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Abstract. The climate science community aims to improve our understanding of climate change due to anthropogenic influ-

ences on atmospheric composition and the Earth’s surface. Yet not all climate interactions are fully understood and uncertainty
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in climate model results persists as assessed in the latest Intergovernmental Panel on Climate Change (IPCC) assessment report.
We synthesize current challenges and emphasize opportunities for advancing our understanding of the interactions between at-
mospheric composition, air quality, and climate change, as well as for quantifying model diversity. Our perspective is based on
expert views from three multi-model intercomparison projects (MIPs) - the Precipitation Driver Response MIP (PDRMIP), the
Aerosol and Chemistry MIP (AerChemMIP), and the Radiative Forcing MIP (RFMIP). While there are many shared interests
and specialisms across the MIPs, they have their own scientific foci and specific approaches. The partial overlap between the
MIPs proved useful for advancing the understanding of the perturbation-response paradigm through multi-model ensembles of
Earth System Models of varying complexity. We discuss the challenges of gaining insights from Earth System Models that face
computational and process representation limits and provide guidance from our lessons learned. Promising ideas to overcome
some long-standing challenges in the near future are kilometer-scale experiments to better simulate circulation-dependent pro-
cesses where it is possible, and machine learning approaches where they are needed, e.g., for faster and better sub-grid scale
parameterizations and pattern recognition in big data. New model constraints can arise from augmented observational products
that leverage multiple datasets with machine learning approaches. Future MIPs can develop smart experiment protocols that
strive towards an optimal tradeoff between resolution, complexity, and number of simulations and their length, and thereby,

help to advance the understanding of climate change and its impacts.

1 Introduction

A central aim of climate science is to advance our understanding of how the Earth system responds to human activities.
This endeavor involves the assessment of numerous spatiotemporally changing variables in the Earth system, which can be
determined by multiple, interacting physical, chemical, and biological processes. For example, changes in irradiance, land use,
and atmospheric composition, including for instance aerosols and their precursors, greenhouse gases such as carbon dioxide
and methane, perturb the radiation fluxes in and at the top of the atmosphere and hence the Earth’s radiation balance. On a
timescale of several decades, the Earth’s temperature is controlled by a balance between the net amount of absorbed sunlight
(solar radiation) and the radiation emitted by the planet and its atmosphere (terrestrial radiation). A perturbation of this balance
is called a "radiative forcing" - a concept embedded in the study of the physical basis of climate (Ramaswamy et al., 2019) -
and is measured as energy flux in W m—2.

Changes to atmospheric composition have distinct effects on the Earth’s energy budget and climate, which are classified
into radiative forcing, climate response, and feedbacks. Instantaneous radiative forcing (IRF) is the initial change in radiation
fluxes that arise from a perturbation in a climate forcer, which could be, for instance, associated with increased greenhouse gas
concentrations in the atmosphere due to anthropogenic emissions, in the absence of other changes. IRF excludes any changes in
the system other than an imbalance in the Earth’s top-of-the-atmosphere (TOA) radiation budget and is a diagnostic output from
Earth System Models (ESMs). The system responds to this imbalance by equilibrating a new temperature at which the net TOA
fluxes are in balance when they are averaged over several decades. Climate responses can be amplified or weakened via positive

or negative feedbacks that are induced by changes in physical and chemical processes. Balancing the system after an initial
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perturbation can take several hundred years because of the slow response of ocean temperatures. There are also fast processes
influencing the TOA flux that arise from a change in atmospheric composition, even in the absence of surface temperature
changes. Examples of such changes, known as rapid adjustments, occurring in the atmosphere include stratospheric cooling due
to increasing carbon dioxide concentrations (Manabe and Wetherald, 1967), chemical adjustments due to changes in emissions
of reactive trace gases (Thornhill et al., 2021b; O’Connor et al., 2021), and changes in clouds due to circulation changes (e.g.
Gregory and Webb, 2008; Bretherton et al., 2013; Merlis, 2015), as well as cloud changes due to shortwave radiation absorption
by methane (Allen et al., 2023) and black carbon (Stjern et al., 2017). Moreover, changes in wind-dependent emissions of
aerosols that occur due to circulation adjustments can be interpreted as chemical adjustments, although changes in aerosol
emissions can occur with surface-temperature responses and would fall into the category of chemical feedback in that case.
Relevant examples are adjustments and feedbacks that modify desert-dust and sea-spray aerosol emission changes. Effective
Radiative Forcing (ERF), quantified at the TOA, encompasses both the IRF and the contributions from rapid adjustments.
Climate responses require an assessment of changes in the fully coupled atmosphere-ocean system determining the surface
temperature. These segments in the perturbation-response paradigm of climate science are schematically depicted in Figure 1.
Understanding and quantification of the different segments in the perturbation-response paradigm of climate science are ob-
tained through experiments with Earth System Models, although other methods for some of the segments exist, e.g., radiative
transfer models to compute IRF. Current ESMs vary in their design and implementations, e.g., concerning different parame-
terization schemes, dynamical cores, spatial grids, numerical integration, tuning, and boundary data. These imply diversity in
the level of complexity for representing physical, chemical, and biological processes, and how represented processes interact.
For example, some ESMs prescribe aerosol properties while models with additional process complexity simulate the complex
evolution and interactions of aerosols and their precursors in the atmosphere (Figure 1). The simulated aerosols may interact
with the radiative transfer and formation of cloud droplets and ice crystals, but not all ESMs simulate all interactions with the
cloud microphysics. The climate modeling community creates multi-model ensembles of a common set of ESM experiments
with the same perturbations applied. The simulated climate responses can differ across a multi-model ensemble. This diversity
in responses may for instance be due to differences in process complexity and interactions within the respective ESMs. Ex-
perimental protocols are used to create multi-model ensemble simulations for specific ESM experimental setups. These aim to
better understand the reasons for the diversity in climate responses and feedback and to create future climate projections.
Results from multi-model intercomparison projects (MIPs) are widely used to advance scientific understanding and inform
stakeholders on climate change. The most prominent example is the Coupled Model Intercomparison Project (CMIP, Meehl
et al., 2000) that has contributed through multiple phases to the assessment reports of the Intergovernmental Panel on Climate
Change (IPCC, Meehl, 2023), e.g., the sixth phase of CMIP (CMIP6, Eyring et al., 2016) created experiments that were also
used in the sixth IPCC assessment report (IPCC-ARG6). The basic idea of a MIP is also used for different foci either outside of
or endorsed by the CMIP consortium. For example, the Aerosol Model and Measurement Comparisons (AeroCom) focuses on
the role of aerosols in the climate system (e.g., Glif} et al., 2021; Textor et al., 2006), the Chemistry-Climate Model Initiative
(CCMI) on the interactions between atmospheric chemistry and climate change (e.g., Morgenstern et al., 2017; Abalos et al.,

2020), the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) on global air quality modeling (e.g., Wild et al.,
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2012; Turnock et al., 2018) and the Precipitation Driver Response Model Intercomparison Project (PDRMIP, Myhre et al.,
2017) on the role of anthropogenic and natural drivers for different precipitation responses. Several MIPs were endorsed during
CMIP6, such as the Aerosol and Chemistry MIP (AerChemMIP, Collins et al., 2017) and the Radiative Forcing MIP (RFMIP,
Pincus et al., 2016). While the specific foci for AerChemMIP and RFMIP varied, both MIPs were driven by the common goal
of better characterizing the preindustrial to present-day radiative forcing and determining climate responses to these forcings.
The aims here are to synthesize and emphasize what has been learned on the experimental design, conceptual thinking,
and diagnostic requests through connecting the scientific communities of AerChemMIP, RFMIP, and PDRMIP under one
umbrella named TriMIP (Figure 2). In so doing, we discuss the challenges of understanding multi-model climate responses
and identify potential opportunities to make further advances in the research areas of these MIPs. Each of the MIPs had their
own perspective on how to accomplish their goals, but sufficient similarities inspired a series of joint TriMIP meetings. Similar
conceptual understanding helped to build common ground across the community that proved useful to contribute to the same

overarching goal — the advancement in understanding of our planet’s changing climate.

2 Scientific Advancement
2.1 MIPs’s Key Results

The three MIPs sought to advance the understanding of modern climate change due to anthropogenic influences. MIPs address
specific research questions and, in comparison to studies with a single ESM, consider structural differences concerning the
design and the level of complexity between ESMs. The multi-model spread in the response allows the quantification of a model-
based uncertainty for the answer to the MIP’s question. While the MIPs share the conceptual idea of the perturbation-response
paradigm (Figure 1), they focus on different segments in the paradigm. RFMIP focused on an improved understanding of the
radiative forcing diversity to anthropogenic perturbations in atmospheric composition (e.g., Smith et al., 2020a), and PDRMIP
on precipitation responses to atmospheric composition changes (e.g., Richardson et al., 2018). AerChemMIP also focused on
quantifying radiative forcing and responses but addressed more segments in the paradigm. Specifically, all participating models
in AerChemMIP simulated atmospheric composition based on emissions, transport, chemical transformations, and deposition,
making these models more complex in their process representation and interactions than was necessary for participation in
the other two MIPs (e.g., Thornhill et al., 2021a). The three MIPs used, to some extent, similar experimental strategies, but
developed and adopted their own experimental protocol with a certain class of models in mind, e.g., AerChemMIP required
more interactive processes than the other two MIPs. PDRMIP began earlier and to some degree inspired the experimental
protocols of AerChemMIP and RFMIP. There are ensembles of ESM experiments of different complexity, spatial resolutions,
number of realizations, and length of experiments in the three MIPs. Tables 1-2 summarize key results along with the used
experiments, organized by topics that were addressed by the three MIPs.

The primary objective of PDRMIP was to understand global and regional responses of precipitation statistics to the radiative
forcing of CO5, CHy, Og, irradiance, and sulfate and black carbon aerosols (Myhre et al., 2017). Based on eleven aerosol-

climate models contributing to PDRMIP, energy budgets, and the hydrological cycles were inter-compared for fast (days to
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months) and slow (years to decades) response times (e.g., Myhre et al., 2017; Samset et al., 2016; Sillmann et al., 2019).
Rapid adjustments are a key in understanding precipitation responses (e.g., Hodnebrog et al., 2020; Myhre et al., 2018; Smith
et al., 2018). Taking advantage of multiple forcing agents in PDRMIP, model spreads in radiative forcing and efficacy for the
forcing agents were quantified (Forster et al., 2016; Richardson et al., 2019), and responses to greenhouse gases and aerosols
inter-compared across the PDRMIP ensemble (Sillmann et al., 2019; Stjern et al., 2020). Others examined the climate response
to forcing for selected regions, e.g., the monsoon regions, the Arctic, and the Mediterranean (Stjern et al., 2019; Tang et al.,
2018; Xie et al., 2020). Multiple realizations of such climate change experiments, i.e., a set of simulations with a small initial
perturbation but otherwise identical setups, are required to separate the internal variability from the forced response, especially
at regional scales and for variables such as precipitation in PDRMIP.

The main goals of AerChemMIP were to quantify the climate and air quality responses of aerosols and chemically reactive
gases, specifically near-term climate forcers (NTCFs) including methane, tropospheric ozone, aerosols, and their precursors
(Collins et al., 2017). The term NTCF is used in IPCC-AR6 and refers to the same term as short-lived climate forcers (SLCFs)
used by Collins et al. (2017). Both NTCFs and SLCFs refer to radiatively active atmospheric constituents whose climate ef-
fects occur primarily within two decades of their emission or formation. Amongst TriMIP, AerChemMIP emphasized transient
coupled atmosphere-ocean simulations to estimate the real-world evolution and timing of anthropogenic and natural emission
changes and associated air quality and climate responses. AerChemMIP experiments were novel in CMIP6 in that they fol-
lowed the “all-but-one” design, whereby the forcing of interest is held fixed. For example, hist-piNTCF simulations are parallel
to historical simulations, except anthropogenic emissions of NTCFs are held fixed at pre-industrial level (1850) and all other
forcing agents evolve as in a historical simulation (hist) facilitating attribution of historical climate responses to NTCF emis-
sions. Such an experimental design seeks to minimize the contribution of non-linear climate responses that may occur under
the more traditional experimental design for attribution where only the emissions or concentrations of the species of interest
are perturbed (Deng et al., 2020). The model output from AerChemMIP was, for instance, used to investigate 21st-century
climate and air quality responses to future NTCF changes (Table 1).

Another focus of AerChemMIP was to quantify non-CO, biogeochemical feedbacks (Thornhill et al., 2021a) with an
AerChemMIP-specific experimental design that is unique in CMIP6. It implied a set of idealized simulations with fixed
boundary conditions, except for the preindustrial natural emissions or concentrations that are systematically doubled across
the ensemble of simulations, e.g., for dust aerosols piClim-2xdust. Pairing the radiative fluxes from these experiments with
a parallel preindustrial control gives ERF per Tg yr~! change in emissions or concentrations of the climate forcer. The re-
sult allowed to obtain the feedback parameter (W m~2 per K) for the climate forcer through scaling the simulated changes
in emission fluxes per K temperature change from the 4xCO;y experiments of CMIP6. The protocol of AerChemMIP also
included transient historical simulations with prescribed sea-surface temperatures (SSTs) to diagnose transient ERFs. Simi-
lar to the coupled experiments, these simulations followed the “all-but-one” experimental strategy. Including such analogous
prescribed-SST experiments allowed for a better understanding of the drivers of the climate response in the fully coupled ex-

periments (e.g., Allen et al., 2020, 2021). Furthermore, time-slice experiments performed with emissions of one species set to
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the present-day value but all other boundary data held fixed at pre-industrial values facilitated quantification of emissions-based
ERFs, a policy-relevant metric (Thornhill et al., 2021b).

RFMIP focused on accurately quantifying and identifying errors in the radiative forcing of composition changes in CMIP6
models (Pincus et al., 2016). The largest of the three parts of RFMIP (RFMIP-ERF) was the quantification of ERF across
CMIP6 models using a time-slice approach similar to AerChemMIP. It allowed the first quantification of the CMIP inter-model
spread in ERF for all major climate forcers as bulk estimates, i.e., for all anthropogenic aerosols taken together, and of the
contribution from rapid adjustments to ERF (Smith et al., 2018, 2020a). The second part of REMIP (RFMIP-IRF) focused on
the IRF excluding contributions from rapid adjustments. Errors in IRF of greenhouse gases were identified using benchmark
calculations from line-by-line models (Pincus et al., 2020). The third RFMIP part (RFMIP-SpAer) assessed model differences
in ERF for identical anthropogenic aerosol optical properties and effects on clouds. Participating in RFEMIP-SpAer required
implementing the simple-plumes parameterization (MACv2-SP, Stevens et al., 2017), which was a new approach in CMIP6.
The pilot study for RFMIP-SpAer demonstrated the retention of model spread in ERF when moving to identical anthropogenic
aerosols due to differences in the atmospheric host models (Fiedler et al., 2019). Through the combined analysis of output from
RFMIP-ERF and RFMIP-SpAer, reasons for model differences in anthropogenic aerosol forcing were inferred (Fiedler et al.,
2023).

2.2 MIP’s Cross-linkages

A major advancement from the synergy between the three MIPs was the widespread adoption of a consistent methodology to
quantify radiative forcing within and outside of the three MIPs which facilitated easier comparisons across CMIP6. Estimates of
ERF are key in the perturbation-response paradigm by characterizing the influence on the radiation budget due to a perturbation.
Yet, a consistent diagnosis of ERF was not possible in CMIP5 (Collins et al., 2017). Specifically, RFMIP helped to establish
a consistent practice for diagnosing ERF for CMIP6 and related activities, building on experiences from PDRMIP (Forster
et al., 2016). Amongst several approaches to quantifying forcing, graphically summarized in Figure 3, there are two methods
widely used now to estimate ERF from models. Firstly, ERF can be estimated by extrapolating the relationship between the
radiation imbalance and temperature change in coupled atmosphere-ocean model experiments subject to abrupt concentration
increases of the forcing agent (Regression method, Gregory et al., 2004). Secondly, ERF can be determined by suppressing
ocean-temperature changes and calculating the ERF as the radiation imbalance relative to an experiment without the forcing
agent (Fixed sea-surface temperature method, Hansen et al., 2005). In this context, the common use of pre-industrial control
experiments in RFMIP and AerChemMIP, i.e., experiments with atmospheric composition set to 1850 levels, proved valuable
as a common reference to estimate ERFs from ESMs in CMIP6. REMIP further requested results from additional diagnostic
calls to the radiation schemes, also known as double and triple radiation calls, that enabled calculations of the IRF (Chung and
Soden, 2015) and a better understanding of contributions from different processes to ERF. Double calls typically refer to IRF
calculations, whereas the term triple calls is used for separating cloud-mediated effects from direct effects of aerosols. Such

model diagnostics for IRF helped to quantify the contribution of adjustments to ERF estimates in the ESMs used in CMIP6
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(e.g., Smith et al., 2020a) and to separate direct and cloud-mediated effects following the method by Ghan (2013) in RFMIP
experiments (e.g., Fiedler et al., 2023).

The REMIP protocol included experiments to diagnose radiative forcing for greenhouse gases and aerosols as bulk quantities
with setups parallel to the CMIP6 experiments for the "Diagnostic, Evaluation, and Characterization of Klima" (DECK). The
RFMIP tier 1 experiments were carried out by many modeling centers. Some of these contributions, e.g., from UKESM1
and CNRM, arose because the experimental setup was identical to the request in AerChemMIP. It meant that the technical
workflow for performing and postprocessing the experiments was already in place such that contributing another variant of
such experiments required only little effort. Due to the parallel setup of the RFMIP experiments to those requested in DECK
and the additional overlap of experiment requests with other MIPs (DAMIP), REMIP experiments also allowed model analyses
of climate responses and climate feedbacks for well-estimated radiative forcing. AerChemMIP further separated contributions
to radiative forcing into individual gases and NTCFs including different aerosol species. As such, the AerChemMIP experiment
request was tailored to gain insights into why model differences in the forcing-response paradigm arise based on individual
perturbations in atmospheric composition.

Experiment requests that were differently designed in RFMIP and AerChemMIP for a similar purpose were the transient
historical experiments to attribute the response to individual perturbations. Specifically, RFMIP applied the "only" experimental
design where the quantity to be assessed varied over the historical period while all other boundary conditions were kept at the
pre-industrial level (piClim-histX, where X is the forcing of interest), whereas AerChemMIP applied the "all-but-one" design
where the quantity to be assessed was fixed at the pre-industrial level while all other climate forcers varied over the historical
period (histSST-_piX). These differences in the setup hold the potential to understand where interactions and potential feedbacks
arising from chemical composition changes play a role for the climate response, which has not yet been fully explored with the
existing MIPs, though individual model studies are being undertaken (e.g., Simpson et al., 2023).

The three MIPs benefited from being embedded in a landscape of other initiatives, with close connections to CMIP on
the one hand and specialist MIPs like AeroCom, CCMI, and TF HTAP on the other hand. The community of PDRMIP,
AerChemMIP, and RFMIP can therefore be seen as a bridge between the global climate modeling community of CMIP6 and
the specialized communities for aerosols and atmospheric chemistry. This setting allows CMIP to benefit from expert subject-
specific knowledge that would otherwise be missing. One example is PDRMIP, which began before CMIP6 and had a guiding
role for the later MIPs concerning the already mentioned practice of estimating ERF, the parallel use of fully coupled and fixed
SST experiments, the choice of perturbation magnitudes and experiment length to quantify forcing and response, as well as the
introduction of new model diagnostics. Another example is AerChemMIP, which adopted recommendations for the diagnostic
requests and experimental design (e.g., Young et al., 2013; Archibald et al., 2020) from previous non-CMIP6 initiatives.

Coming together of the three MIP communities under the TriMIP umbrella facilitated efficient communication of knowledge
gaps and coordination of analysis of multi-model output to address these gaps resulting in publications in peer-reviewed
journals. Since several authors of the [PCC-ARG also participated in TriMIP, the MIP-based publications were tailored to the
needs of the IPCC-AR6 working group 1 (WG1) including analysis of ERF (Smith et al., 2020a; Thornhill et al., 2021b),
non-CO, biogeochemical feedbacks (Thornhill et al., 2021a), and climate (Allen et al., 2020, 2021) and air quality responses
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(Turnock et al., 2020) to changes in NTCFs. In fact, some key articles based on the experiments were written and submitted
very close to the IPCC-AR6 WG1 deadline, which might not have been completed in time if that exchange had not happened.
Submission of model output and analyses continued thereafter and are partly still ongoing at the time of writing. We expect
this development to continue for several years, although with a decline in new CMIP6 model output until a quorum of CMIP7
model output becomes available. Looking at the history of the use of CMIP data, we would also expect that the output of
RFMIP and AerChemMIP will be re-used later for documenting progress across their phases, e.g., for the ERF, which is also

often done for tracking progress across CMIP phases.

3 Challenges in the MIP’s research

A major challenge to further advancing the understanding of climate change with ESMs is that differences in their results for
individual segments of the perturbation-response paradigm are not independent of other segments. Specifically, a model-to-
model difference in a climate response might be caused by various segments in the paradigm. For instance, the same emissions
can lead to different ERFs, the same ERF can induce different climate responses and the same response can trigger different
feedbacks across multi-model ensembles. In multi-model studies, one therefore sees inter-model spreads in forcing for the
same change in atmospheric composition and model-dependent climate responses to the same forcing involving different types
and magnitudes of feedbacks. This challenge is addressed by the three MIPs by suppressing interactions for one segment in the
perturbation-response paradigm to advance the understanding of another segment. In this regard, a common approach across
the three MIPs is the restriction of model diversity in some parts in order to better characterize and ultimately understand
model diversity in others. Methods to separate out some of these model differences include experiments using, for instance,
prescribed aerosols (e.g. Fiedler et al., 2019) or reactive trace gases (e.g. Checa-Garcia et al., 2018), which makes the assess-
ment of the contribution of different processes to model diversity more tractable. Such experiments have also been used in the
AeroCom community for a better understanding of reasons for model differences in aerosol forcing (Stier et al., 2013) and
circulation responses to idealized aerosol forcing (Voigt et al., 2017). Specifically, PDRMIP asked for prescribing the same
aerosol information in models to circumvent some aerosol-related sources of model diversity. Such an experimental design
allows a deeper exploration of a subset of model components contributing to model diversity - in this case, the translation of
aerosol concentration to radiative forcing and the climate response, by removing other sources of model differences. Along
similar lines, AerChemMIP allows for the chemical processing of aerosols and reactive gases, and removed feedbacks by per-
forming experiments with prescribed sea-surface conditions. Finally, REMIP aimed to understand how much of the climate
response to a perturbation is due to changes in atmospheric composition rather than due to feedbacks. To that end, REMIP
requested experiments with prescribed sea-surface conditions similar to AerChemMIP to obtain precise model estimates of
ERF. The three MIPs, therefore, addressed model differences arising from the segments in the perturbation-response paradigm

in a complementary manner for addressing their specific research questions.
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3.1 Computational Capacity Abyss
3.1.1 Tradeoffs across MIPs

MIPs in CMIP6 as a whole asked for many experiments that jointly placed a big computational demand on climate modeling
centers. The requested experiments were designed to address the MIP-specific scientific questions. The three MIPs discussed
here contributed to that demand, and the diversity of research interests across the modeling centers meant that some experi-
ments received more attention than others. Setting priorities with tiers was useful to the extent that it highlighted the priority
of experiments from the MIP’s perspective. In so doing, the tiers guided the participating modelers to set a focus on some
experiments to have a larger model ensemble where the MIPs wanted contributions the most. However, in retrospect, some of
the Tier 2 experiments may have been more useful than Tier 1. An example here is piClim-histaer (Tier 2) from RFMIP, which
quantified the spread in magnitude and timing of historical aerosol forcing in CMIP6 models, was informationally rich, and a
contributing factor in deriving the aerosol ERF time series for IPCC-AR6 WGI.

Experiments following already known strategies with standard output requests are quicker to set up. These have the advan-
tage that no additional personnel is needed to implement newly requested diagnostic output that is not yet available in the
standard variable list of ESMs, e.g., for REMIP-IRF. On the contrary is an experiment design that needs the implementation
of a new parameterization, e.g., for REMIP-SpAer, which requires dedicated human resources at the modeling center to carry
out the work including coding, testing, and performing the experiments. In this case, it takes longer to finish the experiments
and to do the associated scientific exploitation, e.g., in the case of RFMIP-SpAer several years after the work began (Fiedler
et al., 2023), which is long compared to easy experiments that modelers can quickly set up via a simple change in a setting for
performing an experiment, e.g., for REMIP-ERF, thanks to prior work on the development and testing of models.

A greater number of experiments performed creates more data for statistical analyses and for addressing a variety of research
questions, but it is taxing in light of restricted resources. In preparation for the next phase of AerChemMIP and RFMIP, the
question of the type and number of experiments in the experimental protocol is therefore revised based on refined research
questions. The intention is to keep the computational burden for modeling centers as small as possible. In this process, in-
tended activities are coordinated with other initiatives close to the interests of AerChemMIP and RFMIP, e.g., via a series of
workshops organized by us and others. It potentially allows to free some resources and to simplify workflows, e.g., to gener-
ate larger ensembles of identical multi-purpose experiments to account for internal variability like done for CMIP6 historical
experiments. One such experiment type from our community would be transient coupled experiments to attribute climate
responses to different perturbations.

In preparation for the second phase of AerChemMIP and RFMIP, we reviewed the current status of the experiments and their
usage in peer-reviewed publications, summarized in Table 3. A total of 67 models performed CMIP6 historical experiments
(published via ESGF, June 2023) that were used in as many as 15100 publications (listed by Google Scholar, June 2023).
Available model output to assess differences in forcing and response was, however, limited, e.g., output for the mid-visible
aerosol optical depth is available only for 45 out of the 67 models providing historical experiments. Most of the historical

experiments (40) are performed with NTCF emission-driven models. The ESMs with prescribed aerosols (19) in the histor-
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ical experiments mostly (13) used the MACv2-SP parameterization (Stevens et al., 2017). MACv2-SP was developed in the
framework of RFMIP and is, due to the unexpected relatively broad implementation in ESMs, now included in the work of the
CMIP climate forcings task team, although the targeted exploitation of MACv2-SP in RFMIP-SpAer was with one publication
(Fiedler et al., 2023) small compared to the usage of other experiments of RFMIP and AerChemMIP so far.

RFMIP and AerChemMIP received in total output from 103 experiments leading to 214 publications to date. We separate the
RFMIP and AerChemMIP experiments here into three classes, namely experiments with full coupling between the atmosphere
and ocean (hist-X), with prescribed sea-surface temperatures and sea-ice at pre-industrial level (piClim-X), and with prescribed
transient changes in sea-surface temperatures and sea-ice from a historical experiment (histSST-X). Inter-comparing these
classes, piClim-X experiments were performed the most with a total of 50 contributing models followed by hist-X with 36
models. However, hist-X is used three times more often in scientific publications (146) compared to piClim-X (52). The higher
computational demand of hisz-X, therefore, seems justified by the much larger scientific output compared to the experiments

without a coupled ocean (histSST-X and piClim-X), measured by the number of published articles.
3.1.2 Tradeoffs within MIPs

Available computational capacity affects the experiments for MIPs and the priorities at modeling centers performing many
model experiments for diverse MIPs in a short period of time. Modeling centers provide the resources for the requested
experiments with the ESM which they support. They contribute to the decision for which community-driven MIP experiments
with the ESM will be conducted, e.g., through granting computational resources and prioritizing experiments to be completed.
Additional decisions for the experiments are made by the scientists interested in the MIP. There is some room to make their
own choices since not all experimental settings are explicitly defined by the MIP’s experiment protocols, e.g., they may use a
coarser spatial resolution and to some degree less model complexity to reduce the computational burden.

There are inevitable tradeoffs in the final experimental designs for individual MIPs. Such choices can be categorized along
the three axes of (1) model complexity addressing how many process interactions ESMs allow or how much fidelity processes
have, (2) model resolution referring to the grid spacing of the model, and (3) simulation length covering the length and number
of simulations in an ensemble of different experimental setups per ESM. These axes, schematically depicted in Figure 4, span a
triangle in the complexity - resolution - length space. The volume of the tetrahedron between the origin and the marked triangle
indicates the computational need for the experiments. The computational need scales non-linearly. Doubling the simulation
length or number of simulations doubles the required computational resources that are needed along these axes, but this is
not true for the model resolution and complexity. Increasing the model resolution by a factor of two, for instance, requires
computational resources that are an order of magnitude larger. To account for the non-linearity in the computational need, the
volume of the tetrahedron would be calculated on scaled values, i.e., an experiment with twice as fine resolution would be
marked four times further away from the origin on the resolution axis. The maximum volume of the tetrahedron is limited by
the computation capacity abyss, i.e., the available computing capacity at the modeling center.

Although computing power continues to grow, tradeoffs along the three axes of experimental design and prioritizations

will continue to be necessary. This is for instance the case in light of the computational cost of interactive chemistry against
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the resolution and the number of simulations. All model experiments, irrespective of whether the models have interactive
chemistry, compete for priority at modeling centers due to limited computing resources. Experiments with complex ESMs
are necessary to understand interactions of chemical species in concert with climate change, for example, the carbon cycle or
atmospheric composition-climate interactions. To that end, ESM experiments are performed that have interactive aerosol and
chemistry schemes in addition to the fully coupled atmosphere-ocean-land system, making these models complex and resource
heavy. For instance, an ESM could simulate changes in vegetation cover due to increased greenhouse gases that in turn have
an impact on dust-aerosol emissions in addition to potential changes in soil moisture and winds. In less complex models, the
vegetation cover is for instance prescribed such that the number of interactive physical processes is smaller. The computational
demand of complex ESMs for simulating many processes limits the attribution of computing resources along the other two
axes of experimental design: performing a large number of experiments, which allows the impact of model-internal variability
to be reduced; and choosing a fine enough spatial resolution, which explicitly resolves more physical processes on the model
grid. For some research questions, the complexity of ESMs can be reduced to a certain degree. For instance, concentrations of
well-mixed greenhouse gases can be prescribed instead of being simulated from emissions, if one is interested in computing the
forcing and response to a given change in the atmospheric composition (Figure 2). It makes creating large ensembles of ESM
experiments possible that are needed to split for instance the imbalance in the radiation budget at the top of the atmosphere
into a mean radiative forcing and contributions from internal variability. Similarly, a separation of the response in temperature
or air quality into a forced signal and a contribution from internal variability is possible. The required ensemble size and
length of experiments for sufficiently reducing the influence of model-internal variability on the global mean radiative forcing
(e.g. Forster et al., 2016; Fiedler et al., 2017), climate responses (e.g. Maher et al., 2019; Deser et al., 2020), and impacts on
air quality (e.g. Garcia-Menendez et al., 2017; Fiore et al., 2022) depends on the magnitude of the forced signal against the
magnitude of the internal variability.

The necessary number of simulated years for separating the signal from internal variability depends on the scientific question.
The signal-to-variability ratio is for instance sufficiently good for the response of the global mean of precipitation (Myhre et al.,
2018; Allen et al., 2020) and the ERF in the global mean for most climate forcers in the current experiments. Specifically, the
suggestion from Forster et al. (2016) for performing 30 years of model experiments with the same boundary data proved useful
to diagnose global ERF in most time-slice experiments, except for land-use changes (Smith et al., 2020a). We learned that the
exact precision of ERF depends on the model’s internal variability inducing year-to-year perturbations in the radiation budget
(Fiedler et al., 2019, 2023). Longer simulations of 45 years are needed to diagnose the forcing of some longer-lived trace gases
due to the time scale for gas transport through the stratosphere via the Brewer-Dobson circulation (O’Connor et al., 2021).
For regional radiative effects, the 30 and 45-year-long simulations are not sufficiently long to obtain a statistical significance
for all anthropogenic perturbations in all regions. In UKESM1, the anthropogenic aerosol radiative effects are for instance
statistically significant at the 95% level over about 50% of the globe, but the effects are only statistically significant for 10%
of the globe for land use and non-methane ozone precursors (O’Connor et al., 2021). Similarly, regional aerosol forcing is
not statistically significant over all world regions in models contributing to REMIP (Fiedler et al., 2019, 2023). For simulated

climate responses, the ensemble sizes and simulation lengths of the experiments were not sufficient for addressing all research

11



340

345

350

355

360

365

370

questions of interest in the three MIPs, especially for regional responses. Quantifying the regional response of climate to
forcing requires larger ensembles of simulations, which the Regional Aerosol MIP (RAMIP, Wilcox et al., 2023) is currently
addressing through requesting larger ensembles of experiments with regional perturbations of aerosols than available from
AerChemMIP.

Complex models simulating many processes and their interactions are desirable and needed for specific research questions,
and also pose challenges for reducing model-based uncertainty in the assessment of the climate response to various forcings.
Model diversity in terms of, for instance, the combination of parameterizations, intricacy and fidelity of represented processes,
choice of coupling of model components, choice of the dynamical core, and the resolution is desirable. Model simulations
ideally converge to similar solutions for a given question, e.g., how the Earth’s temperature responds to anthropogenic pertur-
bations. The diversity in model results should therefore reduce over time to gain confidence in our conclusions drawn from
simulated responses to imposed perturbations.

There are two challenges to reducing model-based uncertainty that can be emphasized in the context of MIPs. One challenge
concerns the diversity in the level of complexity included in the ESMs, which is for instance due to choices made for the
interacting processes, the representation of chemistry and aerosols, as well as the specification of the spatial resolution by the
modeling centers. As an example, this diversity is clearly evident in the complexity of aerosol processes with some CMIP6
models simulating the evolution of different aerosol species and their interactions (e.g. Mulcahy et al., 2018), while other
models prescribe spatial distributions of aerosol optical properties (e.g. Mauritsen et al., 2019). Such differences in model
capabilities have implications for understanding the reasons for differences in their results (e.g. Wilcox et al., 2013).

The second challenge comes from the consideration of model diversity in the level of complexity inherent in the process
of designing a MIP protocol since for instance, a few models can simulate processes that most others cannot. Again, MIPs
already have a specific class of models in mind. For AerChemMIP, emission-driven models were targeted, whereas RFMIP
also included contributions from models with less complex representations of aerosols, e.g., those using prescribed aerosol
optical properties. Hence, RFMIP received more output from model experiments than for instance AerChemMIP. RFMIP
and AerChemMIP were endorsed by CMIP6 and had different structural organizations while PDRMIP started earlier and
was in comparison more self-organized and flexible in the MIP life cycle. PDRMIP, therefore, comprises an ensemble of
models of different complexity. Specifically, some of the models in PDRMIP performed experiments with prescribed emissions
whereas others used concentrations resulting in an ensemble of experiments partially driven by emissions and partially driven
by concentrations of climate forcers. Yet, MIP experimental protocols do not prescribe the level of process complexity in and
the resolution of ESMs. This freedom is well justified since ESMs might otherwise not be able to participate in a MIP if they
can not fulfill stricter requirements. A wider participation of ESMs in MIPs ensures a sufficiently large multi-model ensemble
needed to robustly quantify forcings and climate responses considering structural model differences. A full exploration of the
role of climate-composition feedbacks with focus on biogeochemical processes, however, remains an outstanding challenge

due to this difficulty.
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3.2 Process Understanding Abyss

Although varying model complexity can be a difficulty in understanding differences between model results in a MIP, varying
complexity helps in advancing our understanding of climate change. Model simulations with different complexity for instance
help in quantifying contributions from feedback mechanisms to climate responses. Additional model components and repre-
sentations of processes have been incorporated in Earth system models over time in addition to improvements of previously
existing physical parameterization schemes and boundary data. Such model developments allowed new insights into the role
of processes including feedback mechanisms for climate change, although the overall progress is possibly not as rapid as one
would hope. For example, correctly representing clouds and circulation are outstanding challenges that are yet to be resolved.

Multi-model inter-comparisons shed light on where the physical understanding is still limited based on the current repre-
sentation of processes and where we have accomplished a satisfying advancement in our scientific understanding from such
model experiments. An open and unrestricted inclusion of models by key performance indicators allows broad participation of
suitable ESMs in MIPs. Scientists can choose which models they include by assessing their fitness-for-purpose.

The results of MIPs alone cannot fully characterize the uncertainty. This is what we call the process understanding abyss
(Figure 4), which limits our ability to advance the field with our available models. Other evidence should be considered in
parallel or in synergy with MIPs to gain new knowledge - may it be observational data from different sources or completely
different models that are not suitable for participation in MIPs - as has been done for assessing the equilibrium climate sensi-
tivity (Forster et al., 2021).

Constraining ESMs with observations is key to advancing our understanding. Although many observations and reanalysis
data are already well used, more could be done in the future. Specifically, instead of comparing to single observational or
reanalysis datasets, using multiple observational data sources would allow us to first quantify the observational uncertainty
against which model results can be better evaluated, e.g., a good performance might mean that model results fall within the
observational uncertainty. Moreover, new combined observational products could help to evaluate model output, which may
include translating observables into modeled variables. In the past, approaches have been used to translate simulated data into
satellite-observable space (e.g., COSP, Bodas-Salcedo et al., 2011).

Machine learning seems promising to develop new and easy ways for exploiting and combining observational data suitable
for comparison to model output, e.g., artificial intelligence has been used for filling observational gaps (Kadow et al., 2020).
Such ideas could be explored more to unfold the new potential to evaluate and constrain model results in the future in ways we
have not done in the past. Future work could also expand on the use of emergent constraints for responses including feedback
mechanisms (Hall et al., 2019; Williamson et al., 2021). For example, an emergent constraint approach was used to address
the present-day forcing of halocarbons leading to a reduced spread in the forcing estimate (Morgenstern et al., 2020). Another
example is using hemispheric differences in albedo to constrain anthropogenic aerosol forcing (McCoy et al., 2020).

There are some limits to advancing climate science with today’s complex ESMs since we miss or do not represent some pro-
cesses that are thought to be relevant to reproducing observed and projected future climate change. This process understanding

abyss additionally restricts what can be simulated with even the most comprehensive ESMs (Figure 4). Known gaps from our
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community are listed in Table 4. Some chemical reactions and species, as well as their interactions, are currently not repre-
sented or differently represented across ESMs, such that their relevance for the climate is difficult to assess. Indeed, including
previously missing interactive sources of chemical species in an ESM has the potential for surprising results in estimates of
forcing (e.g., Morgenstern et al., 2020). There was diversity in the representation of nitrate aerosols in the ESMs in CMIP6
(Turnock et al., 2020). Five CMIP6 models included climate-dependent emissions of Biogenic volatile organic compounds
(VOCs) from vegetation. Namely, CESM2-WACCM, GFDL-ESM4, GISS-E2-1-G, NorESM2-LM and UKESM1-0-LL yield
relatively large increases in BVOC emissions with warming and in turn, large increases in secondary organic aerosols and
associated particulate matter (PM) which other models do not simulate (Gomez et al., 2023). Marine primary organic aerosols
are represented by some ESMs (e.g., Burrows et al., 2022a), but marine VOCs other than dimethyl sulfide (DMS) are not. Also,
natural primary biological aerosol particles (PBAPs), such as bacteria, pollen, fungi, and viruses (Szopa et al., 2021), are not
simulated by ESMs, although PBAP emissions might increase with future warming (Zhang and Steiner, 2022) with potential
health impacts. Moreover, both DMS and PBAPs are thought to aid in cloud formation; the effects of such ice-nucleating
aerosols on clouds is an area where more progress is needed (Burrows et al., 2022b).

AerChemMIP played a role in the quantification of non-CO; biogeochemical feedbacks (Thornhill et al., 2021a), illustrated
in Figure 5. Almost all non-CO biogeochemical feedbacks are negative and therefore counteract warming. The only exception
is the positive feedback from methane wetland emissions that amplifies warming and is the largest in magnitude compared to
the other non-COy biogeochemical feedbacks. The positive feedback from wetland emissions may be partly offset by the
negative feedback of the methane lifetime. Together with the large model-dependent feedback for biogenic VOCs, the multi-
model mean feedback is negative, but the uncertain methane feedback gives rise to the large spread in the total non-CO2
biogeochemical feedbacks ranging from positive to negative. Climate change induced feedbacks associated with methane
can be better characterized with ESMs that include an interactive representation of the global methane cycle allowing for
simulations to be driven by methane emissions (e.g., Folberth et al., 2022). ESMs do currently not simulate effects on methane
concentrations. Hence, there is a need to develop methane emissions-driven ESMs.

Not all potentially relevant chemistry-climate feedbacks involving natural climate forcers are yet incorporated or well simu-
lated, e.g., climate-induced changes in fire activity and dust-aerosol emissions. Although some CMIP6 models represented fire
dynamics, they did not fully include the interaction with atmospheric chemistry (e.g., Teixeira et al., 2021). And of those feed-
backs that are simulated, erroneous model consensus or small magnitudes for feedbacks might lead to a misleading perception
that these feedbacks are not important. The dust trend over the historical period is one such example. The CMIP6 models show
trends of different signs and magnitudes for desert-dust aerosols over the historical time period (Bauer et al., 2020; Thornhill
et al., 2021a), and there is no ESM in CMIP5 or CMIP6 that reproduces the magnitude of the reconstructed dust increase
from the pre-industrial to the present-day (Kok et al., 2023). This points towards an insufficient process-based understanding
of dust-aerosol changes with warming, which has implications for the understanding and quantification of the radiation im-
balance. Modeling surface conditions is a challenge and a potential source of the diversity in simulated dust trends. Not all
models participating in CMIP6 have the capability to simulate interactive vegetation dynamics but some do, e.g., UKESM1

and GFDL-ESM4. A lack of coupled vegetation dynamics is not the only potential reason for differences in dust and other

14



445

450

455

460

465

470

aerosols. Winds control the emission and transport of desert-dust aerosols and the soil erodibility is influenced by the available
moisture from rain events. There is a large diversity in model-simulated regional changes in winds and precipitation in response
to warming which in turn introduces uncertainty in simulated dust trends.

Of those processes that are simulated, a large driver in model diversity for atmospheric composition is thought to stem from
the representation of natural processes (e.g., Séférian et al., 2020; Zhao et al., 2022). Circulation is a grand challenge for ESMs
(Bony et al., 2015), affecting the spatiotemporal distribution of aerosols. Again desert-dust aerosols are, for instance, emitted
and transported by winds, with a persistently large diversity across ESMs (e.g. Evan et al., 2014; Checa-Garcia et al., 2021;
Zhao et al., 2022; Kok et al., 2023). The ability to accurately simulate atmospheric circulation is also relevant to the challenge
of realistically simulating clouds and rainfall, including their regional trends due to atmospheric composition changes, (e.g.
Sperber et al., 2013; Stevens and Bony, 2013; Fiedler et al., 2020; Wilcox et al., 2020). The simulated clouds influence how
aerosols can affect them and rainfall determines when and where aerosols are removed from the atmosphere. Another example
of the crucial role of representing natural processes is the ability of ESMs to simulate aerosols in the Arctic. In particular, a
better understanding of natural aerosols in the rapidly warming Arctic may be a key factor in resolving the puzzle of Arctic
amplification (Schmale et al., 2021), where diversity across ESMs for NTCFs is large (Whaley et al., 2022).

There are a number of challenges in better understanding historical trends in aerosol species and their precursors from
different natural and anthropogenic sources. A further improved knowledge would help to unravel model diversity in the
evolution of aerosol forcing over time, and how it is related to time-dependent temperature biases in CMIP6 models (Flynn
and Mauritsen, 2020; Smith and Forster, 2021b; Smith et al., 2021a; Zhang et al., 2021). ESMs simulate, for instance, different
historical trends for O3 and aerosols (Mortier et al., 2020; Griffiths et al., 2021). Even for present-day conditions, outstanding
challenges for simulating aerosols persist, e.g., for the concentrations of secondary organic aerosols (Turnock et al., 2020),
which have natural and anthropogenic origins (Fan et al., 2022). Moreover, aerosol optical properties are partially biased (e.g.,
Brown et al., 2021), the size distributions of different aerosol species are not sufficiently understood (Mahowald et al., 2014;
Croft et al., 2021), and inter-model differences in aerosol optical depth persist across different phases of CMIP and AeroCom
(Wilcox et al., 2013; Vogel et al., 2022).

4 Opportunities

There are several opportunities to advance the understanding of climate responses to perturbations in emissions, atmospheric
composition, and/or the land surface. These are opportunities to augment traditional ESM experiments through (1) the use of
emulators where they are informative, i.e., where a climate response to a perturbation is expected to fall within the solution
space of existing ensembles of ESM experiments, (2) the use of novel global kilometer-scale experiments where they are pos-
sible in light of the tradeoffs along the complexity - resolution - length axes, (3) the development and application of machine
learning across the paradigm to speed up and improve processes in complex ESMs where it is needed, and finally (4) new
process-based evaluation and analysis methodologies that leverage multiple observational datasets to constrain models. More-

over, there is an opportunity to further improve radiative forcing calculations, and diagnostic requests for ESM experiments
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to allow more in-depth scientific analyses with potential synergies with impact assessments. Opportunities arising from novel

capabilities and diagnostics are listed in Table 5-6 and elaborated on in the following sections.
4.1 Augmented ESMs
4.1.1 Machine learning where useful

New opportunities arise from machine learning approaches. These can for instance contribute to improving or speeding up
process representations in ESMs, as well as designing smart tools for post-processing and evaluating ESM output. We see
primarily four areas where machine learning could help in advancing the research in our community. These are (1) to include
faster and more precise representations of processes in models, e.g., for replacing or modifying physical parameterizations that
are thought to not work sufficiently well in all conditions in which they are needed, (2) to develop novel ways to gain a better
understanding of physical and chemical interactions, e.g., through data mining employing machine learning techniques, (3) to
fill observational gaps, e.g., in satellite products to allow the creation of spatially complete data to more easily validate model
results against observational information, and (4) to mimic climate responses to radiative forcing, e.g., to prioritize experiments
for the design of new MIP protocols.

Proofs of the concept of applying machine learning in our research field exist. One example is using deep learning for the
design of new parameterizations (e.g., Rasp et al., 2018; Eyring et al., 2021; Veerman et al., 2021). Atmospheric chemistry
parameterizations can, for instance, be replaced by fast representations based on machine learning (Keller and Evans, 2019;
Shen et al., 2022). The causes of multi-model diversity highlighted in previous studies (Young et al., 2018; Mortier et al., 2020;
Griffiths et al., 2021) can also be elucidated using machine learning. There is an increase in the availability of globally gridded
fused model-observation data products (e.g., Randles et al., 2017; Buchard et al., 2017; Inness et al., 2019; Betancourt et al.,
2021; van Donkelaar et al., 2021; Betancourt et al., 2022) that can be used as benchmarks in model evaluation of atmospheric
composition. Novel aspects of such benchmarks include providing data relevant to health impacts (e.g., DeLang et al., 2021)
and using machine learning techniques for global mapping of atmospheric composition (e.g., Betancourt et al., 2022). Liu
et al. (2022) used deep learning to quantify the sensitivity of surface Og biases to different input variables in a CMIP6 model
(UKESM1), thereby providing a new understanding of biases and enabling future projections of bias-corrected surface Og.
Similarly, such approaches have been used to improve our understanding of model diversity in other aspects of atmospheric
composition, e.g., surface PM (Anderson et al., 2022). Including necessary variables for such algorithms in the model output
of future MIPs can enable a multi-model intercomparison of different contributions to model biases and provide bias-corrected
data for future projections of changes that can be tailored toward impact studies, e.g., concerning future air quality and human
health.

Emulators (e.g., Meinshausen et al., 2011; Leach et al., 2021), a class of models that mimics the behavior of an ESM, can help
to prioritize new ESM experiments. Emulators are trained on output from existing experiments with ESMs, of which there are
now many, e.g., from the CMIP6-endorsed MIPs and several CMIP phases. Unlike ESMs, emulators perform fast calculations

instead of numerical integration of non-linear physical and chemical equations over time on a three-dimensional grid. Both
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techniques allow spatially resolved predictions of temperature and other variables, but emulators can do it at massively reduced
computational costs compared to ESMs (Beusch et al., 2020; Watson-Parris et al., 2021, 2022). Once established, emulators can
be used to explore the climate response to radiative forcing, e.g., to inform experimental designs of future emission scenarios
in CMIP6 (O’Neill et al., 2016). In terms of physically-based emulators of the climate system (i.e. simple climate models),
RFMIP and AerChemMIP experiments were invaluable to determine aerosol ERF, ozone ERF and the factors influencing
methane chemical lifetime. Some of these relationships were developed in the lead-up to IPCC-AR6 WG and used directly in
the report (e.g., Smith et al., 2021a; Thornhill et al., 2021a, b).

Training emulators requires a broad range of ESM experiments such that they interpolate rather than extrapolate into unseen
climate conditions. This training data could be made up of CMIP experiments, an ensemble of idealized experiments (West-
ervelt et al., 2020), or perturbed parameter ensembles where several ESM experiments with systematically different settings
in parameterizations are performed to study sources of model-internal uncertainties (e.g., Johnson et al., 2018; Regayre et al.,
2018; Wild et al., 2020). Emulators have been used for some time (Murphy et al., 2004; Lee et al., 2013, 2016; Yoshioka et al.,
2019; Johnson et al., 2020; Watson-Parris et al., 2020; Wild et al., 2020) and modern techniques also utilize machine learning
to allow validation against observations (Watson-Parris et al., 2021). Emulators can incorporate model spreads similar to the
output from classical MIPs with ESMs. A review of emulation techniques that are routed in statistical mechanics highlights
the potential to further improve emulators for use in climate sciences by using machine learning (Sudakow et al., 2022). The
difficulty of accounting for non-parametric biases of CMIP models in emulators however remains (Jackson et al., 2022). Never-
theless, emulators have already been proven useful to sample parametric differences and to study climate change (e.g., Tebaldi
and Knutti, 2018).

4.1.2 Kilometer-scale experiments where possible

Much finer spatial resolutions with horizontal grid spacings of a few kilometers hold the potential to overcome some of the
long-standing challenges concerning the representation of clouds, precipitation, and circulation in global climate simulations,
which would require a step change in collaboration between climate science and high-performance computing (Slingo et al.,
2022). Representing clouds and circulation correctly in coarse resolution models of several tens to hundreds of kilometers of
grid spacings is an outstanding challenge (e.g., Bony et al., 2015). High spatial resolution naturally improves the representa-
tion of clouds and precipitation, at least in part, due to better resolved orographic effects on atmospheric dynamics and the
explicit simulation of convective cloud systems along with the mesoscale circulation (Oouchi et al., 2009; Berckmans et al.,
2013; Heinold et al., 2013; Klocke et al., 2017; Satoh et al., 2019; Hohenegger et al., 2020), although not all model biases
are eliminated (Caldwell et al., 2021). These processes are tightly connected to atmospheric composition changes and asso-
ciated effects on the atmosphere including feedback mechanisms. Furthermore, the coupling of atmospheric processes with
the land improves in kilometer-scale experiments. It can reduce biases in the simulated temperature and precipitation (Barlage
et al., 2021), which can help to better understand regional climate change that involves land-mediated feedbacks. Moreover,
better-resolved ocean dynamics hold the potential for surprises in understanding climate responses, e.g., with respect to future

projections of temperatures and rare high-impact events (Hewitt et al., 2022).
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Kilometer-scale experiments, therefore, allow new insights into processes in the Earth system following the perturbation-
response paradigm and can leverage the experiences made with regional kilometer-scale climate experiments for different
world regions (e.g., Prein et al., 2015; Liu et al., 2017; Kendon et al., 2019). Kilometer-scale experiments are presently only
possible for climate studies on limited area domains or globally for restricted time periods of a few weeks to years (Hohenegger
et al., 2023). Given the role of resolution in maintaining concentrated emissions, non-linearities in chemistry, and fronts in
the atmospheric transport of pollutants, more kilometer-scale climate change experiments might prove valuable to advance
the understanding of climate and air quality interactions. Such experiments within limited area domains would also help to
alleviate the computational cost of both high process complexity and high spatial resolution.

Global coupled atmosphere-ocean simulations with a few kilometers resolution can be done and progress has been made in
incorporating some representation of atmospheric composition for example the carbon cycle (Hohenegger et al., 2023). For
some questions on atmospheric composition and the associated air quality and climate response, kilometer-scale experiments
are already used, e.g., for a better understanding of aerosol-cloud interactions (Simpkins, 2018; McCoy et al., 2018), which is
one of the key uncertainties in ERF from ESMs (e.g., Smith et al., 2020a). Another question that can be better addressed with
kilometer-scale experiments is the resolution dependence of radiative forcing and feedbacks, especially for those that involve
clouds that are a key uncertainty in our understanding of climate change with ESMs (Stevens and Bony, 2013). Another ques-
tion is to what extent more resolved meteorological processes aid in improving the representation of atmospheric composition
and air quality, e.g., concerning health impacts in urban areas.

The community of the three MIPs will not be able to mainly rely on global kilometer-scale model experiments in CMIP7,
especially in the context of a MIP since fully coupled ESMs with interactive aerosols and chemistry at a resolution of 1km
fast enough to perform multi-decadal simulations are unlikely to be ready in the time of CMIP7. In light of this restriction, we
see two main routes forward for immediately using spatially refined information in our next MIPs. The first possible way is to
use the output from global kilometer-scale experiments that are run for other purposes to drive offline models for aerosols and
chemistry or atmospheric radiative transfer calculations. This approach is suitable to answer some but not all research questions
in our community. For instance, the response of dust emission fluxes to changes in winds and moisture can be addressed with
offline modeling and allows to identify underlying reasons for changes and model differences in the dust response (Fiedler
et al., 2016), but the implication of such dust emission changes for air quality and climate responses can not be quantified with
such an approach. For the latter, regional one- or two-way dynamical downscaling experiments could be used. We perceive
dynamical downscaling as the second main avenue for our near-future work to obtain regionally refined spatial information.
Regional climate modeling is already well developed and organized via CORDEX with a focus on providing regional climate
change information. Regional climate models with the capability to perform experiments with coupled aerosols and chemistry
exist for instance in Europe and the US (e.g., Pietikdinen et al., 2012; Schwantes et al., 2022), but have not been used in
our past MIPs. For CMIP7, UKESM2 and CESM aim also to have regional model configurations. At least two different
regional composition-climate models therefore could exist and be used in future MIPs. The regional models will nevertheless
need output from global ESM experiments with coupled aerosols and chemistry as boundary data for performing the regional

experiments. As such a need for experiments with classical global ESMs is retained, at least for CMIP7, although moving
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towards global kilometer-scale modeling with a sufficient coupling of physical processes to aerosols and chemistry to address

the community’s research interests will be a goal to aspire to.
4.2 Improved diagnostics and analyses
4.2.1 Radiative Forcing Calculation

The concept of radiative forcing is central to the perturbation-response paradigm for understanding climate change (e.g.,
Sherwood et al., 2015), in which radiative forcing is eventually balanced by a temperature response mediated by feedback
processes. Definitions of radiative forcing have evolved over time to allow an increasingly wide range of different climate
forcers or contexts for perturbations to be considered interchangeably (Ramaswamy et al., 2019), schematically depicted in
Figure 3. Early definitions of radiative forcing focused on changes in the net radiation at the tropopause, ideally after the
stratosphere had adjusted to a new radiative equilibrium in the presence of the forcing agent (stratospherically adjusted radiative
forcing, Hansen et al., 1997). These definitions have been generalized in the concept of ERF (ERF, see Sherwood et al., 2015).

Quantifying IRF for ESMs is desirable, even if the IRF of the forcing agent is constrained by other methods. There is
little fundamental uncertainty for IRF of CO5 changes, as indicated by errors on the order of a fraction of a percent from the
most accurate line-by-line radiative transfer models (Pincus et al., 2020). However, due to the high computational demand,
ESMs do not compute the radiative transfer with a line-by-line model. Instead, they rely on parameterizations, speeding up the
computation at the expense of accuracy. Consequently, a model spread in IRF occurs despite so little fundamental uncertainty.
For instance, a spread in COy IRF has persisted across CMIP phases and accounts for a majority of the model spread in the
CO; ERF (Chung and Soden, 2015; Soden et al., 2018; Kramer et al., 2019; Smith et al., 2020a). Quantifying the model’s
IRF, e.g., with double calls of the radiative transfer calculations (Section 2.2), is particularly relevant in light of the model-state
dependence of IRF (Stier et al., 2013; Huang et al., 2016), referring to ESM differences in atmospheric conditions that affect
the radiative transfer. Both CMIP6 models (He et al., 2022) and theoretical arguments (Jeevanjee et al., 2021) suggest that CO2
IRF is correlated with temperature, i.e., CO2 IRF increases as the surface warms and the stratosphere cools. This feedback-like
effect on radiative forcing is thought to account for a ~10% increase in CO; IRF for present-day against pre-industrial (He
et al., 2022) and ~30% for quadrupled CO, (Smith et al., 2020b). It requires clarity in the experimental design and reporting
of resulting ERF estimates to disentangle the contributions of forcing from feedbacks in future experiments.

There are several methods to quantify ERF across ESMs that can be further improved and standardized (Figure 3). As
mentioned earlier (Section 2.2), ERF is often computed from model experiments using prescribed sea-surface temperatures
and sea ice (fixed-SST method; Forster et al., 2016) and has been adopted in REMIP (Figure 6). RFMIP requested 30-year-
long experiments for ERF calculations (Pincus et al., 2016) following recommendations based on CMIP5 output (Forster et al.,
2016). That experiment length proved to be sufficient for ERF estimates of most climate forcers in RFEMIP, e.g., for ERF of
anthropogenic aerosols although more simulated decades further improve the precision of the ERF calculation (Fiedler et al.,
2017, 2019). Differently from RFMIP, AerChemMIP found that a spin-up time associated with long-lived trace gases, e.g.

halocarbons, is necessary before calculating the ERF. This meant that the approach of 30-year-long time slice experiments was
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not entirely appropriate for the AerChemMIP experiments for all individual climate forcers (Section 3.1). The longer spin-up
period should be accounted for in future requests for new experiments for ERF calculations of such climate forcers.

The fixed-SST method has two advantages compared to the traditional approach based on coupled atmosphere-ocean ex-
periments (Gregory et al., 2004). Firstly, the impact of internal variability on ERF estimates is reduced through sufficiently
long experiments with prescribed sea-surface conditions (Forster et al., 2016; Fiedler et al., 2017) that are computationally less
expensive. Secondly, the use of fully coupled experiments to estimate ERF relies on a linear relationship between ERF and
temperature, now known not to be true in general (Armour, 2017; Rugenstein et al., 2020; Smith and Forster, 2021b), and can
lead to ERF estimates that differ from the results of fixed-SST experiments (Forster et al., 2016).

One weakness of fixed-SST experiments to estimate ERF is the adjustment of land-surface temperatures. A change in land-
surface temperatures affects the energy budget, leading to biased estimates of ERF at the order of 10% (Smith et al., 2020a).
Such unwanted influences on the ERF estimate can be post-corrected (Tang et al., 2019; Smith et al., 2020a). If the capability
of fixed land-surface temperatures (Andrews et al., 2021) was facilitated in more ESMs, biases in ERF arising from surface
temperature adjustments would be virtually eliminated in the future. If adopting the fixed sea- and land-surface temperature
method (Figure 3) in a MIP becomes feasible, the change in the radiation budget would then be equal to the change in the energy
budget of the system, which overcomes the limitations of other methods for estimating ERF. Prescribing sea- and land-surface
temperature is different from the experiments carried out for CMIP6 and RFMIP. The requested experiments used prescribed
sea-surface temperatures and sea ice following the experimental design of the Atmosphere Model Intercomparison Project
(AMIP, Gates, 1992), but the land-surface temperatures were freely evolving. Prescribing the sea ice, sea- and land-surface
temperatures has not been done in a MIP to date.

The radiative forcing of anthropogenic aerosols depends on the optical properties and the effects on clouds. Improved
diagnostics and observational constraints in the output analysis for aerosol burden and optical properties would be useful for
better understanding the model diversity in the associated radiative forcing and the climate response. As discussed in Section
3, the significant diversity across ESMs in the simulated distributions of aerosol burden, optical properties, radiative effects,
and the resulting climate responses, including temperature and precipitation, limits building confidence in model projections
of climate change. Analysis of relevant and correlated model diagnostics together with observational constraints can shed
light on the source of diversity in the full cause-and-effect chain and inform improvements in the treatment of aerosols in
models. For example, Samset (2022) underscores the diversity in aerosol absorption as the dominant cause of model diversity in
historical precipitation changes in CMIP6. RFMIP experiments point to overestimated aerosol absorption from anthropogenic
black carbon and a relatively small share of natural aerosol absorption which leads to direct radiative effects of anthropogenic
aerosols in some CMIP6 models which are implausible in light of other lines of evidence (Fiedler et al., 2023). That multi-
model assessment was not as broad as it could have been due to the limited availability of requested output for aerosol properties
and diagnostic calls to the radiative transfer scheme for aerosol effects in the CMIP6 models. Wider availability of relevant
output from the next phases of RFMIP and AerChemMIP would allow deeper exploration of the inter-model differences in the

radiative forcing of anthropogenic aerosols.
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4.2.2 Synergies with Impact Assessments

There is the opportunity to increase synergies with impact assessments of climate change through improved model diagnostics.
A common tropopause diagnostic, included for the first time in CMIP6 models due to AerChemMIP, was available for the cal-
culation of tropospheric O3 burden in a consistent manner. However, the tropopause height was found to vary across the models,
and as Og is found in large concentrations in the stratosphere and upper troposphere, the tropopause definition contributed to
the model spread in the calculated tropospheric O3 burden. Through TriMIP, it was identified that a tropopause defined by the
O3 mixing ratio results in a smaller model spread in tropospheric O3, which is relevant for air quality assessments.

Moreover, not all ESMs currently output diagnostics for PM, and those models that calculate PM use different formulas
and combinations of species. Such differences make any intercomparison of PM between models and observations difficult.
To circumvent this issue, AerChemMIP tested (Allen et al., 2020; Turnock et al., 2020; Allen et al., 2021) estimating PM from
model output following Fiore et al. (2012), but associated uncertainties are hard to quantify. Future MIPs could standardize
calculations for PMs 5 and PM;( across experiments, e.g., consistent with air quality assessments following the standards of
the World Health Organization. It would allow the use of PM measurements for air quality monitoring as an independent
validation data set and could create a bridge to health impact studies.

Another opportunity to connect more with impact-oriented research can arise from ESM experiments for additional future
socio-economic and mitigation-based pathways such that uncertainty in emission developments, including mitigation and asso-
ciated impacts of atmospheric composition changes, can be systematically explored. In addition to new phases of AerChemMIP
and RFMIP, examples are a MIP on future methane removal (Jackson et al., 2021) in support of potential climate solutions
or on fire emission developments possibly accounting for the new capability to represent fire feedbacks (Teixeira et al., 2021)
and leveraging on experiences made in the Fire Model Intercomparison Project (FireMIP, Rabin et al., 2017). If stronger in-
teractions with communities concerned with climate-change impacts would be pursued, e.g., with the Vulnerability, Impacts,
Adaptation and Climate Services (VIACS, Ruane et al., 2016) and the Inter-Sectoral Impact Model Intercomparison Project
(ISIMIP, Frieler et al., 2017) community, the usage of output from MIPs for societally relevant problems could be enhanced.
Such engagement could lead to a better integrated understanding of links between climate change, extremes, air quality, and

the impacts in different sectors, e.g., health, energy, and economics, for climate change preparedness.

5 Conclusions

The existence of TriMIP was coincidental, yet the joint community of three MIPs has proven valuable for advancing the re-
search field on atmospheric composition and associated air quality and climate responses. RFMIP helped to establish a consis-
tent practice for diagnosing radiative forcing from CMIP6 models, and having preindustrial experiments across AerChemMIP