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Abstract. Ice-sheet flow models capable of accurately projecting their future mass balance constitute tools to improve flood risk

assessment and assist sea-level rise mitigation associated with enhanced ice discharge. Some processes that need to be captured,

such as grounding line migration, require high spatial resolution under the kilometer scale. Conventional ice flow models

mainly execute on central processing units (CPUs), which feature limited parallel processing capabilities and peak memory

bandwidth. This may hinder model scalability and result in long run times requiring significant computational resources.5

As an alternative, graphics processing units (GPUs) are ideally suited for high spatial resolution as the calculations can be

performed concurrently by thousands of threads, processing most of the computational domain simultaneously. In this study,

we combine a GPU-based approach with the pseudo-transient (PT) method, an accelerated iterative and matrix-free solution

strategy, and investigate its performance for finite elements and unstructured meshes with application to two-dimensional (2-D)

models of real glaciers at a regional scale. For both Jakobshavn and Pine Island glacier models, the number of nonlinear PT10

iterations required to converge a given number of vertices N scales in the order of O(N1.2) or better. We further compare

the performance of the PT CUDA C implementation with a standard finite-element CPU-based implementation using the

price-to-performance metric. The price of a single Tesla V100 GPU is 1.5 times that of two Intel Xeon Gold 6140 CPUs. We

expect a minimum speed-up of at least 1.5x to justify the Tesla V100 GPU price to performance. Our developments result in

a GPU-based implementation that achieves this goal with a speed-up beyond 1.5x. This study represents a first step toward15

leveraging GPU processing power, enabling more accurate polar ice discharge predictions. The insights gained will benefit

efforts to diminish spatial resolution constraints at higher computing performance. The higher computing performance will

allow running ensembles of ice-sheet flow simulations at the continental scale and higher resolution, a previously challenging

task. The advances will further enable quantification of model sensitivity to changes in upcoming climate forcings. These

findings will significantly benefit process-oriented sea-level-projection studies over the coming decades.20
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1 Introduction

Global mean sea level is rising at an average rate of 3.7 mm yr−1, posing a significant threat to coastal communities and

global ecosystems (Hinkel et al., 2014; Kopp et al., 2016). The increase in ice discharge from the Greenland and Antarctic ice

sheets significantly contributes to sea level rise. However, their dynamic response to climate change remains a fundamental

uncertainty in future projection (Rietbroek et al., 2016; Chen et al., 2017; IPCC, 2021). While much progress has been made25

over the last decades, several critical physical processes such as calving and ice sheet basal sliding remain poorly understood

(Pattyn and Morlighem, 2020). Existing computational resources limit the spatial resolution and simulation time on which

continental-scale ice-sheet models can run. Some processes, such as grounding line migration or ice front dynamics, require

spatial resolutions in the order of 1 km or smaller (Larour et al., 2012; Aschwanden et al., 2021; Castleman et al., 2022).

Most numerical models use a solution strategy designed to target central processing units (CPU) and shared memory paral-30

lelization. CPUs’ parallel processing capabilities, peak memory bandwidth, and power consumption remain limiting factors. It

remains to be seen whether high-resolution modeling will become feasible at the continental scale (or ice-sheet scale). Specif-

ically, complex flow models, such as Full-Stokes, may remain challenging to employ beyond the regional scale. Trying to

overcome the technical limitations tied to CPU-based computing, graphics processing units (GPUs) feature interesting capa-

bilities and have been booming over the past decade (Brædstrup et al., 2014; Häfner et al., 2021). Developing algorithms and35

solvers to leverage GPU computing capabilities has become essential and has resulted in active development within scientific

computing and high-performance computing (HPC) communities.

The traditional way of solving the partial differential equations governing ice-sheet flow, employing, e.g., the finite-element

analysis, may represent a challenge to leverage GPU acceleration efficiently. Handling unstructured grid geometries and having

global-to-local indexing patterns may significantly hinder efficient memory transfers and optimal bandwidth utilization. Räss40

et al. (2020) proposed an alternative approach by re-formulating the flow equations in the form of pseudo-transient (PT)

updates. The PT method augments the time-independent governing ice-sheet flow equation by physically motivated pseudo-

time-dependent terms. The added pseudo-time τ terms turn the initial time-independent elliptic equations into a parabolic

form, allowing for an explicit iterative pseudo-time integration to reach a steady state and, thus, the solution of the initial

elliptic problem. The explicit pseudo-time integration scheme eliminates the need for the expensive direct-iterative type of45

solvers, making the proposed approach matrix-free and attractive for various parallel computing approaches (Frankel, 1950;

Poliakov et al., 1993; Kelley and Liao, 2013). Räss et al. (2020) introduced this method targeting specifically GPU computing

to enable the development of high spatial resolution full Stokes ice-sheet flow solvers in two (2-D) and three-dimensions (3-D),

respectively, on uniform grids (Räss et al., 2020). The approach unveils a promising solution strategy, but the finite-difference

discretization on uniform and structured grids and the idealized test cases represent actual limitations.50

Here, we build upon work from previous studies (Räss et al., 2019, 2020) on the accelerated PT method for finite-difference

discretization on uniform structured grids and extend it to finite-element discretization and unstructured meshes. We developed

a CUDA C implementation of the PT depth-integrated Shallow Shelf Approximation (SSA) and applied it to regional scale

glaciers, Pine Island Glacier and Jakobshavn Isbræ, in West Antarctica and Greenland, respectively. We compare the PT
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CUDA C implementation with a more standard finite-element CPU-based implementation available within the Ice-sheet and55

Sea-level System Model (ISSM). Our comparison uses the same mesh, model equations, and boundary conditions. In Section

2, we present the mathematical reformulation of the 2D SSA momentum balance equations to incorporate the additional

pseudo-transient terms needed for the PT method. We provide the weak formulation and discuss the spatial discretization.

Section 3 describes the numerical experiments conducted, chosen glacier model configurations, hardware implementation, and

performance assessment metrics. In Sections 4 and 5, we illustrate the method’s performance and conclude on future research60

directions.

2 Methods

2.1 Mathematical formulation of 2D SSA model

We employ the SSA (MacAyeal, 1989)) formulation to solve the momentum balance equation:

∇ · (2Hµε̇SSA) = ρgH∇s+α2v , (1)65

where the 2D SSA strain-rate ε̇SSA is defined as

ε̇SSA =


2∂vx

∂x +
∂vy

∂y
∂vx

∂y

∂vx

∂y 2
∂vy
∂y + ∂vx

∂x

 . (2)

The terms vx and vy represent the x and y ice velocity components, H is the ice thickness, ρ the ice density, g the gravitational

acceleration, s glacier’s upper surface z-coordinate and α2v is the basal friction term. The ice viscosity µ follows Glen’s flow

law (Glen, 1955):70

µ=
B

2 ε̇
(n−1)/n
e

, (3)

where B is ice rigidity, ε̇e is the effective strain-rate, and n= 3 is Glen’s power-law exponent. We regularize the strain-rate

dependent viscosity formulation in the numerical implementation by capping it at 1e5 to address the singularity arising in

regions of the computational domain where the strain-rate tends toward zero.

As boundary conditions, we apply water pressure at the ice front Γσ , and non-homogeneous Dirichlet boundary conditions75

Γu on the other boundaries (based on observed velocity).

2.2 Mathematical reformulation of 2D SSA model to incorporate PT method

The solution to the SSA ice flow problem is commonly achieved by discretizing Eq. (1) using the finite-element or finite-

difference method. The discretized problem can be solved using a direct, direct-iterative, or iterative approach. Robust matrix-

based direct-type of solvers exhibit significant scaling limitations restricting their applicability when considering high-resolution80

or three-dimensional configurations. Iterative solving approaches permit circumventing most scaling limitations. However, they
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may encounter convergence issues for sub-optimally conditioned, stiff, or highly nonlinear problems, resulting in non-tractable

growth of the iteration count. One challenge is thus to prevent the iteration count from growing exponentially. We propose

the accelerated pseudo-transient (PT) method as an alternative approach. The method augments the steady-state viscous flow

equations (1) by adding the usually ignored transient term, which can be further used to integrate the equations in pseudo-time85

τ , seeking at an implicit solution once the steady state is reached, i.e., when τ →∞.

Building upon work from previous studies (Omlin et al., 2018; Duretz et al., 2019; Räss et al., 2019, 2020, 2022), we refor-

mulate the 2-D SSA steady-state momentum balance equations into a transient diffusion-like formulation for flow velocities

vx,y by incorporating the usually omitted time derivative.

∇ · (2Hµε̇SSA)− ρgH∇s−α2v = ρH
∂v

∂τ
, (4)90

The velocity-time derivatives represent physically motivated expressions we can further use to iteratively reach a steady state,

which provides the solution of the original time-independent equations. Since we are here only interested in the steady-state,

transient processes evolve in numerical time or pseudo-time τ :

ρH
∂vx
∂τ

=Rx ,

ρH
∂vy
∂τ

=Ry , (5)95

where Rx and Ry correspond to the right-hand-side expressions of Eq. (1) and define the residuals of the original SSA equations

for which we are seeking a solution. We define the transient pseudo time step ∆τ as a field variable, spatially variable, chosen

to minimize the number of nonlinear PT iterations.

2.3 Pseudo-time stepping

We here advance in numerical pseudo-time using a forward Euler pseudo-time stepping method. We choose our time derivative100

by approximating the transient diffusive system for both vx and vy ,

ρH
∂vx
∂τ

=
∂

∂x

(
4Hµ

∂vx
∂x

)
,

ρH
∂vy
∂τ

=
∂

∂y

(
4Hµ

∂vy
∂y

)
, (6)

where one recognises the diffusive variables vx,y and the effective dynamic viscosity 4µ/ρ as diffusion coefficient. Using

the analogy of a diffusive process, we can define a CFL-like (Courant-Friedrich-Lewy) stability criterion for the PT iterative105

scheme. The explicit CFL-stable time step for viscous flow is given by:

∆τmax = ρ
∆x2

4µ(1+µb)×ndim
, (7)

where ∆x represents the grid spacing, µb is the numerical bulk ice viscosity and ndim = 2.1,4.1,6.1 in 1, 2 and 3D, respec-

tively.
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2.4 Viscosity continuation110

We implement a continuation on the nonlinear strain-rate dependent effective viscosity µeff to avoid the iterative solution

process diverging as strain-rate values may not satisfy the momentum balance at the beginning of the iterative process and may

thus be far from equilibrium. At every pseudo-time step, the effective viscosity µeff is updated in the logarithmic space:

µeff = exp
(
θµ log(µ)+ (1− θµ) log(µ

old
eff

)
, (8)

where the scalar 10−2 < θµ < 1 is selected such that we provide sufficient time to relax the nonlinear viscosity at the start of115

the pseudo-iterative loop.

2.5 Acceleration owing to damping

The major limitation of this simple first-order, or Picard-type, iterative approach resides in the poor iteration count scaling with

increased numerical resolution. The number of iterations needed to converge for a given problem for N number of grid points

involved in the computation scales in the order of O(N2).120

To address this limitation, we consider a second-order method, referred to as the second-order Richardson method, as intro-

duced by Frankel (1950). This approach allows us to aggressively reduce the number of iterations to the number of grid points,

making the method scale as ≈O(N1.2). Optimal scaling can be achieved by realizing that the PT framework’s diffusion-type

of updates readily provided can be divided into two wave-like update steps. Transitioning from diffusion to wave-like pseudo-

physics exhibits two main advantages: (i) the wave-like time step limit is a function of ∆x instead of ∆x2, and (ii) it is possible125

to turn the wave equation into a damped wave equation. The latter permits finding optimal tuning parameters to achieve optimal

damping, resulting in fast convergence. Let’s assume the following diffusion-like update step, reported here for the x direction

only:

ρH
∂vx
∂τ

=
∂

∂x
4Hµ

∂vx
∂x

. (9)

The above expression results in the following update rule:130

vx = voldx +
∆τD
ρH

(
∂

∂x
4Hµ

∂vx
∂x

)
, (10)

where ∆τD ≈∆x2/(4µ/ρ)/4.1 is the diffusion-like time step limit. This system can be separated into a residual assignment

Ax and the velocity update vx:

Ax =
1

ρH

(
∂

∂x
4Hµ

∂vx
∂x

)
, (11)

vx = voldx +∆τDAx . (12)135

Converting Eq. (11) into an update rule using a step size of (1− γ),

Ax =Aold
x (1− γ)+

1

ρH

(
∂

∂x
4Hµ

∂vx
∂x

)
, (13)
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turns the system composed of Eqs (12) and (13) in a damped wave equation similar to what was suggested by Frankel (1950).

Ideal convergence can be reached upon selecting the appropriate damping parameter γ. To maintain solution stability, we

include relaxation θv:140

vx = voldx + θv∆τDAx (14)

where 0< γ < 1 and 0< θv < 1.

Alternative and complementary details about the PT acceleration can be found in Räss et al. (2019), Duretz et al. (2019),

Räss et al. (2020) while an in-depth analysis is provided in Räss et al. (2022).

2.6 Weak formulation and finite-element discretization145

Using the PT method, the equations to solve are as referenced in (4):

ρH
∂v

∂τ
=∇ · 2Hµε̇SSA − ρgH∇s−α2v . (15)

The weak form of the equation, assuming homogeneous Dirichlet conditions along all model boundaries for simplicity,

reads: ∀w ∈H1 (Ω),∫
Ω

ρH
∂v

∂τ
·wdΩ+

∫
Ω

2Hµε̇SSA · ∇w dΩ=

∫
Ω

−ρgH∇s ·w−α2v ·w dΩ , (16)150

where H1 (Ω) is the space of square-integrable functions whose first derivatives are also square integrable.

Once discretized using the finite-element method, the matrix system to solve reads:

MV̇+KV = F , (17)

where M is the mass matrix, K is the stiffness matrix, F is the right hand side or load vector, and V is the vector of ice

velocity.155

We can compute V̇ by solving:

V̇ ≃M−1
L (−KV+F) , (18)

where ML stands for the lumped mass matrix permitting to avoid the resolution of a matrix system.

We hence have an explicit expression of the time derivative of the ice velocity for each vertex of the mesh:
160

v̇xi =
1

ρHmLi

−
∫
Ω

(
4Hµ

∂vx
∂x

+2Hµ
∂vy
∂y

)
∂φi

∂x
+

(
Hµ

∂vx
∂y

+Hµ
∂vy
∂x

)
∂φi

∂y
dΩ+

∫
Ω

−ρgH
∂s

∂x
φi −α2vxφi dΩ

 ,

(19)

v̇yi =
1

ρHmLi

−
∫
Ω

(
4Hµ

∂vy
∂y

+2Hµ
∂vx
∂x

)
∂φi

∂y
+

(
Hµ

∂vx
∂y

+Hµ
∂vy
∂x

)
∂φi

∂x
dΩ +

∫
Ω

−ρgH
∂s

∂y
φi −α2vyφi dΩ

 ,

(20)
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v0x, v
0
y ,

µ0, H

Compute rate of change in ice velocity
v̇ = v̇ × γ + M−1

L (−KV + F )

Compute explicit CFL-
stable time step for ice flow

∆τD = ρ × ∆x2/(4µ × (1. + µb) × 4.1)

Update ice velocity
v = vold + θv × v̇ × ∆τD

Update ice viscosity
µeff = exp

(
θµ log(µ) + (1− θµ) log(µold

eff

)

||vold − v||∞ <
threshold

end

continue

Yes

No

Figure 1. PT iterative algorithm for unstructured meshes applied to solve 2-D SSA momentum balance equations.
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where mLi is the component number i along the diagonal of the lumped mass matrix ML.

For every nonlinear PT iteration, we compute the rate of change in velocity v̇ and the explicit CFL-stable time step ∆τ . We165

then deploy the reformulated 2D SSA momentum balance equations to update ice velocity v followed by ice viscosity µeff .

We iterate in pseudo-time until the stopping criterion is met (Fig. 1).

3 Numerical experiments

3.1 Glacier model configurations

To test the performance of the PT method beyond simple idealized geometries, we apply it to two regional-scale glaciers:170

Jakobshavn Isbræ, in Western Greenland, and Pine Island Glacier, in West Antarctica (Fig. 2). For Jakobshavn Isbræ, we rely

on BedMachine Greenland v4 (Morlighem et al., 2017) and also invert for basal friction to infer the basal boundary conditions.

Note that the inversion is run on Ice-sheet and Sea-level System Model (ISSM), using a standard approach (Larour et al., 2012).

For Pine Island Glacier, we initialize the ice geometry using BedMachine Antarctica v2 (Morlighem et al., 2020) and infer the

friction coefficient using surface velocities derived from satellite interferometry (Rignot et al., 2011).175
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Figure 2. Glacier model configurations; observed surface velocities in m yr−1 interpolated on a uniform mesh. Panels (a) and (b) correspond

to Jakobshavn Isbræ and Pine Island Glacier respectively.

3.2 Hardware implementation

We developed a CUDA C implementation to solve the SSA equations using the PT approach on unstructured meshes. We

choose a stopping criterion of ||vold−v||∞ < 10 m yr−1. The software solves the 2-D SSA momentum balance equations on a

single GPU. We use an NVIDIA Tesla V100 SXM2 GPU with 16 gigabytes (GB) of device RAM and an NVIDIA A100 SXM4

with 80GB of device RAM. We compare the PT implementation’s results on a Tesla V100 GPU with ISSM’s “standard” CPU180

implementation using a conjugate gradient (CG) iterative solver. We used a 64-bit 18-core Intel Xeon Gold 6140 processor for
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the CPU comparison, having 192 GB of RAM available. We perform multi-core MPI-parallelized ice-sheet flow simulations

on two CPUs, all 36 cores enabled (Larour et al., 2012; Habbal et al., 2017). All simulations use double-precision arithmetic

computations.

3.3 Performance assessment metrics185

To investigate the PT CUDA C implementation for unstructured meshes, we report the number of vertices (or grid size) and

the corresponding number of nonlinear PT iterations needed to meet the stopping criterion. We employ the computational time

required to reach convergence as a proxy to assess and compare the performance of the PT CUDA C with the ISSM CG CPU

implementation. We ensure to exclude from timing all pre- and post-processing steps. We quantify the relative performance of

the CPU and GPU implementations as the speed-up S, given by:190

S =
tCPU

tGPU
. (21)

The PT method employed to solve the nonlinear momentum balance equations results in a memory-bound algorithm (Räss

et al., 2020); therefore, the wall time depends on the memory throughput. In addition to speed-up, we employ the effective

memory throughput metric to assess the performance of the PT CUDA C implementation developed in this study (Räss et al.,

2020, 2022), which defines as:195

Teff =
nn niter nIO np

10243 tniter

, (22)

where nn represents the total number of vertices, niter a given number of PT iterations, np the arithmetic precision, tniter
the

time taken to complete niter iterations and nIO the minimal number of non-redundant memory accesses (read/write operations).

The number of reads and write operations needed for this study would be 8: update vx, vy , and nonlinear viscosity arrays for

every PT iteration, in addition to reading the basal friction coefficient and the masks.200

4 Results and discussion

To investigate the performance of the PT CUDA C implementation on unstructured meshes, we report the number of vertices

(or grid size) and the corresponding number of nonlinear PT iterations needed to meet the stopping criterion (Fig. 3). For both

Jakobshavn and Pine Island glacier models, the number of nonlinear PT iterations required to converge for a given number of

vertices N scales in the order of ≈O(N1.2) or better. We chose damping parameter γ, nonlinear viscosity relaxation scalar205

θµ, and transient pseudo time step ∆τ to maintain the linear scaling described above; optimal parameter values are listed in

the Appendix (Table A1). We observed an exception at ∼ 3e7 degrees of freedom (DoFs) for the Pine Island glacier model;

optimal parameter values are unidentifiable. We will investigate further the convergence for the Pine Island glacier model at

∼ 3e7 DoFs. Among the two glacier models chosen in this study, for a given number of vertices N , Jakobshavn Isbræ resulted

in faster convergence rates, which we attribute to differences in scale and bed topography and the nonlinearity of the problem210

(Fig. 4).
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Figure 3. Performance assessment of the PT CUDA C implementation for unstructured meshes.
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Figure 4. Residual error evolution of the PT CUDA C implementation for unstructured meshes.

We further compare the performance of the PT CUDA C implementation with a standard finite-element CPU-based imple-

mentation using the price-to-performance metric. The price of a single Tesla V100 GPU is 1.5 times that of two Intel Xeon Gold

6140 CPU processors 1. We expect a minimum speedup of at least 1.5x to justify the Tesla V100 GPU price to performance.

We recorded the computational time to reach convergence for the ISSM CG CPU and the PT GPU solver implementations215

(Fig. 5) for up to 2e7 DoFs. Across glacier configurations, we report a speedup of >1.5 on the Tesla V100 GPU. We report a

speedup of approximately 7× at ∼ 1e6 DoFs for the Jakobshavn glacier model. This larger speedup at ∼ 1e6 DoFs indicates

PT GPU implementation’s suitability to develop high spatial resolution ice-sheet flow models. We report an exception for the

1Intel Xeon Gold 6140 Processor Specification Sheet, https://ark.intel.com/content/www/us/en/ark/products/120485/intel-xeon-gold-6140-processor-2

4-75m-cache-2-30-ghz.html
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https://ark.intel.com/content/www/us/en/ark/products/120485/intel-xeon-gold-6140-processor-24-75m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120485/intel-xeon-gold-6140-processor-24-75m-cache-2-30-ghz.html


4 5 6 7 8
log10(DoF)

10-2

100

102

104

W
al

l t
im

e 
[s

]

Jakobshavan Isbrae
(a)ISSM CG CPU

PT GPU

4 5 6 7 8
log10(DoF)

Pine Island Glacier
(b)ISSM CG CPU

PT GPU

Figure 5. Performance comparison of the PT Tesla V100 implementation with the CPU implementation employing wall time (or computa-

tional time to reach convergence). Note that wall time does not include pre- and post-processing steps.

.

Table 1. Performance comparison of the PT Tesla V100 implementation with the CPU implementation employing speedup S

Jakobshavn IsbræDoFs Speedup S Pine Island Glacier DoFs Speedup S

88,458 3.6 28,920 3.73

329,362 11.68 71,292 15.30

787,542 2.64 139,578 1.73

1,335,458 7.37 2,221,410 1.5

21,328,514 0.299

Jakobshavn glacier model at 2e7 DoFs, speedup of 0.28×. We suggest readers compare the speedup results reported in this

study (Table A1) with other parallelization strategies.220

The PT method applied to solve nonlinear momentum balance equations is a memory-bound algorithm as described in

Section 3.3. The profiling results on the Tesla V100 GPU indicate an up to 85% increase in the device’s available memory

resources utilization with the increase in DoFs. This further confirms the memory-bounded nature of the implementation. To

assess the performance of the memory-bound PT CUDA C implementation, we employ the effective memory throughput metric

defined in Section 3.3. We report the effective memory throughput to DoFs for the PT CUDA C single GPU implementation225

(Fig. 6). We observe a significant drop in effective memory throughput on both GPU architectures at DoFs > e7, which explains

the drop in speed-up. We attribute the drop partly to the non-optimal global memory access patterns reported in the LITEX and

L2 cache. We identify excessive non-local data access patterns in the ice stiffness and strain-rate computations, which involve

accessing element-to-vertex connectivities and vice versa. For optimal or fully coalesced global memory access patterns, the
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Figure 6. Performance assessment of the PT CUDA C implementation across GPU architectures employing effective memory throughput.

.

threads in a warp must access the same relative address. We are investigating techniques to reduce the mesh non-localities and230

allow for coalesced global accesses.

We report a peak memory throughput for the NVIDIA Tesla V100 and A100 GPUs of 785 GB s−1 and 1536 GB s−1,

respectively. The peak memory throughput reflects the maximal memory transfer rates for performing memory copy-only

operations. It represents the hardware performance limit in a memory-bound regime. Across glacier model configurations for

the DoFs chosen in this study, the PT CUDA C implementation achieves a maximum of 23 GB s−1 and 58 GB s−1 for the235

NVIDIA Tesla V100 and A100 GPUs, respectively. The measured memory throughput is in the order of 500 GB s−1 as reported

by the NVIDIA Nsight Compute profiling tool 2022.2 on the NVIDIA Tesla V100. The measured memory throughput values

reflect that we efficiently saturate the memory bandwidth. In contrast, the lower effective memory throughput values indicate

that part of the memory accesses are redundant and could be further optimized.

Minimizing the memory footprint is critical when assessing the performance of memory-bounded algorithms, further speed-240

ups, and increased ability to solve large-scale problems. Due to insufficient memory at 1e8 DoFs for the Pine Island Glacier

model configuration, we could neither execute the standard CPU solver on four 18-core Intel Xeon Gold 6140 processors and

3TB of RAM nor the PT GPU implementation on the Tesla V100 GPU architecture. However, we could implement PT GPU

on a single A100 SXM4 featuring 80GB of device RAM. We could thus further confirm the necessity of keeping the memory

footprint minimal for models targeting high spatial resolution.245

In this study, we tested up to an estimated 2e7 DoFs needed to maintain a spatial resolution of ∼1 km or better in grounding

line regions for Antarctic and Greenland-wide ice flow models. Future studies may involve extending the PT CUDA C imple-

mentation from (i) regional scale to ice-sheet scale and (ii) 2-D SSA to 3-D Blatter-Pattyn higher-order (HO) approximation. To

extend the PT CUDA C implementation to ice-sheet scale will require to carefully choose the damping parameter γ, nonlinear

viscosity relaxation scalar θµ, and transient pseudo time step ∆τ . The shared elliptical nature of the 2-D SSA and 3-D HO250
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formulations and corresponding partial differential equations based models (Gilbarg and Trudinger, 1977; Tezaur et al., 2015)

suggests the PT method’s ability to solve the 3-D HO momentum balance applied to unstructured meshes. The overarching

goal is to diminish spatial resolution constraints at higher computing performance to improve predictions of ice sheet evolution.

5 Conclusions

Recent studies have implemented techniques that keep computational resources manageable at the ice-sheet scale while increas-255

ing the spatial resolution dynamically in areas where the grounding lines migrate during prognostic simulations (Cornford et al.,

2013; Goelzer et al., 2017). In terms of computer memory footprint and execution time, the computational cost associated with

solving the momentum balance equations to predict the ice velocity and pressure represents one of the primary bottlenecks

(Jouvet et al., 2022). This preliminary study introduces a PT solver, applied to unstructured meshes, that leverages the GPU

computing power to alleviate this bottleneck. Coupling the GPU-based ice velocity and pressure simulations with CPU-based260

ice thickness and temperature simulations can provide an enhanced balance between speed and predictive performance.

This study aimed to investigate the PT CUDA C implementation for unstructured meshes and its application to the 2-D

SSA model formulation. For both Jakobshavn and Pine Island glacier models, the number of nonlinear PT iterations required

to converge for a given number of vertices, N , scales in the order of ≈O(N1.2) or better. We observed an exception at 3e7

degrees of freedom (DoFs) for the Pine Island glacier model; optimal solver parameters are unidentifiable. We further compare265

the performance of the PT CUDA C implementation with a standard finite-element CPU-based implementation using the price-

to-performance metric. We justify the GPU implementation in the price-to-performance metric for up to a million grid point

spatial resolutions.

In addition to the price-to-performance metric, we preliminary investigated the power consumption. The power consumption

of the PT GPU implementation was measured using the NVIDIA System Management Interface 460.32.03. For the range270

of DoFs tested, the power usage for both glacier configurations to meet the stopping criterion was 38± 1 W. The power

consumption measurement for the CPU implementation was taken from the hardware specification sheet: thermal design power.

For a 64-bit 18-core Intel Xeon Gold 6140 processor, the thermal design power is 140 W2. We executed the CPU-based multi-

core MPI-parallelized ice-sheet flow simulations on two CPUs, all 36 cores enabled, and we chose the power consumption

to be 280 W. This is a first-order estimate. Thus, the power consumption of the PT GPU implementation was approximately275

one-seventh of the traditional CPU implementation for the test cases chosen in this study. We will investigate this further.

This study represents a first step toward leveraging GPU processing power, enabling more accurate polar ice discharge

predictions. The insights gained will benefit efforts to diminish spatial resolution constraints at higher computing performance.

The higher computing performance will allow running ensembles of ice-sheet flow simulations at the continental scale and

higher resolution, a previously challenging task. The advances will further enable quantification of model sensitivity to changes280

2Intel Xeon Gold 6140 Processor Specification Sheet, https://ark.intel.com/content/www/us/en/ark/products/120485/intel-xeon-gold-6140-processor-2

4-75m-cache-2-30-ghz.html
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in upcoming climate forcings. These findings will significantly benefit process-oriented sea-level-projection studies over the

coming decades.

Appendix A

Table A1. Optimal combination of damping parameter γ, non-linear viscosity relaxation scalar θµ and relaxation θv to maintain the linear

scaling and solution stability for the glacier model configurations and DoFs listed.

Jakobshavn IsbræDoFs γ θv θµ Pine Island Glacier DoFs γ θv θµ

88,458 0.98 0.99 3e−2 28,920 0.98 0.6 1e−1

329,362 0.987 0.98 7e−2 71,292 0.99 0.49 8e−2

787,542 0.99 0.99 1e−1 139,578 0.991 0.99 2e−2

1,335,458 0.992 0.999 1e−1 2,221,410 0.998 0.995 1e−2

21,328,514 0.998 0.999 1e−1

Code availability. The current version of FastIceFlo is available for download from GitHub at: https://github.com/AnjaliSandip/FastIceFlo

(last access: 18 September 2023) under the MIT license. The exact version of the model used to produce the results used in this paper is285

archived on Zenodo (https://doi.org/10.5281/zenodo.8356351), as are input data and scripts to run the model and produce the plots for all the

simulations presented in this paper. The PT CUDA C implementation runs on a CUDA-capable GPU device.
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