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Abstract. A particle-based cloud model was developed for ultrahigh-resolution numerical simulation of warm clouds. Simpli-

fied cloud microphysics schemes have already made meter-scale numerical experiments feasible; however, such schemes are

based on empirical assumptions, and hence, they contain huge uncertainties. The super-droplet method (SDM) is promising

for cloud microphysical process modeling; it is based on a particle-based approach and does not make any assumptions for the

droplet size distributions. However, meter-scale numerical experiments using the SDM are not feasible even on the existing5

high-end supercomputers because of its high computational cost. In the present study, we optimized and sophisticated the SDM

for ultrahigh resolution simulations. The contributions of our work are as follows: (1) The uniform sampling method is not suit-

able when dealing with a large number of super-droplets (SDs). Hence, we developed a new initialization method for sampling

SDs from a real droplet population. These SDs can be used for simulating spatial resolutions between centimeter and meter

scales. (2) We improved the SDM algorithm to achieve high performance by reducing data movement and simplifying loop10

bodies by applying the concept of effective resolution. The improved algorithms can be applied to Fujitsu A64FX processor,

and most of them are also effective on other many-core CPUs and graphics processing units (GPUs). Warm bubble experiments

revealed that the particle-steps per time for the improved algorithms is 57.6 times faster than those for the original SDM. In

the case of shallow cumuli, the simulation times when using the new SDM with 64–128 SDs per cell are shorter than those

for a bin method with 32 bins and are comparable to those for a two-moment bulk method. (3) Using supercomputer Fugaku,15

we demonstrated that a numerical experiment with 2m resolution and 128 SDs per cell covering 13,8242× 3,072m3 domain

is possible. The number of grids and SDs are 104 and 442 times, respectively, those of the current state-of-the-art experiment.

Our numerical model exhibited perfect weak scaling up to 36,864 nodes, which account for 23% of the total system. The sim-

ulation achieves 7.97 PFLOPS, 7.04% of peak ratio for overall performance, and the simulation time for SDM is 2.86× 1013

particle·steps/s. Several challenges, such as optimization for mixed-phase clouds, inclusion of terrain, and long-time integra-20

tions, still remain, and our study will also contribute toward solving them. The developed model enables us to study turbulence

and microphysics processes over a wide range of scales using combinations of DNS, laboratory experiments, and field studies.

We believe that our approach advances the scientific understanding of clouds and contributes to reducing the uncertainties of

weather simulation and climate projection.
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1 Introduction25

Shallow clouds greatly affect the Earth’s energy budget, and they are one of the essential sources of uncertainty in weather

prediction and climate projection (Stevens et al., 2005). Since various processes affect the behavior of clouds, understanding

the individual processes and their interactions is critical. In particular, cloud droplets interact with turbulence over a wide range

of scales (Bodenschatz et al., 2010) in phenomena such as entrainment and mixing and enhancement of the collisional growth

of droplets. Hence, numerical modeling of these processes and model evaluation toward the quantification and reduction of30

uncertainty are challenges in the fields of weather and climate science.

Meanwhile, accurate numerical simulations of stratocumulus clouds are difficult because of the presence of a sharp inversion

layer on the scale of several meters. Mellado et al. (2018) suggests that combining the direct numerical simulation (DNS)

approach, which sets the eddy viscosity constant, and large-eddy simulation (LES) approach can accelerate research on related

processes. Following their approach, Schulz and Mellado (2018) investigated the interactions between mean vertical wind35

shear and in-cloud turbulence driven by evaporative and radiative cooling, and Akinlabi et al. (2019) estimated turbulent

kinetic energy. However, since they used saturation adjustment for calculating clouds, their results do not include the influence

of detailed microphysics processes and their interactions with entrainment-mixing and supersaturation fluctuations (Cooper,

1989), which in turn affect the radiation properties.

To incorporate the details of cloud processes into such simulations, it is essential to remove the empirical assumptions on40

the droplet size distributions (DSD) rather than using a bulk cloud microphysics scheme. We should use a sophisticated mi-

crophysical scheme such as a bin method and a particle-based Lagrangian cloud microphysical scheme (Shima et al., 2009). If

ultrahigh resolution simulations could be performed using a sophisticated microphysical scheme in large domains, we could use

a DNS-based approach (Mellado et al., 2018) and compare these simulations with small-scale numerical studies (Grabowski

and Wang, 2013) and observational studies on a laboratory scale (Chang et al., 2016; Shaw et al., 2020) to field measurement45

(Brenguier et al., 2011) scales. Such simulations may help understand the origins of the uncertainty in the clouds and their inter-

actions with related processes. However, in reality, only relatively low-resolution simulations are possible using sophisticated

microphysical schemes owing to their high computational cost. For example, Shima et al. (2020) recently extended the SDM

to predict the morphology of ice particles and reported that the computational resources of the mixed-phase SDM are 30 times

that of the two-moment bulk method of Seiki and Nakajima (2014). To the best of the author’s knowledge, the previous studies50

by Sato et al. (2017, 2018) are possibly the state-of-the-art numerical experiments on the largest computational scale as yet.

To investigate the sensitivity of nonprecipitating shallow cumulus to spatial resolution, they performed numerical experiments

with spatial resolutions up to 6.25m/5m (horizontal/vertical) with 30 super-droplets (SDs) per cell using supercomputer K.

They found that the highest spatial resolution used in their study is sufficient for achieving grid convergence of the cloud cover

but not for the convergence of cloud microphysical properties. For solutions of the microphysical properties to converge with55

increasing spatial resolution, it is necessary to reduce the vertical grid length (Grabowski and Jarecka, 2015) for simulating the

number of activated droplets accurately and to maintain the aspect ratio of the grid length close to 1 for turbulence statistics

(Nishizawa et al., 2015).
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Nevertheless, using a sophisticated microphysical scheme for high-resolution simulations remains a challenge. One approach

to cope with this difficulty is to await the development of faster computers. However, single-core CPU performance is not60

increasing according to Moore’s law anymore. Therefore, to take advantage of the state-of-the-art supercomputers, we must

adapt our numerical models to their hardware design. Another solution to overcome the challenge is to use the rapidly advancing

data scientific approaches. Seifert and Rasp (2020) developed a surrogate model of cloud microphysics from training data

using machine learning. Tong and Xue (2008) estimated the parameters of the conventional cloud microphysics models by data

assimilation to quantify and reduce parameter uncertainty. However, these methods cannot make predictions beyond outside of65

the training data or enhance the representation power of the bulk cloud microphysics schemes. The Twomey-SDM proposed

by Grabowski et al. (2018) could be used to reduce the computational cost of a sophisticated model; in this SDM, only cloud

and rain droplet data are stored as SDs. However, the Twomey-SDM cannot incorporate the hysteresis effect of haze droplets

(Abade et al., 2018). Incorporating this effect is necessary for reproducing entrainment and detrainment when eddies cause the

same droplets to activate or deactivate in a short time at the cloud interface. In addition, since clouds localize at multiple levels70

of hierarchy—from a single cloud to cloud clusters, appropriate load balancing is necessary for large-scale problems using

domain decomposition parallelization if the computational cost for cloud and rain droplets is high. Although such dynamic

load balancing is adopted in some plasma simulations (Nakashima et al., 2009) using the particle-in-cell method (PIC), which

solves a coupled system of particles in cells and variables at cells in the same way as the SDM, dynamic load balancing is

not a good option for weather and climate models. This is because such codes are complicated, and changes in dynamic load75

balancing can affect the computational performance of other components.

In this study, we attempted ultrahigh-resolution cloud simulations with a sophisticated microphysical scheme via the opti-

mization and sophistication of the SDM. This approach is regarded a technical approach and has not been explored much though

it is a crucial approach. Our approach is based on the SDM, which is robust to the difficulties caused by dimensionality for more

complex problems, is free from the numerical broadening of the DSD and can be used even when the Smoluchowski equation80

for collisional growth of droplets is invalid (see Grabowski et al. (2019); Morrison et al. (2020) and the references therein). We

focus on the optimization on Fujitsu A64FX processor, which is used in supercomputer Fugaku. We designed cache-efficient

codes and overcame the difficulties in achieving high performance for the PIC method based on the domain knowledge. To

achieve this goal, we reduced data movement and parallelization using single instruction / multiple data (SIMD) instructions

for most calculations.85

In addition, there are two potentially important aspects of model improvement for ultrahigh-resolution experiments with the

SDM. One aspect is the initialization for the SDM. In the SDM, we need to sample representative droplets from many real

droplets to calculate the microphysical processes. Shima et al. (2020) used an importance sampling method to sample rare-

state SDs more frequently to improve the convergence of calculations of collision–coalescence. However, when we sample

many SDs for high-resolution experiments, the number of SDs may exceed the number of real droplets for rare-state SDs. The90

second aspect is SD movement. In the SDM, the divergence at the position of SDs calculated from interpolated velocity should

be identical to divergence at the cell to guarantee consistency of SD number density and air density (Grabowski et al., 2018).

However, the interpolation used by Grabowski et al. (2018) only achieves first-order spatial accuracy, and the effect of vortical
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and shear flows on the subgrid scale are not incorporated in SD movement. Using their scheme can introduce large errors in

particle mixing calculations.95

The remainder of this paper is organized as follows. In Sect. 2, we describe and review the basic equations used in our

numerical model called the SCALE-SDM, target problem, and computers to be used. Section 3 describes the main contributions

in this study for the optimization and sophistication of the model. We first describe the model framework. Subsequently, we

describe the development of a new initialization method for the SDM and describe optimizations of each process in the SDM

(SD movement, activation/deactivation, and condensation/evaporation, collision and coalescence, sorting for SDs). In Sect. 4,100

we evaluate the computational and physical performances of the new SCALE-SDM in two test cases. We also compare our

results with those obtained with the same numerical model using a two-moment bulk and bin methods and with those obtained

using the original SCALE-SDM. In Sect. 5, we evaluate the applicability of our model to large-scale problems by weak scaling

and discuss the detailed computational performance. Section 6 discusses the challenges for optimizing processes in mixed-

phase clouds, the inclusion of the terrain, and long-time integration. We also discuss the possibilities of achieving further high105

performance in current and future computers. We summarize our main contributions in Sect. 7.

2 Overview of the problem

2.1 Governing equations

We use the fully-compressible nonhydrostatic equations as the governing equations for atmospheric flow. To simplify the

treatment of water substances in the SDM, only moist air (i.e., dry air and vapor; aerosol particles or cloud/rain droplets are110

excluded) is considered in the basic equations for atmospheric flow. Although anelastic equations are often used to perform

high-resolution numerical experiments, we encountered several problems in using them in this study. First, when the domain is

decomposed using message passing interface (MPI), communications across all subdomains are unavoidable, and the network

bandwidth becomes a bottleneck for the calculations. Moreover, the time spent in collective communication increases with the

number of processes. For some cases, the network bandwidth bottleneck may be a minor problem even on large-scale computers115

since the time step to integrate anelastic equations is not constrained by the high acoustic wave velocity. Nevertheless, since

we need more processes to compute wide domains in higher resolution and since we need to use the SDM, we cannot shorten

the time for collective communication easily. Second, the anelastic equations assume horizontally uniform mean fields and are

not appropriate for computing wider domains.

The basic equations are discretized using a finite volume method on the Arakawa-C grid. For solving time evolution of120

dynamical variables and water-vapor mass mixing ratio, the advection terms are discretized by the fifth-order upwind difference

scheme (UD5). Since numerical diffusion is already included implicitly in UD5, we do not need explicit numerical diffusion to

stabilize the dynamical step calculations. Wang et al. (2009) encourages the use of the Flux Corrected Transport (FCT) scheme

to ensure monotonicity for mass and number mixing ratio of droplets to simulate aerosol–cloud interactions; however, we use

the FCT scheme to ensure only positive-definiteness for the water-vapor mass mixing ratio to obtain finer structures since it is125

the only tracer in our case.
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The time evolutions of dynamical variables during the ∆t interval are split into short time steps ∆tdyn associated with

acoustic waves and longer time steps for tracer advection ∆tadv and physical processes ∆tphy. The classical four-stage fourth-

order Runge-Kutta method is used for short time steps, and the three-stage Runge-Kutta method (Wicker and Skamarock,

2002) is used for tracer advection. Unless otherwise noted, ∆t = ∆tadv = ∆tphy. Changes in the dynamic variables caused by130

physical processes are calculated using tendencies, which are assumed constant during ∆tadv.

The SDM is used as a cloud microphysics scheme. In this study, only warm cloud processes are considered: movement,

activation/deactivation and condensation/evaporation, and collision–coalescence. In the SDM, each SD has a set of attributes

that represent droplet characteristics. In this case, the data on SDs necessary to describe time evolution are the position in 3D

space x, droplet radius R, number of real droplets (which we refer to as multiplicity ξ), and the aerosol mass dissolved in a135

droplet M . The ith SD moves according to the wind and fall with terminal velocity:

vi = U(xi)− v∞i (ρ(xi),P (xi),T (xi),Ri)ez,
dxi

dt
= vi, (1)

where U is the air velocity at the position x; ρ is the air density; P is the atmospheric pressure; T is the temperature; ez is the

unit vector in vertical positive direction; v∞ is the terminal velocity; v is the velocity of the SD; t is the time. The midpoint

method is used for time integration to solve Eq. (1). We also need to specify a method for determining velocity U at the position140

of the SDs, which we will describe in Sect. 3.3.2.

Activation/deactivation and condensation/evaporation are represented by assuming that the SD radius R evolves according

to the Köhler theory:

Ri
dRi

dt
= A(xi)

[
S(xi)− 1− a(T (xi))

Ri
+

b(Mi)
R3

i

]
, (2)

where S is the saturation ratio, and A is a function of the temperature at the position, and it depends on the heat conductivity145

and vapor diffusivity. The terms a/R and b/R3 represent the curvature effect and the solute effect, respectively. See Shima

et al. (2020) for the specific forms of A, a, and b since they are not important here. A method to solve Eq. (2) is described in

Sect. 3.3.3.

The collision–coalescence process is calculated using the algorithm proposed by Shima et al. (2009). If we consider all

possible pairs of droplets to calculate collision–coalescence, the computational complexity is of order O(N2). However, their150

method considers only nonoverlapping pairs of droplets to reduce the computational complexity to the order of O(N). Hence,

the obtained coalescence probability is low; this parameter was corrected to make it consistent with the actual probability.

Indeed, Unterstrasser et al. (2020) showed that the method proposed by Shima et al. (2009), which they referred to as the

all-or-nothing algorithm with linear sampling, is suitable for problems when computational time is critical.

The Smagorinsky–Lilly type scheme with the stratification effect (Brown et al., 1994) is used as a turbulent scheme for LES.155

In the SDM, we do not incorporate the effect of turbulent fluctuations on movement, activation/deactivation and condensa-

tion/evaporation, and collision–coalescence. This is because the number of the additional attributes of the SD (three subgrid

velocities and supersaturation fluctuation) is almost equal to the number of the original attributes, and the effect of supersatu-

ration fluctuation on the spectral width of the DSD becomes relatively small when grid length is finer than 10m (Grabowski
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and Abade, 2017). As we will see later, the SDM is a memory-intensive application. In this case, the approach of increas-160

ing the number of computations while increasing spatial resolution is better than increasing the amount of memory to utilize

supercomputers.

2.2 Target problem

Table 1. Comparison of model computational configurations among previous studies and this study. The last row shows the ratios of the

parameters used in Sato et al. (2017) to those used in this study.

# of grid points # of SDs per cell step (DYN) step (MP) grid length # of nodes (system usage)

Mellado et al. (2018) 5,120× 5,120× 1,280 60,000 60,000 1.1 m

Sato et al. (2017) 1,152× 1,024× 600 30 450,000 45,000 6.25/5m
12,288 (14.8%)

of the K

This study 6,912× 6,912× 1,536 128 782,609 48,913 2m
36,864 (23.2%)

of the Fugaku

Ratio 103.68 4.267 1.739 1.087 2.901−1 3

We describe the final target problem in this study and compare the problem size with that considered in Mellado et al.

(2018) and Sato et al. (2017); high-resolution numerical experiments on shallow clouds were performed in these studies.165

Mellado et al. (2018) used the numerical settings of the first research flight of the second Dynamics and Chemistry of Marine

Stratocumulus field campaign (DYCOMS-II RF01) (Stevens et al., 2005) to simulate nocturnal stratocumulus. Sato et al. (2017)

used the numerical settings of the Barbados Oceanographic and Meteorological Experiment (BOMEX) (Siebesma et al., 2003)

to simulate shallow trade-wind cumuli. In this study, we simulated the BOMEX case but with much higher resolutions. The

main computational parameters of the two previous studies and our study are listed in Table 1. Here, the time steps for 1 h time170

integration are shown in the third and fourth columns.

Mellado et al. (2018) used anelastic equations with saturation adjustment for calculating clouds. They performed large-scale

numerical experiments using a petascale supercomputer (Blue Gene/Q system supercomputer JUQUEEN at Jülich Supercom-

puting Centre). We also note that similar numerical experiments with a larger number of grid points (5,120×5,120×2,048) were

performed by Schulz and Mellado (2018) using the same supercomputer. Meanwhile, Sato et al. (2017) used fully-compressible175

equations with the SDM and performed high-resolution numerical experiments of BOMEX using petascale supercomputer K.

The time steps for the dynamical process used in Sato et al. (2017) are one order of magnitude larger than those used in Mel-

lado et al. (2018). In addition, because of the high computational cost of the SDM, Sato et al. (2017) used fewer grid points

though they used 14.8% of the total system of supercomputer K. Unlike Sato et al. (2017), we performed ultrahigh resolution

numerical simulations of BOMEX with 3
√

(6.252× 5)/23 ∼ 2.901 times higher resolution, 104 times more grid points, and180

442 times more SDs, thereby using 23.8% of the total system of supercomputer Fugaku. The computational performance of

this simulation will be described in detail in Sect. 5.2.
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2.3 Target architecture

Table 2. Size and bandwidth of the cache and memory for Fujitsu A64FX processor.

L1D cache L1D cache BW L2 cache(shared in CMG) L2 cache BW HBM2 Memory BW

64 KiB ×48 11 TB/s 8 MiB ×4 3.6 TB/s 32 GB 1,024 GB/s

In this study, we mainly used computers equipped with Fujitsu A64FX processors to evaluate the computational and phys-

ical performance of the new model, SCALE-SDM. In this section, we summarize the essential features and functions of the185

computers.

A64FX is a CPU that adopts scalable vector extension (SVE), an extension of the Armv8.2-a instruction set architec-

ture. A64FX has 48 computing cores and two or four assistant cores. Each CPU has four NUMA nodes called the core

memory groups (CMGs). One core has an L1 cache of 64 KiB and can execute SVE-based 512-bit vector operations at

2.0 GHz in the normal mode (2.2 GHz in the boost mode) with two FMA units. Each CMG shares an L2 cache of 8 MiB190

and has high bandwidth memory 2 (HBM2) of 32 GB (bandwidth of 256 GB/s). The theoretical peak performance per node

is 3.072 TFLOPS (3.3792 TFLOPS for double precision (FP64)). Supercomputer Fugaku has 158,976 nodes with a 6D torus

shape (X,Y,Z,a,b,c) = (24,23,24,2,3,2), and the nodes are connected by Tofu Interconnect D. The cache and memory per-

formances, which are particularly important for this study, are summarized in Table 2. A64FX has the best power performance

among the supercomputers equipped with a many-core general-purpose CPU (Fugaku full system, 15.418 GFlops/W, Green500195

2022/6) and has high memory bandwidth comparable to a GPU. In addition, SVE can execute not only FP64, single-precision

(FP32), and 32 bytes integer (INT32) calculations but also low-precision 16 bytes floating point number (FP16) and 16 bytes

integer (INT16) calculations.

Fugaku and FX1000 have a power management function called the Power Knob to improve the computational power per-

formance. Users can operate the Power API (Grant et al., 2016) to control the clock frequency (Normal mode: 2.0 GHz, Boost200

mode: 2.2 GHz) and switch to eco-mode, which uses only one of the two floating-point pipelines.

Fugaku was designed to achieve 100 times the effective performance of K through hardware and application co-design.

The actual performance of Fugaku is 46 (50.6) times the peak performance and 30.7 times the memory bandwidth of K. In

addition, using FP32 or FP16, the amount of data calculated by single instruction and that transferred from memory doubles or

quadruples, respectively, and by optimizing a code according to its characteristics, users can potentially achieve a further two205

or four times higher effective peak performance, respectively. Due to the high memory bandwidth of Fugaku, its byte per flops

ratio (B/F) is 0.33 (0.30), which is not too small compared to that of the K (B/F=0.5). This is an advantage for applications in

which the memory bandwidth is crucial for performance.

Although this study describes optimizations for A64FX, most of them can be applied to many-core general-purpose CPUs

such as Intel Xeon equipped with x86-64 instruction set architecture. For such generalization, please see Sect. 3.3.1 with210

the parameters in Table 2 replaced with those for the x86-64 architecture. However, optimization using accelerators such as
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GPUs is beyond the scope of this study. However, since the applicability of this study to accelerators is necessary for future

high-performance computing, we discuss some differences between CPU-based and GPU-based approaches.

To map CPU-based optimization to GPU-based optimization, the L1 cache of the CPU can be read as the register file

(for storing most frequently accessed data), L1 cache, and shared memory; OpenMP parallelization can be read as streaming215

multiprocessors parallelization for NVIDIA GPU (or Compute Unite for AMD GPU); MPI processes can be read as the

number of GPUs. In addition, since the memory bandwidth of one node of A64FX is comparable to that of a single GPU (e.g.,

NVIDIA Tesla V100: 900 GB/s, A100: 1,555 GB/s), a comparison in terms of memory throughput is reasonable if we assume

that all the SD information is on GPU memory. Although the approaches for cache and memory optimization of the CPU and

GPU are similar, those for calculation optimization may differ. For example, GPUs are not good for reduction calculations,220

such as calculating the liquid water content in a cell from the SDs in the cell. The current trend for supercomputers is to use

heterogeneous systems comprising both CPUs and GPUs as they provide excellent price performance. Nevertheless, memory

bandwidth is essential for weather and climate models, including the SDM. Thus, it is not easy to achieve higher performance

unless the entire simulation can be handled only in GPUs.

The numerical model UWLCM (Arabas et al., 2015; Dziekan et al., 2019; Dziekan and Zmijewski, 2022) utilized GPUs225

for the SDM and CPUs for other processes, and Dziekan and Zmijewski (2022) achieved 10–120 times faster computations

compared with CPU-only computations. Still, the time-to-solution using the SDM is 8 times longer than the bulk method.

Although the CPU used had a lower bandwidth memory compared with the GPU for the dynamical core and the bulk method,

we used a CPU with a higher bandwidth memory for all processes. This is an advantage when the entire simulation must be

accelerated essential to reduce the time-to-solution.230

3 Numerical model

3.1 Model framework of SCALE

We used SCALE-RM (Scalable Computing for Advanced Library and Environment-Regional Model, Nishizawa et al., 2015;

Sato et al., 2015) as the development platform. SCALE is a library that consists of multiple components rather than a numerical

model. Users can use it as a numerical model. It is also possible to compose unit tests and new components, and to combine235

them with the model easily. In addition, since only few dependencies exist among the modules, it facilitates data exchange

between multiple grid systems.

We adopted the hybrid type of three- and two-dimensional (3D and 2D) domain decompositions using MPI. For 3D de-

composition, we denoted the numbers of MPI processes for the x,y,and z axes as Nx,Ny , and Nz , respectively. For 2D

decomposition, we decomposed the x and y axes into N2D
x and N2D

y domains, respectively. Here, we set N2D
x = Nx ·Nxl and240

N2D
y = Ny ·Nyl such that Nz = Nxl ·Nyl. Then, the total number of MPI processes N is common, i.e., N = Nx ·Ny ·Nz =

N2D
x ·N2D

y . These two types of domain decomposition were utilized depending on the type of computations. The 3D domain

decomposition is suitable for dynamical processes because frequent neighborhood communications are required to integrate

short time steps for acoustic waves; further, the amount of communication is less because of the small ratio of halos to the
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inner grids. On the other hand, 2D domain decomposition is suitable for the SDM. As described later, since the number density245

of SDs is initialized proportional to the air density, the amount of computations varies vertically in a stratified atmosphere.

In addition, the communication amount varies depending on whether clouds are within the domain. If 3D decomposition is

used, domains without any cloud are likely, e.g., near the top and bottom boundaries; such domains may lead to a drastic load

imbalance.

A drawback of the 3D domain decomposition is that it is more likely to suffer from network congestion; further, there will250

be hardware limitations on the number of simultaneous communications due to the increase in the number of processes in a

neighborhood. The number of processes is 26 for 3D domain decomposition, while it is eight for 2D domain decomposition.

In addition, the throughput of communication decreases for smaller message sizes. In this study, we eliminated all unnecessary

communications from the diagonal 20 directions and pack communications for each neighborhood direction to the maximum

extent possible to gain high communication throughput. Communication time was overlapped with computation time during255

the dynamics process to reduce the time-to-solution.

3.2 Initialization of super-droplets

Although the SDM makes no prior assumptions on the DSD, the accuracy of the prediction depends on the initialization of the

sampling of SDs from a vast number of real droplets. Shima et al. (2009) first used the constant multiplicity method, which

samples SDs from normalized aerosol distribution. Further, Arabas and Shima (2013), Sato et al. (2017), and Shima et al.260

(2020) used the uniform sampling method, in which SDs were sampled from a uniform distribution of the log of the aerosol

dry radius to sample droplets that rare but important—for example, large droplets that may trigger rain. Indeed, Unterstrasser

et al. (2017) showed that collision–coalescence calculations converge faster for a given number of SDs if the dynamic range

of multiplicity is broader (i.e., the uniform sampling method), and it converges slower if the constant multiplicity method is

used. However, owing to the broad dynamic range of the uniform sampling method, some multiplicities obtained using this265

method may fall below 1 if too many SDs are used to increase the spatial resolution. In this case, since multiplicity is stored as

an integer type, some SDs will be cast to 0, and the number of SDs and real droplets will decrease.

One approach to solve this problem is to allow multiplicity to be a real number (floating point number) (Unterstrasser et al.,

2017). The SDM can handle discrete and continuous systems because its formulation is based on the stochastic and discrete

nature of clouds. Nevertheless, simulations using this method may not behave as discrete systems in a small coalescence270

volume where the Smoluchowski equations do not hold (Dziekan and Pawlowska, 2017).

Another approach to solve the deterioration of multiplicity is to cast multiplicity from a floating point number to an integer

by stochastic rounding (Connolly et al., 2021). For example, let k be an integer, and let us set interval [k,k + 1] that contains

a real number l; then, l rounds to k with probability k + 1− l and to k + 1 with probability l− k. Hence, an expected value

obtained by the stochastic rounding process is consistent with the original real number l. Thus, the sampling accuracy does275

not decrease. Although this approach cannot prevent a decrease in the SDs, it can prevent the decrease in the number of real

droplets statistically.
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However, we can consider that these approaches are not optimal for ultrahigh-resolution simulations. Unterstrasser et al.

(2017)’s discussion was based on the result of a box model, which is a closed system and requires a large ensemble of simu-

lations to obtain robust statistics. In practical 3D simulations, the cloud microphysics field fluctuates spatiotemporally because280

of cloud dynamics and statistics in finite samples. If we sample a vast number of SDs, it is more natural to use a method that is

closer to the constant multiplicity method. If such a method is used, we expect rare droplets to exist only in some cells rather

than in every cell—this is a more natural continuation toward discrete systems. How can we develop such an initialization

method? In addition, previous studies focused on collision–coalescence, but the sensitivity of cloud microphysical variabil-

ity related to condensation/evaporation to SD initialization too must be considered. Against this background, which type of285

initialization is better overall?

To develop a new initialization method, we considered the simple method of generating a proposal distribution that connects

the uniform sampling method to the constant multiplicity method. We chose the log of aerosol dry radius logr in the interval

between rmin to rmax as the random variable. We denote an initial aerosol distribution as n(logr) and its normalization as

n̂(logr). The relation between ξ, n, and the proposal distribution p was given by Shima et al. (2020) as290

ξ(logr) =
n(logr)

NSDp(logr)
, (3)

where, NSD is the SD number concentration. In the following explanation, for simplicity, we discretize the random variable

into k bins and nondimensionalize the bin width to 1.

We define a probability simplex, which is a set of discretized probability distributions as follows:

Ck =

{
a ∈Rk : ai ≥ 0,

k∑

i=1

ai = 1

}
. (4)295

Let us denote the discretized probability distribution of n̂ as b1 ∈ Ck and the uniform distribution as b2 ∈ Ck. Then, we define

an α-weighted mean distribution a as the Fréchet mean of b1 and b2:

a = argmin
a∈Ck

{(1−α)L(a,b1) +αL(a,b2)} , (5)

where L is a metric to measure the distance between two distributions. A distribution a corresponds to a discretized and

nondimensionalized proposal distribution of p. When the argument of the optimization is a function, L2 norm is often used as300

the metric L. In our case, since the argument is a probability distribution, the Wasserstein distance W2 (Santambrogio, 2015;

Peyré et al., 2019), which is a metric that measures the distance between two probability distributions, is a more natural choice.

Several methods have been proposed to obtain solutions in Eq. (5) numerically. One method is to regularize the optimization

problem of Eq. (5) by using the entropic regularized Sinkhorn distance Sγ (Cuturi, 2013; Schmitz et al., 2018) (γ is the regu-

larization parameter) instead of the Wasserstein distance W 2
2 . Another method is to use displacement interpolation (McCann,305

1997), which is an equivalent formulation of Eq. (5). We used the method based on the Sinkhorn distance with γ = 10−4 in

Sect. 5. In this section and Sect. 4, we used the displacement interpolation specialized for the case where the random variable

is one-dimensional to solve Eq. (5) more accurately. The specific forms of the Wasserstein distance W2, Sinkhorn distance Sγ ,

and displacement interpolation are described in Appendix A.
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Figure 1. (a) Normalized aerosol distribution given by VanZanten et al. (2011) (bold black line) and proposal distributions used for sampling

(α = 0–1). The bold red line shows the proposal distribution used for the uniform sampling method. (b) Relationship between dry aerosol

radius and multiplicity when ∆V = 23 m3 and 128 SDs per cell are sampled. (c) Distribution obtained by sampling 216 SDs using the same

setup as (b) (∆V = 23 m3 and 128 SDs per cell) and sorted by multiplicity in the ascending order. (d) The distribution corresponding to (c)

when L2 norm is used as a metric. The dotted lines in (b) and (c) indicate ξ = 80,81,82,83.
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We verified this method of generating proposal distributions by adopting a specific aerosol distribution n(logr). We used310

the bimodal log-normal distribution of VanZanten et al. (2011). This distribution is composed of ammonium bisulfate with a

number density of 105cm−3. We chose the interval for the random variable as rmin = 10nm and rmax = 5µm, and adopted

k = 1,000 bins and γ = 10−4 to calculate proposal distributions.

The proposal probability distributions obtained using various α are shown in Fig. 1(a). As α decreases, the uniform distri-

bution gradually changes to the normalized aerosol distribution, and probabilities (frequency for sampling) near both ends of315

the random variable decrease.

The relationship between the aerosol dry radius and multiplicity for cell volume ∆V = 23 m3 and 128∆V −1 SDs are shown

in Fig. 1(b). Multiplicity for the large dry radius of aerosol falls below 1 for α = 1.0 but exceeds 1 for α = 0.8 for all samples.

Figure 1(c) shows the multiplicities of samples, which is obtained by sorting 216 SDs by their multiplicity. How α changes

the dynamic range of multiplicity and the number of ξ < 1 samples can be clearly observed. Since the relationship between320

the aerosol dry radius and multiplicity does not change relatively if we increase the spatial resolution, we indicate ξ = 80–83

by dotted lines in Fig.1(c). As α decreases, the dynamic range of multiplicity decreases, and the minimum log multiplicity

increases by an almost constant ratio when α≥ 0.2. When ∆V = 1m3, the multiplicity of all samples exceeds 1 if α≤ 0.7.

Similarly, the multiplicity exceeds 1 when ∆V = 503 cm3 if α≤ 0.6, and when ∆V = 253 cm3 if α≤ 0.5. Since the number

of samples of ξ < 1 and 0.5 account for 7.82% and 6.70% of total samples, respectively, many invalid SDs are sampled if the325

uniform sampling method is used for 2m resolution.

Figure 1(d) shows the results corresponding to Fig. 1(c) obtained for L2 norm instead of W 2
2 to generate proposal distribu-

tions using Eq. (5). In this case, as α decreases, the number of ξ < 1 samples decreases but does not vanish (0.413% of total

samples when α = 0.1), and the dynamic range of multiplicity does not change unless α = 0.0. Thus, these results suggest that

the manner of connecting the two distributions is critical.330

How do aerosol statistics behave if we change α using the above method? The probability distributions of the number and

mass concentration of dry aerosol for various α are shown in Fig. 2. We calculated the number and mass concentrations from

128 SDs. The multiplicity was cast to an integer using stochastic rounding for ∆V = 23 m3. We performed 105 trials to obtain

the probability distributions. The statistics of real droplets, corresponding to the limit when α = 0 and the exact expected value,

is also shown by a dotted red line in each panel of Fig. 2.335

The expected values obtained by applying the importance-sampling method does not depend on the used proposal distribu-

tion. However, the variance of the expected values depend on the ratio of the original distribution to the proposal distribution,

and the variance becomes small when the proposal distributions are similar. In fact, the aerosol number concentration distri-

bution is narrow when the used proposal distribution is the same as the original distribution (α = 0) (Fig. 2a), and it becomes

broader as α increases. Thus, the uniform sampling method introduces significant statistical fluctuations (or confidence inter-340

val) of aerosol number concentration. In contrast, the aerosol mass concentration distribution is narrow when α = 1.0, and it

broadens as α decreases (Fig. 2b). Thus, the uniform sampling method results in smaller statistical fluctuations of the aerosol

mass concentration. That is, as α decreases, the importance sampling for the aerosol size distribution gradually changes its

effect from the reduction of the variance of mass concentration to the reduction of the variance of number concentration. We
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Figure 2. Probability distributions of (a) aerosol number concentration and (b) aerosol mass concentration, obtained by sampling from

various proposal distributions. The red dotted lines show the exact expected values.

note that the results are almost identical when we store multiplicity as a real-type floating point number (not shown in the345

figures).

Based on the above considerations, the proposal distributions for α = 0.7 were used for the numerical experiments described

in Sect. 5. Although we focused on the statistical fluctuations of the aerosol, α may also be a sensitive parameter influencing

the cloud dynamical and statistical fluctuations. Since this aspect is nontrivial because of the effect of cloud dynamics, we will

describe the results of the sensitivity experiments for α in Sect. 4.3.350

3.3 Model optimization

3.3.1 Strategy for acceleration

Based on the computers described in Sect. 2.3, we devised a strategy for optimizing the SDM. All algorithms used in the

SDM have computational complexity of the order of SD numbers. In general, the PIC applications tend to have small B/F due

to the large computations involved. This also holds for the SDM except for the collision–coalescence process because of the355

velocity interpolation to the position of SDs in movement, and the Newton iterations in activation/deactivation involve many

calculations. Then, one may expect that a high computational efficiency can be achieved if the information of the grids and SDs

are both on the cache as this can prevent the memory throughput being a bottleneck for the time-to-solution. However, since the

calculation pattern in the cloud microphysics scheme changes depending on the presence of clouds and particle types, the codes

in a loop body are complicated and often include conditional branches. Hence, high efficiency is difficult to achieve because360

of the difficulty of using SIMD vectorization and software pipelining. In the following paragraphs, we describe optimization
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based on two strategies: First, we developed cache-efficient codes by cache blocking and reduction of information of the SDs.

Second, we simplified the on-cache loop bodies to the maximum extent possible by excluding conditional branches.

We first considered applying cache-blocking techniques to the SDM. Since the L1 cache on A64FX is 64 KiB per core,

32 data arrays, which consist of 83 grids of four-byte elements (each array consumes 2 KiB), can be stored on the L1 cache365

simultaneously. Similarly, since the user-available L2 cache is 7 MiB (of 8 MiB) / 12 = 597 KiB per core, two data arrays which

consist of 128 SDs per cell ×83 can be stored on the cache if an attribute of SDs consumes four bytes. Therefore, we divide

the grids into groups of less than 83 (hereafter called "blocks") for cache blocking. For each cloud microphysics process, we

integrated all SDs by one time-step forward and then moved on to the next process. In the original SDM, a single loop is used

for all SDs in the MPI domain. In this study, we decomposed this single loop for all SDs into loops for all blocks and all SDs370

in each block; subsequently, we parallelized the loop for all blocks using OpenMP by static scheduling with a chunk size of 1.

Although applying dynamic scheduling to the loop for all blocks may improve load balancing among blocks, it is difficult to

validate the reproducibility of the stochastic processes, such as collision–coalescence, because random seeds may change with

every execution.

To simplify the loop body for the SDs in a block, it is essential that the gridded values in a block are a collection of similar375

values. The effective resolution in atmospheric simulations (Skamarock, 2004) imparts such numerical effects on the grid fields.

The volume, which consists of 83 grids, is comparable with the volume of effective resolution, which is the smallest spatial

scale at which the energy spectrum is not distorted numerically by the spatial discretization. For example, since the energy

spectrum obeys the −5/3 law roughly in the inertial range for LES, we regard the effective resolution as the smallest spatial

scale at which the energy spectrum follows the −5/3 law. The typical effective resolution is 6∆–10∆ for planetary boundary380

layer turbulence. The physical interpretation of effective resolution is that the flow is well resolved if the spatial scale is larger

than 6∆–10∆, and the variability decreases exponentially for scales smaller than this range. We used this prior knowledge to

simplify the loop body, as described later.

3.3.2 Super-droplet movement

To guarantee consistency between the number density of SDs and air density during SD movement, we developed a second-385

order spatial accuracy conservative velocity interpolation (CVI) on 3D Arakawa-C grid. While the CVIs of the second-order

spatial accuracy on 2D grids have been used in various studies such as Jenny et al. (2001), few studies have explored such

CVIs on 3D grids. Recently, a CVI for divergence-free velocity field on a 3D A-grid was developed by Wang et al. (2015). We

extend the method used in their study for the nondivergence-free velocity field on the C-grid. The accuracy of the interpolation

is of the second order only within the cell, and we allowed discontinuous velocity across the cell. The derivation of our CVI390

using symbolic manipulation (Python SymPy) is available in Matsushima et al. (2023b). We only provide the specific form of

the CVI in Appendix B.

The number of grid fields necessary to compute Eqs. (B7)–(B12) is important for computational optimization. While 24

elements (3 components× 8 vertices in a cell) are necessary to calculate the velocity at an SD position for trilinear interpolation

(and the same applies for 2nd order CVI on the A-grid), only 18 elements are necessary for the second-order CVI on the C-grid395
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(B7)–(B12). That is, we can reduce 25% of the velocity field data that occupies the L1 cache and can use the remaining cache

for SDs, etc. The change in the spatial distribution of SDs through SD movement considering the spatial accuracy of CVI will

be discussed in Sect. 4.2.

For warm clouds, since the information of the SD position accounts for half of all attributes, reduction of these data without

loss of representation and prediction accuracy contributes greatly to saving the overall memory capacity in the SDM. However,400

using FP32 instead of FP64 may cause critical problems due to the relative inaccuracy and nonuniform representation in the

domain in the former case. In the following paragraphs, we describe these problems and a solution.

In the original SDM, the SD position is represented by its absolute coordinate over the entire domain, but this method

requires many bits. However, since we already decomposed the domain into blocks, using the relative position of SDs in a

block is numerically more efficient. For this case, we can reduce the information per SD by subtracting information of partition405

by the MPI process and a block from the global position.

If we represent the position of SDs as a relative position in a block, additional calculations are necessary when an SD crosses

a block. Such calculations introduce rounding errors for the SD position, and the cell position where the SD resides may not be

conserved before and after its calculations. Let us consider an example. Consider a block that consists of a grid. Let us define

the relative position x of SDs belonging x ∈ [0,1) and the machine epsilon for the precision of floating point numbers as ϵ. If410

SD crosses to the left boundary and reaches −ϵ/4 /∈ [0,1), the relative position of the SD is calculated by adding the values

of right boundary 1 in a new block to the SD position: −ϵ/4 +1 ∈ [0,1). However, rounding to the nearest of its new position

makes round(−ϵ/4 +1) = 1 /∈ [0,1). For FP32, since ϵ∼ 1.2× 10−7 = 0.12µm if we adopt meters as units, we expect this

does not happen frequently. However, if such a case occurs even with only one SD of the vast number of SDs in the domain, the

computations may be terminated by an out-of-array index. Although a simple solution is exception handling using min/max or415

floor/ceiling, this solution may deteriorate the computational performance by making the loop bodies more complex, and the

correction bias introduced by exception handling may be non-negligible when low-precision arithmetic is used. To ensure safe

computing, the suitable approach is to calculate the relative position without introducing numerical errors.

In this study, we represented the relative position using fixed-point numbers. This format allows us to define the representable

position of SDs so that they are uniformly distributed in the domain, and integer–arithmetic-only calculations are used. Then,420

the same problem as in the case of simply using floating point numbers does not arise in principle. Let us denote the range for

which the SD is in cell k as Zk = [k,k +1) and the number of grids along an axis as b. Then the range of position in a block is

represented as Z =
⋃b−1

k=0 Zk. We defined the conversion from z ∈ Z to its fixed-point number representation q as the following

affine mapping:

q = 2s

(
z−

⌊
b

2

⌋)
. (6)425

When b≤ 8, s = 21 and when FP32 is used instead of INT32, the range of −223 ≤ q ≤ 223− 1 is accurately represented by

the mantissa of the floating-point numbers, and the representation does not exceed the representable range if it is only a few

grids outside a block. With regard to the velocity, the amount of movement per step is represented using a fixed-point number.

We used FP32 instead of INT32 for the actual representation because the representable range of fixed-point numbers is small
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and could easily exceed its range by multiplication. Note that this step is avoidable if the architecture has instructions for430

fixed-point numbers such that multiplication and bit shift with rounding can be executed simultaneously (Jacob et al., 2018) as

in ARM NEON and SVE2 (however, this is not the case in A64FX SVE).

By using relative coordinates for the SD positions within a block, the precision of their locations varies when ∆z is changed.

This is because the change of position in real space is 2−s∆z from Eq. (6) when the grid length is ∆z, and the variation in

q is 1; this value reduces for smaller ∆z. In addition, the change in the relative position per time step is 2svi∆t∆z−1 when435

the time step is ∆t; hence, it increases as ∆z decreases, thus providing a better representation of the relative position. ∆t

is set sufficiently small to ensure there is no large deviation from the time step of tracer advection. Then, the change in the

relative position does not change if the ratio of ∆t to ∆z is kept constant. In real space, the numerical representation accuracy

of position and the arithmetic operations accuracy of the numerical integration vary with the spatial resolution and time step.

Therefore, we can maintain numerical precision for high-resolution experiments.440

In terms of I/O, fixed-point numbers facilitate easy compression. For example, the interval of representable positions q in

real space with a block size of 8 is 0.95µm; this yields higher accuracy than the Kolmogorov length of 1mm and thus is always

excessive as a representation for DNS and LES. We can discard unnecessary bits when saving data on a disk.

3.3.3 Activation / Condensation

The time scale of activation/deactivation of the cloud condensation nuclei (CCN) is short if the aerosol mass dissolved in a445

droplet is small (Hoffmann, 2016; Arabas and Shima, 2017). Hence, the numerical integration of activation/deactivation is

classified as a stiff problem. To solve Eq. (2), Hoffmann (2016) used the fourth-order Ronsenblock method with adaptive time

stepping. SCALE-SDM employs the one-step backward differentiation formula (BDF1) with Newton iterations. Although

BDF1 has first-order accuracy, it has good stability because it is an L-stable and implicit method, and we can change time

intervals easily because it is a single step method. However, with the implicit method, Newton iterations must be performed450

per SD, and the number of iterations required for convergence of the solution differs for each SD, thereby making vectorization

a complicated task. To overcome this difficulty, the original SDM uses excessive Newton iterations (20–25) that are sufficient

for all SDs to converge, assuming that numerical experiments are performed on a vector computer such as the Earth Simulator.

However, we cannot tune codes for both vector computers and short-length vector computation by using SIMD instructions in

the same way. In the original SDM code, the loop body of time evolution by Eq. (2) is very complex because of the presence455

of conditional branches, grid fields at the SD position, and iterations; hence, it cannot issue SIMD instructions. Therefore, we

devised a method to allow SIMD vectorization based on the previously described strategy.

Equation (2) is discretized by BDF1 as

f(R2) = R2− p2− 2∆tA

[
S− 1− a

(R2)1/2
+

b

(R2)3/2

]

= 0, (7)460

where p is the current droplet radius, and R is the updated droplet radius. Equation (7) has at most three solutions; in other

words, one or two of them may be spurious solutions. However, the uniqueness of the solution is guaranteed analytically in the
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following two cases (see Appendix C for derivation). Case 1, which depends on ∆t, is

∆t≤ 25b

2Aa2

√
5b

a
, (8)

and Case 2, which depends on the environment and initial condition, is465

S− 1≤ 0, p2 <
3b

a
. (9)

Case 1 implies that an activation time scale restricts the stable time step for each SD. Based on the estimation of temperature

T = 294.5K at z ∼ 600m in the BOMEX profile, when α = 0.7, 87.7% of SDs satisfy the condition for Case 1 if ∆t =

0.0736s, 91.0% if ∆t/2, and 100% if ∆t/26. Similarly, when α = 0.0, 91.4% of SDs satisfy the condition if ∆t = 0.0736,

97.6% if ∆t/2, and 100% if ∆t/26. The smaller the value of α, the smaller is the frequency of sampling small droplets and470

the greater is the number of SDs that satisfy the condition.

On the other hand, Case 2 is a condition for the initial size of droplets p in an unsaturated environment. In the BOMEX

setup, since cloud fraction converges at a grid length of 12.5m (Sato et al., 2018), we can estimate the ratio of SDs that satisfy

Case 2 for higher resolutions by analyzing the results of similar numerical experiments using new SCALE-SDM. We define

droplets of the size R≤
√

3b/a as aerosol particles (or haze droplets), and droplets that are larger than
√

3b/a and smaller475

than 40µm as cloud droplets. We do not provide the detailed results, but the ratio of air density weighted volume (i.e., mass)

where cloud water exists in a cell to the total volume in the BOMEX case is approximately 1.5% in a quasisteady state based

on the numerical experiments of our developed model. Therefore, we estimate that 98.5% of SDs satisfy the condition of Case

2 in the BOMEX setup.

Therefore, if we ensure the uniqueness of the solution by Case 1 for a cloudy cell and Case 2 for a cell with no clouds,480

the frequency of exception handling during Newton iterations can be largely reduced. We first check whether we need a

conditional branch of the unsaturated environment (of Case 2). Since the block has small volume that is comparable with the

effective resolution, we can convert the conditional branches of the unsaturated condition for an SD to that for all SDs in a

block with little or no decreasing ratio of SDs that satisfy the condition. This conversion of the conditional branch allows a

loop body of time evolution by Eq. (7) to be simple and specific to Case 2. Exception, when the initial size of droplets is larger,485

it is handled individually only if such droplets exist in a block. If the environment is saturated, we ensure the uniqueness of the

solution by Case 1. In this case, we list the SDs that satisfy Case 1 and perform Newton iterations according to the list. Other

SDs are calculated individually and using adaptive time stepping for unstable cases.

By using this method, we find that almost all SDs satisfy the uniqueness condition of the solution, and we should only focus

on optimizing these SDs. For tuning, the SDs in a block are classified into groups of 1024 SDs (which fit in the L1 cache),490

and each division calls the process of activation/condensation. In each call, the time evolution of each SD is calculated. A

single loop for the updates of droplet radius calculates two iterations because this is the maximum number of Newton iterations

that can allow SIMD vectorization and software pipelining without register spill of 32 registers with the current compiler we

used for A64FX. The loop is repeated for all SDs in a division and breaks if the squares of all droplet radii of SDs fall below

the tolerance relative error of 10−2. Since the loop is vectorized by SIMD instructions and the number of iterations is often495
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limited to two if we use the previous droplet radius for the initial value for the Newton iterations, the computational time for

activation/condensation is drastically less than that of the original SDM, as shown later.

3.3.4 Collision–Coalescence

The computational cost of the collision–coalescence process is already low for the algorithm developed by Shima et al. (2009).

We reduced the computational cost and data movement further rather than achieving a higher efficiency against theoretical500

peak performance of floating-point number operations. Since we used only the Hall kernel for coalescence, the coalescence

probability was small for two droplets of small and similar sizes. Therefore, it is reasonable to ignore the collision–coalescence

process in cells with no clouds. Note also that the no cloud condition precisely matches the Case 2 (9). If even a single cloud

droplet exists in a block, it becomes necessary to sort the cell indices of all SDs in the block. However, we can remove sorting

if cloud droplets do not exist in a block. We do not sort the attributes of the SDs with cell indices as a key since they are505

already sorted with a block as a key, as will be described in Sect. 3.3.5. Further, some attributes are on the L2 cache during the

collision–coalescence process due to cache-blocking. By not sorting the attributes of the SDs, the write memory access of SDs

that do not coalesce is avoided. In the BOMEX setup, 98.5% of the SDs satisfy Case 2 and we do not calculate the collision–

coalescence of these SDs. Therefore, we expect a drastic reduction in the computational cost and data movement in some

cases in which cloudy cells occupy only a small fraction of the total domain volume. This method to reduce the computational510

cost potentially leads to a large imbalance as the Twomey-SDM by Grabowski et al. (2018). However, we also expect that the

imbalance is mitigated better as cache blocking improves the worst-case elapsed time among the MPI processes.

3.3.5 Sorting for super-droplets

To effectively utilize cache-blocking during the simulation, the SDs in a block should be contiguous on memory. This is

possible if we sort the attributes of the SDs using the block ID as the sorting key when SDs move out from one block to515

another. This sorting is different from the usual sorting in which each block can send SDs to any other block; in the present

sorting, the direction of SD movement is limited to adjacent blocks along x,y, and z axes. Such sorting is commonly used

in the field of high-performance computing. Although we did not make any novel improvement, we summarize this process

because it is essential to our study, and some readers may not be familiar with on-cache parallel sorting for the PIC method

used during computation.520

Since memory bandwidth generally limits sorting performance, it is essential to reduce data movement. In our case, the

directions of data movement are limited, and most of the SDs in a block are already sorted. We should adopt a design such that

these data are not moved and any unnecessary processes are not performed. We should also reduce the buffer size for sorting

because of the low memory capacity of A64FX, perform parallelization, and reduce computational costs. However, ready-made

sorting, such as the counting sort, may not meet these requirements. Moreover, in the worst case, such sorting may be slower525

than the main computation in the SDM because of random access in the memory.

In this study, we sorted the attributes of SDs in three steps along the x,y, and z axes. Each step requires at least two loops:

copying in the SDs moving to adjacent blocks and copying back the SDs moving into the block. Since the SDs in a block either
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stay in the same block or only move one block forward or backward, we did not sort the attributes of SDs with combinations

as a key. Instead, we made a list of SDs to move to reduce the computational costs and unnecessary data movement. Copying530

in and back of the SDs to the working array should be divided into small groups so that size of the working array for SDs is

reduced by divisions. A loop for a block in each step can be parallelized naturally by using OpenMP. Although few invalid

SDs (buffer) may be included in the arrays, this study does not attempt to defragment them explicitly, expecting that the SD

movement and sorting with blocks as a key per microphysical time step may cause defragmenting.

This sorting can avoid the problems of using a ready-made algorithm. The drawback of the current implementation is that535

a larger buffer space is necessary for SD attribute arrays because a block has few grids and the statistical fluctuation of the

number of SDs within a block is large. However, this can be improved if we adaptively adjust the size of SD attribute arrays in

a block according to air density and statistical fluctuations of SDs number.

This method is specialized for use during computation. If more flexible sorting is required, such as when the attributes of

SDs are sorted using the ID as a key for analysis, parallel sample sorting with larger working arrays should be employed.540

4 Comparison of model performance

4.1 Methodology of performance evaluation

We evaluated the computational and physical performances by comparing the results of the new SCALE-SDM with those

obtained with the same model but using the conventional cloud microphysics schemes as well as with the results obtained

with the original SCALE-SDM. First, we describe the methodology of performance evaluation. Our optimization goal was to545

enable ultrahigh resolution experiments of shallow clouds to reduce uncertainty and to contribute to solving future societal and

scientific problems. Therefore, we adopted a goal-oriented evaluation method instead of estimating the contributions of various

innovations for improving the time-to-solution. Here, we describe the evaluation of the time-to-solution and data processing

speed (throughput) to ensure the usefulness of our work for solving real problems. The throughput for the microphysics scheme,

including the tracer advection of the water and ice substances, is defined as follows:550

Throughput = (total # of tracers, bins or SDs)

× (total steps)/(elapsed time), (10)

where the number of steps and elapsed time correspond to the microphysics scheme. To compare the cloud microphysics

scheme that is based on different concepts, we defined the throughput for a bulk and a bin method by total tracers, including all

categories (e.g., water and ice) and statistics (e.g., number and mass). In contrast, we defined the throughput for the SDM by555

sampling sizes in the data space (x,R,ξ,M). This is because we can add any attributes with less computational cost and data

movements, and the effective number of attributes may change during time integration; hence, considering many attributes for

defining throughput is inappropriate. For example, because we give an initial value of R as a stationary solution of the Eq.

(2), R, ξ, and M are initially correlated. We note that the number of tracers does not account for the water-vapor mass mixing
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ratio. An increasing number of tracers or SDs improves the representation power for microphysics. Such an increase in the560

representation power can be achieved easily for a bin method and the SDM, but is difficult for a bulk method.

To evaluate physical performance, we should confirm that we obtained qualitatively comparable results faster with the SDM

than with the original SDM. In terms of throughput, we should also confirm that we obtained qualitatively improved numerical

solutions if the elapsed time is approximately the same.

Next, we briefly describe the original SCALE-SDM and other cloud microphysics scheme used for performance evaluation.565

We refer to the latest version of SCALE-SDM (retrieved 2022/6/6 from bitbucket private repository, contrib/SDM_develop) as

the original SCALE-SDM. The public version of the SCALE-SDM was used in Shima et al. (2020) (see code availability in

their paper). The base SCALE version of the original SCALE-SDM is 5.2.6. Meanwhile, the version developed in this study

is a developmental version based on SCALE 5.4.5. This version contains many improvements, such as untangling module

dependency and flexible module combinations for a model developer, in addition to our innovations. However, it does not have570

critical changes to the physical process from version 5.2.6, except for our innovations, orders of calculations, and calculations

of the coefficient A in Eq. (7) in the activation/condensation process. The original SCALE-SDM considers the dependency of

the diffusion coefficient and thermal conductivity on the environmental temperature, pressure, and water-vapor mass mixing

ratio used to calculate A. The original SCALE-SDM was used only for numerical experiments with the "original" SDM,

as labelled hereinafter. When focusing on some differences among cloud microphysics schemes, we will refer to the SDM575

schemes associated with new SCALE-SDM or original SCALE-SDM as SDM-new or SDM-orig, respectively.

For the microphysics scheme, we used the Seiki and Nakajima (2014) scheme as a two-moment bulk method and Suzuki

et al. (2010) scheme as a (1-moment) bin method, both implemented in the SCALE. Seiki and Nakajima (2014) scheme solves

the number and mass mixing ratio of two categories of water substances and three categories of ice substances, and Suzuki

et al. (2010) scheme solves the mass-mixing ratio of each bin in discretized DSD for water and ice substances. In this study, we580

considered only warm rain processes in the bin method. We used the latest versions of these schemes as is because performance

is not poor for solving real problems though these schemes may not be sufficiently optimized for A64FX. Some readers may

wonder why the SDM and the bin method solve only the warm process while the two-moment bulk method solves the mixed-

phase process. The validity of the comparisons of the computational performance of the SDM without the ice-phase process

with the mixed-phased two-moment bulk method and the future issues for optimization of the mixed-phase SDM is discussed in585

Sect. 6.1. SCALE adopts terrain-following coordinates and contains features of map projection as a regional numerical model.

However, since any additional computational cost and data movement for these mappings cannot be ignored for high-resolution

simulations, we excluded these features in the new SCALE-SDM for the dynamical core, turbulence scheme, and microphysics

scheme.

4.2 Warm bubble experiment590

We first evaluated the computational and physical performances via simple, idealized warm bubble experiments. The computa-

tional domain was 0.3km×8km×5km for x,y, and z directions. For the lateral boundaries, doubly periodic conditions were

imposed on the atmospheric variables and positions of the SDs. The grid length was 100m. The initial potential temperature θ,
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relative humidity RH, and surface pressure Psfc were as follows:

θ = max
(
300,300 +4.0× 10−3(z− 1,000)

)
K, (11)595

RH = 70%, (12)

Psfc = 1,013.25Pa. (13)

The air density was given to be in hydrostatic balance. We provided a cosine-bell type perturbation of the potential temperature

θ′ to the initial field to induce a thermal convection:

θ′ = 2cos
(π

2

√
min(dx + du + dz,1)

)2

K, (14)600

dx = (x− 50)2/1,2002, dy = (y− 2,500)2/1,2002,

dz = (z− 500)2/4002.

For the SDM, the initial aerosol distribution was the same as that in VanZanten et al. (2011). For the two-moment bulk and the

bin method, we used Twomey’s activation formula and activated CCNs to cloud droplets according to the supersaturation as

follows: N = 100S0.462 cm−3, where N is the cloud droplet number concentration, and S is the supersaturation. The uniform605

sampling method was used to initialize the aerosol mass dissolved in a droplet and multiplicity. In the SDM-orig, SDs were

initialized so that they were randomly distributed in the domain. In contrast, for SDM-new, SDs were initialized such that

the SD number density was proportional to air density. In addition, to reduce the statistical fluctuations, instead of using

pseudorandom numbers, we used the Sobol sequence (a low-discrepancy sequence) for the four-dimensional space of positions

and aerosol dry radius in each block.610

For the computational setup, the domain was decomposed to four MPI processes of one node in the y direction using FX1000

(A64FX, 2.2 GHz). Local domains in each MPI process were further decomposed into blocks of size 3× 2× 5 for x,y, and z

directions to apply cache-blocking for SDM-new. For the numerical precision of floating-point numbers, FP64 was used for the

dynamics, two-moment bulk method, bin method, and SDM-orig. In contrast, SDM-new uses mixed precision, but calculations

for SDs were primarily performed by FP32. For time measurement, we inserted MPI_Wtime and barrier synchronization at the615

start and end of the measurement interval. In this experimental setting, there were no background shear flows, and the simulated

convective precipitation systems were localized and stationary in some MPI processes, thereby imposing a huge load imbalance

of computational costs. However, the execution time was almost the same with and without barrier synchronization owing to

stationarity of convective precipitation systems. In addition, if the measurement interval was nested, the times measured in its

lowest level of nests did not include the wait time between MPI processes. To this end, we evaluated the performance of each620

microphysics subprocess without additional time. Time integrations were performed for 1800s by ∆tdyn = 0.2s for dynamics,

and ∆t = 1.0s for other physics processes.

Figure 3 shows the elapsed times of the warm bubble experiments for various cloud microphysics and different number of

tracers or SDs per cell. Here, we show only the elapsed times of those numerical simulations that were completed in less than 3

h and that required less than 28 GB of memory. The elapsed times obtained by the bin method (BIN) behave as O(N2), while625
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Figure 3. Elapsed times of the total (circles) and that of tracer advection and SD tracking (squares) using the two-moment bulk method

(green), bin method (blue), SDM-orig (yellow), and SDM-new (red) with different numbers of tracers or mean SDs per cell. Here, SD

tracking included SD movement and sorting with a block as a key. The blue dotted line is the line proportional to N2. The red and yellow

dotted lines are lines proportional to N . The green dotted line indicates a constant determined by N .

those of the SDM-orig behave as O(N), indicating that the collision–coalescence calculation developed by Shima et al. (2009)

contributes to a reduction in elapsed times. The SDM-new drastically reduced the elapsed time compared to the bin method

and SDM-orig for the same number of bins or SDs. Moreover, the elapsed time obtained using the SDM-new with 128 SDs

per cell was about the same as that obtained using the two-moment bulk method (BULK2MOM).

The results seem to contradict the intuition that computations using sophisticated cloud microphysics schemes take more630

time than simpler schemes because of the high computational costs of the former. The main reason for the present results is

related to the tracer advection and SD tracking, which is a bottleneck for the elapsed times, as is described below, rather than

to other cloud microphysics subprocesses. The elapsed times of tracer advection and SD tracking are shown in Fig. 3. The

elapsed time of tracer advection and SD tracking obtained using the bin method and SDM-orig are comparable and increase as

O(N). For small N , the elapsed time of tracer advection and SD tracking for the SDM-new up to 128 SDs per cell are shorter635

than that for the two-moment bulk method, which is advantageous in terms of the elapsed time of simulations.

The advantages of SDM-new against the two-moment bulk for calculating tracer and SD dynamics are fewer calculations,

higher compactness, and more reasonable use of low-precision arithmetic for SD tracking than for tracer advection. While

tracer advection requires a high-order difference scheme to reduce the effect of numerical viscosity, SD tracking does not

require a high-order scheme. We used Fujitsu’s performance analysis tool (fapp) to measure the number of floating-point oper-640

ations (FLOPs). We found 303.915 FLOPS per grid and tracer for tracer advection (UD5) excluding FCT and 164.3 FLOPS per

SD for SD movement using CVI of second-order spatial accuracy. Since the calculation of UD5 requires values at five grids and

halo regions of width 3 in each direction, the calculations are not localized, and a relatively larger amount of communication
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Figure 4. (a) Data throughput of microphysics for using the two-moment bulk method (green), bin method (blue), SDM-orig (yellow), and

SDM-new (red) with different numbers of tracers or mean SDs per cell. (b) The mean data throughput of SD tracking (SD movement and

sorting with a block as a key), condensation process, and collision–coalescence using SDM-orig and SDM-new with different numbers of

mean SDs per cell. The dotted lines and solid lines show the mean data throughput for SDM-orig and SDM-new, respectively. The range

between the minimum and maximum throughputs of condensation and collision–coalescence for SDM-new is indicated by the colors because

the load imbalance is significant for only SDM-new.

is necessary. For SD tracking, the calculations for a single SD require only grids that contain the SD, and communication is

necessary only when the SD moves out of the MPI process. If FP32 is used for tracer advection, one of the advantages of the645

SDM-new over the two-moment bulk method is lost. However, the calculations of tracer advection require differential oper-

ations, which may cause cancellation of the significant digits. This likely cannot be ignored for high-resolution simulations

where the amplitude of small-scale perturbations from the mean state decreases, especially for variables that have stratified

structures (e.g., water-vapor mass-mixing ratio). On the other hand, for the proposed SD tracking, numerical representation

precision of the SD positions in physical space becomes more accurate as the grid length and time interval decrease simulta-650

neously. Therefore, the use of FP32 for high-resolution simulations is reasonable. Of course, another important factor behind

these results is the fact that the calculations of other SDM subprocesses are no longer bottlenecks in SDM-new.

Now, we compare computational performance among different cloud microphysics schemes in terms of data throughput. The

throughput of the microphysics scheme (tracer advection, SD tracking, and microphysics subprocesses) for a different number

of mean SDs per cell is shown in Fig. 4(a). The throughput of the bin method decreases as the number of bins increases,655
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while that of the SDM-orig remains almost constant but shows a slightly decreasing trend as the number of mean SDs per

cell increases. The throughput of both methods is smaller than that of the two-moment bulk method; hence, the elapsed time

does not become smaller than that obtained using the two-moment bulk method. In contrast to SDM-orig, the throughput of

SDM-new is similar to that of the two-moment bulk method for eight SDs per cell, and it increases as the number of SDs

increases. Because of the increase in the throughput, which is related to the increase in computational performance and the grid660

calculations, the elapsed time obtained using the SDM-new resists linear increase with the number of SDs. Hence, the elapsed

time becomes comparable with that obtained using the two-moment bulk method even for larger SDs (∼ 256). However, as

with the SDM-orig, the throughput of the SDM-new shows a decreasing trend when the number of mean SDs per cell exceeds

1024. The maximum throughput of the SDM-new is 57.6 and 14.13 times that of SDM-orig and two-moment bulk method,

respectively.665

The throughputs of subprocesses obtained by SDM-orig and SDM-new are shown in Fig. 4(b). The throughputs obtained

by SDM-orig are almost constant with respect to the number of SDs per cell. As the number of SDs increases, the throughput

of SD tracking converges to a constant, and the throughput of collision–coalescence decreases from approximately 256 SDs

per cell. The throughput obtained by SDM-new is larger than that obtained by SDM-orig for all subprocesses. As the number

of mean SDs per cell increases, the throughput of SD tracking and condensation increase and converge to constants. The670

throughput of collision–coalescence increases to about 256 SDs per cell but then decreases as in the case of SDM-orig. The

minimum throughput of collision–coalescence behaves as the mean throughput, while the maximum throughput increases as

the number of SDs per cell increases. This finding reflects the fact that the throughput decreases only in MPI processes that

contain clouds in the domain because the L1 and L2 cache miss ratio increases because the random access in the cache and

memory during collision–coalescence calculations increases for a large number of SDs. The maximum throughputs of SD675

tracking, condensation, and collision–coalescence obtained by the SDM-new are 21.6, 241, and 64.8 times that obtained by

SDM-orig, respectively. In this study, we did not examine the contributed innovations for the acceleration of the throughput in

detail. However, the acceleration rate of the throughput is roughly explained by SIMD vectorization (×16) for SD tracking and

also reduced computational cost by terminating Newton iterations faster (×16×10) for condensation. Before optimization, the

condensation calculations were the bottleneck of SDM-orig. After optimization, SD tracking calculations were the bottleneck680

of SDM-new.

Although we report only the computational performance on FX1000 (A64FX), our innovations are also effective on In-

tel Xeon. For example, using FUJITSU Server PRIMERGY GX2570 M6 (CPU part: a theoretical peak performance of

5.53 TFLOPS and memory bandwidth of 409.6 GB/s) equipped with Intel Xeon Platinum 8360Y, the elapsed time obtained

using the two-moment bulk method was 18.439s, and that obtained using the SDM-new with 128 SDs per cell on average is685

14.486s. The maximum throughput of the SDM-new is 25.1 times that of the two-moment bulk method. The large ratio of the

throughput against FX1000 indicates that using FX1000 instead of a more commercial computer with low memory bandwidth

(GX2570 M6) is more advantageous for the two-moment bulk method.

We evaluated the physical performance of SCALE-SDM. First, we show the differences between the first- and second-order

CVI for SD tracking. In the SDM, we can add any new attribute, such as ID, to each SD. By using the ID for analysis, we690
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Figure 5. Distributions of SD positions at (left) t = 600s and (right) t = 1,200s colored by the initial y coordinate (Y ) when CVI of the first

order (CVI-1) and second order (CVI-2) spatial accuracy are used for SD movement. The range of 0≤ y ≤ 5,000 and 1,000≤ Y ≤ 4,000

are shown in each panel.
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Figure 6. Horizontally averaged time–height cross section of the liquid water content (LWC) for different cloud microphysics schemes.

calculated the initial position of the SD to investigate SD mixing. The distributions of SD positions colored by the initial y

coordinate for warm bubble experiments (SDM-new with 128 SDs per cell on average) are shown in Fig. 5. Buoyancy torque

induced by the initial bubble generates vorticity, and the results are different for the case when the first- and second-order

CVI are used. At t = 600.0s, a staircase-like pattern with width approximately the grid length appears in the CVI-1 because

it does not consider the variation in the velocity component relative to its orthogonal direction within the cell. In contrast,695

such a pattern does not appear in CVI-2. The motion of the particle in the fluid can be chaotic even for simple flow fields.

Particles experience stretching and folding in flows, and fine and complex structures are generated even from large-scale flows.

These features are called chaotic mixing (Aref, 1984) from the Lagrangian viewpoint, and they are distinct from turbulence

mixing. At t = 1,200.0s, fine structure (x = 1,500m,z = 1,200m) and filament (x = 1,800m,z = 2,800m) appear in CVI-2,

whereas such structures are noisy and obscure in CVI-1. This result indicates that such structures in CVI-1 can be nonphysical700

assuming that structures in CVI-2 are more correct. The accuracy of the CVI may affect the entrainment mixing induced by

thermal, a coherent vortex ring in clouds. However, because our innovation works for the variations in velocity within a cell,

it is difficult to discuss the effect on larger scales such as the cell-averaged variables, rather than the distributions of SDs. In

addition, because in-cloud flows are generally well-developed turbulent flows, it is difficult to separate the effect of chaotic

and turbulent mixing. Second, we compared the results of warm bubble experiments among different cloud microphysics705

schemes. The horizontally averaged time–height sections of the liquid water content (LWC) are shown in Fig. 6. Here, we

denote the names of the experiments, followed by the number of bins and SDs per cell on average, such as SDM-new128,
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for the results obtained using SDM-new with 128 SDs per cell on average. Here, the elapsed times for the selected cases are

SDM-new128 < BULK2MOM < SDM-orig128 < BIN128. In all cases, the qualitative characteristics of time evolution, such

as bubble-induced cloud generation and precipitation pattern, are the same. In addition, the LWC patterns of BIN128, SDM-710

new128, and SDM-orig128 are in good agreement with those of BIN256, SDM-new32768, and SDM-orig4096 (not shown

in figures), respectively, which were obtained using the bin method and using the SDM with the maximum possible number

of bins or SDs per cell. Thus, the LWC solutions attain convergence with the given number of bins and SDs per cell. The

time evolution of SDM-new128, SDM-orig128, BULK2MOM, and BIN128 are very similar until t = 1200s. For precipitation

onset at the surface, SDM-new128 (t = 1,600s) is slower than BULK2MOM (t = 1,500s) and BIN128 (t = 1,400s). For the715

LWC remaining after precipitation in the upper layers (z ∼ 3,500m), SDM-new128 is larger than BULK2MOM and smaller

than BIN128. The results of SDM-new128 and SDM-orig128 deviated slightly after t = 1200s, partly because of the different

SCALE versions. However, precipitation onset at the surface and LWC remaining in the upper layers are close to the results of

SDM-new. We conclude that differences between SDM-orig128 and SDM-new128 in terms of the LWC are small as per the

warm bubble experiments.720

4.3 BOMEX and SCMS cases

In Sect. 4.2, we discussed the evaluation of the computational performance using mainly data throughput by increasing the

number of mean SDs per cell. This approach is appropriate for comparing SDM-orig and SDM-new as the contributions of the

stencil calculations that are not relevant to the innovations in this study become small. However, the comparison of SDM-new

with the two-moment bulk and the bin methods may not be fair. In general, the computational efficiency improves in actual725

use cases when the number of grids per MPI process is increased. The number of grids in each MPI process used in Sect.

4.2 was relatively small. In addition, the numerical settings of warm bubble experiments were too simple to be regarded as

representative of real-world problems. Therefore, we also evaluated computational and physical performances for the BOMEX

case and a case study of isolated cumulus congestus observed during the Small Cumulus Microphysics Study field campaign

(Lasher-Trapp et al., 2005)—this case is referred to as the SCMS case—, as they present more practical problems.730

The experimental settings for the BOMEX case were based on Siebesma et al. (2003). The computational domain was

7.2km×7.2km×3.0km for x, y, and z directions, and the horizontal and vertical grid lengths were 50m and 40m, respectively.

The experimental settings for the SCMS case were based on the model intercomparison project for the bin methods and particle-

based methods conducted in International Cloud Modeling Workshop 2021 (see Xue et al. (2022) and reference therein). The

computational domain was 10.0km× 10.0km× 8.0km, and the grid length was 50m. For both cases, the time interval was735

∆tdyn = 0.1s, ∆tadv = 2∆tdyn = 0.2s, ∆tphy = 0.2s. The Rayleigh damping imposed was 500m and 1,000m from the top

of the domains for the BOMEX and SCMS cases, respectively. In the SDM, SDs were not initially placed in the Rayleigh

damping layers, and we did not generate or remove SDs in the regions during simulations. For initialization, the uniform

sampling method (i.e., the proposed method using α = 1.0) was adopted for both BOMEX and SCMS cases. For the SCMS

case, we also used the proposed method using α = 0.5 and 0.0 for SDM128 to investigate the sensitivity of cloud microphysical740

variability to the initialization method.
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Figure 7. Computational resources of BOMEX and SCMS experiments for various cloud microphysics schemes and different numbers of

tracers or mean SDs per cell: (a) node-hours using normal and boost mode, (b) energy consumption using boost and boost eco mode. Here,

for (a), the results for the boost and normal modes are shown by filled and open markers, respectively. For (b), the results for boost eco mode

and boost mode are shown by filled and open markers, respectively. The red dotted lines show the lines proportional to N .

Ensemble experiments with three members using different initial perturbations controlled by other random seeds were con-

ducted for each experiment. The number of nodes used for simulations was determined as the minimum values so that the

memory usage was within the system memory per node. For example, one node of FX1000 was used in both cases for the

two-moment bulk method, and one node and two nodes of FX1000 were used in BOMEX and SCMS cases for SDM128, re-745

spectively. For time measurement, we used MPI_Wtime but did not use barrier synchronization. At the same time of simulating

three ensemble experiments, we operated Power API to switch among the normal mode, boost mode, and boost-eco mode for

each ensemble member. We measured the energy consumption per node between measurement intervals by operating Power

API. The measured energy accounted for the energy consumed by all computing and assistant cores, L2 cache, memory, Tofu

interconnect, optical modules, and PCI Express.750

The computational resources for various cloud microphysics schemes using the normal, boost, and boost eco modes for each

numerical setting are shown in Fig. 7. We first focused on the node-hours when the normal mode is used. Here, node-hours is a

measure of the amount of time for which computing nodes are used, and it is calculated as the product of occupied nodes and

the hours. Comparing the results between the SDM with 32 SDs per cell on average (SDM32) and the bin method with 32 bins

(BIN32), the node-hours of BIN32 are 6.8 times and 11.1 times that of SDM32 for BOMEX and SCMS cases, respectively.755
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The node-hours consumed using the SDM with 64 to 128 SDs per cell are comparable to those consumed when using the two-

moment bulk method, and they do not increase linearly with increasing number of mean SDs. The results are important because

we should use larger than 128 SDs per cell to obtain converging solutions such as the cloud droplet number concentration with

respect to the number of SDs (Shima et al., 2020; Matsushima et al., 2021). In terms of memory usage, the simulations using

the two-moment bulk method consumed about 28.5 GB of system memory, whereas those using the SDM with 128 SDs per760

cell consumed about twice that memory. When the number of available nodes is limited, the simulations using the two-moment

bulk method still have the advantage of increasing the problem scales.

In Fig. 7, we see that the difference in the patterns among the modes and between (a) and (b) is qualitatively small, and the

advantage of SDM over the two-moment bulk method and bin method is apparent. For example, the energy consumption of

BIN32 is 8.0 times and 6.4 times that of SDM32 for BOMEX and SCMS cases, respectively, when the boost eco mode is used.765

In terms of node-hours (Fig. 7 (a)), the following relations are observed: boost mode < normal mode. Further, node-hours for

the boost eco mode is closer to that for the normal mode (not shown in the figure). For energy consumption (Fig. 7 (b)), the

boost eco mode < boost mode, and the energy consumption by the normal mode is higher than that by the boost eco mode

(not shown in the figure). The results obtained for the boost eco mode have the best power performance from the viewpoint of

computational resources among different modes. Although the boost eco mode offers an option to improve power performance770

when floating-point operations per time are not large, the power performances when using not only two-moment bulk and the

bin method but also SDM are improved.

We evaluated the physical performance of microphysical spatial variability obtained by the SCMS case experiments. This

case is suited for investigating the effect of entrainment-mixing which may lead to different results among microphysics

schemes. In this study, we focused on analyzing the results obtained using the SDM with 128 SDs per cell on average; the775

computational resources in this case are comparable to those for the two-moment bulk method but smaller than those for the

bin method with 32 bins. The top panel of Fig. 8 shows contoured frequency by altitude diagrams (CFADs) of the cloud droplet

number concentration (CDNC), LWC, mean radius, and standard deviation of radius for one member (α = 1.0) of SDM128

at t = 6,600s. The selected time of the snapshot was when the cloud top height almost reached its (local) maximum first (the

movie of the CFADs from t = 3,600s to t = 10,800s is available in the supplements: SCMS-R50SD128-CFAD-m1.mp4).780

Once the clouds evolved to have depths larger than approximately ∼ 3km, the CFAD patterns did not change much with time

qualitatively even for the other ensemble members (in supplement: SCMS-R50SD128-CFAD-m2.mp4, SCMS-R50SD128-

CFAD-m3.mp4). To enable intercomparison of models for the readers, each variable was calculated from only the SDs in one

cell. However, the spatial scales of the variables were shorter than the scales of effective resolution, which may introduce a

numerical influence on the statistics (Matsushima et al., 2021). The adiabatic liquid water content (ALWC) was calculated785

using Eq. (6) in Eytan et al. (2021), which is recommended for the most accurate comparison with the passive tracer test as a

reference solution. In addition, we calculated the adiabatic CDNC. The activated CDNC depends on the updraft of the parcel

when crossing the cloud base, and hence, on the supersaturation of the parcel. However, we simply assign an adiabatic CDNC

at the cloud base 1,155cm−3 as the maximum value assuming large supersaturation, and all haze droplets activate to the cloud
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Figure 8. Contoured frequency by altitude diagrams (CFADs) of cloud droplet number concentration (CDNC), LWC, and mean and standard

deviation of the radius for SCMS experiments. Snapshots of (top row) SDM128 and (middle row) SDM128 obtained using FP64 as floating-

point number operations and those with collision–coalescence calculations in all grids and (bottom row) SN14 are shown. Units of each

variable are m−1 · cm3, m−1 · kg · g−1, m−1µm−1, m−1µm−1, respectively. In each panel, the quartiles of variables at each height are

indicated by white lines. The adiabatic predictions of CDNC and LWC are indicated by black lines in the panels of CDNC and LWC.
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droplets. Then, we define CDNC including the height dependency as Na = 1,155ρa(z)/ρa(zcbase)cm−3, where ρa(z) is the790

air density of the most undiluted cells in z-section, and zcbase is the cloud base height.

One of the drawbacks of the SDM is the statistical fluctuations caused by finite samples. Indeed, CDNC varies largely

centered around 500cm−3, and some samples exceed simple adiabatic prediction, and some samples of LWC also exceed

ALWC. However, the frequencies, for which CDNC and LWC are larger than their adiabatic limits, are about one order of

magnitude smaller than frequencies within adiabatic limits. Near the cloud base, the most frequent values of LWC are close795

to ALWC. At z = 2,500m, the simulated congestus have a kink formed by detrainment indicating that cloud elements are

left behind from the upward flow or moved followed by a downward flow (not shown in figures). The frequency for which

LWC∼ 0 is large here. Above the middle layer of the clouds (z > 2,500m), the LWC is strongly diluted. The mean radius

narrowly varies in the lower layers of the clouds, but the variation becomes large above z = 2,500m for small droplets because

of entrainment and activation. The most frequent values of the standard deviation of radius decrease as the height increases800

below z = 2,500m in the adiabatic cores of the clouds. Above the middle layers of the clouds, the most frequent values of the

standard deviation of radius remain almost constant or increase with height, and the medians of the frequencies at each height

reach 3µm at the upper layers of the clouds. These features are consistent with typical observations (Arabas et al., 2009). To

compare the obtained solution with a reference solution, we also adopted the same experimental setup as that of SDM128

but used mainly FP64 (50 bits per grid for SD tracking). Meanwhile, we changed the tolerance relative error for Newton805

iterations in condensation calculations to 10−6 and computed the collision–coalescence process in all grids. The middle panel

of Fig. 8 shows the CFAD analyzed by the reference experiment. Although our innovations include the use of FP32 for the

numerical representation of droplet radius, the differences in the patterns of the mean radius between the top and middle

panels of Fig. 8 are minor. As we will show in Sect. 6.4.1, simply using FP16 may cause stagnation of the droplet radius and

numerical broadening of the DSD for condensational growth, but the use of FP32 does not cause these problems. Therefore,810

our innovations do not worsen the physical performance compared with the reference solution and typical observation.

The CFAD for the two-moment bulk method (BULK2MOM) is shown in the bottom panel of Fig. 8. The variability of the

CDNC and LWC for BULK2MOM is smaller than those for SDM128. As in the SDM128, the mean radius increases with

height but exhibits a strange mode at 6µm. The relative standard deviation of the cloud droplet radius for the two-moment

bulk method was analytically calculated to be 0.248 because it prescribes the shape parameters of the generalized gamma815

distribution. Thus, the mean and standard deviation of the radius have identical patterns except for scaling. The standard

deviation of radius for BULK2MOM is smaller than that for SDM128 and does not decrease as height decreases in the adiabatic

core, as seen in the case of SDM128. To understand the origin of this strange pattern of the mean and standard deviation of

the radius, we calculated the mean and standard deviation of SDM128 from the CDNC and LWC, assuming that the DSD

shape follows the empirical DSD of the two-moment bulk method. In this case, the strange pattern did not appear (not shown).820

Therefore, to investigate intracloud microphysical variability, it is not appropriate to use the two-moment bulk method because

the CDNC and LWC thus obtained are restricted by the effect of empirical assumptions. Our numerical simulations using new

SCALE-SDM provide a qualitatively better solution than that obtained using the two-moment bulk method with comparable

computational resources.
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Figure 9. CFADs of CDNC, LWC, and mean and standard deviation of radius for SCMS experiments using different initialization parameter

(α = 0.5,0.0). Units of each variable are m−1 · cm3, m−1 · kg · g−1, m−1µm−1, m−1µm−1, respectively. In each panel, the quartiles of the

variables at each height are shown by white lines. The adiabatic predictions of CDNC and LWC are shown by black lines in the corresponding

panels.

In Sect. 3.2, we proposed a new initialization method for ultrahigh resolution simulations. Because the aerosol number825

concentration of the SCMS case is high (11 times that in VanZanten et al. (2011)), the importance of collision–coalescence is

relatively low. Then, it may be reasonable to use another initialization parameter instead of α = 1.0, which is favorable for faster

convergence of collision–coalescence with a number of SDs per cell. Despite the original motivation to develop an initialization

method for high-resolution simulations, we investigated the sensitivity of microphysical variability to α for the SCMS case by

50m resolution simulations. The CFADs for the initialization parameters α = 0.5 and 0.0 are shown in Fig. 9. The selected830

times of the snapshots are t = 6,720s and t = 6,540s respectively, which are determined for the same reason as in the case of

α = 1.0. If we assume no spatial variability of aerosol number concentrations and that all aerosols (haze droplets) are activated

to cloud droplets, the maximum CDNC for the SCMS case is 1,155cm−3. Nevertheless, the maximum values of CDNC reach

1,500cm−3 for α = 1.0. As α decreases, the variation in CDNC decreases, and the maximum values of CDNC are almost

limited within 1,155cm−3 for α = 0.0. These results show that the statistical fluctuation of aerosol number concentration for835

large α affects that of the CDNC. We can interpret the cause of the statistical fluctuation of the CDNC as follows. Suppose that

for a given supersaturation, the haze droplets that have an aerosol dry radius larger than the specific threshold activate to form

cloud droplets, as assumed in the Twomey activation model. Then, the CDNC in each grid cell is determined by the SDs that
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have an aerosol dry radius larger than the threshold size. If the proposal distribution with a limited area of the support (domain

of the random variable) for aerosol dry radius is not similar to the aerosol size distribution, the distribution of the CDNC also840

has a statistical fluctuation due to the property of importance sampling. Of course, the actual 3D simulations exhibit other

effects, such as spatially varying supersaturation, considering a more detailed activation process and the dynamical fluctuation

induced by varying the numbers of SDs per cell. On the other hand, the statistical fluctuation of aerosol mass concentration

for small α does not affect that of LWC. Instead, the fluctuations of the LWC decrease as α decreases, and LWC is almost

within the ALWC. This finding can be physically interpreted as follows. As α decreases, the samples of small droplets that845

have a small contribution to the aerosol mass concentration increase, leading to more significant statistical fluctuations of

aerosol mass. Similarly, the statistical fluctuation of the LWC for only haze droplets is larger as α decreases (not shown in

figures). However, without the turbulence effect, droplet growth by condensation causes the droplet radius of the samples to

be more similar with time, thereby damping the statistical fluctuations. In terms of microphysical variability without collision–

coalescence, the obtained results for small α are considered to be more accurate because the prediction of the microphysical850

variable for each grid is less variable. The sensitivity of variability for the mean and standard deviation of radius to α is

unclear. However, the largest values of the mean radius become larger as α increases. This is consistent with the fact that such

initialization that leads to a larger dynamic range of multiplicity (larger α in this study) creates more large droplet samples,

and triggers precipitation, as observed in the study using a box model (Unterstrasser et al., 2017). The results suggest that

for nonprecipitating clouds, small α may be allowed even for low-resolution simulations, and optimization of α or proposal855

distribution by constraints from observations can be explored. For ultrahigh resolution simulations, when using small α such

that the multiplicity of SDs is not smaller than 1, the microphysical variability induced by condensation/evaporation (majority

of the droplets) and precipitation (triggered by rare, lucky droplets), and turbulent fluctuations interacting with clouds through

phase relaxation can simultaneously better represent the natural variability of clouds.

5 Applicability for large-scale problems860

5.1 Scalability

In Sect. 4, we evaluated the computational and physical performances of SCALE-SDM by relatively low-resolution experi-

ments using at most four nodes. Here, we show the feasibility of using our model for large-scale problems using more com-

puting nodes. First, we show the scaling performance of the new SCALE-SDM for the BOMEX case. Although our numerical

model adopts a hybrid type of 3D and 2D domain decompositions using the MPI, we investigated only weak scaling perfor-865

mance in horizontal directions with the vertical domain fixed. This is because almost all clouds localize in the troposphere, and

hence, extending the vertical domain does not provide any benefit.

For all directions, the grid length is set to 2m. The number of grids without halo grids per MPI process is 72× 72× 96

and 18× 18× 1,536 for the 3D and 2D domain decompositions, respectively. The shape of network topologies is a 3D torus.

In one direction of the 3D torus, the number of 16 MPI processes/nodes are used for vertical domain decomposition. In each870

node, 2× 2 MPI processes per node are used for horizontal domain decomposition. For grid conversions between 3D and 2D
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domain decompositions, Nz = 16 is decomposed by (Nxl,Nyl) = (4,4). For the grid system in 2D domain decompositions,

grids are divided into groups of 6×6×6 for cache blocking. For arithmetic precision, FP64 is used for the dynamical process,

and mixed-precision is used for the SDM. Here, most of the representations and operations for the SDM use FP32/INT32. In

contrast, reduction operations such as calculation of SDs within a cell to liquid water in the cell use FP64, and calculations875

of SD cell positions use INT16. The scales of problems per node are mainly limited by memory capacity because the usable

system memory of HBM2 is 28 GB, and SD information consumes 8.32 GB memory capacity per node for the above setting if

extra 36 % of the buffer arrays for the SDs is reserved.

The node shapes are 4×4×16, 24×16×24, 48×16×48 with horizontal domains of 1,152m, 6,912m, 13,824m, respectively.

For the BOMEX case, streaks and roll convection with about 1km wavelength are apparent for high-resolution simulations, and880

they restrict cloud patterns (Sato et al., 2018). To exclude the effect of domain size, we evaluated the weak scaling performance

from the horizontal domain of 1,152m.

Time integrations were performed for 3,680s. The time interval was ∆tdyn = 0.0046s, ∆tadv = 4∆tdyn = 0.0184s, ∆tphy =

0.0736s for dynamical process, tracer advection, and physical process, respectively. The short integration time compared with

the standard numerical settings for the BOMEX case is because some challenges remain in outputting large restart files (see885

Sect. 6.3) and mitigating load imbalance due to clouds. Further, it takes longer to obtain profiles of the computational per-

formance. However, since the integration time is sufficiently long for clouds to be generated in the domain and to approach

a quasisteady state, the obtained performance is a good approximation of the actual sustained performance. Note that we set

∆tadv smaller than the constraint of CFL condition for tracer advection (typical wind velocity of shear flows is about 10ms−1

for the BOMEX case). Because the time-splitting method was applied for compressible equations, the noise induced by the890

acoustic wave is dominant on the tracer fields if ∆tadv is larger than several times ∆tdyn. If an instantaneous value for dynam-

ical variables is used for the time integration of physical processes, and ∆tphy is several times ∆tdyn, a compressional pattern

may arise for the SD density because the instantaneous dynamic variables have a specific phase of the acoustic wave pattern.

To reduce these effects, we used dynamic variables averaged over ∆tadv for physical process calculations.

For measuring the computational performance, we used both timer (MPI_Wtime) and fapp. We used the results obtained895

by the timer only for obtaining a quick view of the elapsed time and the results obtained by fapp for other detailed analysis,

such as the number of floating point number operations, number of instructions, and amount of memory transfer. We note that

the measured results have an overhead through the use of fapp. The I/O time is included in the total elapsed time of the time

integration loops, but it is quite small. We did not use explicit barrier synchronization before and after the time measurement

intervals. All-to-all communications with blocking in the local communicator, which consists of Nz MPI processes, were900

used for converting the grid systems. Since barrier synchronization is not performed for all MPI processes, the wait time of

communication can affect across dynamics and microphysics processes. However, even if the variations in the presence of

clouds in each MPI process is large, these effects become small when the variation of the clouds in each group of Nz MPI

processes is small. Since no large-scale cloud organization occurs in this case, we evaluated the computational performance of

individual components separately, such as the components of dynamics and microphysics.905
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Figure 10. Weak scaling performance of 2m resolution experiments for the BOMEX case.

The weak scaling performance of the new SCALE-SDM obtained for the above settings is shown in Fig. 10. We adopted

the grid system for 3D domain decomposition as the default grid system. The elapsed time for the grid system conversion

from 3D to 2D or from 2D to 3D domain decomposition is included in a required physics process. In this case, it is only

included in the elapsed time for the microphysics process during the time integration loop. The total elapsed time of the

experiments was 566min for 256 nodes and exhibits 98 % weak scaling for 36,864 nodes. In addition, the elapsed time for910

dynamics and microphysics was 268min and 286min for 256 nodes and exhibit 92 % and 104 % weak scaling for 36,864 nodes,

respectively. All-to-all communications during the conversion of grid systems do not degrade the weak-scaling performance

for microphysics because the hop counts of communications are small, and the number of MPI processes involved is small.

Other physics processes, such as the turbulence scheme, surface flux, and idealized radiation, consume only about 2% of the

total elapsed times.915

5.2 Largest-scale problem

The detailed profile of the largest problems among our experiments for the weak scaling test is summarized in Table 3. The

peak ratio is obtained against the theoretical peak performance of FP64 operations. The overall time integration loop (excluding

the initialization and finalization of the simulation) achieves 7.97 peta floating-point operations per second (PFLOPS), which

is 7.04% of the theoretical peak performance, and 13.7 PB/s which is 37.2% of the peak performance. The achieved peak ratio920

of the FLOPs is comparable to that of 6.6% by NICAM-LETKF (Yashiro et al., 2020), which was nominated for the 2020

Gordon Bell Prize. In addition, because the effective peak ratio of memory throughput performance is approximately > 80%

for the STREAM Triad benchmark, the obtained peak ratio achieves about half of it, implying that the overall calculations
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Table 3. Elapsed time, FLOPS (peak ratio of the FLOPS [%]), Peta instructions per second, memory throughput (peak ratio of the memory

throughput [%]), and particle throughput (# of floating point operations per SD)

Time [min] Speed [PFLOPS] PIPS Memory Throughput [PB/s] Part. Throughput [particle·step/s]

Time integration loop 576 7.97 (7.04) 1.86 13.7 (37.2)

Dynamics 290 8.55 (7.55) 2.03 20.5 (55.7)

Microphysics 274 7.50 (6.62) 1.69 6.25 (16.9) 2.86× 1013

Short time step 238 9.50 (8.39) 2.19 21.3 (57.9)

Tracer time step 15.0 5.85 (5.17) 1.78 21.6 (58.7)

Tracking 87.9 15.3 (13.5) 2.14 2.89 (10.5) 8.91× 1013 (171)

Condensation 32.6 18.2 (16.1) 5.35 5.28 (14.3) 2.40× 1014 (75.9)

Coalescence 5.75 7.58 (6.69) 2.96 17.5 (47.3) 1.36× 1015 (5.57)

utilize HBM2 well. At the subprocess level, the short time step (for acoustic waves), which consumes most of the elapsed

time in dynamics, achieves 9.5 PFLOPS (8.39% of the peak) and 21.3 PB/s (57.9%). SD tracking and condensation achieve925

15.3 PFLOPS (13.5% of the peak) and 18.2 PFLOPS (16.1% of the peak), respectively. These relatively high performances are

partly attributed to the use of FP32 for most operations. For these cases, the effective peak ratios for the calculations should be

the ratio against peak performance for FP32, which are half of the ratio against FP64 and hence not high. The bottleneck of

these processes is a large L1 cache latency of A64FX due to the random access of the grid fields. For collision–coalescence,

the peak ratio of the floating-point operations is very low. However, in terms of instructions per second (IPS), which includes930

integer operations, store and load operations, and computation for conditional branches, the performance is not low compared

with those of the other processes.

In the SDM, SD tracking, condensation, and collision–coalescence computations consume 44% of the elapsed time. Others

contributors are the mainly the times for data movement, such as the conversion of grid systems, sorting SDs with a block as

a key, and load imbalance for the presence of the clouds, which still needs improvement. In this experiment, because of the935

limited memory capacity, we divided loops with a block into small groups to reduce the memory usage for sorting. This affects

the increase in the latency and wait time because of synchronization by increasing the communication counts and inefficient

OpenMP parallelization by decreasing the loop counts—this is one reason for the long time required for data movement.

The data throughput of the SDM, which we define as shown in Eq. (10) in Sect. 4, as well as the elapsed time, is a fundamental

measure that includes not just the number of floating-point operations but also all the information about a numerical model, a940

scheme, an implementation, and a computer. In terms of data throughput, we attempted to compare our results with those of a

tokamak plasma PIC simulation, a study that shares similarities in computational algorithms but has an entirely different target.

The tokamak plasma PIC simulation performed by Xiao et al. (2021) was nominated for the 2020 Gordon Bell Prize. It used

the total system of the Sunway OceanLight, which has a higher theoretical peak performance than the Fugaku. For the largest-

scale problems, the throughput of the SDM reaches 2.86× 1013, which is comparable to 3.73× 1013 particle·steps/s of their945

study. In addition, the throughput of each subprocess is larger than the simulated throughputs. The major difference between
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our and their results in terms of data throughput is the number of operations per particle—it is ∼ 5,000 in their simulations,

which is much larger than that achieved in our study. In research focusing on FLOPS as a measure for better computational

performance, it is common to reduce the application B/F by increasing the number of FLOPs per particle to fit a computer

that has a small B/F, which may result in small data throughput. However, we achieved data throughput comparable to that of950

their study; this is a more practical measure for application than merely considering the FLOPS even if the throughputs are

comparable.

Finally, we roughly estimated the elapsed time considering that the two-moment bulk and the bin method were used for the

same numerical experiments of the same problem size, and we compared our results with the previous work. From Table 3, the

elapsed time for tracer advection (only water vapor mass mixing ratio) is 15min, and the peak ratio of memory throughput is955

58.7%, which indicates good performance from the viewpoint of the effective peak performance. In the current implementation,

since the time evolution of the tracers was solved by each tracer separately, the total elapsed time for tracer advection was

easily estimated as the product of 15min with the number of tracers. If water-vapor mass-mixing ratio plus 10 or 32 tracers

are used for the bulk of the bin method, respectively, the elapsed time for tracer advection is estimated as 165min and 495min

respectively; these values are larger than the elapsed time of the sum of the SD movement and tracer advection (103min).960

For the bin method, the estimated elapsed time of tracer advection is larger than the total elapsed time of the SDM. Here,

we explain that this relationship is robust with respect to the optimization of the bin method. The bottleneck of the tracer

advection is memory throughput for B/F= 3.69 > 0.3. We computed the tracer flux in each direction from the mass flux and

tracer variables of the previous step to update the tracer variable based on the finite volume method. If the arrays are large,

memory access occurs in nine arrays (one component mass flux, tracer variable, and one component tracer flux for each965

direction). Since the mass flux is common for different tracer variables, and memory access for the tracer variable occurs thrice

for computing the tracer flux, our implementation is not optimal for minimizing memory access. Thus, in principle, there is

room for optimization. However, since there are no known successful examples of such optimization in the Fugaku (and in the

other general-purpose CPUs), tracer advection is a memory-bound application in practice. Then, a possible optimization may

be to simply refactor the codes, and we may be able to improve the memory throughput performance of tracer advection to970

achieve up to 80%. However, even with such optimization, the elapsed time of tracer advection with 33 tracers is estimated to

be 363min. Therefore, our simulations with the SDM still have an advantage against the bin method.

6 Discussion

6.1 Mixed-phased cloud

In this study, we optimized and sophisticated the SDM for only warm microphysics processes and compared the computational975

performance using the warm SDM with the two-moment bulk method with tracers for ice categories. However, unless a similar

method can be applied for cold processes (Shima et al., 2020), the efficacy of our method for practical problems may be small.

Here, we discuss possible extensions to such cases.
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Shima et al. (2020) extends the SDM approach to consider the morphology of ice particles. Ice processes considered in

Shima et al. (2020) include immersion/condensation and homogeneous freezing; melting; deposition and sublimation; and980

coalescence, riming, and aggregation. To solve these processes, new attributes, such as freezing temperature, equatorial radius,

polar radius, and apparent density, are introduced. A critical aspect of the approach using the SDM is that despite many

attributes for water and ice particles, the effective number of attributes decreases if particles are in either the water or ice state.

For example, when warm and cold processes are considered, the apparent density is necessary for ice particles but it is not so

for liquid droplets. Indeed, the memory space used for the attributes for ice particles can be reused to represent the attributes985

of droplets when they change to liquids, and vice versa. Thus, if well implemented, the increase of the memory requirement

for considering both warm and cold processes can be mitigated. In addition, if we can easily discriminate the particle state as

water or ice, the computational cost of the mixed phase SDM when used for warm clouds will be almost identical to that of the

warm SDM.

Thus, this is relatively easy. The initial freezing temperature takes values from −38◦C to −12◦C, and its low-precision990

representation is reasonable because of its small dynamic range. For the mixed-phase SDM, a water droplet is converted to an

ice particle when the environmental temperature falls below the freezing temperature. An ice particle is converted to a water

droplet if the environmental temperature exceeds 0◦C. All SDs in the cell are ice particles if the environmental temperature

is below −38◦C. In contrast, all SDs in the cell are water droplets if the environmental temperature is above 0◦C. For such

cases, we can use specialized codes for water droplets or ice particles, thereby reducing the cost of conditional branches for995

each particle. This justifies our comparison between the SDM and the two-moment bulk method.

On the other hand, if water droplets and ice particles are mixed in the cell, the computational performance will decreased

because of some challenges such as the different formats of information of water droplets and ice particles and SIMD vector-

ization. In addition, they make assumptions such as particles are in either the water or ice states, and instantaneous melting

occurs above 0◦C. These problems should be addressed in future works by making fewer assumptions.1000

6.2 Terrain

An extension of this study to the case with terrain is also essential. For terrain-following coordinates with the map factor used

in the regional model, our SD tracking using a fixed-point representation of the SD’s position can be applied when we map

from the terrain-following coordinate to the Cartesian coordinates. However, if coordinate mapping is introduced, the CVI

scheme may not guarantee consistency between air density and SD density. In addition, there is an additional computational1005

cost for SD tracking. If computational cost is critical, we can include the effect of terrain in the SCALE-SDM by combining it

with the immersed boundary or cut-cell methods. Then, the computational performance will not deteriorate because additional

cost arises only in the block with the terrain. When realistic terrain is considered, another additional cost will be incurred at the

top/bottom/side boundaries to impose inflow/outflow conditions. Moreover, it will be more complex to sample SDs by ensuring

consistency between air density and SD density because the probability for sampling will be a 3D distribution. However, the1010

cache-blocking algorithm introduced in this study also helps improve the computational efficiency for such complex processes.

By examining if and how we can construct a CVI for terrain-following coordinates and spherical coordinates is a future task.
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6.3 Long-time run

In Sect. 5.2, we focused on the feasibility of large-scale problems and performed only about 1 h time integration. To investigate

the statistical behavior of clouds, longer time integration is required. However, if we create a checkpoint/restart file for the1015

largest-scale problems in this study, it will require approximately 225 TB without compression for the total number of SDs of

9.39×1012 SDs, and each SD consists of six attributes with four bytes for each attribute. It is possible to output such large-size

files on the Fugaku because of its system design and to utilize most of the computing nodes in Fugaku for a short period.

However, it is usually difficult to use such a large amount of storage only for one project. One way to address this problem is

further optimize to improve the strong scaling performance for longer integration in a single run. Another way is to use lossy1020

compression by giving up the exact reproducibility of the simulations. For example, if we do not store haze droplets on a disk,

and resample SDs at the restart, the amount of data can be reduced to less than 10% for BOMEX. On the other hand, this

method will eliminate the effect of hysteresis on the SDs. A better resampling method from compressed data is a challenge for

future studies.

6.4 Can we achieve higher performance?1025

6.4.1 Lower precision arithmetic

Since A64FX is a general-purpose CPU with FP16/INT16, it may be possible to reduce memory usage and data movement

and achieve higher performance if low-precision arithmetic is utilized. Unfortunately, we could not use it simply for this study.

However, since using lower-precision arithmetic may be essential for future high-performance computing, we briefly discuss

the obstacles for the same.1030

Grabowski and Abade (2017) showed that supersaturation fluctuation can broaden the DSD even in the adiabatic parcel.

Their method and Abade et al. (2018) serve as a type of parameterization of the turbulence effect for the SDM. Instead of

using the 3D numerical model, we discuss the sensitivity of the DSD to numerical precision based on Grabowski and Abade

(2017). The numerical settings of the adiabatic parcel model are the same as theirs. The box size of a parcel is 50m. Time

integration was performed for 1,000s by the time interval of ∆t = 0.2s. In contrast, we used different numerical precisions1035

(FP64, FP32, and FP16) and different rounding modes (round to the nearest and two modes of stochastic roundings) for time

integration of droplet radius. The detailed mathematical property of stochastic rounding is described in Connolly et al. (2021).

Mode 1 rounds to an up/down direction considering the precise position (calculated by other methods such as higher precision

arithmetic) in the interval between the upward and downward rounded values. Mode 2 rounds to an up/down direction with a

probability of 1/2. For basic operations such as the inner product, the expected values calculated using the stochastic rounding1040

of mode 1 are identical to true values.

The DSDs at 500s,1,000s are shown in Fig. 11. Without the effect of supersaturation fluctuations, the results obtained using

FP64 and FP32 are in good agreement. In contrast, the DSD obtained using FP16 is stagnant in time because the tendency of

condensational growth is too small to add to the droplet radius (i.e., loss of trailing digits). However, the DSD obtained using

FP16 with mode 1 rounding is similar to that obtained using FP64 or FP32 because the tendencies can be added to droplet1045
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radius stochastically. If we focus on individual SDs, some SD may experience more rounding down, and some may experience

more rounding up. That is, the DSD is slightly diffusive compared with that obtained using FP64 and FP32. If we use FP16

with mode 2, the obtained DSD shifts toward a larger droplet radius, indicating that the probability for rounding direction

is essential to ensure accuracy. With supersaturation fluctuations, the DSD obtained using FP16 is less stagnant because the

magnitude of tendencies does not reach 0 because of the fluctuations. The DSD obtained using FP16 with mode 1 is similar to1050

that obtained using FP64 or FP32 except for a slight diffusional trend.

These results indicate that we cannot simply use FP16, but we can use FP16 with mode 1 rounding for some problems. For

example, suppose ∆t is used in low-resolution simulations. In that case, the DSD becomes less diffusive because the effect

of rounding becomes small, and the magnitude of supersaturation fluctuations becomes large. On the other hand, if ∆t is

small in high-resolution simulations, the effect of rounding error on the DSD becomes large. In such cases, the use of FP161055

is not suitable even if stochastic rounding is used. For SD movement, because of the variable precision for SD position, it

may be feasible to use fixed-point number representation such as INT16 using mode 1 in high-resolution simulations. For

collision–coalescence, FP16/INT16 may be troublesome. For example, since the mass of aerosol dissolved in droplets has a

wide dynamic range (at least 109 from Fig. 1), it is difficult to represent it by FP16 even if scaling is performed by adopting an

appropriate unit.1060

The design of the A64FX architecture also makes the use of FP16 difficult. Since the terminal velocity is calculated based

on polynomial fittings from laboratory experiments, and these fittings include measurement errors, the calculations using

higher-precision floating-point operations may not improve the accuracy of the results. For such cases, the use of FP16 can be

considered. The formula proposed by Beard (1976) for terminal velocity can be divided into three intervals depending on the

droplet radius. To apply SIMD vectorization for such loops, we must group particles of similar droplet radii. However, due to1065

a lack of suitable load/store instructions to deal with the jumped data for FP16, a loop cannot be fully vectorized on A64FX.

Similarly, the grid fields referenced by each SD are randomly accessed and cannot be vectorized by SIMD. Therefore, we

cannot expect faster computation because of the wider SIMD vectorization. We also cannot expect faster computation because

of faster data transfer, as the SD movement and condensation/evaporation are not memory-bound computations. These points

should be considered when designing computer architecture in the future.1070

6.4.2 Reduction of data movement

For the largest-scale problems, the time for data movement (i.e., other than SD tacking, condensation, and collision–coalescence)

in the SDM accounts for 53.9% of the time in the SDM, which accounts for 25.7% of the total elapsed time. To further reduce

the time-to-solution, it is necessary to optimize data movement.

One possible optimization is to not to sort SDs with a block as a key for every time step of the SDM. Although such an1075

approach is adopted in the tokamak plasma PIC application (Xiao et al., 2021), it requires some consideration for application to

the SDM. For collision–coalescence, all SDs in a block must be in the same MPI process to calculate the interaction between

SDs in a cell; however, this is not necessary for SD movement and condensation processes. That is, if the ∆tcoll/coalse for

collision–coalescence process can be taken larger than ∆tmove for SD movement and ∆tcond for condensation, the sorting
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Figure 11. DSD obtained by using different numerical precisions of floating-point number operations and rounding modes for (a) without and

(b) with the effect of supersaturation fluctuations. The DSD for t = 500s and t = 1,000s are shown by dotted and solid lines, respectively.

The DSDs obtained using FP16 mode 2 for t = 1,000s are flat in the range shown in figures. At that time, the mean radius of the DSD

are approximately 36µm for both cases—that is, without and with supersaturation fluctuations. The standard deviation of the DSD are

approximately 1.7µm and 3.0µm for the cases without and with supersaturation fluctuations, respectively.

frequency can be reduced by ∆tsort for sorting equals to ∆tcoll/coalse. In addition, when cloud or rain droplets are not included1080

in a block, collision–coalescence process is not calculated. Then, it is possible to set ∆tsort larger than ∆tmove and ∆tcond to

reduce the sorting frequency.

The second possible optimization is to merge the loops divided by subprocesses in microphysics to lower the required B/F

of the SDM. However, this approach may be less effective on computers with high B/F, such as A64FX, and it requires a large

amount of L2 cache to store all SDs information in a block.1085

From the operations in each subprocess listed in Table 3, the minimum B/F for the SDM is estimated as BF = (6× 4×
2)/(171+75.9+5.57) = 0.190 < 0.3 where we assume read/write for six attributes (positions, radius, multiplicity, and aerosol

mass) that consist of each four-byte information. On the other hand, if we separate each subprocess and create a working array

for two-byte SD cell positions instead of using SD positions, the minimum B/F for SD movement and condensation are

BF = (4×3×2+4)/171 = 0.164 < 0.3 (assuming read/write for four byte 3 positions and read for 4 bytes multiplicity), and1090

BF = (2+4×2+4×2)/75.9 = 0.237 < 0.3 (assuming read for 2 bytes cell position, read for 4 bytes multiplicity and mass of

aerosol, and read/write for 4 bytes droplet radius), respectively. These results are consistent with the measured B/F (from speed

and memory throughput in Table 3) (0.189 and 0.290, respectively). The minimum B/F for SD movement and condensation

are smaller than the B/F of the A64FX. However, since the measured B/F for the SDM and collision–coalescence is 0.833 and
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2.31, respectively, collision–coalescence is a memory-bound computation, and it causes an increase in the level of the total B/F1095

for the SDM.

As is the case with many computers, the B/F values are expected to be smaller in future. For future high-performance

computing, merging loops will be necessary, assuming that the high-capacity and high B/F cache or local memory may be

achieved by developing new technologies such as 3D stacking.

6.5 Possible research directions1100

Our study focused on the optimization and sophistication of the numerical model. The developed model can be applied to many

fields of research from technical and scientific viewpoints.

For model development, in addition to the discussion in Sect. 6.1 to 6.3, the sensitivity of the microphysical variability

and precipitation to initialization parameter α should be further explored by high-resolution simulations. The reduction in

the variance of prediction for the SDM, such as when using low-discrepancy sequences, should also be explored. We did not1105

examine this impact in this study. Moreover, the continuation of proposal distributions between the DNS and LES may help

in realizing more sophisticated model components. The computational performance of our numerical model may be further

improved by applying Grabowski et al. (2018). Their method can reduce computational cost only when the cloud volume

occupies a small fraction of the total volumes and cannot reduce memory usage unless dynamic load balancing is employed.

In contrast, our optimization can improve the performance and reduce memory usage even when the cloud volume occupies1110

a large fraction. Suppose we could further reduce the computational cost and data movement for SD tracking by applying

Grabowski et al. (2018). In this case, our model may be more practical than a bulk method in terms of the costs for complex

real-world problems because we have already achieved performance comparable to that of a bulk method.

For scientific research, the study enables us to address the problems described in Introduction as ∼ 1m resolution numerical

experiments are now possible. For example, we can investigate the cloud turbulence structure in shallow cumuli (Hoffmann1115

et al., 2014) and its interaction with boundary layer turbulence (Sato et al., 2017) in detail. We can also confidently compare

the simulation results with observational studies (Matsushima et al., 2021) because the effective resolution of simulations is

now comparable to the observational scale (∼ 10m). We also improved the initialization method. For stratocumulus, we can

investigate the statistical quasisteady state DSD, which is affected by cloud-top entrainment and a realistic radiation process.

7 Conclusions1120

In the present study, we developed a particle-based cloud model to perform ultrahigh-resolution simulations to reduce the

uncertainty in weather and climate simulations. The SDM is promising for complex microphysical process modeling. The

main contributions of our SDM-based work are as follows: (1) the development of an initialization method for SDs that can

be used for simulating spatial resolutions between the centimeter and meter scales, (2) improvement of the algorithms of

the SDM, and computational and physical performance evaluations, and (3) demonstration of the feasibility for large-scale1125

problems using supercomputer Fugaku.
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(1) The uniform sampling method, which has good convergence property for the mass of SDs, results in many invalid

samples when the number of SDs is large because the number of SDs becomes larger than the number of real droplets,

and multiplicity falls below 1 for rare but important SDs. In contrast, the constant multiplicity method is a natural choice

for DNS. We developed a new initialization method that is suitable for scales between the centimeter and meter scales by1130

connecting the uniform sampling method and constant multiplicity method. The developed initialization method requires a

proposal distribution apart from the aerosol distribution. The proposal distribution is formulated as an α-weighted Fréchet

mean of proposal distributions between the uniform sampling method and the constant multiplicity method. To calculate the

Fréchet mean, we require a measure of the distance between elements. For this metric, instead of using the L2 norm, we suggest

using the Wasserstein distance, which is the natural distance between probability distributions, or the Sinkhorn distance, which1135

is a regularization of Wasserstein distance. The developed method gives a larger minimum and reduces the dynamic range

of SD multiplicity. As α decreases, importance sampling for the aerosol size distribution gradually changes from a variance

reduction effect for mass concentration to a variance reduction effect for number concentration.

(2) We improved the algorithms of the SDM to achieve high performance on Fujitsu A64FX processor, which is used in

supercomputer Fugaku. The developed model employs a hybrid type of 3D and 2D domain decompositions using MPI to1140

reduce communication cost and load imbalance of calculations for the SDM. The SDM, or more generally the PIC method, has

a limitation in high-performance computing because such codes include many complex calculation patterns and conditional

branches. We further divided the decomposed domain for the cache block into blocks and set the block size with a spatial

scale equivalent to the effective resolution of the LES so that the variables within the block were nearly uniform. We converted

the conditional branches for each SD, which depends on supersaturation or the presence of clouds, into conditional branches1145

for each block. This conversion improved the ratio of identical instructions for each SD and resulted in parallelization by

SIMD vectorization even for Newton iterations and reducing the costs of calculations and data movement for the collision–

coalescence process. For SD movement, the 3D CVI of second-order spatial accuracy on the C-grid was derived to guarantee

consistency of the SD number density and air density. We subtracted partition information using MPI processes and blocks

from the information of SD global positions to reduce information per SD. Then, we stored the relative position of the SD in a1150

block by a fixed-point number using FP32 to guarantee uniform representation precision in the domain.

Next, we evaluated the computational and physical performances of the model on A64FX by comparing the results obtained

using SDM-new, two-moment bulk method, bin method, and SDM-orig. The simple warm bubble experiments showed that

the time-to-solution obtained by using SDM-new is smaller than that for the bin method with the same number of tracers

or SDs per cell, and is comparable to that of the two-moment bulk method when an average of 128 SDs per cell is used.1155

The factors contributing to the enhancements are fewer calculations, higher compactness, and more reasonable use of low-

precision arithmetic for SD tracking than for the conventional tracer advection used with the bulk and the bin methods. The

data throughput of SDM-new is 57.6 times that of SDM-orig. For the BOMEX and SCMS cases, the computational resources

consumed in terms of node hours and energy consumption using the SDM with about 100 SDs per cell are comparable to

those consumed using the two-moment bulk method; this is an important result because previous studies showed that the1160

SDM requires about 128 SDs per cell for the convergence of statistics such as the CDNC. For the SCMS, new SCALE-SDM
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yielded realistic microphysical variability comparable with that typically observed in nature, including features that cannot be

simulated by the two-moment bulk method. As the initialization parameter α decreased, the in-cloud variabilities of CDNC and

LWC gradually improved, and they were distributed within their simple adiabatic limits. We confirmed that new SCALE-SDM

yields qualitatively better solutions than the two-moment bulk method for a comparable time-to-solution.1165

(3) Finally, we demonstrated the feasibility of using our approach for simulating large-scale problems using supercomputer

Fugaku. The target problem was based on the BOMEX case but with a wider domain and higher spatial resolutions. The new

SCALE-SDM exhibited 98 % weak scaling from 256 to 36,864 nodes (23 % of the total system) on Fugaku. For the largest-

scale experiment, the horizontal and vertical extents were 13,824m and 3,072m covered with 2m grids, respectively, and 128

SDs per cell were initialized on average. The time integration was performed for about 1 h. This experiment required about1170

104 and 442 times the number of grids and SDs compared to the current state-of-the-art experiment (Sato et al., 2018). The

overall calculations achieved 7.97 PFLOPS (7.04 % of the peak), and the maximum performance was 18.2 PFLOPS (16.1 % of

the peak) for the condensation process in the SDM. The overall throughput in the SDM was 2.86× 1013 particle·step/s. These

results are comparable to those reported by the recent Gordon Bell prize finalists, such as the peak ratio of the simulation part of

the NICAM-LETKF and the particle throughput of the tokamak plasma PIC simulation. We did not examine the largest-scale1175

problem by using the bin model or the two-moment bulk model; instead, we used a simple extrapolation to estimate that for

the largest problem, the time-to-simulation of the SDM is shorter than that of the bin method and is comparable to that of the

two-moment bulk method.

Several challenges remain—for example, optimization for mixed-phase clouds, inclusion of terrain, and long-time integra-

tion. However, our approach can handle such further sophistication. The simplification of a loop body innovated in this study1180

can contribute to optimizing the mixed-phase SDM. We also discussed the possibility of reducing attributes, which increases

when using mixed-phase SDM, to obtain effective attributes. However, our approach cannot simply be applied to improve the

computational performance when the water and ice states are both present in a cell. Thus, further sophistication is necessary.

The developed CVI scheme can be applied to cases with terrain if we combine our algorithm with the immersed boundary

or cut-cell methods. The computational performance of our model will not be degraded in such cases. However, SD tracking1185

over a larger area and in spherical coordinates remains a challenge. The long-time integration of SCALE-SDM is still difficult

because of the large data volume. Additional study on reducing data volume by using lossy compression and resampling to

restore the data is necessary. For future supercomputers, reducing data movement will be the key to achieving high compu-

tational performance. This can be achieved, for example, by reducing information on SD positions, reducing the SD sorting

frequency, lowering the application B/F by merging the loops for physics subprocesses, and developing computers that will1190

make this possible.

Our study is still in the stage of demonstrating the feasibility of large-scale problems for ultrahigh-resolution simulations.

However, suppose the ultrahigh-resolution cloud simulations demonstrated in this study can be performed routinely. In this

case, these results can be compared with DNS, laboratory experiments, and field studies to study turbulence and microphysics

processes over a vast range of scales. Therefore, we strongly believe that our approach is a critical building block of the future1195
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cloud microphysics models and advances the scientific understanding of clouds and contributes to reducing the uncertainties

of weather simulation and climate projection.

Code and data availability. The numerical model codes and configuration files used in this study are available at Matsushima et al. (2023a).

The supplemental codes, figures, movies, and datasets are available at Matsushima et al. (2023b).

Appendix A: Wasserstein distance1200

As described in Sect. 3.2, the Wasserstein distance was used to develop a new initialization method for the SDM. The Wasser-

stein distance and its strongly related optimal transport theory are powerful mathematical tools for tackling problems dealing

with a probability distribution, such as machine learning. Here, we briefly introduce the Wasserstein distance, its regularization,

and displacement interpolation (McCann, 1997) for readers who are unfamiliar with them.

Let two probability distributions as a and b. If we allow mass split during transportation, the amount of transportation from1205

i-th bin ai to j-th bin bj is represented using a coupling matrix Pij . Let a set of coupling matrix U as

U(a,b) =


P ∈Rn×n : Pij ≥ 0,

∑

j

Pij = ai,
∑

i

Pij = bj



 . (A1)

The pth (p≥ 1) Wasserstein distance Wp for two probability density distributions (a,b) is defined as

Wp(a,b) =


 min

P∈U(a,b)

∑

i,j

|i− j|pPij




1
p

. (A2)1210

That is, W p
p is the minimum total cost of transportation from a to b when transport cost from i to j is |i− j|p. On the other

hand, the difference between two distributions are often measured using Lp norm:

Lp(a,b) =
∑

i

(ai− bi)p. (A3)

The significant difference between the Wasserstein distance and Lp norm is that distance between two distributions is mea-

sured in terms of horizontal or vertical differences. Therefore, the Wasserstein distance is a useful measure if the location1215

of the random variable is essential. A coupling matrix P can be obtained by solving a linear programming problem, which

is computationally expensive for large-scale problems because its computational complexity is of the order of O(N3) for

N dimension. If the computational cost is important, the Sinkhorn distance (Cuturi, 2013), which is a regularization of the

Wasserstein distance, can be used instead:

Sγ(a,b) = min
P∈U(a,b)


∑

i,j

|i− j|pPij + γ
∑

i,j

Pij(logPi,j − 1)


 . (A4)1220
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The negative sign of the second term on the right-hand side is the entropy of the probability distribution, which is non-negative

and increases with the uncertainty.

For the one-dimensional case, the Wasserstein distance has a simple alternative form:

Wp(a,b) =




1∫

0

|F−1
a (y)−F−1

b |pdy




1
p

, (A5)

where F−1
a , and F−1

b are quantile functions (inverse functions of the cumulative function) for a and b, respectively. In this1225

case, the displacement interpolation (a solution of continuous case of Eq. (5)) is represented as

F−1
a (y) = (1−α)F−1

b1
(y) +αF−1

b2
(y). (A6)

When we denote right-hand side of Eq. (A6) as

x = (1−α)F−1
b1

(y) +αF−1
b2

(y), (A7)

then Eq. (A6) is rewritten as1230

F−1
a (y) = x. (A8)

Here, we describe a method to obtain y = Fa(x), assuming we already know the specific forms of Fb1 ,Fb2 , and F−1
b2

. We

change the variable from y to x′ in Eq. (A7) as y = Fb1(x
′) and we get

x = (1−α)x′+ αF−1
b2

Fb1(x
′). (A9)

This means that if we assign a value to x′, we can obtain a function of x as y = Fa(x). The simple discretization of these cal-1235

culations yields practical numerical algorithms to obtain y = Fa(x). For example, in this study, we assign b1 as the normalized

aerosol distribution and b2 as the uniform distribution. Because b1 is close to 0 near the edge of the support for the distribution

and because the quantile function of b1 changes sharply, it is difficult to construct discrete points in y directly. However, if

we discretize x′ using equidistant points, the points in y are automatically ensured to resolve the sharp changes in the quantile

function.1240

Appendix B: Second-order conservative velocity interpolation on Arakawa C-grid

For simplicity, we considered interpolation within a cell, and let the coordinates be (x,y,z) and let the regions be 0≤ x≤
∆x, 0≤ y ≤∆y, 0≤ z ≤∆z. Coordinates and velocities are nondimensionalized as follows.

x′ =
x

∆x
, y′ =

y

∆y
, z′ =

z

∆z
, (B1)

u′ =
u∆t

∆x
, v′ =

v∆t

∆y
, w′ =

w∆t

∆z
. (B2)1245
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In the following discussion, ′ is omitted, and only the results are shown (the proof is available at Matsushima et al. (2023b)).

Let u(x,y,z), v(x,y,z), w(x,y,z) be the nondimensional velocities, and let its values on the C-grid be represented as

follows:

u0 = u(0,1/2,1/2),u1 = u(1,1/2,1/2), (B3)

v0 = v(1/2,0,1/2),v1 = v(1/2,1,1/2), (B4)1250

w0 = v(1/2,1/2,0),w1 = w(1/2,1/2,0). (B5)

Further, let the partial differential coefficient for the nondimensional velocities be represented as

δyu0 =
∂u

∂y
(0,1/2,1/2). (B6)

Then, the velocity at the SD position U = (up,vp,wp) obtained using the second-order conservative velocity interpolation is

represented as follows:1255

uf{0,1} = u{0,1}+ δyu{0,1}

(
y− 1

2

)
+ δzu{0,1}

(
z− 1

2

)
, (B7)

vf{0,1} = v{0,1}+ δxv{0,1}

(
x− 1

2

)
+ δzv{0,1}

(
z− 1

2

)
, (B8)

wf{0,1} = w{0,1}+ δxw{0,1}

(
x− 1

2

)
+ δyw{0,1}

(
y− 1

2

)
, (B9)

up = (1−x)uf0 + xuf11260

+ x(1−x)
{

1
2
(δxw1− δxw0) +

1
2
(δxv1− δxv0)

}
, (B10)

vp = (1− y)vf0 + yvf1

+ y(1− y)
{

1
2
(δyw1− δyw0) +

1
2
(δyu1− δyu0)

}
, (B11)

wp = (1− z)wf0 + zwf1

+ z(1− z)
{

1
2
(δzv1− δzv0) +

1
2
(δzu1− δzu0)

}
. (B12)1265

If all partial differential coefficients in Eq. (B7)–(B12) are set as 0, the interpolated velocity becomes identical to the results

obtained using the first-order conservative velocity interpolation. The coefficients are evaluated simply by calculating the

second-order central difference from the velocities at the cell boundaries.

Appendix C: Conditions for existence and uniqueness of the solutions of discretized activation/condensation equation

To solve Eq. (7) numerically, we consider two cases in which the uniqueness of the solution can be easily determined. Here, f1270

is continuous function of R2 in the interval R2 ∈ (0,∞), and it behaves as f(+0) =−∞ and f(+∞) =∞. The intermediate

value theorem states that Eq. (7) has at least one solution in the interval (0,∞).
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To derive the Case 1 condition, we first differentiate f with respect to R2:

f ′(R2) = 1− ∆tA

(R2)3/2

[
a− 3b

R2

]
, (C1)

f ′′(R2) =
3∆tA

2
1

(R2)5/2

[
a− 5b

R2
.

]
(C2)1275

Since f ′ has a minimum value at α2 = 5b/a where (f ′)′ = 0, f ′ is always positive in R2 ∈ (0,∞) if f ′(α2) > 0. In this case,

there is one unique solution in the interval. From f ′(α2)≥ 0, we obtain Case 1 condition of Eq. (8). On the other hand, the

solution for f = 0 has at most three solutions if f ′(α2) < 0, and one or two of them may not be physical solutions. Our purpose

is neither to find sufficient conditions for the uniqueness of solutions nor to discriminate physical solutions from at most three

solutions. Although Eq. (8) is a more stringent condition than the condition for the uniqueness of solutions, it has the advantage1280

that Newton’s method becomes more stable because f ′ is always positive.

Case 2 condition is obtained when we constrain the initial values and environmental conditions. We consider the interval

0 < R2 ≤ 3b/a where f behaves as f ′(R2)≥ 1 and f(+0) =−∞. The intermediate value theorem states that Eq. (7) has the

unique solution in the interval if f(3b/a) > 0:

f

(
3b

a

)
=

3b

a
− p2− 2∆tA

[
S− 1− 2a

3

√
a

3b

]
. (C3)1285

If we give S−1≤ 2a
√

a/(3
√

3b), then f(3b/a)≥ 3b/a−p2. Therefore, the condition f(3b/a) > 0 is met if p2 < 3b/a. Since

b depends on an attribute of the droplets, we can make the condition more stringent to depend on only a variable at a cell. For

an unsaturated environment, S− 1≤ 0 and p2 < 3b/a.
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