1) were thus
161	conducted in this work to analyze the impacts of background O ₃ (particularly, the interannual
162	and seasonal variabilities in the background O_3 as well as optimization in the background O_3)
163	and local O ₃ formation on the changes in surface and free tropospheric O ₃ over E. China.
164	This paper is organized as follows: in Section 2, we provide descriptions of the MEE and
165	OMI O ₃ observations, the GEOS-Chem model and the single O ₃ tracer simulation and
166	assimilation system used in this work. Tropospheric O_3 changes in E. China in 2015-2020 are
167	then demonstrated in Section 3 by assimilating MEE and OMI O3 observations. As shown in
168	Fig. 1, five regions (i.e., North China Plain (#1), Yangtze River Delta (#2), Central China (#3),
169	Sichuan Basin (#4) and Southern China (#5)) are defined within the E. China domain, Regions
170	#1 and #2 are defined as highly polluted regions by excluding grids with low and medium
171	anthropogenic NO_x emissions. Tropospheric O_3 changes over these regions are discussed to
172	investigate the possible regional discrepancies in surface and free tropospheric O_3 associated
173	with different local pollution levels. Our conclusions follow in Section 4.
174	
175	2. Data and Methods
176	2.1 Surface O ₃ measurements

We use MEE surface in situ O₃ concentration data (https://quotsoft.net/air/) for the period
2015-2020. These real-time monitoring stations report hourly concentrations of criteria
pollutants from 1691 sites in 2020. All stations (1441 urban sites and 250 urban background
sites) are assimilated in our analysis. Concentrations were reported by the MEE in ug m⁻³ under
standard temperature (273 K) until 31 August 2018. This reference state was changed on 1
September 2018 to 298 K. We converted the O₃ concentrations to ppb and rescaled the postAugust 2018 concentrations to the standard temperature (273 K) to maintain consistency in the

-	Deleted: describe
	Deleted: surface (
	Deleted: , AQS and AirBase)
	Deleted: data

Deleted: based on anthropogenic NO_x emissions in 2015

-{	Deleted: have the ability to
-[Deleted: over 1650
-1	Deleted: ug

trend analysis. <u>It should be noted that the assimilation of O₃ observations from urban and urban</u>
 <u>background sites may result in possible overestimation of surface O₃ concentrations over rural</u>

194 <u>areas</u>.

195 2.2 OMI PROFOZ product

196 The OMI instrument was launched in July 2004 on the Aura spacecraft with a spatial 197 resolution of 13 × 24 km (nadir view). It provides globally covered measurements with 198 backscattered sunlight in the ultraviolet-visible range from 270 to 500 nm (UV1: 270-310 nm 199 UV2: 310–365 nm; visible: 350–500 nm). In this study, we use the OMI O₃ profile retrieve 200 product (PROFOZ v0.9.3, level 2, Liu et al. (2010); Huang et al. (2017)) from the Smithsonia 201 Astrophysical Observatory (SAO). The retrieval uses the vector linearized discrete ordinal 202 radiative transfer model (VLIDORT) (Spurr, 2006) and Bayesian optimal estimation. Profile 203 of partial O₃ columns (unit: DU) are retrieved in the spectral region of 270–330 nm with 2 204 vertical layers: approximately 2.5 km for each layer from the surface to approximately 60 km 205 The following filters are applied in our analysis following Huang et al. (2017): 1) nearly clea 206 sky scenes with effective cloud fraction < 0.3; 2) solar zenith angles (SZA) < 75°; and 3) fitting 207 root mean square (RMS, ratio of fitting residuals to assumed measurement error) < 2.0.

208 Starting in 2009, anomalies were found in the OMI data and diagnosed as attenuate 209 measured radiances in certain cross-track positions. This instrument degradation has bee 210 referred to as the "row anomaly". To enhance the quality and stability of the data, only across 211 track positions between 4-11 (within 30 positions in the UV1 channels) are assimilated in our 212 main assimilation experiment (Exp. #8). This treatment is similar to the production of row 213 isolated data by using across-track positions between 3-18 (within 60 positions in the UV 214 channels) in the OMI/MLS O₃ data (Ziemke et al., 2019; Wang, X. et al., 2022), The effects of 215 the usage of row-isolated data will be evaluated by comparing the main assimilation experiment 216 with the sensitivity assimilation experiment (Exp. #10) by assimilating OMI O3 observations **Deleted:** In addition, in situ hourly surface O_3 measurements from the US AQS and European Environment Agency AirBase networks are used in the companion paper (Part 2,). The AQS and AirBase networks collect ambient air pollution data from monitoring stations located in urban, suburban, and rural areas. We only considered stations with at least 14 years of observation records in 2005-2020

al	
th	Deleted: global
n;	
al	
an	Deleted: Liu et al., 2010; Huang et al., 2017)
te	
es	
24	
n,	Deleted: ¶
r-	
ıg	
ed	
en	
s-	
ur	Deleted: used
v-	Deleted: analysis.
2	
<u>of</u>	Deleted: .
nt	

230	at across-track positions 4-27.		
231	The modeled tropospheric O_3 profiles in the assimilation processes and subsequent		
232	analyses are convolved by using the OMI retrieval averaging kernels and a priori O3 profile		
233	based on the following equation_(Liu et al., 2010; Huang et al., 2017);	_	Deleted: :
234	$\widehat{\boldsymbol{x}} = \boldsymbol{x}_{a} + \boldsymbol{A}(\boldsymbol{x} - \boldsymbol{x}_{a})$ (Eq. 1)		
235	where \hat{x} is the modeled O ₃ profile convolved by the retrieval averaging kernels, x_a is the		
236	OMI a priori O ₃ profile, \boldsymbol{x} is the modeled O ₃ profile, and \boldsymbol{A} is the OMI averaging kernel		
237	matrix. Here A(i, j) = $\frac{\partial \hat{x}_j}{\partial x_i}$, representing the sensitivity of the retrieved partial O ₃ column (DU)		
238	at layer j to the change in $O_3\left(DU\right)$ at layer i. The unit for averaging kernels in this OMI product		
239	is DU/DU because the conversion from DU to ppb varies with altitude.	_	Deleted: and does not cancel out
240	2.3 GEOS-Chem model configuration		
241	The GEOS-Chem chemical transport model (<u>http://www.geos-chem.org</u> , version 12-8-1)		
242	is driven by assimilated meteorological data from MERRA-2. The GEOS-Chem full chemistry	<	Deleted: of
243	simulation includes fully coupled O3-NOx-VOC-halogen-aerosol chemistry. Our analysis is		Deleted: -
244	conducted at a horizontal resolution of nested 0.5°×0.625° over E. China, with chemical		Deleted: , the US and Europe
245	boundary conditions archived every 3 hours from global simulations with $4^{\circ} \times 5^{\circ}$ resolution.		
246	Emissions are computed by the Harvard-NASA Emission Component (HEMCO). Global		
247	default anthropogenic emissions are from the CEDS (Community Emissions Data System)		
248	(Hoesly et al., 2018). Regional emissions are replaced by MEIC (Multiresolution Emission		
249	Inventory for China) in China and MIX in other regions of Asia (Li et al., 2017), The reference	_	Deleted: , MIX in other regions of Asia and NEI2011 in the
250	year for the CEDS inventory is 2010 with annual scaling factors in 2005-2014, and the		05.
251	reference year for the MEIC/MIX inventory is 2010 with annual scaling factors in 2008-2010		
252	in the GEOS-Chem model. Open fire emissions are from the Global Fire Emissions Database		
253	(GFED4) (van der Werf et al., 2010).		

261	Following Jiang et al. (2022), the total anthropogenic NO_x and VOC emissions in the	
262	GEOS-Chem model are scaled <u>based on</u> Zheng et al. (2018), and Li, M. et al. (2019) so that the	
263	modeled surface nitrogen dioxide (NO ₂) and O ₃ concentrations in the a priori simulations are	
264	identical to Jiang et al. (2022) in 2005-2018. The total anthropogenic NO_x and VOC emissions	
265	in 2019-2020 are further scaled based on linear projections. The total anthropogenic NOx	
266	emissions in the a priori simulations declined by 19% in China in 2015-2020. The total	
267	anthropogenic VOC emissions in the a priori simulations increased by 1% in China in 2015-	
268	2020. We refer the reader to Jiang et al. (2022) for the details of the model configuration and	
269	performance, particularly the modeled trends of surface and tropospheric column NO2 in 2005-	
270	2018.	
271	2.4 <u>Single O₃ tracer simulation</u>	
272	A new chemical mechanism was developed in this work to allow the running of the single	
273	O ₃ tracer mode (tagged-O ₃), As shown in Fig. S1 (see the SI), the package of the Kinetic	
274	PreProcessor (KPP) module was modified to define the production (PO ₃) and loss (LO ₃) of O ₃ .	
275	The GEOS-Chem full chemistry simulations with the updated KPP module were then	
276	performed to produce PO ₃ and LO ₃ every 20 minutes. Here the 20 minutes are selected to be	
277	the same as the chemical time step in the GEOS-Chem full chemistry mode to ensure	
278	consistency between the single O_3 tracer and full chemistry simulations. Finally, the single O_3	
279	tracer simulation (tagged_o3_mod.F90) was performed by reading the archived PO ₃ and LO ₃	
280	provided by the full chemistry simulations. Because we are interested in tropospheric	
281	chemistry, we archived O ₃ concentrations instead of O ₃ production and loss rates in the	
282	stratosphere in the full chemistry simulations. The archived stratospheric O ₃ concentrations	
283	were read in the single O ₃ tracer simulation process as boundary conditions to ensure a	
284	reasonable stratospheric-tropospheric O ₃ exchange.	
285	The major advantage of the single O ₃ tracer simulation is dramatic reductions in	

Deleted: with the corresponding bottom-up inventories (MEIC for China, NEI2014 for the US, and ECLIPSE for Europe)

De	leted: in China, the US and Europe
De	leted: 53% (US) and 50% (Europe) in 2005-2020 and by
De	leted: (
De	leted:)
De 202	leted: declined by 19% (US) and 33% (Europe) in 2005-20 and
De	leted: (
De	leted:)

Moved (insertion) [1]: As shown in Fig. S1 (see the SI), the package of the Kinetic PreProcessor (KPP) module was modified to define the production (PO₃) and loss (LO₃) of O₃.

Moved (insertion) [2]: Because we are interested in tropospheric chemistry, we archived O₃ concentrations instead of O₃ production and loss rates in the stratosphere in the full chemistry simulations.

304	computational costs by approximately 91%-94%; for example, the computational costs (hours
305	of wall time for one year simulation) are 57.5 and 5.2 hours at the global scale ($4^{\circ} \times 5^{\circ}$) and 80.2
306	and 4.5 hours within the nested China domain ($0.5^{\circ} \times 0.625^{\circ}$) by full chemistry and single O ₃
307	tracer simulations, respectively. Consequently, once PO3 and LO3 are produced, the
308	computational costs of performing additional single O3 tracer simulations are almost negligible.
309	The low computational costs of the single O ₃ tracer simulation allow us to design and perform
310	different simulation and assimilation experiments much more efficiently. As shown in Table
311	1, there are 10 different simulation and assimilation experiments performed in this work, which
312	requires 4812 hours (wall time) with the full chemistry simulation but only 270 hours (wall
313	time) with the single O ₃ tracer simulation.
314	Here we evaluate the consistency in modeled O ₃ concentrations between single O ₃ tracer
315	and full chemistry simulations, Fig. 2A1-A5 show the annual and seasonal averages of the
316	surface maximum daily 8-hour average (MDA8) O3 over E. China in 2015-2020 from the full
317	chemistry simulation, The modeled surface MDA8 O3 concentrations are as high as 60-70 ppb
318	in the summer and as low as 10-20 ppb in the winter over northern China. The simulation with
319	the single O ₃ tracer mode (Fig. 2B1-B5) demonstrates spatial consistency with the full
320	chemistry simulation (Fig. 2A1-A5) and temporal consistency at both the daily (Fig. 3A) and
321	monthly (Fig. 3B) scales in 2015-2020. In contrast, the tagged-O _x mode of the GEOS-Chem
322	model is driven by the archived production and loss of O_x , which is the combination of multiple
323	species ($O_x = O_3 + NO_2 + 2NO_3 + 3N_2O_5 + HNO_3 + HNO_4 + peroxyacylnitrates$). There are large
324	discrepancies between full chemistry (Fig. 2A1-A5) and tagged-O _x (Fig. 2C1-C5) simulations.
325	As shown in Fig. 3, the O_x concentrations are higher than the O_3 concentrations by
326	approximately 6 ppb, and the relative difference can reach 40% in the winter. Our analysis thus
327	indicates the reliability of the single O ₃ tracer simulations developed in this work.

2.5 Data assimilation method

Moved (insertion) [3]: Fig.

Moved (insertion) [4]: The modeled surface MDA8 O₃ concentrations are as high as 60-70 ppb in the summer and as low as 10-20 ppb in the winter over northern China.

Moved (insertion) [5]:) and temporal consistency at both the daily (Fig. 3A) and monthly (Fig. 3B) scales in 2015-2020.

Moved (insertion) [6]:) simulations. As shown in Fig. 3, the O_x concentrations are higher than the O_3 concentrations by approximately 6 ppb, and the relative difference can reach 40% in the winter.

Deleted: approach

We employ the sequential KF to assimilate O₃ observations, which has been used in 341 recent studies to optimize tropospheric CO concentrations (Tang et al., 2022; Han et al., 2022). 342 As a brief description of the assimilation algorithm, the forward model (M) predicts the O₃ 343 concentration (\mathbf{x}_{at}) at time t:

$$\mathbf{x}_{at} = \mathbf{M}_t \mathbf{x}_{t-1} \quad (Eq. 2)$$

345 The optimized O₃ concentrations can be expressed as:

346
$$\mathbf{x}_t = \mathbf{x}_{at} + \mathbf{G}_t(\mathbf{y}_t - \mathbf{K}_t \mathbf{x}_{at}) \quad (\text{Eq.}$$

347 where y_t is the observation and K_t represents the operation operator that projects O_3 348 concentrations from the model space to the observation space. \mathbf{G}_t is the KF gain matrix, which 349 can be described as:

3)

350
$$\mathbf{G}_t = \mathbf{S}_{at}\mathbf{K}_t^T (\mathbf{K}_t \mathbf{S}_{at} \mathbf{K}_t^T + \mathbf{S}_{\epsilon})^{-1} \quad (\text{Eq. 4})$$

351 where S_{at} and S_{ε} are the model and observation covariances, respectively. The optimized O_3 352 concentrations provided by Eq. 3 are then forwarded (hourly) to Eq. 2. The model errors are 353 assumed to be 50% because the objective of our assimilations is to provide dynamic extensions 354 of atmospheric O_3 observations. The a posteriori O_3 concentrations with the assumption of 50% 355 model errors are expected to match better with atmospheric O3 observations. The measurement 356 errors are calculated as $\varepsilon_0 = ermax + 0.0075 * \Pi_0$, where ermax is the base error (1.5 µg m⁻ 357 ³) and Π_0 represents the observed O₃ concentrations (unit: $\mu g m^{-3}$). The representation errors are calculated as $\varepsilon_r = \gamma \varepsilon_0 \sqrt{\Delta l/L}$, where γ is a scaling factor (0.5), Δl is the model resolution 358 359 (~56 km in this study), and L represents the range that the observation can reflect, which 360 depends on the station type (2 km for urban, 4 km for suburban). The total observation error is then defined as $\varepsilon_t = \sqrt{\varepsilon_0^2 + \varepsilon_r^2}$. Furthermore, the "superobservation" method was applied in 361 362 this work to further reduce the influence of representative error (Miyazaki et al., 2017; Tang et 363 al., 2022);

Deleted: The model errors are assumed to be 50%

Deleted: Following , grid-based superobservations (0.5°×0.625°) were created

Deleted: errors.

9

364

 $\omega_i = 1/\varepsilon_i^2$ (Eq. 5)

369	$y_s = \sum_{j=1}^k \omega_j y_j / \sum_{j=1}^k \omega_j (\text{Eq. 6})$	
370	$1/\varepsilon_s^2 = \sum_{j=1}^k 1/\varepsilon_j^2 \underline{\qquad (\text{Eq. 7})}$	
371	where y_j is O_3 observation of the <i>j</i> th station, ω_j represents the weighting factor of the <i>j</i> th	
372	station, y_s and ε_s are the grid-based O ₃ observations and errors (superobservation),	
373	respectively.	
374		
375	3. Results and Discussion	
376	<u>3.1</u> Surface O ₃ by assimilating MEE O ₃ observations	
377	We first investigate the effects of surface O_3 observations on <u>single O_3 tracer</u>	
378	assimilations. O_3 at the surface level is formed by precursors mixed in the planetary boundary	1011010101010101010101010101010101010101
379	layer (PBL). Thus, it may not be accurate to assume that the differences between simulated and	
380	observed surface O_3 concentrations are completely caused by biased O_3 production and loss at	
381	the surface level. Here we adjust O ₃ concentrations <u>above the surface level</u> within the PBL	
382	when assimilating surface O ₃ observations:	
383	$\Delta \mathcal{O}_3^n = \Delta \mathcal{O}_3^1 \times_{\mathbf{v}}^{n-1} (\text{Eq. }\underline{\$})$	
384	where ΔO_3^1 is the adjustment at the surface level calculated with Eq. 3; ΔO_3^n is the adjustment	
385	at model level \underline{n} , which is based on ΔO_3^1 but decays exponentially with the increase in model	
386	level, and the decay speed is adjusted by the γ parameter. As shown in Table 1, three	
387	assimilation experiments (Exp. #5-#7) were conducted to evaluate the effects of the decay	
388	speed: 1) $\gamma = 0$ by assuming that the biased surface O_3 concentrations are completely caused	
389	by biased O ₃ production and loss at the surface level; 2) $\gamma = 1$ by assuming full mixing of O ₃	
390	biases within the PBL; and 3) $\gamma = 0.8$ by assuming partial mixing of O ₃ biases within the	
391	PBL, i.e., the adjustment at the 4th model level is approximately 50% of ΔO_3^1 , and the	
392	adjustment at the 10th model level (close to the top of PBL) is approximately 10% of ΔO_3^1 .	

1	Moved up [1]
	Moved up [2]
	Moved up [3]
	Moved up [4]
	Moved up [5]
()	Moved up [6]
1	Moved down [7]
//	Deleted: 3.1 GEOS-Chem tagged-O3 simulation ¶ A new chemical mechanism was developed in this work to allow the running of the single tracer tagged-O3 mode.
	Deleted: The GEOS-Chem full-chemistry simulations with the updated KPP module were then performed to produce PO3 and LO3 every 20 minutes. Here the 20 minutes is selected to be the same as the chemical time step in GEOS- Chem full-chemistry mode to ensure consistency between tagged-0 ₃ and full chemistry simulations. Finally, the single tracer tagged-0 ₃ mode (tagged_03_mod.F90) was performed by reading the archived PO3 and LO3 provided by the full- destrict simulations.

chemistry simulations.	
Deleted: The archived stratospheric O ₃ concentrations were read in the tagged-O ₃ simulation process as boundary conditions to ensure a reasonable stratospheric-tropospheric O ₃ exchange.¶ Why is tagged-O ₃ simulation useful if we must run the full- chemistry simulation first to produce PO ₃ and LO ₃ ? Table 1 shows the computation costs (hours of wall time per simulation year) by different GEOS-Chem simulation types in this work. We find 91%-94% reductions in the computation costs with respect to full-chemistry simulations: 57.5 and 5.2 hours at the global scale (4°×5°), 80.2 and 4.5 hours within the nested China domain (0.5°×0.625°), 160.7 and 9.4 hours within the nested US domain (0.5°×0.625°) and 103.4 and 6 hours within the nested Europe domain (0.5°×0.625°) by full chemistry and tagged-O ₃ modes, respectively. Consequently, once the PO ₃ and LO ₃ are produced, the additional computational costs of performing	
Deleted: 2A-E show the annual and seasonal averages of surface maximum daily 8-hour average (MDA8) O ₃ over E(,	
Deleted: The simulation with the tagged-O ₃ mode (Fig. 2F-J) demonstrates spatial consistency with the full-chemistry	
Deleted: In contrast, there are large discrepancies between full-chemistry (Fig. 2A-E) and tagged-O _x (Fig. 2K-O	
Deleted: Similarly, Fig. S2 (see the SI) shows the annual and seasonal averages of surface MDA8 O ₃ over the US and	
Deleted: S3, see the SI) consistencies in surface MDA8 O ₃ between tagged-O ₃ and full-chemistry simulations over the	
Deleted: the tagged-	
Deleted: -based	
Deleted: at all levels	
Deleted: O_3^l	
Deleted: 0.8 ^{<i>l</i>-1}	
Deleted: 5	
Deleted: 0 ^l ₃	
Deleted: l	
Deleted: . We note	

482	As shown in Fig. S2A (see the SI), the assimilated surface MDA8 O ₃ concentrations
483	show good agreement by using different γ parameters: 42.3, 41.8 and 42.0 ppb ($\gamma = 0, 0.8$ and
484	1.0) in 2015-2020; there are noticeable discrepancies in the trends of assimilated surface O_3
485	concentrations: 0.80, 1.24 and 1.50 ppb yr ⁻¹ ($\gamma = 0, 0.8$ and 1.0) in 2015-2020 (Fig. S2B), and
486	the trends obtained by considering the mixing of O_3 biases ($\gamma = 0.8$ and 1.0) match better with
487	<u>MEE</u> O_3 observations (1.77 ppb yr ⁻¹). Fig. S3 (see the SI) further demonstrates tropospheric O_3
488	columns by assimilating MEE O ₃ observations in 2015-2020. We find good agreement in the
489	assimilated tropospheric O_3 columns by using different γ parameters, i.e., the mean
490	tropospheric O_3 columns are 38.1, 37.9 and 37.9 DU, and the trends of tropospheric O_3 columns
491	are 0.11, 0.17 and 0.21 ppb yr ⁻¹ ($\gamma = 0, 0.8$ and 1.0). Considering the better agreement in the
492	trends of assimilated surface O_3 concentrations ($\gamma = 0.8$ and 1.0) with observations, we finally
493	decide to set $\gamma = 0.8$ as our main assimilation setting by assuming partial mixing of O ₃ biases
494	within the PBL.
495	Fig. $4A1-A5$ show the annual and seasonal averages of surface MDA8 O ₃ observations
496	from MEE stations in 2015-2020. Fig. <u>4C1-C5</u> show the annual and seasonal averages of the a
497	posteriori O_3 concentrations by assimilating the MEE O_3 observations. As shown in Fig. 5, the
498	assimilated O ₃ concentrations (blue lines) show good <u>agreement</u> with MEE O ₃ observations
499	(red lines): the mean surface MDA8 O ₃ in 2015-2020 are <u>43.2</u> , 41.8 and 42.1 ppb (E. China),
500	42,4, 45.6 and 47.6 ppb (North China Plain), 44,6, 45.0 and 44.9 ppb (Yangtze River Delta),
501	45.1, 43.1 and 43.5 ppb (Central China), 45.7, 37.5 and 36.9 ppb (Sichuan Basin), and 43.2,
502	39.2 and 38.3 ppb (Southern China) in the a priori simulations, a posteriori simulations and
503	MEE observations, respectively. <u>It should be noted that</u> Fig. 5A, exhibits broadly good
504	<u>agreement</u> between the a priori and a posteriori O_3 concentrations over E. China except <u>for</u> a
505	larger difference in the summer. However, as shown in Fig. <u>4D1-D5</u> , the good agreements
 506	between the a priori and a posteriori O ₃ concentrations are caused by the counterbalance of

Moved (insertion) [8]: As shown in Fig. Deleted: Eq. 5 is defined empirically, as we find that Deleted: O₃ matches

Moved (insertion) [7]: Fig.

Deleted: surface

Deleted: . More efforts are needed in the future to evaluate the reliability of this empirical method.

-	Deleted: 4A-E
-	Deleted: 4K-O further
-	Deleted: agreements
-	Deleted: 42.9
1	Deleted: 3
-	Deleted: 5
-1	Deleted: 44.7
1	Deleted: 3
Y	Deleted: 0
1	Deleted: As we expected, MDA8 O ₃ concentrations are

higher over areas with higher anthropogenic NOx emissions, for example, 45.6 and 45.0 ppb in the North China Plain and Yangtze River Delta, respectively, in contrast to 43.1, 37.5 and 39.2 ppb in Central China, Sichuan Basin and Southern China, respectively.¶ As shown in

Deleted: , there are

Deleted: agreements Deleted: 4P-T

533 positive biases (i.e., overestimated surface O_3 in the a priori simulations over southern China) 534 and negative biases (i.e., underestimated surface O₃ in the a priori simulations over northern 535 China). The good agreements in Fig. 5A thus cannot represent good performance in the 536 simulations of surface O₃ concentrations. 537 The assimilations exhibit noticeable declines in surface O3 concentrations over regions 538 #2-5 in June-July, and the declines are underestimated by the a priori simulations (Fig. 5C-F). 539 The inaccurate simulation in June-July thus results in overestimated surface O3 concentrations 540 in the summer. There is dramatic seasonality in surface O₃ concentrations (Fig. 5): maximum 541 in June in the North China Plain, May and August in the Yangtze River Delta, Central China 542 and Sichuan Basin, and September-October in Southern China, Fig. 4E1-E5 exhibits the effects 543 of seasonal variabilities in background O3 (Exp. #3) by fixing background O3 in the spring in 544 the simulations. The fixed background O₃ has limited influences on surface O₃ concentrations, 545 and consequently, the seasonality in surface O_3 concentrations is dominated by local 546 contributions. As we expected, MDA8 O₃ concentrations are higher over areas with higher 547 anthropogenic NOx emissions, for example, 45.6 and 45.0 ppb in the North China Plain and 548 Yangtze River Delta, respectively, in contrast to 43.1, 37.5 and 39.2 ppb in Central China, 549 Sichuan Basin and Southern China. The influences of regional transport on surface O3 550 concentrations are limited; for example, O3 generated within the North China Plain PBL by 551 setting O₃ formation rates within the North China Plain PBL to zero (Exp. #4) are mainly 552 contained within the North China Plain (Fig. 4F1-F5). 553 3.2 Rapid increasing trends in surface O₃ concentrations 554 Here we investigate the changes in surface O_3 concentrations from observations and

10.54 Here we investigate the changes in surface O₃ concentrations from observations and
155 assimilations. As shown in Fig. <u>6B1-B5</u>, the a priori simulation suggests slightly increasing
156 trends of MDA8 O₃ in 2015-2020: 0.31 (spring), -0.12 (summer), 0.45 (autumn) and 0.40
157 (winter) ppb yr⁻¹, and the relative increasing trends are 0.7 (spring), -0.2 (summer), 1.1

Deleted: Furthermore, surface O_3 concentrations are maximum in June in the North China Plain, May and August in the Yangtze River Delta, Central China and Sichuan Basin, September-October in Southern China (Fig. 5). The assimilations exhibit noticeable declines in surface O_3 concentrations over regions #2-5 in June-July, and the declines are underestimated by the a priori simulations. The inaccurate simulations of surface O_3 concentrations in June-July thus result in overestimated surface O_3 concentrations in the summer.

Moved (insertion) [9]: Fig.

Deleted: 3.3 Rapid increasing trends in surface O_3 concentrations \P

-{	Deleted: further
λ	Deleted: 6F-J
λ	Deleted: 27
/	Deleted: 23
-{	Deleted: 41
1	Deleted: 6
-(Deleted: 4
1	Deleted: 0

(autumn) and 1.4 (winter) % yr⁻¹. The a priori simulation suggests increasing trends of surface 579 580 O₃ concentrations in the summer over areas with higher local pollution levels, for example, 581 0,68 and 0,63 ppb yr⁻¹ over the North China Plain and Yangtze River Delta, respectively, and 582 decreasing trends of surface O₃ concentrations in the summer over areas with lower local 583 pollution levels, for example, -0,83 and -1,01 ppb yr⁻¹ over the Sichuan Basin and Southern 584 China, respectively. The decreasing trends over areas with lower local pollution levels in the 585 simulations are not surprising, given the decreases in anthropogenic NO_x emissions (Zheng et 586 al., 2018; Jiang et al., 2022) and the reported NO_x-limited O₃ nonlinear chemical regimes in 587 model simulations (Chen et al., 2021; Liu et al., 2021). Furthermore, as shown in Fig. 6D1-D5, 588 the interannual variabilities in background O₃ (Exp. #2) are suggested to result in increases in 589 surface O3 concentrations in the a priori simulations in 2015-2020 by 0.02 (spring), 0.05 590 (summer), 0.02 (autumn) and 0.00 (winter) ppb yr⁻¹, and the relative contribution is particularly 591 pronounced in the summer. 592 In contrast, the increasing trends in surface O₃ are much stronger in the assimilations. As 593 shown in Table 2.1, our assimilation suggests 1.60 (spring), 1.16 (summer), 1.47 (autumn) and 594 0.80 (winter) ppb yr⁻¹ increases in surface O_3 over E. China in 2015-2020, and the relative increasing trends are 3.4 (spring), 2.2 (summer), 3.7 (autumn) and 2.7 (winter) % yr⁻¹. The 595 596 annual increasing trend (1.24 ppb yr⁻¹) in the assimilated surface O₃ concentrations is more 597 consistent with the MEE O₃ observations (1.77 ppb yr⁻¹) which are comparable with the 598 reported recent trends in surface O_3 concentrations in China of 1.25-2.0 ppb yr⁻¹ (Mousavinezhad et al., 2021; Wei et al., 2022; Wang, W. et al., 2022). The increasing trends 599 600 are weaker when the modeled surface O_3 concentrations are averaged over E. China (Table 601 2.2) instead of sampling at the locations and times of MEE observations: 0.71 (spring), 0.36 (summer), 0.69 (autumn) and 0.54 (winter) ppb yr⁻¹ because most MEE stations are urban sites. 602

Our analysis thus indicates a noticeable underestimation in the increasing trends of surface O3

-{	Deleted: 61
-{	Deleted: 58

Deleted: 10, -1.01	
Deleted: 06	
Deleted: Central China,	

611	et al. (2022).	
612	The changes in surface O_3 concentrations have significant regional and seasonal	
613	discrepancies. As shown in Tables S1-S5 (see the SI), our assimilations demonstrate strong	
614	increasing trends in surface O_3 concentrations in 2015-2020 in spring (1.94 ppb yr ⁻¹ or 3.8%)	Deleted: the
615	yr ⁻¹) and summer (2.52 ppb yr ⁻¹ or 4.0% yr ⁻¹) over the North China Plain; in spring (2.21 ppb	Deleted: the
616	yr ⁻¹ or 4.4% yr ⁻¹) and autumn (1.84 ppb yr ⁻¹ or 4.1% yr ⁻¹) over the Yangtze River Delta; in	
617	spring (2.07 ppb yr ⁻¹ or 4.3% yr ⁻¹) and autumn (2.09 ppb yr ⁻¹ or 4.7% yr ⁻¹) over Central China;	Deleted: the
618	in spring (1.69 ppb yr ⁻¹ or 3.8% yr ⁻¹) over the Sichuan Basin; and in autumn (2.21 ppb yr ⁻¹ or	Deleted: the
619	4.9% yr^{-1}) over Southern China. While surface O ₃ concentrations are higher over areas with	Deleted: the
620	higher anthropogenic NO_x emissions, the increasing trends in surface O_3 concentrations over	
621	Central China and Southern China are comparable with those in the North China Plain and	
622	Yangtze River Delta. Our analysis advises more attention to O ₃ pollution in spring and autumn	
623	over areas with lower anthropogenic NO_x emissions because of the rapid increases in surface	
624	O ₃ concentrations.	
625	3.2 Tropospheric O3 columns by assimilating OMI O3 observations	Deleted: 4
626	Fig. <u>7A1-A5</u> show the annual and seasonal averages of tropospheric OMI O_3 columns in	Deleted: 7A-E
627	2015-2020. OMI is sensitive to O_3 at different vertical levels (Huang et al., 2017; Fu et al.,	
628	2018), and thus, the standard KF algorithm (Eq. 3) was employed to adjust tropospheric O_3	
629	vertical profiles with the application of OMI O_3 averaging kernels. Fig. <u>7C1-C5</u> show the	Deleted: 7K-O
630	annual and seasonal averages of the a posteriori tropospheric O_3 columns by assimilating OMI	
631	O_3 observations. The assimilated tropospheric O_3 columns show good agreement with OMI O_3	
632	observations: the mean tropospheric O_3 columns in 2015-2020 (Table 2.3) are 37.1 DU in the	
633	a priori simulations, and 37.9 and 38.0 DU in the a posteriori simulation and OMI observations,	Deleted: ,

concentrations in China in the a priori simulations, particularly in the summer, despite the anthropogenic NO_x and VOC emissions having been scaled in the simulations following Jiang

609

610

-	Deleted: the
-	Deleted: the
-{	Deleted: the
-	Deleted: the
1	Deleted: the

644	O3 columns (Fig. 7) are smaller than those in surface O3 concentrations (Fig. 4). A better
645	simulation capability in tropospheric column O ₃ is expected because model simulation with
646	$0.5^{\circ}\!\!\times\!\!0.625^{\circ}$ horizontal resolution may not be enough to accurately resolve O_3 nonlinear
647	chemical regimes over urban surface stations.
648	The above assimilated tropospheric O ₃ columns (Exp. #8) are driven by optimized O ₃
649	background conditions provided by global assimilations of OMI O3 as well as row-isolated
650	OMI data by using across-track positions between 4-11. Fig. 7E1-E5 exhibits the effects of
651	optimization on regional O ₃ background conditions. The mean assimilated tropospheric O ₃
652	column driven by the original O ₃ background conditions is 37.6 DU (Exp. #9), which is slightly
653	lower than the 37.9 DU in the main assimilation (Exp. #8). The usage of original O ₃ background
654	conditions can result in overestimations over southern China in the spring and winter, and
655	underestimations over northern China in the spring and summer (Fig. 7E1-E5). Fig. 7F1-F5
656	further exhibits the effects of the usage of row-isolated data. The mean assimilated tropospheric
657	O ₃ column by assimilating OMI O ₃ observations at across-track positions 4-27 is 37.7 DU (Exp.
658	#10), which is slightly lower than the 37.9 DU in the main assimilation (Exp. #8). The
659	underestimations in the assimilated tropospheric O_3 columns are particularly significant in the
660	spring and summer (Fig. 7F2-F3).
661	As shown in Fig. 8, the trends of tropospheric O ₃ columns in 2015-2020 (Table 2.3) are
662	0.02 DU yr ⁻¹ in the a priori simulations and -0.17 and -0.30 DU yr ⁻¹ in the a posteriori
663	simulation and OMI observations, respectively. In contrast to the wide distributions of
664	increasing trends of O_3 at the surface level (Fig. 6), both OMI O_3 observations (-0.30 DU yr ⁻¹)
665	and the OMI-based assimilations (-0.17 DU yr $^{-1})$ suggest decreasing trends in tropospheric O_3
666	columns over E. Asia in 2015-2020 (Fig. 8). The decreasing trends are stronger in the summer
667	and weaker in the spring. Furthermore, the usage of original O ₃ background conditions can
1	

respectively. The discrepancies between the a priori and a posteriori simulations in tropospheric

643

Moved up [9]

Deleted: Furthermore, as shown in

Deleted: 8, the trends of tropospheric O_3 columns in 2015-2020 (Table 2.3) are 0.02 DU yr⁻¹ in the a priori simulations, and -0.17 and -0.30 DU yr⁻¹ in the a posteriori simulation and OMI observations, respectively.¶

Deleted: by assimilating OMI O3 observations

Moved (insertion) [10]: Fig. Deleted: Furthermore, in

Deleted: However, the trends shown in Fig.

077	result in overestimated ucid by approximately 0.06 DO yr (rig. 6D1), and the assimilation
678	of OMI O3 observations at across-track positions 4-27 can result in a similar overestimated
679	trend, by approximately 0.08 DU yr ⁻¹ (Fig. 8E1). These discrepancies demonstrate the
680	importance of optimized usages of regional O_3 background conditions and OMI O_3
681	observations in the assimilations.
682	<u>3.4 Changes in tropospheric O₃ columns</u>
683	<u>The trends shown in Fig.</u> 8 may not represent the actual tropospheric O_3 changes well
684	because the convolution of OMI O_3 averaging kernels on the output O_3 profiles can affect the
685	weights of the derived tropospheric columns to O3 at different vertical levels Consequently,
686	Fig. 9, shows the annual and seasonal averages of tropospheric O3 columns, in which the output
687	O3 profiles are not convolved with OMI retrieval averaging kernels so that they can better
688	represent the actual atmospheric O_3 state. The assimilated tropospheric O_3 columns are 37.2
689	and 38.8 DU (E. China), <u>42.9</u> and 43.7 DU (North China Plain), <u>47.5</u> and 48.1 DU (Yangtze
690	River Delta), <u>47.4</u> and 48.1 DU (Central China), <u>43.8</u> and 44.6 DU (Sichuan Basin), and 39.6
691	and 40.6 DU (Southern China) in 2015-2020 by assimilating MEE and OMI O_3 observations,
692	respectively
693	In contrast to the higher surface MDA8 O3 concentrations over areas with higher

result in overestimated trend by enprovimetely 0.08 DU yr^{-1} (Fig. 8D1); and the assimilation

677

694 anthropogenic NOx emissions, tropospheric O3 columns over Central China and the Sichuan 695 Basin are even higher than those over the highly polluted North China Plain. In addition, 696 tropospheric O3 columns obtained by assimilating MEE surface O3 observations are lower than 697 those obtained by assimilating OMI O3 observations, and their difference is larger in the 698 summer and smaller in the winter, As shown in Fig. S4 (see the SI), the impacts of different 699 surface and satellite O3 observations on the assimilated O3 vertical profiles are limited. The 700 assimilation of MEE surface O3 observations leads to decreases in O3 concentrations in the 701 lower troposphere from the surface to 600 hPa levels over the Sichuan Basin and Southern Deleted: ¶
Deleted: further

Deleted: from a priori and a posteriori simulations,

-{	Moved up [8]
-{	Deleted: 10, the
1	Deleted: 2
$\left(\right)$	Deleted: 41.4
1	Deleted: 46.0
1	Deleted: 45.9
ſ	Deleted: 42.6
Y	Deleted: 38.8
-{	Deleted:

Moved up [10]

Deleted: ¶ The assimilated tropospheric O₃ columns are maximum in June-July in North China Plain (Fig. 10). However, the assimilated tropospheric O₃ columns are maximum in March-May over other regions that are dramatically different with surface O₃ (

Deleted: 5). The similar seasonality between surface and free tropospheric O₃ over highly polluted North China Plain reflects the impact of local emissions. The different seasonality over other regions may represent the contributions from free tropospheric O₃ transport. While the Yangtze River Delta is defined as a highly polluted region, its area is much smaller than North China Plain (Fig. 1) and thus the impact of local emissions on tropospheric O₃ columns over the Yangtze River Delta may not be as strong as the North China Plain. Furthermore, as shown in Fig. 11,

729	China; the assimilation of OMI O_3 observations leads to enhancement in O_3 concentrations in	
730	the middle and upper troposphere over the highly polluted North China Plain.	
731	The assimilated tropospheric O3 columns are maximum in June-July over the highly	
732	polluted North China Plain and March-May over other lower polluted regions (Fig. S5, see the	
733	SI). Fig. 9E1-E5 exhibit the effects of seasonal variabilities in background O3 (Exp. #3). The	
734	fixed background O_3 in the spring can result in dramatic increases in tropospheric O_3 columns	
735	by 14.3 (summer), 15.1 (autumn) and 4.8 (winter) DU over E. China. Fig. 9F1-F5 further	
736	exhibit the effects of O ₃ formation within the North China Plain PBL (Exp. #4) on tropospheric	
737	O3 columns, which are 5.4 (spring), 8.1 (summer), 3.6 (autumn) and 1.3 (winter) DU over the	
738	North China Plain. In addition, as shown in Fig. S6 (see the SI), there is a larger enhancement	
739	in O ₃ production rates in the free troposphere (600-300 hPa) over the North China Plain in the	
740	summer than in other lower polluted regions. Consequently, the spring maximum in	
741	tropospheric O ₃ columns over lower polluted regions is caused by the enhanced background O ₃	
742	(Fig. 9E1-E5), and the summer maximum in tropospheric O ₃ columns over the highly polluted	
743	North China Plain is caused by the local contributions from enhanced O ₃ formation within the	
744	North China Plain PBL (Fig. 9F1-F5) and free troposphere (Fig. S6).	
745	As shown in Fig. <u>10A1-A5</u> , the trends of tropospheric O_3 columns in the a priori	
746	simulations in 2015-2020 are -0.02 (spring), 0.02 (summer), 0.29 (autumn) and 0.09 (winter)	
747	DU yr ⁻¹ over E. China. The interannual variability in background O ₃ (Fig. 10D1-D5, Exp. #2)	
748	is suggested to have important contributions to the trends of tropospheric O3 columns by 0.09	
749	(spring), -0.11 (summer), -0.10 (autumn) and -0.08 (winter) DU yr ⁻¹ . The trends of assimilated	_
750	tropospheric O_3 columns are 0.17 and -0.10 DU yr ⁻¹ (E. China), which are comparable with the	
751	reported recent trend in free tropospheric O_3 concentrations over China by -0.14 DU yr ⁻¹	
752	(Dufour et al., 2021), and are 0.47 and 0.12 DU yr ⁻¹ (North China Plain), 0.45 and 0.13 DU yr ⁻¹	_
753	¹ (Yangtze River Delta), 0, <u>32</u> and -0.06 DU yr ⁻¹ (Central China), 0,03 and -0.29 DU yr ⁻¹	\langle
1		

Deleted: 12
Deleted: 06,
Deleted: 25 and
Deleted: (

Deleted: 0.26, 0.66
 Deleted: 28, 0.60
Deleted: 09, 0.46
 Deleted: -
Deleted: 14, 0.17

763	(Sichuan Basin), and 0.06 and -0.25 DU yr ⁻¹ (Southern China) by assimilating MEE and OMI
764	O ₃ observations, respectively.
765	The stronger increasing trends in tropospheric O ₃ columns over the highly polluted North
766	China Plain (Fig. 10A1) are suggested to be caused by larger local contributions because of
767	relatively uniform influences from interannual variability in background O ₃ (Fig. 10D1).
768	Higher positive trends by assimilating MEE observations are expected, given the increasing
769	trends in surface O_3 concentrations (1.77 ppb $yr^{\text{-}1})$ and decreasing trends in OMI O_3
770	concentrations (-0.30 DU yr ⁻¹) over E. <u>China. Furthermore, it should be noted that while the</u>
771	Yangtze River Delta is defined as a highly polluted region in our analysis, its area is much
772	smaller than that of the North China Plain (Fig. 1); thus, the impact of local contributions on
773	tropospheric O3 columns over the Yangtze River Delta is not as strong as that over the North
774	<u>China Plain</u> .

775 4. Conclusion

776	A single \underline{O}_3 tracer (tagged- O_3) mode was developed in this work to build the capability
777	of the GEOS-Chem model for rapid simulations of tropospheric O ₃ . The single O ₃ tracer
778	simulation demonstrates consistency with the GEOS-Chem full chemistry simulation. In
779	contrast, the $O_{\boldsymbol{x}}$ concentrations provided by the tagged- $O_{\boldsymbol{x}}$ mode are higher than the O_3
780	concentrations by approximately 6 ppb, and the relative difference can reach 40% in the winter.
781	The computational costs of the single O ₃ tracer mode are reduced by approximately 91-94%
782	with respect to the full chemistry mode. For example, the computational costs (hours of wall
783	time per simulation year) are 57.5 and 5.2 hours at the global scale $(4^{\circ} \times 5^{\circ})$ and 80.2 and 4.5
784	hours within the nested China domain $(0.5^{\circ} \times 0.625^{\circ}_{v})$ by full chemistry and single O ₃ tracer
785	simulations, respectively. The low computational costs allow us to design and perform different
786	experiments much more efficiently. As shown in Table 1, 10 different simulation and
787	assimilation experiments are performed in this work to analyze the impacts of background and

Deleted: -
Deleted: 08, 0.15
Deleted: in the a priori simulations and a posteriori simulations
Deleted: The higher

Deleted: China. The stronger increasing trends in free tropospheric O_3 over the highly polluted North China Plain and Yangtze River Delta may reflect the larger contributions of local emissions to tropospheric O_3 columns over highly polluted areas, and the increasing trends are stronger in autumn and winter. The large discrepancy between assimilations by assimilating surface and satellite observations further indicates the possible uncertainties in the derived free tropospheric O_3 changes. Assimilations of both surface and satellite observations, as shown in this work, are thus expected to provide more information to better describe the changes in free tropospheric O_3

-(Deleted: The
-{	Deleted: tagged-
\neg	Deleted: mode
-(Deleted: high
\neg	Deleted: -

l	Deleted: tagged-
ſ	Deleted: -
ſ	Deleted: °),
ſ	Deleted: °), 160.7 and 9.4 hours within the nested US doma
	$(0.5^{\circ} \times 0.625^{\circ})$ and 103.4 and 6 hours within the nested Europ
ļ	domain (0.5°×0.625
l	Deleted: tagged-
ſ	Deleted: of the tagged-O ₃ simulation thus

Deleted: much more efficiently

819 local contributions to surface and free tropospheric O₃ changes over E. China in 2015-2020,

820 which requires 4812 hours (wall time) with the full chemistry simulation but only 270 hours

821 (wall time) with the single O_3 tracer simulation.

822 The assimilated surface O₃ concentrations demonstrate good agreement with surface O₃ 823 observations: 43.2, 41.8 and 42.1 ppb over E. China in a priori and a posteriori simulations and 824 observations, respectively. We find noticeable biases in modeled surface O₃ concentrations, for 825 example, overestimated surface O3 over southern China and underestimated surface O3 over 826 northern China. The assimilations indicate rapidly increasing trends in surface O_3 827 concentrations by 1.60 (spring), 1.16 (summer), 1.47 (autumn) and 0.80 (winter) ppb yr⁻¹ over 828 E. China in 2015-2020, and the increasing trends are underestimated by the a priori simulations. 829 While surface O_3 concentrations are higher over areas with higher anthropogenic NO_x 830 emissions, the increasing trends in surface O₃ concentrations over Central China and Southern 831 China are comparable with those in the North China Plain and Yangtze River Delta. Our 832 analysis thus advises more attention to O₃ pollution in spring and autumn over areas with lower 833 anthropogenic NO_x emissions because of the rapid increases in surface O₃ concentrations. The seasonality in surface O3 concentrations is dominated by local contributions; however, the 834 835 interannual variabilities in background O3 have noticeable contributions to the increasing 836 trends in surface O₃ particularly in the summer in the a priori simulations. 837 The assimilated tropospheric O₃ columns demonstrate good agreement with OMI 838 observations: 37.1, 37.9 and 38.0 DU over E. China in a priori and a posteriori simulations 839 (convolved with OMI retrieval averaging kernels) and OMI observations, respectively. The 840 trends of assimilated tropospheric O₃ columns in 2015-2020 over E. China are 0.09 and -0.17841 (spring), 0.17 and -0.22 (summer), 0.38 and 0.04 (autumn), and 0.12 and -0.02 (winter) by 842 assimilating MEE and OMI O_3 observations, respectively. The large discrepancy by 843 assimilating surface and satellite observations indicates the possible uncertainties in the derived

Deleted: The tagged-O₃ simulation was combined with MEE and OMI O₃ observations to investigate the changes in tropospheric O₃ over E. Asia in 2015-2020.

Deleted: surface O3 concentrations are 42.9

Deleted: MEE O₃ observations, respectively; tropospheric O₃ columns are 37.1, 37.9 and 38.0 DU over E. China in a priori and a posteriori simulations (convolved with OMI retrieval averaging kernels) and OMI O₃

Deleted: of

Deleted: we find that

Deleted: Furthermore, the trends in

Deleted: 25 and -0.10 DU yr⁻¹ (E. China), 0.66 and 0.12 DU yr⁻¹ (North China Plain), 0.60 and 0.13 DU yr⁻¹ (Yangtze River Delta), 0.46

Deleted: 06 DU yr-1 (Central China

Deleted: 29 DU yr⁻¹ (Sichuan Basin), 0.15 and -0.25 DU yr⁻¹ (Southern China) by assimilating MEE surface and OMI O₃ observations, respectively. The stronger increasing trends in tropospheric O₃ columns over the highly polluted North China Plain ...

Deleted: Yangtze River Delta may reflect the larger contributions of local emissions to tropospheric O₃ columns over highly polluted areas.

Deleted: between assimilations

Deleted: further

869	free tropospheric O ₃ changes. <u>The usage of optimized O₃ background conditions and row-</u>					
870	isolated OMI data is important to produce more reliable results, for example, the usage of					
871	original O ₃ background conditions can result in an overestimated trend by approximately 0.08					
872	<u>DU yr⁻¹ in 2015-2020.</u>					
873	We find stronger increasing trends in tropospheric O ₃ columns over highly polluted areas					
874	due to the larger local contributions, for example, 0.47 and 0.12 DU yr ⁻¹ (North China Plain)					
875	in contrast to 0.03 and -0.29 DU yr ⁻¹ (Sichuan Basin) and 0.06 and -0.25 DU yr ⁻¹ (Southern					
876	China) by assimilating MEE and OMI O ₃ observations, respectively. The spring maximum in					
877	tropospheric O3 columns over lower polluted regions is caused by the enhanced background					
878	O_3 , and the summer maximum in tropospheric O_3 columns over the highly polluted North China					
879	Plain is caused by enhanced local O ₃ formation. The interannual variabilities in background O ₃					
880	have important contributions to the trends in tropospheric O ₃ columns; for example, the trends					
881	of tropospheric O ₃ columns in 2015-2020 are -0.02 (spring), 0.02 (summer), 0.29 (autumn) and					
882	0.09 (winter) DU yr ⁻¹ over E. China, and the contributions from interannual variability in					
883	background O ₃ are 0.09 (spring), -0.11 (summer), -0.10 (autumn) and -0.08 (winter) DU yr ⁻¹ in					
884	the a priori simulations. Assimilations of both surface and satellite observations, as shown in					
885	this work, can provide useful information to better describe the changes in surface and free					
886	tropospheric O ₃ .					
887						
888	Code and data availability: The MEE O ₃ data can be downloaded from					
889	https://quotsoft.net/air/. The AQS and AirBase surface O3 data can be downloaded from					
890	https://www.eea.europa.eu/data-and-maps/data/aqereporting-8 and					
891	https://aqs.epa.gov/aqsweb/airdata/download_files.html#Row. The OMI PROFOZ product					
892	can be acquired at					

893 <u>https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2/OMPROFOZ/</u>. The GEOS-

Deleted: This work demonstrates the importance

Deleted: assimilation techniques

Deleted: extension and interpretation of O₃ observations

897	Chem model (version 12.8.1) can be downloaded from http://wiki.seas.harvard.edu/geos-
898	chem/index.php/GEOS-Chem_12#12.8.1. The KPP module for tagged-O ₃ simulations can be
899	downloaded from https://doi.org/10.5281/zenodo.7545944.
900	
901	Author Contributions: Z.J. designed the research. R.Z. developed the model code and
902	performed the research. Z.J. and R.Z. wrote the manuscript. X.L. provided instruction for the
903	usage of OMI data. All authors contributed to discussions and editing the manuscript.
904	
905	Competing interests: The contact author has declared that neither they nor their co-authors
906	have any competing interests.
907 908	Acknowledgments: We thank the China Ministry of Ecology and Environment (MEE), the
909	United States Environmental Protection Agency and the European Environmental Agency for
910	providing the surface O ₃ measurements. The numerical calculations in this paper have been
911	done on the supercomputing system in the Supercomputing Center of University of Science
912	and Technology of China. This work was supported by the Hundred Talents Program of
913	Chinese Academy of Science and National Natural Science Foundation of China (42277082,
914	41721002).
915	Table and Figures
916	Table 1. Single O3 tracer simulation and assimilation experiments (Exp.) conducted in this
917	work. Exp. #1: the main a priori simulation; Exp. #2: O ₃ boundary conditions and stratospheric
918	O_3 concentrations are fixed in 2015; Exp. #3: O_3 boundary conditions and stratospheric O_3
919	concentrations are fixed in the spring; Exp. #4: O ₃ formation rates within the North China Plain
920	PBL are set to zero; Exp. #5: the main assimilation by assimilating MEE surface O ₃

- 921 <u>observations with $\gamma = 0.8$; Exp. #6: only surface O₃ concentrations are adjusted ($\gamma = 0$); Exp.</u>
- 922 #7: full mixing of O₃ biases within the PBL ($\gamma = 1.0$); Exp. #8: the main assimilation by

Deleted: Computation costs (hours of wall time) by different GEOS-Chem simulation types

925	assimilating OMI O ₃ observations; Exp. #9: O ₃ boundary conditions are not optimized; Exp.	
926	#10: assimilating OMI O ₃ observations at across-track positions 4-27.	
927		
928	Table 2. Averages (with units ppb or DU) and trends (with units ppb yr ⁻¹ or DU yr ⁻¹) of surface	
929	and tropospheric column O_3 concentrations in 2015-2020 over E. China from observations	
930	(MEE and OMI) and a priori (Exp. #1) and a posteriori (KF) simulations, (Exp. #5 and #8).	Delete
931	T2.1): the modeled surface O_3 is sampled at the locations and times of MEE surface O_3	
932	observations; T2.2): the modeled surface O_3 is averaged over E. China (land only); T2.3): the	
933	output O_3 profiles from the a priori and a posteriori simulations are convolved with OMI O_3	
934	averaging kernels; T2.4): the output O_3 profiles are NOT convolved with OMI O_3 averaging	
935	kernels. The uncertainties in the averages are calculated using the bootstrapping method. The	
936	trends and uncertainties in the trends are calculated using the linear fitting of averages by using	
937	the least squares method (see details in the SI).	
938		
939	Fig. 1. (A) Anthropogenic NO_x emissions over E. China in 2015; (B) Region definitions for	Delete
940	the North China Plain (#1), Yangtze River Delta (#2), Central China (#3), Sichuan Basin (#4)	Delete
941	and Southern China (#5). The different colors (red, gray and green) represent grids with high	
942	(highest 15%), medium (15-50%) and low (lowest 50%) anthropogenic NO_{x} emissions.	
943	Regions #1 and #2 are defined as highly polluted (HP) regions by excluding grids with low and	
944	medium anthropogenic NO _x emissions.	
945		
946	Fig. 2. Surface MDA8 O_3 in 2015-2020 (annual and seasonal averages) simulated by GEOS-	
947	Chem model with (A1-A5) full chemistry mode; (B1-B5) single O ₃ tracer (tagged-O ₃) mode;	Delete
948	and (<u>C1-C5</u>) tagged-O _x mode. The 8-hour range of surface O_x is selected according to the time	Delete
949	range of MDA8 O ₃ .	Delete
950		
951	Fig. 3. (A) Daily averages of surface MDA8 O3 over E. China in 2015-2020 from GEOS-Chem	
952	full chemistry (black), single O_3 tracer (tagged- O_3) (blue) and tagged- O_x (red) simulations; (B)	
953	Monthly averages of MDA8 O ₃ . The dashed lines in panel B are annual averages.	
954		Delete
955	Fig. 4. Surface MDA8 O ₃ in 2015-2020 (annual and seasonal averages) from (A1-A5) MEE	Delete
956	stations; (B1-B5) GEOS-Chem a priori simulation, (Exp. #1); (C1-C5) GEOS-Chem a	Delete
957	posteriori simulation by assimilating MEE O ₃ observations, (Exp. #5); (D1-D5) Bias in the a	Delete
958	priori simulations (Exp. #1 minus #5). (E1-E5) Effects of seasonal variabilities in background	Delete
1	22	

ed: .

ed: a ed: b

1	Deleted: A-E
1	Deleted: F-J)
-	Deleted: K-O

	Deleted: A-E
ſ	Deleted: F-J
ſ	Deleted: ; (K-O
ſ	Deleted: . (P-T) bias
Ĩ	Deleted: calculated by a posteriori
ſ	Deleted: a priori

973		
974	Fig. 5. (A-F) Daily averages of surface MDA8 O ₃ in 2015-2020 from MEE stations (red) and	
975	GEOS-Chem a priori (black, Exp. #1) and a posteriori (blue, Exp. #5) simulations by	
976	assimilating MEE O ₃ observations. (G-L) Monthly averages of MDA8 O ₃ . The dashed lines in	
977	panels G-L are annual averages.	
978		
979	Fig. 6. Trends of surface MDA8 O_3 in 2015-2020 (annual and seasonal averages) from (A1-	
980	A5) MEE stations; (B1-B5) GEOS-Chem a priori simulation, (Exp. #1); (C1-C5) GEOS-Chem	
981	a posteriori simulation by assimilating MEE O3 observations, (Exp. #5). (D1-D5) Effects of	
982	interannual variabilities in background O ₃ (Exp. #1 minus #2).	
983		
984	Fig. 7. Tropospheric O ₃ columns in 2015-2020 (annual and seasonal averages) from (A1-A5)	
985	OMI observations; (B1-B5) GEOS-Chem a priori simulation, (Exp. #1); (C1-C5) GEOS-Chem	
986	a posteriori simulation by assimilating OMI O ₃ observations, (Exp. #8). (D1-D5) Bias in the a	
987	priori simulations <u>(Exp. #1</u> minus <u>#8). (E1-E5) Effects of optimization on regional</u> O ₃	
988	background conditions (Exp. #9 minus #8); (F1-F5) Effects of the usage of row-isolated data	\geq
989	(Exp. #10 minus #8). The output O ₃ profiles are convolved with OMI averaging kernels.	\sim
990		
991	Fig. 8. Trends of tropospheric O ₃ columns in 2015-2020 (annual and seasonal averages) from	
992	(A1-A5) OMI observations; (B1-B5) GEOS-Chem a priori simulation, (Exp. #1); (C1-C5)	
993	GEOS-Chem a posteriori simulation by assimilating OMI O ₃ observations. (Exp. #8). (D1-D5)	\square
994	Effects of optimization on regional O ₃ background conditions (Exp. #9 minus #8); (E1-E5)	\searrow
995	Effects of the usage of row-isolated data (Exp. #10 minus #8). The output O ₃ profiles are	
996	convolved with OMI averaging kernels.	
997		
998	Fig. 9. Tropospheric O_3 columns in 2015-2020 (annual and seasonal averages) from (A1-A5)	
999	GEOS-Chem a priori simulation, (Exp. #1); (B1-B5) Assimilations of MEE surface O3	
000	observations, (Exp. #5); (C1-C5) Assimilations of OMI O3 observations, (Exp. #8). (D1-D5)	
001	Difference in tropospheric O ₃ columns calculated by OMI-based assimilations minus MEE-	-(
002	based assimilations (Exp. #8 minus #5). (E1-E5) Effects of seasonal variabilities in background	
003	O ₃ (Exp. #3 minus #1); (F1-F5) Effects of O ₃ formation within the North China Plain PBL	

O₃ (Exp. #3 minus #1); (F1-F5) Effects of O₃ formation within the North China Plain PBL

971

972

(Exp. #4 minus #1).

Deleted: concentrations.

Deleted: A-E Deleted: F-J Deleted: ; (K-O Deleted: .

-	Deleted: A-E
-	Deleted: F-J
1	Deleted: ; (K-O
-	Deleted: . (P-T) bias
-	Deleted: calculated by a posteriori
1	Deleted: a priori tropospheric
1	Deleted: columns.

Deleted: A-E	
Deleted: F-J	
Deleted: ; (K-O	
Deleted: .	

-	Deleted: A-E
_	Deleted: ; (F-J) assimilations
_	Deleted: ; (K-O) assimilations
	Deleted: . (P-T) difference

23

1004 (Exp. #4 minus #1). The output O₃ profiles are NOT convolved with OMI averaging kernels.

10	25

1026	Fig. 10.	Trends of troposp	heric O ₃ columns	in 2015-2020 (annu	al and seasona	l averages) from

- 1027 (A1-A5) GEOS-Chem a priori simulation (Exp. #1); (B1-B5) Assimilations of MEE surface
- 1028 O₃ observations, (Exp. #5); (C1-C5) Assimilations of OMI O₃ observations (Exp. #8). (D1-D5)
- 1029 Effects of interannual variabilities in background O₃ (Exp. #1 minus #2). The output O₃ profiles
- 1030 are NOT convolved with OMI averaging kernels.
- 1031

1032 References

- 1033 Benavides, J., Guevara, M., Snyder, M. G., Rodríguez-Rey, D., Soret, A., Pérez García-Pando,
- 1034 C., and Jorba, O.: On the impact of excess diesel NO_x emissions upon NO_2 pollution in a
- 1035 compact city, Environ Res Let, 16, 10.1088/1748-9326/abd5dd, 2021.
- 1036 Chang, K. L., Guillas, S., and Fioletov, V. E.: Spatial mapping of ground-based observations
 1037 of total ozone, Atmos Meas Tech, 8, 4487-4505, 10.5194/amt-8-4487-2015, 2015.
- 1038 Chen, J., Jiang, Z., Li, R., Liao, C., Miyazaki, K., and Jones, D. B. A.: Large discrepancy
 1039 between observed and modeled wintertime tropospheric NO₂ variabilities due to COVID-19
 1040 controls in China, Environ Res Let, 17, 035007, 10.1088/1748-9326/ac4ec0, 2022.
- 1041 Chen, X., Jiang, Z., Shen, Y., Li, R., Fu, Y., Liu, J., Han, H., Liao, H., Cheng, X., Jones, D. B.
- A., Worden, H., and Abad, G. G.: Chinese Regulations Are Working—Why Is Surface Ozone
 Over Industrialized Areas Still High? Applying Lessons From Northeast US Air Quality
 Evolution, Geophys Res Lett, 48, e2021GL092816, 10.1029/2021gl092816, 2021.
- Evolution, Geophys Res Lett, 48, e2021GL092816, 10.1029/2021gl092816, 2021.
 Dufour, G., Hauglustaine, D., Zhang, Y., Eremenko, M., Cohen, Y., Gaudel, A., S
- 1045 Dufour, G., Hauglustaine, D., Zhang, Y., Eremenko, M., Cohen, Y., Gaudel, A., Siour, G.,
 1046 Lachatre, M., Bense, A., Bessagnet, B., Cuesta, J., Ziemke, J., Thouret, V., and Zheng, B.:
- Recent ozone trends in the Chinese free troposphere: role of the local emission reductions and
 meteorology, Atmos Chem Phys, 21, 16001-16025, 10.5194/acp-21-16001-2021, 2021.
- Elguindi, N., Granier, C., Stavrakou, T., Darras, S., Bauwens, M., Cao, H., Chen, C., Denier
 van der Gon, H. A. C., Dubovik, O., Fu, T. M., Henze, D. K., Jiang, Z., Keita, S., Kuenen, J.
- 1051 J. P., Kurokawa, J., Liousse, C., Miyazaki, K., Müller, J. F., Qu, Z., Solmon, F., and Zheng,
- B.: Intercomparison of Magnitudes and Trends in Anthropogenic Surface Emissions From
 Bottom Up Inventories, Top Down Estimates, and Emission Scenarios, Earth's Future, 8,
- 1054 e2020EF001520, 10.1029/2020ef001520, 2020.
- Fu, D., Kulawik, S. S., Miyazaki, K., Bowman, K. W., Worden, J. R., Eldering, A., Livesey,
 N. J., Teixeira, J., Irion, F. W., Herman, R. L., Osterman, G. B., Liu, X., Levelt, P. F.,
 Thompson, A. M., and Luo, M.: Retrievals of tropospheric ozone profiles from the synergism
 of AIRS and OMI: methodology and validation, Atmos Meas Tech, 11, 5587-5605,
- 1059 10.5194/amt-11-5587-2018, 2018.
- Han, H., Liu, J., Yuan, H., Zhuang, B., Zhu, Y., Wu, Y., Yan, Y., and Ding, A.: Characteristics
 of intercontinental transport of tropospheric ozone from Africa to Asia, Atmos Chem Phys,
- 1062 18, 4251-4276, 10.5194/acp-18-4251-2018, 2018.

Deleted: (A-F) Daily averages of tropospheric O₃ columns in 2015-2020 from GEOS-Chem a priori simulation (black) and a posteriori simulations by assimilating MEE (blue) and OMI (red) O₃ observations. (G-L) Monthly averages of tropospheric O₃ columns. The dashed lines in panels G-L are annual averages.¶

Fig. 11. Averages of O₃ vertical profiles in 2015-2020 from GEOS-Chem a priori (black) and a posteriori simulations by assimilating MEE (blue) and OMI (red) O₃ observations.¶

Deleted: A-E

Deleted: ; (F-J) assimilations

Deleted: ; (K-O) assimilations of OMI O3 observations

1078 Han, W., He, T.-L., Tang, Z., Wang, M., Jones, D., and Jiang, Z.: A comparative analysis for 1079 a deep learning model (hyDL-CO v1.0) and Kalman filter to predict CO concentrations in China, Geosci Model Dev, 15, 4225-4237, 10.5194/gmd-15-4225-2022, 2022. 1080

- 1081 Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T.,
- 1082 Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., 1083 Kurokawa, J.-i., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: 1084 Historical (1750-2014) anthropogenic emissions of reactive gases and aerosols from the 1085 Community Emissions Data System (CEDS), Geosci Model Dev, 11, 369-408, 10.5194/gmd-1086 11-369-2018, 2018.
- Huang, G., Liu, X., Chance, K., Yang, K., Bhartia, P. K., Cai, Z., Allaart, M., Ancellet, G., 1087
- 1088 Calpini, B., Coetzee, G. J. R., Cuevas-Agulló, E., Cupeiro, M., De Backer, H., Dubey, M. K.,
- 1089 Fuelberg, H. E., Fujiwara, M., Godin-Beekmann, S., Hall, T. J., Johnson, B., Joseph, E., Kivi,
- 1090 R., Kois, B., Komala, N., König-Langlo, G., Laneve, G., Leblanc, T., Marchand, M.,
- 1091 Minschwaner, K. R., Morris, G., Newchurch, M. J., Ogino, S.-Y., Ohkawara, N., Piters, A. J. 1092 M., Posny, F., Querel, R., Scheele, R., Schmidlin, F. J., Schnell, R. C., Schrems, O., Selkirk,

1093 H., Shiotani, M., Skrivánková, P., Stübi, R., Taha, G., Tarasick, D. W., Thompson, A. M.,

- 1094 Thouret, V., Tully, M. B., Van Malderen, R., Vömel, H., von der Gathen, P., Witte, J. C., and 1095 Yela, M.: Validation of 10-year SAO OMI Ozone Profile (PROFOZ) product using
- ozonesonde observations, Atmos Meas Tech, 10, 2455-2475, 10.5194/amt-10-2455-2017, 1096 1097 2017.
- 1098 Huijnen, V., Miyazaki, K., Flemming, J., Inness, A., Sekiya, T., and Schultz, M. G.: An 1099 intercomparison of tropospheric ozone reanalysis products from CAMS, CAMS interim, 1100 TCR-1, and TCR-2, Geosci Model Dev, 13, 1513-1544, 10.5194/gmd-13-1513-2020, 2020.
- 1101
- Iglesias-Suarez, F., Kinnison, D. E., Rap, A., Maycock, A. C., Wild, O., and Young, P. J.: Key drivers of ozone change and its radiative forcing over the 21st century, Atmos Chem Phys, 1102 1103 18, 6121-6139, 10.5194/acp-18-6121-2018, 2018.
- 1104 Jiang, Z., Miyazaki, K., Worden, J. R., Liu, J. J., Jones, D. B. A., and Henze, D. K.: Impacts of 1105 anthropogenic and natural sources on free tropospheric ozone over the Middle East, Atmos 1106 Chem Phys, 16, 6537-6546, 10.5194/acp-16-6537-2016, 2016.
- 1107 Jiang, Z., Zhu, R., Miyazaki, K., McDonald, B. C., Klimont, Z., Zheng, B., Boersma, K. F.,
- 1108 Zhang, Q., Worden, H., Worden, J. R., Henze, D. K., Jones, D. B. A., Denier van der Gon,
- 1109 H. A. C., and Eskes, H.: Decadal Variabilities in Tropospheric Nitrogen Oxides Over United 1110 States, Europe, and China, J Geophys Res-Atmos, 127, e2021JD035872, 10.1029/2021jd035872, 2022. 1111
- 1112 Li, D., Shindell, D., Ding, D., Lu, X., Zhang, L., and Zhang, Y.: Surface ozone impacts on 1113 major crop production in China from 2010 to 2017, Atmos Chem Phys, 22, 2625-2638,
- 1114 10.5194/acp-22-2625-2022, 2022.
- Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K. H.: Anthropogenic drivers of 1115 1116 2013-2017 trends in summer surface ozone in China, Proc Natl Acad Sci USA, 116, 422-427, 1117 10.1073/pnas.1812168116, 2019.
- 1118 Li, M., Zhang, Q., Kurokawa, J.-i., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D.
- G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and 1119

1120Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international1121collaboration framework of the MICS-Asia and HTAP, Atmos Chem Phys, 17, 935-963,112210 5101/101 17 022 2017

- 1122 10.5194/acp-17-935-2017, 2017.
- 1123 Li, M., Zhang, Q., Zheng, B., Tong, D., Lei, Y., Liu, F., Hong, C., Kang, S., Yan, L., Zhang,
- Y., Bo, Y., Su, H., Cheng, Y., and He, K.: Persistent growth of anthropogenic non-methane
 volatile organic compound (NMVOC) emissions in China during 1990–2017: drivers,
 speciation and ozone formation potential, Atmos Chem Phys, 19, 8897-8913, 10.5194/acp19-8897-2019, 2019.
- Li, R., Zhao, Y., Zhou, W., Meng, Y., Zhang, Z., and Fu, H.: Developing a novel hybrid model
 for the estimation of surface 8 h ozone (O₃) across the remote Tibetan Plateau during 2005–
 2018, Atmos Chem Phys, 20, 6159-6175, 10.5194/acp-20-6159-2020, 2020.
- Liu, X., Bhartia, P. K., Chance, K., Spurr, R. J. D., and Kurosu, T. P.: Ozone profile retrievals
 from the Ozone Monitoring Instrument, Atmos Chem Phys, 10, 2521-2537, 10.5194/acp-102521-2010, 2010.
- Liu, X., Zhu, Y., Xue, L., Desai, A. R., and Wang, H.: Cluster Enhanced Ensemble Learning
 for Mapping Global Monthly Surface Ozone From 2003 to 2019, Geophys Res Lett, 49,
 e2022GL097947, 10.1029/2022gl097947, 2022.
- Liu, Z., Doherty, R. M., Wild, O., Hollaway, M., and O'Connor, F. M.: Contrasting chemical
 environments in summertime for atmospheric ozone across major Chinese industrial regions:
 the effectiveness of emission control strategies, Atmos Chem Phys, 21, 10689-10706,
 10.5194/acp-21-10689-2021, 2021.
- Logan, J. A., Staehelin, J., Megretskaia, I. A., Cammas, J. P., Thouret, V., Claude, H., De
 Backer, H., Steinbacher, M., Scheel, H. E., Stübi, R., Fröhlich, M., and Derwent, R.: Changes
 in ozone over Europe: Analysis of ozone measurements from sondes, regular aircraft
 (MOZAIC) and alpine surface sites, J Geophys Res-Atmos, 117, n/a-n/a,
 10.1029/2011jd016952, 2012.
- Ma, C., Wang, T., Mizzi, A. P., Anderson, J. L., Zhuang, B., Xie, M., and Wu, R.:
 Multiconstituent Data Assimilation With WRF Chem/DART: Potential for Adjusting
 Anthropogenic Emissions and Improving Air Quality Forecasts Over Eastern China, J
 Geophys Res-Atmos, 7393–7412, 10.1029/2019jd030421, 2019.
- Mickley, L. J.: Climate response to the increase in tropospheric ozone since preindustrial times:
 A comparison between ozone and equivalent CO2forcings, Journal of Geophysical Research,
 109, 10.1029/2003jd003653, 2004.
- Miyazaki, K., Eskes, H., Sudo, K., Boersma, K. F., Bowman, K., and Kanaya, Y.: Decadal
 changes in global surface NO_x emissions from multi-constituent satellite data assimilation,
- 1155 Atmos Chem Phys, 17, 807-837, 10.5194/acp-17-807-2017, 2017.
- 1156 Mousavinezhad, S., Choi, Y., Pouyaei, A., Ghahremanloo, M., and Nelson, D. L.: A
- 1157 comprehensive investigation of surface ozone pollution in China, 2015–2019: Separating the
- 1158 contributions from meteorology and precursor emissions, Atmospheric Research, 257,
- 1159 10.1016/j.atmosres.2021.105599, 2021.

- Oetjen, H., Payne, V. H., Neu, J. L., Kulawik, S. S., Edwards, D. P., Eldering, A., Worden, H.
 M., and Worden, J. R.: A joint data record of tropospheric ozone from Aura-TES and MetOp-
- 1162 IASI, Atmos Chem Phys, 16, 10229-10239, 10.5194/acp-16-10229-2016, 2016.
- 1163 Parrington, M., Jones, D. B. A., Bowman, K. W., Horowitz, L. W., Thompson, A. M., Tarasick,
- D. W., and Witte, J. C.: Estimating the summertime tropospheric ozone distribution over
 North America through assimilation of observations from the Tropospheric Emission
 Spectrometer, Journal of Geophysical Research, 113, 10.1029/2007jd009341, 2008.
- Parrington, M., Palmer, P. I., Henze, D. K., Tarasick, D. W., Hyer, E. J., Owen, R. C., Helmig,
 D., Clerbaux, C., Bowman, K. W., Deeter, M. N., Barratt, E. M., Coheur, P. F., Hurtmans,
 D., Jiang, Z., George, M., and Worden, J. R.: The influence of boreal biomass burning
- emissions on the distribution of tropospheric ozone over North America and the North
 Atlantic during 2010, Atmos Chem Phys, 12, 2077-2098, 10.5194/acp-12-2077-2012, 2012.
- 1172 Parrish, D. D., Derwent, R. G., Turnock, S. T., O'Connor, F. M., Staehelin, J., Bauer, S. E.,
- 1173 Deushi, M., Oshima, N., Tsigaridis, K., Wu, T., and Zhang, J.: Investigations on the 1174 anthropogenic reversal of the natural ozone gradient between northern and southern 1175 ill title Attack Charles Physical 2010 (2001) 2001
- 1175 midlatitudes, Atmos Chem Phys, 21, 9669-9679, 10.5194/acp-21-9669-2021, 2021.
- Peng, X., Shen, H., Zhang, L., Zeng, C., Yang, G., and He, Z.: Spatially continuous mapping
 of daily global ozone distribution (2004–2014) with the Aura OMI sensor, J Geophys ResAtmos, 121, 12,702-712,722, 10.1002/2016jd025013, 2016.
- 1179 Peng, X., Wang, W., Xia, M., Chen, H., Ravishankara, A. R., Li, Q., Saiz-Lopez, A., Liu, P.,
- Zhang, F., Zhang, C., Xue, L., Wang, X., George, C., Wang, J., Mu, Y., Chen, J., and Wang,
 T.: An unexpected large continental source of reactive bromine and chlorine with significant
 impact on wintertime air quality, Natl Sci Rev, 8, nwaa304, 10.1093/nsr/nwaa304, 2021.
- Prinn, R. G.: The Cleansing Capacity of the Atmosphere, Annual Review of Environment and
- 1184 Resources, 28, 29-57, 10.1146/annurev.energy.28.011503.163425, 2003.
- 1185 Schaap, M., Cuvelier, C., Hendriks, C., Bessagnet, B., Baldasano, J. M., Colette, A., Thunis,
- P., Karam, D., Fagerli, H., Graff, A., Kranenburg, R., Nyiri, A., Pay, M. T., Rouïl, L., Schulz,
 M., Simpson, D., Stern, R., Terrenoire, E., and Wind, P.: Performance of European chemistry
- transport models as function of horizontal resolution, Atmos Environ, 112, 90-105,
 10.1016/j.atmosenv.2015.04.003, 2015.
- Spurr, R. J. D.: VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative
 transfer code for forward model and retrieval studies in multilayer multiple scattering media,
- 1192Journal of Quantitative Spectroscopy and Radiative Transfer, 102, 316-342,119310.1016/j.jqsrt.2006.05.005, 2006.
- Tang, Z., Chen, J., and Jiang, Z.: Discrepancy in assimilated atmospheric CO over East Asia
 in 2015–2020 by assimilating satellite and surface CO measurements, Atmos Chem Phys, 22,
 7815-7826, 10.5194/acp-22-7815-2022, 2022.
- Thompson, A. M.: The oxidizing capacity of the earth's atmosphere: probable past and future
 changes, Science, 256, 1157-1165, 10.1126/science.256.5060.1157, 1992.
- 1199 van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S.,
- 1200 Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the

- contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos
 Chem Phys, 10, 11707-11735, 10.5194/acp-10-11707-2010, 2010.
- 1203 Wang, W., Parrish, D. D., Wang, S., Bao, F., Ni, R., Li, X., Yang, S., Wang, H., Cheng, Y.,
- and Su, H.: Long-term trend of ozone pollution in China during 2014–2020: distinct seasonal
 and spatial characteristics and ozone sensitivity, Atmos Chem Phys, 22, 8935-8949,
 10.5194/acp-22-8935-2022, 2022.
- Wang, X., Fu, T. M., Zhang, L., Lu, X., Liu, X., Amnuaylojaroen, T., Latif, M. T., Ma, Y.,
 Zhang, L., Feng, X., Zhu, L., Shen, H., and Yang, X.: Rapidly Changing Emissions Drove
 Substantial Surface and Tropospheric Ozone Increases Over Southeast Asia, Geophys Res
 Lett, 49, e2022GL100223, 10.1029/2022gl100223, 2022.
- Wei, J., Li, Z., Li, K., Dickerson, R. R., Pinker, R. T., Wang, J., Liu, X., Sun, L., Xue, W., and
 Cribb, M.: Full-coverage mapping and spatiotemporal variations of ground-level ozone (O₃)
 pollution from 2013 to 2020 across China, Remote Sens Environ, 270,
- 1214 10.1016/j.rse.2021.112775, 2022.
- 1215 Zhang, L., Jacob, D. J., Boersma, K. F., Jaffe, D. A., Olson, J. R., Bowman, K. W., Worden, J.
- 1216 R., Thompson, A. M., Avery, M. A., Cohen, R. C., Dibb, J. E., Flock, F. M., Fuelberg, H. E.,
- Huey, L. G., McMillan, W. W., Singh, H. B., and Weinheimer, A. J.: Transpacific transport
 of ozone pollution and the effect of recent Asian emission increases on air quality in North
 America: an integrated analysis using satellite, aircraft, ozonesonde, and surface
 observations, Atmos Chem Phys, 8, 6117-6136, DOI 10.5194/acp-8-6117-2008, 2008.
- Zhang, Y., Shindell, D., Seltzer, K., Shen, L., Lamarque, J.-F., Zhang, Q., Zheng, B., Xing, J.,
 Jiang, Z., and Zhang, L.: Impacts of emission changes in China from 2010 to 2017 on
 domestic and intercontinental air quality and health effect, Atmos Chem Phys, 21, 1605116065, 10.5194/acp-21-16051-2021, 2021.
- Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan,
 L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic
 emissions since 2010 as the consequence of clean air actions, Atmos Chem Phys, 18, 1409514111, 10.5194/acp-18-14095-2018, 2018.
- Zhu, R., Tang, Z., Chen, X., Liu, X., and Jiang, Z.: Rapid O₃ assimilations Part 2: tropospheric
 O₃ changes accompanied by declines in NO_x emissions in the United States and Europe in
 2005-2020, Atmos. Chem. Phys. Discuss., 10.5194/acp-2023-47, 2023.
- 1232 Zhu, Y., Liu, J., Wang, T., Zhuang, B., Han, H., Wang, H., Chang, Y., and Ding, K.: The
- Impacts of Meteorology on the Seasonal and Interannual Variabilities of Ozone Transport
 From North America to East Asia, J Geophys Res-Atmos, 122, 10,612-610,636,
 10.1002/2017jd026761, 2017.
- 1236 Ziemke, J. R., Oman, L. D., Strode, S. A., Douglass, A. R., Olsen, M. A., McPeters, R. D.,
- 1237 Bhartia, P. K., Froidevaux, L., Labow, G. J., Witte, J. C., Thompson, A. M., Haffner, D. P.,
- 1238 Kramarova, N. A., Frith, S. M., Huang, L.-K., Jaross, G. R., Seftor, C. J., Deland, M. T., and
- 1239 Taylor, S. L.: Trends in global tropospheric ozone inferred from a composite record of
- 1240 TOMS/OMI/MLS/OMPS satellite measurements and the MERRA-2 GMI simulation, Atmos
- 1241 Chem Phys, 19, 3257-3269, 10.5194/acp-19-3257-2019, 2019.
- 1242