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Abstract. A particle-based cloud model was developed for ultrahigh-resolution numerical simulation
::::::::::::::::::::
meter-to-submeter-scale

::::::::
resolution

::::::::::
simulations

:
of warm clouds. Simplified cloud microphysics schemes have already made meter-scale numerical

experiments
::::::::
resolution

::::::::::
simulations feasible; however, such schemes are based on empirical assumptions, and hence, they con-

tain huge uncertainties. The super-droplet method (SDM) is promising
:
a
::::::::
promising

:::::::::
candidate for cloud microphysical process

modeling ; it
:::
and is based on a particle-based approachand does not make any assumptions

:
,
::::::
making

::::
less

::::::::::
assumption for the5

droplet size distributions. However, meter-scale numerical experiments
::::::::
resolution

::::::::::
simulations

:
using the SDM are not feasible

even on the existing high-end supercomputers because of its high computational cost. In the present study, we optimized and

sophisticated the SDM for ultrahigh resolution
:::::::
overcame

:::::::::
challenges

::
to

::::::
realize

::::
such

:
simulations. The contributions of our work

are as follows: (1) The uniform sampling method is not suitable when dealing with a large number of super-droplets (SDs).

Hence, we developed a new initialization method for sampling SDs from a real droplet population. These SDs can be used for10

simulating spatial resolutions between centimeter and meter
::::
meter

::::
and

:::::::
submeter

:
scales. (2) We improved

::::::::
optimized the SDM

algorithm to achieve high performance by reducing data movement and simplifying loop bodies by applying
::::
using

:
the concept

of effective resolution. The improved
::::::::
optimized

:
algorithms can be applied to Fujitsu A64FX processor, and most of them are

also effective on other many-core CPUs and
::::::
possibly

:
graphics processing units (GPUs). Warm bubble experiments revealed

that the particle-steps per time for the improved algorithms is 57.6
:::
are

::::
61.3 times faster than those for the original SDM. In the15

case of shallow cumuli, the simulation times
::::
time when using the new SDM with 64–128

:::::
32–64

:
SDs per cell are shorter than

those for
:::
that

::
of a bin method with 32 bins and are comparable to those for

::::::::::
comparable

::
to

:::
that

:::
of a two-moment bulk method.

(3) Using supercomputer Fugaku, we demonstrated that a numerical experiment with 2m resolution and 128 SDs per cell cov-

ering 13,8242 × 3,072m3 domain is possible. The number of grids and SDs are 104 and 442 times, respectively, those of the

current state-of-the-art experiment. Our numerical model exhibited perfect weak scaling up to
::::
98%

::::
weak

:::::::
scaling

:::
for 36,86420

nodes, which account for 23%
:::::::::
accounting

:::
for

::::
23%

:
of the total system. The simulation achieves 7.97PFLOPS, 7.04%

::::::
7.04%

of peak ratio for overall performance, and the simulation time for SDM is 2.86×1013 particle·steps/s. Several challenges, such

as optimization for
:::::::::::
incorporating mixed-phase clouds

::::::::
processes, inclusion of terrain, and long-time integrations, still remain,
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and our study will also contribute toward solving them. The developed model enables us to study turbulence and microphysics

processes over a wide range of scales using combinations of DNS
::::
direct

:::::::::
numerical

:::::::::
simulation

::::::
(DNS), laboratory experiments,25

and field studies. We believe that our approach advances the scientific understanding of clouds and contributes to reducing the

uncertainties of weather simulation and climate projection.

1 Introduction

Shallow clouds greatly affect the Earth’s energy budget, and they are one of the essential sources of uncertainty in weather

prediction and climate projection (Stevens et al., 2005). Since various processes affect the behavior of clouds, understanding30

the individual processes and their interactions is critical. In particular, cloud droplets interact with turbulence over a wide range

of scales (Bodenschatz et al., 2010) in phenomena such as entrainment and mixing and enhancement of the collisional growth

of droplets. Hence, numerical modeling of these processes and model evaluation toward the quantification and reduction of

uncertainty are challenges in the fields of weather and climate science.

Meanwhile, accurate numerical simulations of stratocumulus clouds are difficult because of the presence of a sharp inversion35

layer on the scale of several meters. Mellado et al. (2018) suggests that combining the direct numerical simulation (DNS) ap-

proach, which sets the eddy viscosity constant
:::::
solves

:::
the

:::::::
original

::::::::::::
Navier–Stokes

::::::::
equations

:::::
while

::::::::
changing

::::
only

:::
the

:::::::::
kinematic

:::::::
viscosity

:::
(or

::::::::
Reynolds

:::::::
number)

::::::
among

:::
the

:::::::::::
atmospheric

:::::::::
parameters, and large-eddy simulation (LES) approach

:
,
:::::
which

::::::
solves

:::::::
low-pass

:::::::
filtered

::::::::::::
Navier–Stokes

::::::::
equations

::::
for

:::::::::
unresolved

::::
flow

::::::
below

:::::
filter

::::::
length,

:
can accelerate research on related pro-

cesses. Following their approach, Schulz and Mellado (2018) investigated the interactions between mean vertical wind shear40

and in-cloud turbulence driven by evaporative and radiative cooling, and
:::::::::::::::::
Mellado et al. (2018)

:
,
:::::::::::::::::::::::
Schulz and Mellado (2019)

::::::::::
investigated

:::
the

::::
joint

:::::
effect

:::
of

::::::
droplet

::::::::::::
sedimentation

::::
and

::::
wind

:::::
shear

:::
on

::::::::
cloud-top

:::::::::::
entrainment

:::
and

::::::
found

:::
that

:::::
their

::::::
effects

:::
can

::
be

:::::::
equally

::::::::
important

:::
for

::::::::
cloud-top

:::::::::::
entrainment,

:::::
while Akinlabi et al. (2019) estimated turbulent kinetic energy. However,

since they used saturation adjustment for calculating clouds, their results do not include the influence of detailed microphysics

processes and their interactions with entrainment-mixing
:::::::::
entrainment

:::::::
mixing and supersaturation fluctuations (Cooper, 1989),45

which in turn affect the radiation properties.

To incorporate the details of cloud processes into such simulations, it is essential to remove the empirical assumptions

on the droplet size distributions (DSD) rather than using a bulk cloud microphysics scheme. We should use a sophisticated

microphysical scheme such as a bin method and a particle-based Lagrangian cloud microphysical scheme(Shima et al., 2009)

. If ultrahigh .
::
In

:::::::::
particular,

::::::
herein,

:::
we

:::::
focus

::
on

:::
the

:::::::::::
super-droplet

:::::::
method

:::::::
(SDM),

:::::
which

::
is

:::
one

:::
of

:::
the

:::::::::::
particle-based

::::::::
schemes50

::::::::
developed

:::
by

::::::::::::::::
Shima et al. (2009).

::
If

::::::::::::::::::::
meter-to-submeter-scale resolution simulations could be performed using a sophisticated

microphysical scheme in large domains, we could use a DNS-based approach (Mellado et al., 2018)
::
to

:::::::
simulate

::::::
clouds

:
and

compare these simulations with small-scale numerical studies (Grabowski and Wang, 2013) and observational studies on a

laboratory scale (Chang et al., 2016; Shaw et al., 2020) to field measurement (Brenguier et al., 2011) scales. Such simulations

may help understand the origins of the uncertainty in the clouds and their interactions with related processes. However, in55

reality, only relatively low-resolution simulations are possible using sophisticated microphysical schemes owing to their high
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computational cost. For example, Shima et al. (2020) recently extended the SDM to predict the morphology of ice particles

and reported that the computational resources of the mixed-phase SDM are 30 times that of the two-moment bulk method

of Seiki and Nakajima (2014). To the best of the author’s knowledge, the previous studies by Sato et al. (2017, 2018) are

possibly the state-of-the-art numerical experiments on the largest computational scale as yet. To investigate the sensitivity of60

nonprecipitating shallow cumulus to spatial resolution, they performed numerical experiments with spatial resolutions up to

6.25m/5m (horizontal/vertical) with 30 super-droplets (SDs) per cell using supercomputer K. They found that the highest

spatial resolution used in their study is sufficient for achieving grid convergence of the cloud cover but not for the convergence

of cloud microphysical properties. For solutions of the microphysical properties to converge with increasing spatial resolution,

it is necessary to reduce the vertical grid length (Grabowski and Jarecka, 2015) for simulating the number of activated droplets65

accurately and to maintain the aspect ratio of the grid length close to 1 for turbulence statistics (Nishizawa et al., 2015).

Nevertheless, using a sophisticated microphysical scheme for high-resolution
:::::::::
meter-scale

:::::::::
resolution simulations remains a

challenge. One approach to cope with this difficulty is to await the development of faster computers. However, single-core

CPU performance is not increasing according to Moore’s law anymore. Therefore, to take advantage of the state-of-the-art

supercomputers, we must adapt our numerical models to their hardware design. Another solution to overcome the challenge is70

to use the rapidly advancing data scientific approaches. Seifert and Rasp (2020) developed a surrogate model of cloud micro-

physics from training data using machine learning. Tong and Xue (2008) estimated the parameters of the conventional cloud

microphysics models by data assimilation to quantify and reduce parameter uncertainty. However, these methods cannot make

predictions beyond outside of the training data or enhance the representation power of the bulk cloud microphysics schemes.

The Twomey-SDM proposed by Grabowski et al. (2018) could be used to reduce the computational cost of a sophisticated75

model; in this SDM, only cloud and rain droplet data are stored as SDs. However, the Twomey-SDM cannot incorporate the

hysteresis effect of haze droplets (Abade et al., 2018). Incorporating this effect is necessary for reproducing entrainment and

detrainment when eddies cause the same droplets to activate or deactivate in a short time at the cloud interface. In addition,

since clouds localize at multiple levels of hierarchy—from a single cloud to cloud clusters, appropriate load balancing is neces-

sary for large-scale problems using domain decomposition parallelization if the computational cost for cloud and rain droplets80

is high. Although such dynamic load balancing is adopted in some
::
To

:::
the

::::
best

::
of

:::
our

::::::::::
knowledge,

::::
load

::::::::
balancing

:::
has

:::
not

:::::
been

::::::
applied

::
to

:::
the

::::::
SDM,

::::
even

::::::
though

:::::
some

::::::
studies

::::
have

:::::::
applied

::
it

::
to

::::
other

:::::::::::
simulations,

::::
such

::
as

:
plasma simulations (Nakashima

et al., 2009)using the particle-in-cell method (PIC), which solves .
::::
The

:::::
SDM

::::
and

::::
some

:::::
other

:::::::
plasma

:::::::::
simulations

::::
are

:::::
based

::
on

::::::
solving

::::::
partial

::::::::::
differential

::::::::
equations

:::
that

::::::::
describe a coupled system of particles in cells and variables at cells in the same

way as the SDM, dynamic load balancing is not a good option
:::
and

:::::::::::
cell-averaged

:::::::::
variables,

:::::
known

:::
as

:::
the

::::::::::::
particle-in-cell

:::::
(PIC)85

:::::::
method.

:::::::::
However,

:::::::
applying

::::
load

:::::::::
balancing for weather and climate models . This is

::
is

:::
not

:
a
:::::
good

:::::
option

:
because such codes

are complicated , and changes in dynamic load balancing can affect the computational performance of other components.

In this study, we attempted ultrahigh-resolution
:::::::::
meter-scale

:::::::::
resolution cloud simulations with a sophisticated microphysical

scheme via the optimization and sophistication of
::
by

:::::::::
optimizing

:::
and

:::::::::
improving the SDM. This approach is regarded a technical

approach and has not been explored much though it is a crucial approach. Our approach is based on the SDM, which is robust90

to the difficulties caused by dimensionality for more complex problems,
:::
and

:
is free from the numerical broadening of the
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DSDand
:
;
:::::::::::
furthermore,

:
it
:
can be used even when the Smoluchowski equation for collisional growth of droplets is invalid

:::
for

::::
small

::::::::::
coalescence

::::::::
volumes (see Grabowski et al. (2019); Morrison et al. (2020) and the references therein). We focus on the

optimization on Fujitsu A64FX processor, which is used in supercomputer Fugaku. We designed cache-efficient codes and

overcame the difficulties in achieving high performance for the PIC method based on the domain knowledge. To achieve this95

goal, we reduced data movement and parallelization using single instruction / multiple data (SIMD) instructions for most

calculations.

In addition, there are two potentially important aspects of model improvement for ultrahigh-resolution
:::::::::::::::::::
meter-to-submeter-scale

::::::::
resolution experiments with the SDM. One aspect is the initialization for the SDM. In the SDM, we need to sample representa-

tive droplets from many real droplets to calculate the microphysical processes. Shima et al. (2020) used an importance sampling100

:::::::::::::::::
importance-sampling method to sample rare-state SDs more frequently to improve the convergence of calculations of collision–

coalescence. However, when we sample many SDs for high-resolution experiments, the number of SDs
:::::::::
meter-scale

:::::::::
resolution

::::::::::
simulations,

::::
their

:::::::
number may exceed the number of real droplets for rare-state SDs. The second aspect is SD movement. In

the SDM, the divergence at the position of SDs calculated from interpolated velocity should be identical to divergence at the

cell to guarantee consistency of SD number density and air density (Grabowski et al., 2018). However, the interpolation used105

by Grabowski et al. (2018) only achieves first-order spatial accuracy, and the effect of vortical and shear flows on the subgrid

scale
:::::
within

:
a
::::

cell
:
are not incorporated in SD movement. Using their scheme can introduce large errors in particle mixing

calculations.

The remainder of this paper is organized as follows. In Sect. 2, we describe and review the basic equations used in our nu-

merical model called the SCALE-SDM, target problem, and computers to be used. Section 3 describes the main contributions110

in this study for the optimization and sophistication of the model. We
:::::::::
optimizing

:::
and

:::::::::
improving

:::
the

:::::
SDM.

::::
For

:::
this

::::::::
purpose,

::
we

:
first describe the model framework

::::::
domain

::::::::::::
decomposition. Subsequently, we describe the development of a new initializa-

tion method for the SDM and describe optimizations of each process in the SDM (SD movement, activation/deactivation, and

condensation/evaporation, collision and coalescence,
:::
and sorting for SDs). In Sect. 4, we evaluate the computational and phys-

ical performances of the new SCALE-SDM in two test cases. We also compare our results with those obtained with the same115

numerical model using a two-moment bulk and bin methods and with those obtained using the original SCALE-SDM. In Sect.

5, we evaluate the applicability of our model to large-scale problems by weak scaling and discuss the detailed computational

performance. Section 6 discusses the challenges for optimizing processes in
:::::::::::
incorporating

:
mixed-phase clouds

:::::::
processes, the

inclusion of the terrain, and long-time integration. We also discuss the possibilities of achieving further high performance in

current and future computers. We summarize our main contributions in Sect. 7.120

2 Overview of the problem

2.1 Governing equations

We use the fully-compressible nonhydrostatic equations as the governing equations for atmospheric flow. To simplify the

treatment of water substances in the SDM, only moist air (i.e., dry air and vapor; aerosol particles or cloud/rain droplets are
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excluded) is considered in the basic equations for atmospheric flow. Although anelastic equations are often used to perform125

high-resolution numerical experiments, we encountered several problems in using them in this study. First, when the domain is

decomposed using message passing interface (MPI), communications across all subdomains are unavoidable, and the network

bandwidth becomes a bottleneck for the calculations. Moreover, the time spent in collective communication increases with the

number of processes. For some cases, the network bandwidth bottleneck may be a minor problem even on large-scale computers

since the time step to integrate anelastic equations is not constrained by the high acoustic wave velocity. Nevertheless, since we130

need more processes to compute wide domains in higher resolution and since we need to use the SDM, we cannot shorten the

time for collective communication easily. Second, the anelastic equations assume horizontally uniform mean fields and are not

appropriate for computing wider domains
:::
The

:::::::::::::::
fully-compressible

::::::::
equations

:::::::
require

:
a
::::::
shorter

::::
time

::::
step

:::::::::::
(20−1–10−1)

::::
than

::::
that

::::::
needed

::
to

::::
solve

::::::::
anelastic

::::::::
equations

:::::::::
(advection

::::
time

:::::
step).

::::::::
However,

::::
they

::::
may

::::
have

::
an

:::::::::
advantage

::::
when

:::::
using

::
a

::::
large

:::::::
number

::
of

::::
MPI

:::::
nodes,

::
as

::::
they

:::
do

:::
not

::::::
require

::::::::
collective

::::::::::::::
communications.135

The basic equations are discretized using a finite volume method on the Arakawa-C grid. For solving time evolution of

dynamical variables and water-vapor
::::
water

:::::
vapor

:
mass mixing ratio, the advection terms are discretized by the fifth-order

upwind difference scheme (UD5) . Since numerical diffusion is already included implicitly in UD5, we do not need explicit

numerical diffusion to stabilize the dynamical step calculations. Wang et al. (2009) encourages the use of the Flux Corrected

Transport (FCT) scheme to ensure monotonicity for mass and number mixing ratio of droplets to simulate aerosol–cloud140

interactions; however, we
:::
and

:::
the

:::::::::::
second-order

::::::
central

::::::::
difference

:::::::
scheme

::::::::
discretize

:::
the

::::::::
advection

:::::
terms

:::
and

::::::::
pressure

:::::::
gradient

::::
terms

::
in
:::
the

::::::::::
momentum

::::::::
equations,

:::::::::::
respectively.

:::
We use the FCT scheme to ensure only positive-definiteness for the water-vapor

::::
water

:::::
vapor

:
mass mixing ratioto obtain finer structures since it is the only tracer in our case.

The time evolutions of dynamical variables during the ∆t interval are split into short time steps ∆tdyn associated with

acoustic waves and longer time steps for tracer advection ∆tadv and physical processes ∆tphy. The classical four-stage fourth-145

order Runge-Kutta method is used for short time steps, and the three-stage Runge-Kutta method (Wicker and Skamarock,

2002) is used for tracer advection. Unless otherwise noted, ∆t=∆tadv =∆tphy. Changes in the dynamic variables caused by

physical processes are calculated using tendencies, which are assumed constant during ∆tadv.

The SDM is used as a cloud microphysics scheme. In this study, only warm cloud processes are considered: movement, acti-

vation/deactivationand ,
:
condensation/evaporation, and collision–coalescence.

::::::::::
Spontaneous

::::
and

:::::::::
collisional

:::::::
breakup

::::::::
processes150

::::
were

:::
not

:::::::::
considered

:::::
here. In the SDM, each SD has a set of attributes that represent droplet characteristics. In this case, the

data on SDs necessary to describe time evolution are the position in 3D space x, droplet radius R, number of real droplets

(which we refer to as multiplicity ξ), and the aerosol mass dissolved in a droplet M . The ith SD moves according to the wind

and fall with terminal velocity
:
,
::::::::
assuming

:::
that

:::
the

:::::::
velocity

::
of

::::
each

:::
SD

:::::::
reaches

:::
the

:::::::
terminal

:::::::
velocity

:::::::::::::
instantaneously:

vi =U(xi)− v∞i (ρ(xi),P (xi),T (xi),Ri)ez,
dxi

dt
= vi, (1)155

where U is the air velocity at the position x; ρ is the air density; P is the atmospheric pressure; T is the temperature; ez is the

unit vector in vertical positive direction; v∞ is the terminal velocity; v is the velocity of the SD; t is the time. The midpoint
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method is used for time integration to solve Eq. (1). We also need to specify a method for determining
::
the

:
velocity U at the

position of the SDs, which we will describe
:::
will

:::
be

::::::::
described

:
in Sect. 3.3.2.

Activation/deactivation and condensation/evaporation are represented by assuming that the SD radius R evolves according160

to the Köhler theory:

Ri
dRi

dt
=A(xi)

[
S(xi)− 1− a(T (xi))

Ri
+

b(Mi)

R3
i

]
, (2)

where S is the saturation ratio, and A is a function of the temperature at the position, and it depends on the heat conductivity

and vapor diffusivity. The terms a/R and b/R3 represent the curvature effect and the solute effect, respectively.
:::
The

:::::::::
ventilation

:::::
effect

:
is
:::::::
ignored

::
in

:::
Eq.

::::
(2). See Shima et al. (2020) for the specific forms of A, a, and b since they are not important here. A165

method to solve Eq. (2) is described in Sect. 3.3.3.

The collision–coalescence process is calculated using the algorithm proposed by Shima et al. (2009).
:::
The

::::::
volume

::
in

::::::
which

:::
SDs

:::
are

::::
well

::::::
mixed

:::
and

::::::
capable

:::
of

:::::::
colliding

::
is

:::
set

::
to

::::
have

:::
the

::::
same

::::
size

::
as

:::
the

::::::
control

::::::
volume

::
of

:::
the

::::::
model

::::
grid. If we consider

all possible pairs of droplets
::::
SDs

:::::
(NC2)

:
to calculate collision–coalescence, the computational complexity is of order O(N2).

However, their method considers only nonoverlapping pairs of droplets
:::
SDs

:
to reduce the computational complexity to the170

order of O(N). Hence, the obtained coalescence probability is low; this parameter was corrected to make it consistent with

the actual probability. Indeed, Unterstrasser et al. (2020) showed that the method proposed by Shima et al. (2009), which they

referred to as the all-or-nothing algorithm with linear sampling, is suitable for problems when computational time is critical.

The Smagorinsky–Lilly type scheme with the stratification effect (Brown et al., 1994) is used as a turbulent scheme for

LES. In the SDM, we do not incorporate
::::::
consider

:
the effect of turbulent fluctuations on movement, activation/deactiva-175

tionand ,
:

condensation/evaporation, and collision–coalescence . This is because the number of the additional attributes of

the SD (three subgrid velocities and supersaturation fluctuation) is almost equal to the number of the original attributes, and

:::
due

::
to

:::
the

:::::
high

::::::::
additional

::::::::::::
computational

::::
cost

::::
and

:::::::
memory

:::::
space

::::::::
required

::
to

:::::::
consider

:::::
these

:::::::
effects.

::::::::
However,

:
the effect of

supersaturation fluctuation on the spectral width of the DSD becomes relatively small when grid length is finer than 10m

(Grabowski and Abade, 2017). As we will see later, the SDM is a memory-intensive application. In this case, the approach of180

increasing the number of computations while increasing spatial resolution is better than increasing the amount of memory

to utilize supercomputers
::::::
subgrid

::::::
motion

::::
(or

::::::::
Brownian

:::::::
motion

:::
by

:::::::::
kinematic

::::::::
viscosity)

::::::
should

:::
be

::::::::
included

::
to

::::::
ensure

::::
the

::::::::::
convergence

::
to

:::::
DNS

::::
with

::::::
ξ → 1

:::::
while

:::::
fixing

:::
the

::::::
spatial

::::
grid

::::::
length

::::::::::::::::::
(Mellado et al., 2018);

::::
this

::::
will

::
be

:::::::::
addressed

::
in

::::::
future

::::
work.

2.2 Target problem185

We describe the final target problem in this study and compare the problem size with that considered in Mellado et al. (2018)

and Sato et al. (2017); high-resolution numerical experiments on shallow clouds were performed in these studies. Mellado

et al. (2018) used the numerical settings of the first research flight of the second Dynamics and Chemistry of Marine Stratocu-

mulus field campaign (DYCOMS-II RF01) (Stevens et al., 2005) to simulate nocturnal stratocumulus. Sato et al. (2017) used

the numerical settings of the Barbados Oceanographic and Meteorological Experiment (BOMEX) (Siebesma et al., 2003) to190
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Table 1. Comparison of model computational configurations among previous studies and this study. The last row shows the ratios of the

parameters used in Sato et al. (2017) to those used in this study.

# of grid points # of SDs per cell step (DYN) step (MP) grid length # of nodes (system usage)

Mellado et al. (2018) 5,120× 5,120× 1,280 60,000 60,000 1.1m

Sato et al. (2017) 1,152× 1,024× 600 30 450,000 45,000 6.25/5m
12,288 (14.8%

:::::
14.8%)

of the K

This study 6,912× 6,912× 1,536 128 782,609 48,913 2m
36,864 (23.2%

:::::
23.2%)

of the Fugaku

Ratio 103.68 4.267 1.739 1.087 2.901−1 3

simulate shallow trade-wind cumuli. In this study, we simulated the BOMEX case but with much higher resolutions. The main

computational parameters of the two previous studies and our study are listed in Table 1. Here, the time steps for 1 h time

integration are shown in the third and fourth columns.

Mellado et al. (2018) used anelastic equations with saturation adjustment for calculating clouds. They performed large-scale

numerical experiments using a petascale supercomputer (Blue Gene/Q system supercomputer JUQUEEN at Jülich Supercom-195

puting Centre). We also note that similar numerical experiments with a larger
::::
large number of grid points (5,120×5,120×2,048)

were performed by Schulz and Mellado (2018)
::::::::::::::::::::::
Schulz and Mellado (2019) using the same supercomputer. Meanwhile, Sato

et al. (2017) used fully-compressible equations with the SDM and performed high-resolution numerical experiments
::::::::
6.25/5m

::::::::
resolution

:::::::::
simulation

:
of BOMEX using petascale supercomputer K. The time steps for the dynamical process used in Sato

et al. (2017) are one order of magnitude larger than those used in Mellado et al. (2018). In addition, because of the high com-200

putational cost of the SDM, Sato et al. (2017) used fewer grid points though they used 14.8%
::::::
14.8% of the total system of

supercomputer K. Unlike Sato et al. (2017), we performed ultrahigh
::
We

:::::::::
performed

::::::::::
meter-scale

:
resolution numerical simula-

tions of BOMEX with 3
√

(6.252 × 5)/23 ∼ 2.901 times higher resolution, 104 times more grid points, and 442 times more

SDs
:::
than

:::::::::::::::
Sato et al. (2017), thereby using 23.8%

:::::
23.8%

:
of the total system of supercomputer Fugaku. The computational

performance of this simulation will be described in detail in Sect. 5.2.205

2.3 Target architecture

Table 2. Size and bandwidth of the cache and memory for Fujitsu A64FX processor.

L1D cache L1D cache BW L2 cache(shared in CMG) L2 cache BW HBM2 Memory BW

64KiB ×48 11TB/s 8MiB ×4 3.6TB/s 32GB 1,024GB/s

7



In this study, we mainly used computers equipped with Fujitsu A64FX processors to evaluate the computational and phys-

ical performance of the new model, SCALE-SDM. In this section, we summarize the essential features and functions of the

computers.

A64FX is a CPU that adopts scalable vector extension (SVE), an extension of the Armv8.2-a instruction set architecture.210

A64FX has 48 computing coresand two or four assistant cores. Each CPU has four NUMA
::::::::::
nonuniform

:::::::
memory

::::::
access nodes

called the core memory groups (CMGs). One core has an L1 cache of 64KiB and can execute SVE-based 512-bit vector opera-

tions at 2.0GHz in the normal mode (2.2GHz in the boost mode) with two FMA
::::
with

:::
two

:::::
fused

:::::::::::
multiply-add units. Each CMG

shares an L2 cache of 8MiB and has high bandwidth memory 2 (HBM2) of 32GB (bandwidth of 256GB/s). The theoretical

peak performance per node is 3.072 TFLOPS (3.3792TFLOPS
:::
tera

:::::::::::
floating-point

:::::::::
operations

:::
per

::::::
second

::::::::::
(TFLOPS) for dou-215

ble precision (FP64)). Supercomputer Fugaku has 158,976 nodes with a 6D torus shape(X,Y,Z,a,b,c) = (24,23,24,2,3,2),

and the nodes are connected by Tofu Interconnect D. The cache and memory performances, which are particularly impor-

tant for this study, are summarized in Table 2. A64FX has the best power performance among the supercomputers equipped

with a many-core general-purpose CPU (Fugaku full system, 15.418GFlops/W, Green500 2022/6) and has high memory

bandwidth comparable to a GPU. In addition, SVE can execute not only FP64, single-precision (FP32), and 32 bytes integer220

(INT32)calculations but also low-precision , 16 bytes floating point
::::::::::
floating-point

:
number (FP16),

:
and 16 bytes integer (INT16)

calculations.

Fugaku and FX1000 have a power management function called the Power Knob to improve the computational power perfor-

mance
:::::::::::::::
(Grant et al., 2016). Users can operate the Power API (Grant et al., 2016) to control the clock frequency (Normal mode:

2.0GHz , Boost mode:
:
or

:
2.2GHz) and switch to eco-mode, which uses only one of the two

:::
use

:::
one

::
or

:::
two

:::
of

::
the

:
floating-point225

pipelines.

Fugaku was designed to achieve 100 times the effective performance of K through hardware and application co-design. The

actual
::::
The performance of Fugaku is 46 (50.6) times the peak performance and 30.7 times the memory bandwidth of K. In

addition, using FP32 or FP16, the amount of data calculated by single instruction and that transferred from memory doubles or

quadruples, respectively, and by optimizing a code according to its characteristics, users can potentially achieve a further two230

or four times higher effective peak performance, respectively. Due to the high memory bandwidth of Fugaku, its byte per flops

ratio (B/F) is 0.33(0.30), which is not too small compared to that of the K (B/F=0.5). This is an advantage for applications in

which the memory bandwidth is crucial for performance.

Although this study describes optimizations for A64FX, most of them can be applied to many-core general-purpose CPUs

such as Intel Xeon equipped with x86-64 instruction set architecture. For such generalization, please see Sect. 3.3.1 with235

the parameters in Table 2 replaced with those for the x86-64 architecture. However, optimization using accelerators such as

GPUs is beyond the scope of this study. However, since the applicability of this study to accelerators is necessary for future

high-performance computing, we discuss some differences between CPU-based and GPU-based approaches.

To map CPU-based optimization to GPU-based optimization, the L1 cache of the CPU can be read as the register file

(for storing most frequently accessed data), L1 cache, and shared memory; OpenMP parallelization can be read as streaming240

multiprocessors parallelization for NVIDIA GPU (or Compute Unite for AMD GPU);
:::
and

:
MPI processes can be read as the

8



number of GPUs. In addition, since the memory bandwidth of one node of A64FX is comparable to that of a single GPU

(e.g., NVIDIA Tesla V100: 900GB/s, A100: 1,555GB/s), a comparison in terms of memory throughput is reasonable if we

assume that all the SD information is on GPU memory. Although the approaches for cache and memory optimization of

the CPU and GPU are similar, those for calculation optimization may differ. For example, GPUs are not good for reduction245

calculations, such as calculating the liquid water content in a cell from the SDs in the cell. The current trend for supercomputers

is to use heterogeneous systems comprising both CPUs and GPUs as they provide excellent price performance. Nevertheless,

memory bandwidth is essential for weather and climate models, including the SDM. Thus, it is not easy to achieve higher
::::
high

performance unless the entire simulation can be handled only in GPUs.

The numerical model UWLCM (Arabas et al., 2015; Dziekan et al., 2019; Dziekan and Zmijewski, 2022) utilized GPUs250

for the SDM and CPUs for other processes, and Dziekan and Zmijewski (2022) achieved 10–120 times faster computations

compared with CPU-only computations. Still, the time-to-solution using the SDM is 8 times longer than the bulk method.

Although the CPU used had a lower bandwidth memory compared with the GPU for the dynamical core and the bulk method,

we used a CPU with a higher bandwidth memory for all processes. This is an advantage when the entire simulation must be

accelerated essential to reduce the time-to-solution.255

3 Numerical model

3.1 Model framework of SCALE
:::::::
Domain

:::::::::::::
decomposition

We used SCALE-RM (Scalable Computing for Advanced Library and Environment-Regional Model, Nishizawa et al., 2015;

Sato et al., 2015) as the development platform. SCALE is a library that consists of multiple components rather than a numerical

model. Users can use it as a numerical model. It is also possible to compose unit tests and new components, and to combine260

them with the model easily. In addition, since only few dependencies exist among the modules, it facilitates data exchange

between multiple grid systems.

We adopted the hybrid type of three- and two-dimensional (3D and 2D) domain decompositions using MPI. For 3D de-

composition, we denoted the numbers of MPI processes for the x,y,and z axes as Nx,Ny , and Nz , respectively. For 2D

decomposition, we decomposed the x and y axes into N2D
x and N2D

y domains, respectively. Here, we set N2D
x =Nx ·Nxl and265

N2D
y =Ny ·Nyl such that Nz =Nxl ·Nyl. Then, the total number of MPI processes N is common, i.e., N =Nx ·Ny ·Nz =

N2D
x ·N2D

y . These two types of domain decomposition were utilized depending on the type of computations. The
:::::
hybrid

::::
type

::
of

::::::
domain

::::::::::::
decomposition

:::::::
requires

:::
the

:::::::::
conversion

::
of

::::
grid

::::::
systems

:::::::::
containing

:::::
every

:::
Nz::

of
::::
MPI

:::::::::
processes.

::::
Note

:::
that

:::
the

::::
cost

::::::
should

:::
not

::
be

:
a
:::::::::

significant
:::::
issue

::::::::
compared

:::
to

::::::::
collective

:::::::::::::
communication

:::::
across

:::
the

::::::
entire

::::
MPI

::::::::
processes

:::::
when

:::
Nz::

is
::::::::
relatively

:::::
small

:::::::::::::
(Nz <O(100)).

::::
The 3D domain decomposition is suitable for dynamical processes because frequent neighborhood communi-270

cations are required to integrate short time steps for acoustic waves; further, the amount of communication is less because of

the small ratio of halos to the inner grids. On the other hand, 2D domain decomposition is suitable for the SDM. As described

later, since the number density of SDs is initialized proportional to the air density, the amount of computations varies vertically

in a stratified atmosphere. In addition, the communication amount varies depending
::::::::
variations

::
in

:::
the

:::::::::::
computation

::::::
amount

::::
and

9



:::
data

:::::::::
movement

::::::
depend

:
on whether clouds

:::
and

::::::::::
precipitation

:::::
shaft are within the domain. If 3D decomposition is used, domains275

without any cloud are likely, e.g., near the top and bottom boundaries; such domains may lead to a drastic load imbalance.

A drawback of the 3D domain decomposition is that it is more likely to suffer from network congestion; further, there will

be hardware limitations on the number of simultaneous communications due to the increase in the number of processes in a

neighborhood. The number of processes is 26 for 3D domain decomposition, while it is eight for 2D domain decomposition.

In addition, the throughput of communication decreases for smaller message sizes. In this study, we eliminated all unnecessary280

communications from the diagonal 20 directions and pack communications for each neighborhood direction to the maximum

extent possible to gain high communication throughput. Communication time was overlapped with computation time during

the dynamics process to reduce the time-to-solution.

3.2 Initialization of super-droplets

Although the SDM makes no prior assumptions
:::
less

:::::::::
assumption

:
on the DSD, the accuracy of the prediction depends on the285

initialization of the sampling of SDs from a vast number of real droplets. Shima et al. (2009) first used the constant multiplicity

method, which samples SDs from normalized aerosol distribution. Further, Arabas and Shima (2013), Sato et al. (2017),

and Shima et al. (2020) used the uniform sampling method, in which SDs were sampled from a uniform distribution of the

log of the aerosol dry radius to sample droplets that rare but important—for example, large droplets that may trigger rain.

Indeed, Unterstrasser et al. (2017) showed that collision–coalescence calculations converge faster for a given number of SDs290

if the dynamic range of multiplicity is broader (i.e., the uniform sampling method), and it converges slower if the constant

multiplicity method is used. However, owing to the broad dynamic range of the uniform sampling method, some multiplicities

obtained using this method may fall below 1 if too many SDs are used to increase the spatial resolution. In this case, since

multiplicity is stored as an integer type, some SDs will be cast to 0, and the number of SDs and real droplets will decrease.

One approach to solve this problem is to allow multiplicity to be a real number (floating point
:::::::::::
floating-point

:
number)295

(Unterstrasser et al., 2017). The SDM can handle discrete and continuous systems because its formulation is based on the

stochastic and discrete nature of clouds. Nevertheless, simulations using this method may not behave as discrete systems in a

small coalescence volume where the Smoluchowski equations do not hold (Dziekan and Pawlowska, 2017).

Another approach to solve the deterioration of multiplicity is to cast multiplicity from a floating point
:::::::::::
floating-point

:
number

to an integer by stochastic rounding (Connolly et al., 2021). For example, let k be an integer, and let us set interval [k,k+1] that300

contains a real number l; then, l rounds to k with probability k+1− l and to k+1 with probability l− k. Hence, an expected

value obtained by the stochastic rounding process is consistent with the original real number l. Thus, the sampling accuracy

does not decrease. Although this approach cannot prevent a decrease in the SDs, it can prevent the decrease in the number of

real droplets statistically.

However, we can consider that these approaches are not optimal for ultrahigh-resolution
:::::::::::::::::::
meter-to-submeter-scale

:::::::::
resolution305

simulations. Unterstrasser et al. (2017)’s discussion was based on the result of a box model, which is a closed system and

requires a large ensemble of simulations to obtain robust statistics. In practical 3D simulations, the cloud microphysics field

fluctuates spatiotemporally because of cloud dynamics and statistics in finite samples. If we sample a vast number of SDs , it
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Figure 1. (a) Normalized aerosol distribution given by VanZanten et al. (2011) (bold black line) and proposal distributions used for sampling

(α= 0–1). The bold red line shows the proposal distribution used for the uniform sampling method. (b) Relationship between dry aerosol

radius and multiplicity when ∆V = 23m3 and 128 SDs per cell are sampled. (c) Distribution obtained by sampling 216 SDs using the same

setup as (b) (∆V = 23m3 and 128 SDs per cell) and sorted by multiplicity in the ascending order. (d) The distribution corresponding to (c)

when L2 norm is used as a metric. The dotted lines in (b)and
:
, (c)

:
,
:::
and

::
(d)

:
indicate ξ = 80,81,82,83.

is more natural to use a method that is closer to the constant multiplicity method
:::
and

::
if

:::
the

::::::
number

:::
of

:::::::
samples

:::::::
becomes

:::::
close

::
to

:::
the

:::::
actual

:::::::
number

::
of

:::::::
droplets,

::::::::
imposing

::
a

::::::::
constraint

:::
on

:::
the

::::::
number

::
is
:::::::::
reasonable

:::
so

:::
that

:::
the

::::::::
dynamic

:::::
range

::
of

::::::::::
multiplicity310

:::
will

:::
be

:::::
small

::::
(i.e.,

:::::
more

::::::
similar

:::
to

:::::::
constant

:::::::::::
multiplicity)

::::
and

:::
the

::::::::::
multiplicity

:::
for

:::
all

::::
SDs

::::
will

:::
be

:::::
larger

::::
than

::
1. If such a

method is used, we expect rare droplets to exist only in some cells rather than in every cell—this is a more natural continuation

toward discrete systems. How can we develop such an initialization method? In addition, previous studies focused on collision–

coalescence, but the sensitivity of cloud microphysical variability related to condensation/evaporation to SD initialization too

must be considered. Against this background, which type of initialization is better overall?315
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To develop a new initialization method, we considered the simple method of generating a proposal distribution that connects

the uniform sampling method to the constant multiplicity method. We chose the log of aerosol dry radius logr in the interval

between rmin to rmax as the random variable. We denote an initial aerosol distribution as n(logr) and its normalization as

n̂(logr). The relation between ξ, n, and the proposal distribution p was given by Shima et al. (2020) as

ξ(logr) =
n(logr)

NSDp(logr)
, (3)320

where, NSD is the SD number concentration. In the following explanation, for simplicity, we discretize the random variable

into k bins and nondimensionalize the bin width to 1
::
for

::::::::
simplicity.

We define a probability simplex, which is a set of discretized probability distributions as follows:

Ck =

{
a ∈Rk : ai ≥ 0,

k∑
i=1

ai = 1

}
. (4)

Let us denote the discretized probability distribution of n̂ as b1 ∈ Ck and the uniform distribution as b2 ∈ Ck. Then, we define325

an α-weighted mean distribution a as the Fréchet mean of b1 and b2:

a= argmin
a∈Ck

{(1−α)L(a,b1)+αL(a,b2)} , (5)

where L is a metric to measure the distance between two distributions. A distribution a corresponds to a discretized and

nondimensionalized proposal distribution of p. When the argument of the optimization is a function, L2 norm is often used

as the metric L. In our case, since the argument is a probability distribution, the Wasserstein distance W2 (Santambrogio,330

2015; Peyré and Cuturi, 2019), which is a metric that measures the distance between two probability distributions, is a more

natural choice. Several methods have been proposed to obtain solutions in Eq. (5) numerically. One method is to regularize the

optimization problem of Eq. (5) by using the entropic regularized Sinkhorn distance Sγ (Cuturi, 2013; Schmitz et al., 2018) (γ

is the regularization parameter) instead of the Wasserstein distance W 2
2 . Another method is to use displacement interpolation

(McCann, 1997), which is an equivalent formulation of Eq. (5). We used the method based on the Sinkhorn distance with335

γ = 10−4 in Sect. 5. In this section and Sect. 4, we used the displacement interpolation specialized for the case where the

random variable is one-dimensional to solve Eq. (5) more accurately. The specific forms of the Wasserstein distance W2,

Sinkhorn distance Sγ , and displacement interpolation
:::::::::::
interpolations

:
are described in Appendix A.

We verified this method of generating proposal distributions by adopting a specific aerosol distribution n(logr). We used

the bimodal log-normal distribution of VanZanten et al. (2011). This distribution is composed of ammonium bisulfate with a340

number density of 105cm−3. We chose the interval for the random variable as rmin = 10nm and rmax = 5µm, and adopted

k = 1,000 bins and γ = 10−4 to calculate proposal distributions.

The proposal probability distributions obtained using various α are shown in Fig. 1(a). As α decreases, the uniform distri-

bution gradually changes to the normalized aerosol distribution, and probabilities (frequency for sampling) near both ends of

the random variable decrease.345

The relationship between the aerosol dry radius and multiplicity for cell volume ∆V = 23m3 and 128∆V −1 SDs are shown

in Fig. 1(b). Multiplicity for the large dry radius of aerosol falls below 1 for α= 1.0 but exceeds 1 for α= 0.8 for all samples.
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Figure 2. Probability distributions of (a) aerosol number concentration and (b) aerosol mass concentration, obtained by sampling from

various proposal distributions. The red dotted lines show the exact expected values.

Figure 1(c) shows the multiplicities of samples, which is obtained by sorting 216 SDs by their multiplicity. How
:::
The

::::::::
influence

::
of α changes

::
on

::::::::
changing the dynamic range of multiplicity and the number of ξ < 1 samples can be clearly observed

::
in

::::
Fig.

:::
1(c). Since the relationship between the aerosol dry radius and multiplicity does not change relatively if we increase the350

::::
with

::::::::
increasing

:
spatial resolution, we indicate ξ = 80–83 by dotted lines in Fig.1(c). As α decreases, the dynamic range of

multiplicity decreases, and the minimum log multiplicity increases by an almost constant ratio when α≥ 0.2. When ∆V =

1m3, the multiplicity of all samples exceeds 1 if α≤ 0.7. Similarly, the multiplicity exceeds 1 when ∆V = 503 cm3 if α≤ 0.6,

and when ∆V = 253 cm3 if α≤ 0.5. Since the number of samples of ξ < 1 and 0.5 account for 7.82% and 6.70%
:::::
7.82%

::::
and

::::::
6.70% of total samples, respectively, many invalid SDs are sampled if the uniform sampling method is used for 2m resolution.355

Figure 1(d) shows the results corresponding to Fig. 1(c) obtained for L2 norm instead of W 2
2 to generate proposal distribu-

tions using Eq. (5). In this case, as α decreases, the number of ξ < 1 samples decreases but does not vanish (0.413%
:::::::
0.413%

of total samples when α= 0.1), and the dynamic range of multiplicity does not change unless α= 0.0. Thus, these results

suggest that the manner of connecting the two distributions is critical.

How do aerosol statistics behave if we change α using the above method? The probability distributions of the number and360

mass concentration of dry aerosol for various α are shown in Fig. 2. We calculated the number and mass concentrations from

128 SDs. The multiplicity was cast to an integer using stochastic rounding for ∆V = 23m3. We performed 105 trials to obtain

the probability distributions. The statistics of real droplets, corresponding to the limit when α= 0 and the exact expected value,

is also shown by a dotted red line in each panel of Fig. 2.

The expected values obtained by applying the importance-sampling method does
::
do

:
not depend on the used proposal distri-365

bution. However, the variance
:::::::
variances

:
of the expected values depend on the ratio of the original distribution to the proposal
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distribution, and the variance becomes
::::
they

::::::
become

:
small when the

::::::
original

:::
and

:
proposal distributions are similar. In fact, the

aerosol number concentration distribution is narrow when the used proposal distribution is the same as the original distribution

(α= 0) (Fig. 2a), and it becomes broader as α increases. Thus, the uniform sampling method introduces significant statistical

fluctuations (or confidence interval) of aerosol number concentration. In contrast, the aerosol mass concentration distribution is370

narrow when α= 1.0, and it broadens as α decreases (Fig. 2b). Thus, the uniform sampling method results in smaller statistical

fluctuations of the aerosol mass concentration. That is, as α decreases, the importance sampling for the aerosol size distribu-

tion gradually changes its effect from the reduction of the variance of mass concentration to the reduction of the variance of

number concentration. We note that the results are almost identical when we store multiplicity as a real-type floating point

:::::::::::
floating-point number (not shown in the figures).375

Based on the above considerations, the proposal distributions for α= 0.7 were used for the numerical experiments described

in Sect. 5. Although we focused on the statistical fluctuations of the aerosol, α may also be a sensitive parameter influencing

the cloud dynamical and statistical fluctuations. Since this aspect is nontrivial because of the effect of cloud dynamics, we will

describe the results of the sensitivity experiments for α in Sect. 4.3.

3.3 Model optimization380

3.3.1 Strategy for acceleration

Based on the computers described in Sect. 2.3, we devised a strategy for optimizing the SDM. All algorithms used in the SDM

have computational complexity of the order of SD numbers. In general, the PIC applications tend to have small B/F due to the

large computations involved. This also holds
:::
will

::::
also

::::
hold for the SDM

:
(except for the collision–coalescence process

:
) because

of the velocity interpolation to the position of SDs in movement, and the Newton iterations in activation/deactivation involve385

many calculations. Then, one may expect that a high computational efficiency can be achieved if the information of the grids

and SDs are both on the cache as this can prevent the memory throughput being a bottleneck for the time-to-solution. However,

since the calculation pattern in the cloud microphysics scheme changes depending on the presence of clouds and particle

types, the codes in a loop body are complicated and often include conditional branches. Hence, high efficiency is difficult to

achieve because of the difficulty of using SIMD vectorization and software pipelining. In the following paragraphs, we describe390

optimization based on two strategies: First, we developed cache-efficient codes by cache blocking
::::::::::::::::::
(e.g. Lam et al., 1991) and

reduction of information of the SDs. Second, we simplified the on-cache loop bodies to the maximum extent possible by

excluding conditional branches.

We first considered applying cache-blocking techniques to the SDM. Since the L1 cache on A64FX is 64 KiB per core,

32 data arrays, which consist of 83 grids of four-byte elements (each array consumes 2 KiB), can be stored on the L1 cache395

simultaneously. Similarly, since the user-available L2 cache is 7MiB (of 8MiB) / 12 = 597KiB per core, two data arrays which

consist of 128 SDs per cell ×83 can be stored on the cache if an attribute of SDs consumes four bytes. Therefore, we divide

the grids into groups of less than 83 (hereafter called "blocks") for cache blocking. For each cloud microphysics process, we

integrated all SDs by one time-step
::::
time

:::
step

:
forward and then moved on to the next process. In the original SDM, a single loop
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is used for all SDs in the MPI domain. In this study, we decomposed this single loop for all SDs into loops for all blocks and400

all SDs in each block; subsequently, we parallelized the loop for all blocks using OpenMP by static scheduling with a chunk

size of 1. Although applying dynamic scheduling to the loop for all blocks may improve load balancing among blocks, it is

difficult to validate the reproducibility of the stochastic processes, such as collision–coalescence, because random seeds may

change with every execution.

To simplify the loop body for the SDs in a block, it is essential that the gridded values in a block are a collection of similar405

values. The effective resolution in
::
of atmospheric simulations (Skamarock, 2004) imparts such numerical effects on the grid

fields. The volume, which consists of 83 grids, is comparable with the volume of effective resolution, which is the smallest

spatial scale at which the energy spectrum is not distorted numerically by the spatial discretization. For example, since the

energy spectrum obeys the −5/3 law roughly in the inertial range for LES, we regard the effective resolution as the smallest

spatial scale at which the energy spectrum follows the −5/3 law. The typical effective resolution is 6∆–10∆ for planetary410

boundary layer turbulence
:
,
:::::
which

::::
may

:::::::
depend

::
on

:::
the

:::::::::
numerical

:::::::
accuracy

:::
of

:::
the

::::::
spatial

:::::::::::
discretization

::
of

:::::
basic

::::::::
equations

::::
and

::::::
filtering

::::::
length

::::
and

:::::
shape

::
of

::::
LES. The physical interpretation of effective resolution is that the flow is well resolved if the

spatial scale is larger than 6∆–10∆, and the variability decreases exponentially for scales smaller than this range. We used this

prior knowledge to simplify the loop body, as described later.

3.3.2 Super-droplet movement415

To guarantee
:
If consistency between the number density of SDs and air densityduring SD movement , we developed

::
SD

:::::::
number

::::::
density

:::
and

:::
air

::::::
density

::
is

::::::::::
maintained,

::::
more

::::
SDs

:::
can

:::
be

::::::
placed

::
at

::::::
location

::::::
where

::::::
clouds

:::
are

::::
more

:::::
likely

::
to

::::::
occur.

::::
This

:::
not

::::
only

::::::
requires

:::::::
placing

::::::::
increased

:::::::
number

::
of

::::
SDs

:::
so

::::
that

:::
the

:::
SD

:::::::
number

::::::
density

::
is
:::::::::::
proportional

::
to

:::
air

:::::::
density,

:::
but

::
it

::::
also

:::::::
requires

::::::::
designing

:::
the

:::
SD

:::::::::
movement

:::::::
scheme

::
so

::::
that

:::
the

::::
time

::::::::
evolution

::
of

:::
the

:::
SD

:::::::
number

::::::
density

:::::::
follows

:::
the

:::::::
changes

::
in

:::
air

:::::::
density.

:::
We

::::
focus

:::
on

::::
such

:::::::
schemes

:::
for

:::::::::
grid-scale

::::::
motion

:::::
since

::
the

:::::
effect

:::
of

::::::
subgrid

::::::
motion

::::::
should

:::
be

::::::::
relatively

:::::
small.

:::::::
Because

:::
the

:::
air420

::::::
density

::::::::
decreases

:::
by

::
the

::::::::::
divergence

::
of

:::
the

:::::::
velocity

:::::
fields,

:::
the

:::::::::::
interpolation

::
of

:::
the

:::::::
velocity

::::::
should

::
be

:::::::::
developed

::
to

:::::::
provide

:::
the

:::::::::
divergence

::
at

:::
the

:::::::
position

::
of

::::
SDs

::::
that

:::
are

::::::::
calculated

:::::
from

::::::::::
interpolated

:::::::
velocity

:::::::
equaled

::
to

:::::::::
divergence

:::
at

:::
the

::::
cell.

:::
For

::::
such

::
a

::::::
scheme,

::
a
::::::::
reduction

::
in

:::
the

::::::::
variability

:::
of

:::
the

:::
SD

::::::
number

::::::
density

::
is
::::
also

:::::::
expected

:::::
since

:::
the

:::::::::
divergence

::
at

:::
the

::::
SDs

::::
does

:::
not

:::::
differ

:::::
within

::
a

:::
cell.

:::
In

:::::::
addition,

:::
the

:::::::::
numerical

:::::::
accuracy

:::
of

::::::::::
interpolation

::::::
should

:::
be

::::::::
increased

::
to

:::::::::
incorporate

:::
the

:::::
effect

:::
of

::::::
vortical

::::
and

::::
shear

:::::
flows

::::::
within

:
a
::::
cell.

::
In

::::
this

:::::
study, a second-order spatial accuracy conservative velocity interpolation (CVI)

:
is

:::::::::
developed425

on 3D Arakawa-C grid
:::
with

:::::
these

:::::::::
properties. While the CVIs of the second-order spatial accuracy on 2D grids have been

used in various studies such as Jenny et al. (2001), few studies have explored such CVIs on 3D grids. Recently, a CVI for

divergence-free velocity field on a 3D A-grid was developed by Wang et al. (2015). We extend the method used in their study

for the nondivergence-free velocity field on the C-grid. The accuracy of the interpolation is of the second order only within the

cell, and we allowed discontinuous velocity across the cell. The derivation of our CVI using symbolic manipulation (Python430

SymPy) is available in Matsushima et al. (2023b). We only provide the specific form of the CVI in Appendix B.

The number of grid fields necessary to compute Eqs. (B7)–(B12) is important for computational optimization. While 24

elements (3 components × 8 vertices in a cell) are necessary to calculate the velocity at an SD position for trilinear interpolation
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(and the same applies for 2nd order CVI on the A-grid), only 18 elements are necessary for the second-order CVI on the C-grid

(B7)–(B12). That is, we can reduce 25%
::::
25%

:
of the velocity field data that occupies the L1 cache and can use the remaining435

cache for SDs, etc. The change in the spatial distribution of SDs through SD movement considering the spatial accuracy of

CVI will be discussed in Sect. 4.2.

For warm clouds, since the information of the SD position accounts for half of all attributes, reduction of these data without

loss of representation and prediction accuracy contributes greatly to saving the overall memory capacity in the SDM. However,

using FP32 instead of FP64 may cause critical problems due to the relative inaccuracy and nonuniform representation in the440

domain in the former case. In the following paragraphs, we describe these problems and a solution.

In the original SDM, the SD position is represented by its absolute coordinate over the entire domain, but this method

requires many bits. However, since we already decomposed the domain into blocks, using the relative position of SDs in a

block is numerically more efficient. For this case, we can reduce the information per SD by subtracting information of partition

by the MPI process and a block from the global position.445

If we represent the position of SDs as a relative position in a block, additional calculations are necessary when an SD crosses

a block. Such calculations introduce rounding errors for the SD position, and the cell position where the SD resides may not be

conserved before and after its calculations. Let us consider an example. Consider a block that consists of a grid. Let us define

the relative position x of SDs belonging x ∈ [0,1) and the machine epsilon for the precision of floating point
:::::::::::
floating-point

numbers as ϵ. If SD crosses to the left boundary and reaches −ϵ/4 /∈ [0,1), the relative position of the SD is calculated by450

adding the values of right boundary 1 in a new block to the SD position: −ϵ/4+1 ∈ [0,1). However, rounding to the nearest of

its new position makes round(−ϵ/4+1) = 1 /∈ [0,1). For FP32, since ϵ∼ 1.2× 10−7 = 0.12µm if we adopt meters as units,

we expect this does not happen frequently. However, if such a case occurs even with only one SD of the vast number of SDs in

the domain, the computations may be terminated by an out-of-array index. Although a simple solution is exception handling

using min/max or floor/ceiling, this solution may deteriorate the computational performance by making the loop bodies more455

complex, and the correction bias introduced by exception handling may be non-negligible when low-precision arithmetic is

used. To ensure safe computing, the suitable approach is to calculate the relative position without introducing numerical errors.

In this study, we represented the relative position using fixed-point numbers. This format allows us to define the representable

position of SDs so that they are uniformly distributed in the domain, and integer–arithmetic-only calculations are used. Then,

the same problem as in the case of simply using floating point
:::::::::::
floating-point numbers does not arise in principle. Let us denote460

the range for which the SD is in cell k as Zk = [k,k+1) and the number of grids along an axis as b. Then the range of position

in a block is represented as Z =
⋃b−1

k=0Zk. We defined the conversion from z ∈ Z to its fixed-point number representation q as

the following affine mapping:

q = 2s
(
z−

⌊
b

2

⌋)
. (6)

When b≤ 8, s= 21 and when FP32 is used instead of INT32, the range of −223 ≤ q ≤ 223 − 1 is accurately represented by465

the mantissa of the floating-point numbers, and the representation does not exceed the representable range if it is only a few

grids outside a block. With regard to the velocity, the amount of movement per step is represented using a fixed-point number.
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We used FP32 instead of INT32 for the actual representation because the representable range of fixed-point numbers is small

and could easily exceed its range by multiplication. Note that this step is avoidable if the architecture has instructions for

fixed-point numbers such that multiplication and bit shift with rounding can be executed simultaneously (Jacob et al., 2018) as470

in ARM NEON and SVE2 (however, this is not the case in A64FX SVE).

By using relative coordinates for the SD positions within a block, the precision of their locations varies
:
is

::::::
varied when ∆z

is changed. This is because the change of position in real space is 2−s∆z from Eq. (6) when the grid length is ∆z, and the

variation in q is 1; this value reduces for smaller ∆z. In addition, the change in the relative position per time step is 2svi∆t∆z−1

when the time step is ∆t; hence, it increases as ∆z decreases, thus providing a better representation of the relative position.475

∆t is set sufficiently small to ensure there is no large deviation from the time step of tracer advection. Then, the change in the

relative position does not change if the ratio of ∆t to ∆z is kept constant. In real space, the numerical representation accuracy

of position and the arithmetic operations accuracy of the numerical integration vary with the spatial resolution and time step.

Therefore, we can maintain numerical precision for high-resolution experiments
:::::::::
meter-scale

:::::::::
resolution

::::::::::
simulations.

In terms of I/O, fixed-point numbers facilitate easy compression. For example, the interval of representable positions q in480

real space with
::::::::
∆z = 2m

:::
and

:
a block size of 8 is 0.95µm; this yields higher accuracy than the Kolmogorov length of 1mm

and thus is always excessive as a representation for DNS and LES. We can discard unnecessary bits when saving data on a

disk.

3.3.3 Activation / Condensation

The time scale
:::::::
timescale

:
of activation/deactivation of the cloud condensation nuclei (CCN) is short if the aerosol mass dissolved485

in a droplet is small (Hoffmann, 2016; Arabas and Shima, 2017). Hence, the numerical integration of activation/deactivation is

classified as a stiff problem. To solve Eq. (2), Hoffmann (2016) used the fourth-order Ronsenblock method with adaptive time

stepping. SCALE-SDM employs the one-step backward differentiation formula (BDF1) with Newton iterations. Although

BDF1 has first-order accuracy, it has good stability because it is an L-stable and implicit method, and we can change time

intervals easily because it is a single step method. However, with the implicit method, Newton iterations must be performed490

per SD, and the number of iterations required for convergence of the solution differs for each SD, thereby making vectorization

a complicated task. To overcome this difficulty, the original SDM uses excessive Newton iterations (20–25) that are sufficient

for all SDs to converge, assuming that numerical experiments are performed on a vector computer such as the Earth Simulator.

However, we cannot tune codes for both vector computers and short-length vector computation by using SIMD instructions in

the same way. In the original SDM code, the loop body of time evolution by Eq. (2) is very complex because of the presence495

of conditional branches, grid fields at the SD position, and iterations; hence, it cannot issue SIMD instructions. Therefore, we

devised a method to allow SIMD vectorization based on the previously described strategy.

Equation (2) is discretized by BDF1 as

f(R2) =R2 − p2 − 2∆tA

[
S− 1− a

(R2)1/2
+

b

(R2)3/2

]
= 0, (7)500
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where p is the current droplet radius, and R is the updated droplet radius. Equation (7) has at most three solutions; in other

words, one or two of them may be spurious solutions. However, the uniqueness of the solution is guaranteed analytically in the

following two cases (see Appendix C for derivation). Case 1, which depends on ∆t, is

∆t≤ 25b

2Aa2

√
5b

a
, (8)

and Case 2, which depends on the environment and initial condition, is505

S− 1≤ 0, p2 <
3b

a
. (9)

Case 1 implies that an activation time scale
::::::::
timescale

:
restricts the stable time step for each SD. Based on the estimation

of temperature T = 294.5K at z ∼ 600m in the BOMEX profile, when α= 0.7, 87.7%
:::::
87.7%

:
of SDs satisfy the condition

for Case 1 if ∆t= 0.0736s, 91.0%
::::::
91.0% if ∆t/2, and 100

:::
100% if ∆t/26. Similarly, when α= 0.0, 91.4%

::::::
91.4% of SDs

satisfy the condition if ∆t= 0.0736, 97.6%
::::::
97.6% if ∆t/2, and 100%

:::::
100% if ∆t/26. The smaller the value of α, the smaller510

is the frequency of sampling small droplets and the greater is the number of SDs that satisfy the condition.

On the other hand, Case 2 is a condition for the initial size of droplets p in an unsaturated environment. In the BOMEX setup,

since cloud fraction converges at a grid length of 12.5m (Sato et al., 2018), we can estimate the ratio of SDs that satisfy Case 2

for higher resolutions by analyzing the results of similar numerical experiments using new SCALE-SDM. We define droplets

of the size R≤
√

3b/a as aerosol particles (or haze droplets), and droplets that are larger than
√
3b/a and smaller than 40µm515

as cloud droplets. We do not provide the detailed results, but the ratio of air density weighted volume (i.e., mass) where cloud

water exists in a cell to the total volume in the BOMEX case is approximately 1.5%
:::::
1.5% in a quasisteady state based on the

numerical experiments of our developed model. Therefore, we estimate that 98.5%
::::::
98.5% of SDs satisfy the condition of Case

2 in the BOMEX setup.

Therefore
:::::
Hence, if we ensure the uniqueness of the solution by Case 1 for a cloudy cell and Case 2 for a cell with no520

clouds, the frequency of exception handling during Newton iterations can be largely reduced. We first check whether we need

a conditional branch of the unsaturated environment (of Case 2). Since the block has small volume that is comparable with the

effective resolution,
:
as

:::::::::
discussed

::
in

::::
Sect.

:::::
3.3.1,

:
we can convert the conditional branches of the unsaturated condition for an

SD to that for all SDs in a block with little or no decreasing ratio of SDs that
::
to satisfy the condition. This conversion of the

conditional branch allows a loop body of time evolution by Eq. (7) to be simple and specific to Case 2. Exception, when the525

initial size of droplets is larger, it is handled individually only if such droplets exist in a block. If the environment is saturated,

we ensure the uniqueness of the solution by Case 1. In this case, we list the SDs that satisfy Case 1 and perform Newton

iterations according to the list. Other SDs are calculated individually and using adaptive time stepping for unstable cases.

By using this method, we find that almost all SDs satisfy the uniqueness condition of the solution, and we should only focus

on optimizing these SDs. For tuning, the SDs in a block are classified into groups of 1024 SDs (which fit in the L1 cache),530

and each division calls the process of activation/condensation. In each call, the time evolution of each SD is calculated. A

single loop for the updates of droplet radius calculates two iterations because this is the maximum number of Newton iterations

that can allow SIMD vectorization and software pipelining without register spill of 32 registers with the current compiler we
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used for A64FX. The loop is repeated for all SDs in a division and breaks if the squares of all droplet radii of SDs fall below

the tolerance relative error of 10−2. Since the loop is vectorized by SIMD instructions and the number of iterations is often535

limited to two if we use the previous droplet radius for the initial value for the Newton iterations, the computational time for

activation/condensation is drastically less than that of the original SDM, as shown later.

3.3.4 Collision–Coalescence

The computational cost of the collision–coalescence process is already low for the algorithm developed by Shima et al. (2009).

We reduced the computational cost and data movement further
:
, rather than achieving a higher efficiency against theoretical540

peak performance of floating-point number operations. Since we used only the Hall kernel for coalescence, the coalescence

probability was small for two droplets of small and similar sizes. Therefore, it is reasonable to ignore the collision–coalescence

process in cells with no clouds. Note also that the
:::::::
Notably, no cloud condition precisely matches

::
can

::::::::
precisely

:::::
match

:
the Case

2 (9). If even a single cloud droplet exists in a block, it becomes necessary to sort the cell indices of all SDs in the block.

However, we can remove sorting if cloud droplets do not exist in a block. We do not sort the attributes of the SDs with cell545

indices as a key since they are already sorted with a block as a key, as will be described in Sect. 3.3.5. Further, some attributes

are on the L2 cache during the collision–coalescence process due to cache-blocking
::::
cache

::::::::
blocking. By not sorting the attributes

of the SDs, the write memory access of SDs that do
::::
does not coalesce is avoided. In the BOMEX setup, 98.5%

::::::
98.5% of the

SDs satisfy Case 2 and we do not calculate the collision–coalescence of these SDs. Therefore, we expect a drastic reduction

in the computational cost and data movement in some cases in which cloudy cells occupy only a small fraction of the total550

domain volume. This method to reduce the computational cost potentially leads to a large imbalance as the Twomey-SDM by

Grabowski et al. (2018). However, we also expect that the imbalance is
::
be

:
mitigated better as cache blocking improves the

worst-case elapsed time among the MPI processes.

3.3.5 Sorting for super-droplets

To effectively utilize cache-blocking555

::
To

::::::
utilize

:::::
cache

::::::::
blocking

:::::::::
effectively during the simulation, the SDs in a block should be contiguous on memory. This is

possible if we sort the attributes of the SDs using the block ID as the sorting key when SDs move out from one block to

another. This sorting is different from the usual sorting in which each block can send SDs to any other block; in the present

sorting, the direction of SD movement is limited to adjacent blocks along x,y, and z axes. Such sorting is commonly used

in the field of high-performance computing. Although we did not make any novel improvement, we summarize this process560

because it is essential to our study, and some readers may not be familiar with on-cache parallel sorting for the PIC method

used during computation
::::::::::::::::::::
(Decyk and Singh, 2014).

Since memory bandwidth generally limits sorting performance, it is essential to reduce data movement. In our case, the

directions of data movement are limited, and most of the SDs in a block are already sorted. We should adopt a design such that

these data are not moved and any unnecessary processes are not performed. We should also reduce the buffer size for sorting565

because of the low memory capacity of A64FX, perform parallelization, and reduce computational costs. However, ready-made
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Figure 3.
::::
Data

:::::::
hierarchy

::::::
(particle

::
&
::::
cell,

:::::
block,

:::::
group)

::
in

::::
each

:::
MPI

::::::
process

:::
and

::::::::
algorithm

::
for

:::
SD

:::::
sorting

::::::
toward

::::::::
x-direction

::
in

::::
each

:::::
block.

:
In
:::

the
:::::::
example,

::
an

::::
MPI

::::::
process

:::
has

:
4
::::::
groups,

:
a
:::::
group

:::
has

:
4
::::::
blocks,

:::
and

:
a
:::::
block

:::
has

::::
4× 4

::::
cells.

:::::
Using

:
a
:::
list

:::
({})

::::
that

::::
stores

:::
the

::::::
indices,

:::
SD

:::::
sorting

::::::::
completes

::
by

::::::
copying

::
in
:::
the

::::
SDs

::::::
moving

:
to
:::::::

adjacent
:::::
blocks

:::
and

:::::::
copying

:::
back

:::
the

::::
SDs

::::::
moving

:::
into

:::
the

:::::
block.

:::
The

::::::
number

::
of

::::
total

:::
SDs

:::::
within

:
a
:::::
block

:
is
::::::::
monitored

:::
by

::::::
counting

::::
only

:::
the

:::::
moving

::::
SDs.

:

sorting, such as the counting sort, may not meet these requirements. Moreover, in the worst case, such sorting may be slower

than the main computation in the SDM because of random access in the memory.

In this study, we sorted the attributes of SDs in three steps along the x,y, and z axes.
::::
Data

::::::::
hierarchy

:::::
within

::::
each

::::
MPI

:::::::
process

:::
and

::
an

::::::::
example

::
of

::::::::::::::
one-dimensional

:::
SD

::::::
sorting

:::
are

::::::
shown

::
in

:::
Fig.

::
3.
:
Each step requires at least two loops: copying in the SDs570

moving to adjacent blocks and copying back the SDs moving into the block. Since the SDs in a block either stay in the same

block or only move one block forward or backward, we did not sort the attributes of SDs with combinations as a key. Instead,

we made a list of SDs to move to reduce the computational costs and unnecessary data movement. Copying in and back of the

SDs to the working array should be divided into small groups so that size of the working array for SDs is reduced by divisions.

A loop for a block in each step can be parallelized naturally by using OpenMP. Although few invalid SDs (buffer) may be575

included in the arrays, this study does not attempt to defragment them explicitly, expecting that the SD movement and sorting

with blocks as a key per microphysical time step may cause defragmenting.

This sorting can avoid the problems of using a ready-made algorithm. The drawback of the current implementation is that

a larger buffer space is necessary for SD attribute arrays because a block has few grids and the statistical fluctuation of the

number of SDs within a block is large. However, this can be improved if we adaptively adjust the size of SD attribute arrays in580

a block according to air density and statistical fluctuations of SDs number.

This method is specialized for use during computation. If more flexible sorting is required, such as when the attributes of

SDs are sorted using the ID as a key for analysis, parallel sample sorting with larger working arrays should be employed.
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4 Comparison of model performance

4.1 Methodology of performance evaluation585

We evaluated the computational and physical performances
::
of

:::
the

::::::::
numerical

::::::
models

::::
and

:::::::::::
microphysics

:::::::
schemes

:
by comparing

the results of the new SCALE-SDM with those obtained with the same model but using the conventional cloud microphysics

schemes as well as with the results obtained with the original SCALE-SDM. First, we describe the methodology of performance

evaluation.
:::::
When

:::::::::
comparing

:::::
cloud

:::::::::::
microphysics

:::::::
schemes

:::::
based

:::
on

:::::::
different

::::::::
concepts,

:::
we

:::::
should

::::
first

:::::::
consider

:::::::::::
convergence

::
in

::::::::::::
spatiotemporal

::::::::::
resolutions.

:::
The

:::::::::::
two-moment

::::
bulk

:::::::
method

:::::::
imposes

::::::::
empirical

::::::::::
assumptions

:::
on

:::
the

:::::
DSD,

::::::
leading

::
to
::::
less

::::::
spatial590

::::::::
variability

::
or
:::

no
::::::::::
dependency

:::
on

:::
the

::::::
spatial

:::::::::
resolution,

::::
such

:::
as

:::
the

:::::::
spectral

:::::
width

::
of

:::
the

:::::
DSD.

:::::::::
However,

:::
this

:::::
does

:::
not

:::::
mean

:::
that

:::
the

::::::::
simulated

:::::::::::
microphysics

::::::::
variables

:::
can

::::::::
converge

:::::::
quickly

::
to

:::::::
increase

:::
the

:::::
spatial

:::::::::
resolution;

::::::
rather,

:::
this

::::::::
indicates

:::
that

::::
fair

:::::::::
comparison

:::
in

:::::
terms

::
of

::::::
spatial

::::::::
resolution

::
is
:::::::
difficult

::
in

:::::::::
principle.

:::::::
Because

:::
the

::::
bulk

:::::::
method

:::::
solves

:::
the

::::::::
statistics

::
of

:::::::::
individual

:::::::
droplets,

::::
one

::::
may

::::::
assume

::::
that

:::
the

:::::::::
timescale

::
of

:::
the

:::::::
groups

::
of

:::::::
droplets

::::::
might

::
be

::::::
larger

::::
than

:::::::::
individual

:::::::
droplets.

:::::::::
However,

::::::::::::::::
Santos et al. (2020)

::::::::
performed

::::::::::
eigenvalue

:::::::
analysis

:::
for

::
a

::::::::::
two-moment

:::::
bulk

::::::
scheme

::::
and

::::::
found

:::
that

::
a
:::
fast

::::::
mode

::::::
(< 1s)

::::
also595

:::::
exists

::
in

::
the

::::
bulk

:::::::
scheme,

::::::
which

::::
does

:::
not

::::::::::
considerably

:::::::
deviate

::::
from

:::
the

::::::::
timescale

::
of

::::::::
individual

::::::::
droplets.

:::::
Based

:::
on

:::
this

::::
fact,

:::
we

:::
use

:::
the

::::
same

:::::::::::::
spatiotemporal

:::::::::
resolutions

::
to

:::::::
compare

:::
the

:::::::::::
two-moment

::::
bulk

::::::
method

::::
and

:::::::::::
sophisticated

:::::::::::
microphysics

::::::::
schemes.

Our optimization goal was to enable ultrahigh
:::::::::::::::::::
meter-to-submeter-scale

:
resolution experiments of shallow clouds to reduce

uncertainty and to contribute to solving future societal and scientific problems. Therefore, we adopted a goal-oriented evalua-

tion method instead of estimating the contributions of various innovations for improving the time-to-solution. Here, we describe600

the evaluation of the time-to-solution and data processing speed (throughput) to ensure the usefulness of our work for solving

real problems. The throughput for the microphysics scheme, including the tracer advection of the water and ice substances, is

defined as follows:

Throughput = (total # of tracers, bins or SDs)

× (total steps)/(elapsed time), (10)605

where the number of steps and elapsed time correspond to the microphysics scheme. To compare the cloud microphysics

scheme that is based on different concepts, we defined the throughput for a bulk and a bin method by total tracers, including all

categories (e.g., water and ice) and statistics (e.g., number and mass). In contrast, we defined the throughput for the SDM by

sampling sizes in the data space (x,R,ξ,M). This is because we can add any attributes with less computational cost and data

movements, and the effective number of attributes may change during time integration; hence, considering many attributes for610

defining throughput is inappropriate. For example, because we give an initial value of R as a stationary solution of the Eq. (2),

R, ξ, and M are initially correlated. We note that the number of tracers does not account for the water-vapor
::::
water

:::::
vapor

:
mass

mixing ratio. An increasing number of tracers or SDs improves the representation power for microphysics. Such an increase in

the representation power can be achieved easily for a bin method and the SDM, but is difficult for a bulk method.
:::
We

:::
do

:::
not

:::::::::
incorporate

:::
the

:::::::
number

::
of

::::
SDs

:::
that

:::
are

:::::::
actually

:::::::
needed

::
to

:::::
obtain

:::::::::
converged

::::::::
solutions

:::
into

:::
the

::::::
metric

::
in

:::
Eq.

::::
(10)

:::
for

::::::::
avoiding615

:::
loss

::
of

:::::::::
generality,

::::
and

:::
we

::::
will

:::::::::
separately

::::::
discuss

:::
the

::::
SDs

:::::::
number.

::::
For

::::::::
example,

:::
the

::::::::::
convergence

:::::::::
properties

::::
can

::::::
depend

:::
on
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::
the

:::::::
variable

:::
to

::
be

::::::::
checked,

::::::::
including

:::::
liquid

::::::
water

:::::::
content,

:::::
cloud

::::::
droplet

:::::::
number

::::::::::::
concentration,

:::
and

::::::::::::
precipitation.

::::
They

::::
can

:::
also

:::::::
depend

::
on

:::
the

:::::
setup

:::
and

:::
the

::::::
results

::
of

:::::::::::
simulations,

::::
such

::
as

:::::
cloud

:::::
form,

::::::
amount

:::
of

:::::
CCN,

::::
PDF

::::
used

:::
for

:::::::::::
initialization,

::::
and

::::::
random

:::::::
number

:::::::::
properties.

To evaluate physical performance, we should confirm that we obtained qualitatively comparable results faster with the SDM620

than with the original SDM. In terms of throughput, we should also confirm that we obtained qualitatively improved numerical

solutions if the elapsed time is approximately the same.

Next, we briefly describe the original SCALE-SDM and other cloud microphysics scheme used for performance evaluation.

We refer to the latest version of SCALE-SDM
:::::
version

:::::
5.2.6

:
(retrieved 2022/6/6 from bitbucket private repository

:::::::
Bitbucket,

contrib/SDM_develop) as the original SCALE-SDM. The public version of the SCALE-SDM was used in Shima et al. (2020)625

(see code availability in their paper). The base SCALE version of the original SCALE-SDM is 5.2.6. Meanwhile, the version

developed in this study is a developmental version based on SCALE
:::::::::
Meanwhile,

:::
we

:::::
used

:::
the

:::::::
develop

:::::::
branch,

::::::
which

::
is

::::::::
branching

:::
off

:::::
from

::::::
version

:
5.4.5. This version contains many improvements, such as untangling module dependency and

flexible module combinations for a model developer, in addition to our innovations. However, it does not have critical changes

to the physical process from version 5.2.6, except for our innovations, orders of calculations, and calculations of the coefficient630

A in Eq. (7) in the activation/condensation process. The
:::
The

::::
new

::::::::::::
SCALE-SDM

:::
also

:::::::
includes

::::::::::::
modifications

::
so

:::
that

:::
the

::::::
results

::
of

::
the

::::::::::
simulations

:::
do

:::
not

:::::
differ

::::::::::
significantly

::::
from

:::
the

:
original SCALE-SDMconsiders the dependency of the diffusion coefficient

and thermal conductivity on the environmental temperature, pressure, and water-vapor mass mixing ratio used to calculate A.

The original SCALE-SDM was used only for numerical experiments with the "original" SDM, as labelled
::::::
labeled

:
hereinafter.

When focusing on some differences among cloud microphysics schemes, we will refer to the SDM schemes associated with635

new SCALE-SDM or original SCALE-SDM as SDM-new or SDM-orig, respectively.

For the microphysics scheme, we used the Seiki and Nakajima (2014) scheme as a two-moment bulk method and Suzuki

et al. (2010) scheme as a (1-moment) bin method, both implemented in the SCALE. Seiki and Nakajima (2014) scheme solves

the number and mass mixing ratio of two categories of water substances and three categories of ice substances,
:::::
water and

::::
three

::
ice

:::::::::
substance

:::::::::
categories,

::::
while

:
Suzuki et al. (2010) scheme solves the mass-mixing

::::
mass

::::::
mixing

:
ratio of each bin in discretized640

DSD for water and ice substances. In this study, we considered only warm rain
:::
We

:::::::::
considered

::::::::::
liquid-phase

:
processes in the

bin method . We used the latest versions of these schemes as is because performance is not poor for solving real problems

though these schemes may not be sufficiently optimized for A64FX. Some readers may wonder why the SDM and the bin

method solve only the warm process while the two-moment bulk method solves the
:::
and

::::::::::
considered

::::::
liquid-

::
or

:
mixed-phase

process. The validity of the comparisons of the computational performance of the SDM without the ice-phase process with645

the mixed-phased two-moment bulk method and the
:::::::
processes

:::::
(only

:::
for

:::::::::
discussion

::
in

:::::
Sect.

:::
6.1)

:::
in

:::
the

::::
bulk

:::::::
scheme.

:::
We

::::
also

:::::::::
introduced

::
the

:::::::
subgrid

::::
scale

::::::::::
evaporation

::::::
model

:::::::::::::::::::::::::::
(Morrison and Grabowski, 2008)

:
in
:::
the

:::::::::::::::::::::::
Seiki and Nakajima (2014)

::::::
scheme

:::
for

:::::::::
comparison

::::
with

:::
the

:::::
SDM

::::
later,

::::::
which

::::::::
considers

:
a
:::::::
decrease

::
in
:::
the

:::::
cloud

::::::
droplet

:::::::
number,

:::::::::
depending

:::
on

::
the

:::::::::::::::::
entrainment-mixing

:::::::
scenario

::::::::
controlled

:::
by

:
a
:::::::::
parameter

::
m

:::::::
(ranges

::::
from

::
0,

:::::::::
indicating

::::::::::::
homogeneous

::::::
mixing,

::
to
::
1
:::
for

:::::::::::::
inhomogeneous

::::::::
mixing).

:::
We

:::
did

:::
not

:::::::
consider

:::
the

:::::::
delayed

::::::::::
evaporation

::
by

:::::::
mixing

:::::::::::::::::
(Jarecka et al., 2013)

:::::::
because

::
of

:::
the

::::::::
increased

::::::::::::
computational

::::
cost,

::::::
which650

:::::
should

:::
be

::::::::
addressed

::
in
:::

the
::::::

future
:::::
work.

:::::::
General

:::::::::::
optimization

:::
has

::::
been

:::::::
applied

::
to

:::::::::::::::::::::::
Seiki and Nakajima (2014)

::::::
scheme.

::
In

::::
this
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::::::
scheme,

::::::
SIMD

::::::::::
instructions

:::::::::
vectorized

::
the

:::::::::
innermost

::::
loop

:::
for

:::
the

::::::
vertical

::::
grid

:::::
index,

::::::::::
performing

:::::::
complex

::::::::::
calculations

:::
on

::::
each

::::
water

:::::::::
substance.

::::
The

::::::::
innermost

::::::::::
calculations

:::
are

:::::::
divided

::
by

:::::::
separate

:::::
loops

::
to

:::::::
improve

::::::::::::
computational

::::::::::
performance

:::::
using

::::::
cache.

::::::::
However,

::::
there

::::
may

::::
still

::
be

:::::
room

::
to

::::
find

::::::
optimal

:::::
loop

:::::
fission

::::
and

:::::::::
reordering

::::::::::
calculations

::
to

::::::
reduce

:::
the

::::::
latency

::
of

::::::::::
operations.

::
In

:::::
terms

::
of

::::::::::::
computational

::::
cost,

:::::::::::
optimization

::
is

::::::
applied

::
to

:::::::::::::::::
Suzuki et al. (2010)

::::::
scheme.

:::::::::
However,

:::
the

::::::::
innermost

:::::
loops

:::
for

::::
bins655

::
are

:::
not

:::::::::
vectorized

:::
for

:
a
:::::
small

:::::::
number

::
of

:::::::::
iterations.

:::
The

:
future issues for optimization of the mixed-phase SDM is discussed in

Sect. 6.1. SCALE adopts terrain-following coordinates and contains features of map projection as a regional numerical model.

However, since any additional computational cost and data movement for these mappings cannot be ignored for high-resolution

:::::::::
meter-scale

:::::::::
resolution simulations, we excluded these features in the new SCALE-SDM for the dynamical core, turbulence

scheme, and microphysics scheme.660

4.2 Warm bubble experiment

We first evaluated the computational and physical performances via simple, idealized warm bubble experiments. The computa-

tional domain was 0.3km×8km×5km for x,y, and z directions. For the lateral boundaries, doubly periodic conditions were

imposed on the atmospheric variables and positions of the SDs. The grid length was 100m. The initial potential temperature θ,

relative humidity RH, and surface pressure Psfc were as follows:665

θ =max
(
300,300+4.0× 10−3(z− 1,000)

)
K, (11)

RH= 70%, (12)

Psfc = 1,013.25Pa. (13)

The air density was given to be in hydrostatic balance. We provided a cosine-bell type perturbation of the potential temperature

θ′ to the initial field to induce a thermal convection:670

θ′ = 2cos
(π
2

√
min(dx + du + dz,1)

)2

K, (14)

dx = (x− 50)2/1,2002, dy = (y− 2,500)2/1,2002,

dz = (z− 500)2/4002.

For the SDM, the initial aerosol distribution was the same as that in VanZanten et al. (2011). For the two-moment bulk and

the bin method, we used Twomey’s activation formula and activated CCNs to cloud droplets according to the supersatu-675

ration as follows: N = 100S0.462 cm−3, where N is the cloud droplet number concentration, and S is the supersaturation.

:::
We

::::
used

:::
the

::::::
mixing

::::::::
scenario

::::::::
parameter

::::::::
m= 0.5

::
in

:::
the

:::::::::::
two-moment

::::
bulk

:::::::
method

::
as

::
a
::::::
typical

:::::
value

:::
on

:::
the

::::::
pristine

::::
case

:::
in

::::::::::::::::
Jarecka et al. (2013)

:
. The uniform sampling method was used to initialize the aerosol mass dissolved in a droplet and multi-

plicity. In the SDM-orig, SDs were initialized so that they were randomly distributed in the domain. In contrast, for SDM-new,

SDs were initialized such that the SD number density was proportional to air density. In addition, to reduce the statistical680

fluctuations, instead of using pseudorandom numbers, we used the Sobol sequence (a low-discrepancy sequence) for the four-

dimensional space of positions and aerosol dry radius in each block.
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Figure 4. Elapsed times of the total (circles) and that of tracer advection and SD tracking (squares) using the two-moment bulk method

(green), bin method (blue), SDM-orig (yellow), and SDM-new (red) with different numbers of tracers or mean SDs per cell.
:::::
Elapsed

:::::
times

:
of
:::

the
::::
total

::::::::
(triangles)

::::
using

:::
the

::
bin

::::::
method

::::
with

:::::::
stochastic

::::::::::::::::
collision–coalescence

::::::::
algorithms

:::
are

:::
also

::::::
shown. Here, SD tracking included SD

movement and sorting with a block as a key. The blue dotted line is the line proportional to N2. The red and yellow dotted lines are lines

proportional to N . The green dotted line indicates a constant determined by N .

For the computational setup, the domain was decomposed to four MPI processes of one node in the y direction using FX1000

(A64FX, 2.2GHz). Local domains in each MPI process were further decomposed into blocks of size 3× 2× 5 for x,y, and

z directions to apply cache-blocking
::::
cache

::::::::
blocking

:
for SDM-new. For the numerical precision of floating-point numbers,685

FP64 was used for the dynamics, two-moment bulk method, bin method, and SDM-orig. In contrast, SDM-new uses mixed

precision, but calculations for SDs were primarily performed by FP32. For time measurement, we inserted MPI_Wtime and

barrier synchronization at the start and end of the measurement interval. In this experimental setting, there were no background

shear flows, and the simulated convective precipitation systems were localized and stationary in some MPI processes, thereby

imposing a huge load imbalance of computational costs. However, the execution time was almost the same with and without690

::::
same

::
in
::::

the
:::::::
presence

::::
and

:::::::
absence

:::
of barrier synchronization owing to stationarity of convective precipitation systems. In

addition, if the measurement interval was nested, the times measured in its lowest level of nests did not include the wait time

between MPI processes. To this end, we evaluated the performance of each microphysics subprocess without additional time.

Time integrations were performed for 1800s by ∆tdyn = 0.2s for dynamics, and ∆t= 1.0s for other physics processes.

Figure 4 shows the elapsed times of the warm bubble experiments for various cloud microphysics and different number of695

tracers or SDs per cell. Here, we show only the elapsed times of those numerical simulations that were completed in less than

3 h
::
3 h and that required less than 28GB of memory. The elapsed times

::::
time obtained by the bin method (BIN) behave as

O(N2)
:::::::
because

::
all

::::::::
possible

::::
pairs

::
of

::::::::
droplets

:::
are

:::::::::
considered

:::
for

:::::::::
calculating

::::::::::::::::::
collision–coalescence, while those of the SDM-

orig behave as O(N), indicating that the collision–coalescence calculation developed by Shima et al. (2009) contributes to a
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reduction in elapsed times. The
::::
time.

:::::::::::::::
Sato et al. (2009)

::::::::
proposed

:::
that

:::
the

::::::::
possible

:::::::::::
combinations

::
of

::::::::::::::::::
collision–coalescence

:::
of700

::
the

::::
bin

::::::
method

::::::::::
(M ≤ NC2)

:::::
could

:::
be

:::::::
reduced

:::::
using

:::::
Monte

:::::
Carlo

::::::::::
integration,

:::::
which

::
is
::::::
similar

:::
to

:::
the

:::::
SDM;

::::::
hence,

:::
Fig.

::
4
::::
also

:::::
shows

:::
the

::::::
results

:::::
using

:::
this

:::::::
option,

::
in

:::::
which

:::
we

::::
use

::::::::::::::::::::::::
M = 16,16,16,32,128,1024,

::::
and

::::
4096

:::
for

:::::::::::::::::::::::
N = 8,16,32,64,128,256,

:::
and

::::
512,

::::::::::
respectively.

:::
We

::::::
should

:::
use

:::::::
M ∝N

:::
for

:::::::
reducing

:::
the

:::::
order

::
of

:::
the

::::::::::::
computational

:::::::::
complexity

::
to

::::::
O(N).

::::::::
However,

:::::
when

::
we

:::
set

:::
the

:::::::
number

::
of

::::
bins

::::::::
N ≥ 128,

:::
the

:::::::::::
computations

:::::
were

:::::::::
terminated

:::
due

:::
to

::::
large

:::::::
negative

::::::
values

::
of

:::::
liquid

:::::
water

::::
that

:::::
fixers

:::::
cannot

:::::::::::
compensate.

::::
This

::
is

:::::::::
consistent

::::
with

:
a
::::::::
previous

:::::
study

:::::::::::::::
(Sato et al., 2009),

::::::
which

:::::
stated

::::
that

:::::::::::::
M ≥ 0.056NC2::::::

should
:::
be705

::::
used.

::
If

:::
we

:::
can

::::
use

:::
this

::::::
option

:::::
stably

::
in
::::

the
:::::
future,

:::
the

:::::::
elapsed

::::
time

:::
of

:::
the

:::
bin

::::::
method

::::::
would

:::::::
become

::::::::::
comparable

::
to

:::
that

:::
of

:::::::::
SDM-orig.

::::
Even

::
if

:::
we

:::::::
consider

:::
the

:::::
above

:::::
point,

:::
the SDM-new drastically reduced the elapsed time compared to the bin method

and SDM-orig for the same number of bins or SDs. Moreover, the elapsed time obtained using the SDM-new with 128 SDs

per cell was about the same as that obtained using the two-moment bulk method (BULK2MOM).

The results seem to contradict the intuition that computations using sophisticated cloud microphysics schemes take more710

time than simpler schemes because of the high computational costs of the former. The main reason for the present results is

related to the tracer advection and SD tracking, which is a bottleneck for the elapsed times, as is described below, rather than

to other cloud microphysics subprocesses. The elapsed times of tracer advection and SD tracking are shown in Fig. 4. The

elapsed time of tracer advection and SD tracking obtained using the bin method and SDM-orig are comparable and increase

as O(N). For small N , the elapsed time of tracer advection and SD tracking for the SDM-new up to 128
::
32

:
SDs per cell are715

shorter than that for the two-moment bulk method, which is advantageous in terms of the elapsed time of simulations.

The advantages of SDM-new against the two-moment bulk for calculating tracer and SD dynamics are fewer calculations,

higher compactness, and more reasonable use of low-precision arithmetic for SD tracking than for tracer advection. While tracer

advection requires a high-order difference scheme to reduce the effect of numerical viscosity, SD tracking does not require a

high-order scheme. We used Fujitsu’s performance analysis tool (fapp) to measure the number of floating-point operations720

(FLOPs). We found 303.915 FLOPS
::::::
FLOPs per grid and tracer for tracer advection (UD5) excluding FCT and 164.3 FLOPS

::::::
FLOPs per SD for SD movement using CVI of second-order spatial accuracy. Since the calculation of UD5 requires values

at five grids and halo regions of width 3 in each direction, the calculations are not localized, and a relatively larger amount

of communication is necessary. For SD tracking, the calculations for a single SD require only grids that contain the SD, and

communication is necessary only when the SD moves out of the MPI process. If FP32 is used for tracer advection, one of the725

advantages of the SDM-new over the two-moment bulk method is lost. However, the calculations of tracer advection require

differential operations, which may cause cancellation of the significant digits. This likely cannot be ignored for high-resolution

simulations where the amplitude of small-scale perturbations from the mean state decreases, especially for variables that

have stratified structures (e.g., water-vapor mass-mixing
::::
water

:::::
vapor

:::::
mass

::::::
mixing

:
ratio). On the other hand, for the proposed

SD tracking, numerical representation precision of the SD positions in physical space becomes more accurate as the grid730

length and time interval decrease simultaneously. Therefore, the use of FP32 for high-resolution simulations is reasonable. Of

course, another important factor behind these results is the fact that the calculations of other SDM subprocesses are no longer

bottlenecks in SDM-new.
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Figure 5. (a) Data throughput of microphysics for using the two-moment bulk method (green), bin method (blue),
::

bin
::::::
method

:::
with

::::::::
stochastic

::::::::::::::::
collision–coalescence

::::::::
algorithms

::::
(blue

::::::::
triangles),

:
SDM-orig (yellow), and SDM-new (red) with different numbers of tracers or mean SDs

per cell. (b) The mean data throughput of SD tracking (SD movement and sorting with a block as a key), condensation process, and collision–

coalescence using SDM-orig and SDM-new with different numbers of mean SDs per cell. The dotted lines and solid lines show the mean

data throughput for SDM-orig and SDM-new, respectively. The range between the minimum and maximum throughputs of condensation and

collision–coalescence for SDM-new is indicated by the colors because the load imbalance is significant for only SDM-new.

Now, we compare computational performance among different cloud microphysics schemes in terms of data throughput. The

throughput of the microphysics scheme (tracer advection, SD tracking, and microphysics subprocesses) for a different number735

of mean SDs per cell is shown in Fig. 5(a). The throughput of the bin method decreases as the number of bins increases,

while that of the SDM-orig remains almost constant but shows a slightly decreasing trend as the number of mean SDs per cell

increases. The throughput of both methods is smaller than that of the two-moment bulk method; hence, the elapsed time does

not become smaller than that obtained using the two-moment bulk method. In contrast to SDM-orig, the throughput of SDM-

new is similar to that of the two-moment bulk method for eight SDs per cell, and it increases as the number of SDs increases.740

Because of the increase in the throughput, which is related to the increase in
:::::::
increased

:
computational performance and the

grid calculations, the elapsed time obtained using the SDM-new resists linear increase with the
:::::::
increases

:::::
more

::::::::
gradually

::::
than

::::::
linearly

::::
with

:::
the

:::::::::
increasing

:
number of SDs. Hence, the elapsed time becomes comparable with that obtained using the two-

moment bulk method even for larger SDs (∼ 256). However, as with the SDM-orig, the throughput of the SDM-new shows a
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decreasing trend when the number of mean SDs per cell exceeds 1024. The maximum throughput of the SDM-new is 57.6 and745

14.13
::::
61.3

:::
and

::::
20.1 times that of SDM-orig and two-moment bulk method, respectively.

The throughputs of subprocesses obtained by SDM-orig and SDM-new are shown in Fig. 5(b). The throughputs obtained

by SDM-orig are almost constant with respect to the number of SDs per cell. As the number of SDs increases, the throughput

of SD tracking converges to a constant, and the throughput of collision–coalescence decreases from approximately 256 SDs

per cell. The throughput obtained by SDM-new is larger than that obtained by SDM-orig for all subprocesses. As the number750

of mean SDs per cell increases, the throughput of SD tracking and condensation increase and converge to constants. The

throughput of collision–coalescence increases to about 256 SDs per cell but then decreases as in the case of SDM-orig. The

minimum throughput of collision–coalescence behaves as the mean throughput, while the maximum throughput increases as

the number of SDs per cell increases. This finding reflects the fact that the throughput decreases only in MPI processes that

contain clouds in the domain because the L1 and L2 cache miss ratio increases because the random access in the cache and755

memory during collision–coalescence calculations increases for a large number of SDs. The maximum throughputs of SD

tracking, condensation, and collision–coalescence obtained by the SDM-new are 21.6, 241, and 64.8
::::
21.3,

::::
251,

:::
and

::::
73.1 times

that obtained by SDM-orig, respectively. In this study, we did not examine the contributed innovations for the acceleration of

the throughput in detail. However, the acceleration rate of the throughput is roughly explained by SIMD vectorization (×16) for

SD tracking and also reduced computational cost by terminating Newton iterations faster (×16×10) for condensation. Before760

optimization, the condensation calculations were the bottleneck of SDM-orig. After optimization, SD tracking calculations

were the bottleneck of SDM-new.

Although we report only the computational performance on FX1000 (A64FX), our innovations are also effective on In-

tel Xeon. For example, using FUJITSU Server PRIMERGY GX2570 M6 (CPU part: a theoretical peak performance of

5.53TFLOPS and memory bandwidth of 409.6GB/s) equipped with Intel Xeon Platinum 8360Y, the elapsed time obtained765

using the two-moment bulk method was 18.439s
::::
14.0s, and that obtained using the SDM-new with 128 SDs per cell on average

is 14.486s
:::::
13.9s. The maximum throughput of the SDM-new is 25.1

:::
31.6 times that of the two-moment bulk method. The large

ratio of the throughput against FX1000 indicates that using FX1000 instead of a more commercial computer with low memory

bandwidth (GX2570 M6) is more advantageous for the two-moment bulk method.

We evaluated the physical performance of SCALE-SDM. First, we show the differences between the first- and second-order770

CVI for SD tracking. In the SDM, we can add any new attribute, such as ID, to each SD. By using the ID for analysis, we

calculated the initial position of the SD to investigate SD mixing. The distributions of SD positions colored by the initial y

coordinate for warm bubble experiments (SDM-new with 128 SDs per cell on average) are shown in Fig. 6. Buoyancy torque

induced by the initial bubble generates vorticity, and the results are different for the case when the first- and second-order

CVI are used. At t= 600.0s, a staircase-like pattern with width approximately the grid length appears in the CVI-1 because775

it does not consider the variation in the velocity component relative to its orthogonal direction within the cell. In contrast,

such a pattern does not appear in CVI-2. The motion of the particle in the fluid can be chaotic even for simple flow fields.

Particles experience stretching and folding in flows, and fine and complex structures are generated even from large-scale flows.

These features are called chaotic mixing (Aref, 1984) from the Lagrangian viewpoint, and they are distinct from turbulence
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Figure 6. Distributions of SD positions at (left) t= 600s and (right) t= 1,200s colored by the initial y coordinate (Y ) when CVI of the first

order
::::::::
first-order (CVI-1) and second order

::::::::::
second-order (CVI-2) spatial accuracy are used for SD movement. The range of 0≤ y ≤ 5,000

and 1,000≤ Y ≤ 4,000 are shown in each panel.
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Figure 7. Horizontally averaged time–height cross section of the liquid water content (LWC) for different cloud microphysics schemes.

mixing. At t= 1,200.0s, fine structure (x= 1,500m,z = 1,200m) and filament (x= 1,800m,z = 2,800m) appear in CVI-2,780

whereas such structures are noisy and obscure in CVI-1. This result indicates that such structures in CVI-1 can be nonphysical

::::
when

:
assuming that structures in CVI-2 are more correct. The accuracy of the CVI may affect the entrainment mixing induced

by thermal,
:::
also

::::::
known

:::
as

:
a coherent vortex ring in clouds. However, because our innovation works for the variations in

velocity within a cell, it is difficult to discuss the effect on larger scales such as the cell-averaged variables, rather than the

distributions of SDs. In addition, because in-cloud flows are generally well-developed turbulent flows, it is difficult to separate785

the effect of chaotic and turbulent mixing. Second, we compared the results of warm bubble experiments among different cloud

microphysics schemes. The horizontally averaged time–height sections of the liquid water content (LWC) are shown in Fig. 7.

Here, we denote the names of the experiments, followed by the number of bins and SDs per cell on average, such as SDM-

new128, for the results obtained using SDM-new with 128 SDs per cell on average. Here, the elapsed times for the selected

cases are SDM-new128 <
::
∼ BULK2MOM < SDM-orig128 < BIN128. In all cases, the qualitative characteristics of time790

evolution , such as
::
are

:::
the

:::::
same

:::
for bubble-induced cloud generation and precipitation pattern, are the same. In addition, the

LWC patterns of BIN128, SDM-new128, and SDM-orig128 are in good agreement with those of BIN256, SDM-new32768,

and SDM-orig4096 (not shown in figures), respectively, which were obtained using the bin method and using the SDM with the

maximum possible number of bins or SDs per cell. Thus, the LWC solutions attain convergence with the given number of bins

and SDs per cell. The
:
.
:::
The

::::::::::
quantitative

::::::::::::
characteristics

::
of

:::
the

:
time evolution of SDM-new128, SDM-orig128, BULK2MOM,795

and BIN128 are very similar until t= 1200s. For precipitation onset at the surface, SDM-new128 (t= 1,600s) is slower than
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BULK2MOM (t= 1,500s) and BIN128 (t= 1,400s). For the LWC remaining
::::
LWC

:::
for

:::::::::
t < 1,000s

:::
are

::::
also

:::::::
similar

::
in

:::
all

:::::
cases.

:::
The

::::::::::
differences

:::::::
between

:::::::::
SDM-new

::::
and

:::::::::
SDM-orig

::::
arise

:::::
when

:::::::::
t > 1,200s

:::
for

:::::::::::
precipitation

::::::
pattern

::::::
(100s

::::::
slower

::::
than

:::::::::
SDM-orig)

:::
and

:::
the

:::::
LWC

:::::::
remains after precipitation in the upper layers (z ∼ 3,500m).

::::::::
However,

:::::
since

:::
the

:::::::::
differences

:::::::
become

::::
small

::
if
:::
the

:::::::
number

::
of

:::
SDs

::
is
::::::::
increased

::
to
:::
32,SDM-new128 is larger than BULK2MOM and smaller than BIN128. The results800

of SDM-new128
:::
768

::::
(not

:::::
shown

::
in
:::::::
figures),

:::
the

::::::::::
differences

:::
are

::::::
mainly

::::::::
attributed

::
to

::::::::
sampling

:::::::::::
(initialization

::
of

:::
the

:::
SD

:::::::
number

::::::
density

::
so

::::
that

::
it

::
is

::::::::::
proportional

::
to
:::

the
:::

air
:::::::
density

:::
for

:::::::::
SDM-new)

::::
and

::::::::::
randomness

:::::::::::
(initialization

:::
by

:::::
Sobol

:::::::::
sequences

::::::
which

::::::
exhibits

:::::
faster

:::::::::::
convergence

::::::::
property

::::
than

:
a
:::::::::::::
pseudorandom

::::::::
number).

::::
The

:::::::::
differences

::
in

:::
the

:::::::::::
precipitation

:
and SDM-orig128

deviated slightly after t= 1200s, partly because of the different SCALE versions. However, precipitation onset at the surface

and LWC remaining
::
the

:::::::::
remaining

:::::
LWC

::::
after

:::::::::::
precipitation

:
in the upper layers are close to the results of

:::::::
between SDM-new805

. We conclude that differences between SDM-orig128 and SDM-new128 in terms of the LWC are small as per the warm

bubble experiments.
::
and

:::::::::
SDM-orig

:::::::
become

:::::
small

:
if
:::
we

::::::
disable

:::
the

::::::::::::
improvements

::::::::
presented

::
in

:::
this

::::::
study.

::::::
Despite

:::::
some

::::::
factors

::::::::
indicating

:::::::::
differences

:::::::
between

:::::::::
SDM-new

::::
and

:::::::::
SDM-orig,

:::
we

:::::::
conclude

::::
that

::::
their

::::::
results

:::
are

::::::
similar.

:

4.3 BOMEX and SCMS cases

In Sect. 4.2, we discussed the evaluation of the computational performance using mainly data throughput by increasing the810

number of mean SDs per cell. This approach is appropriate for comparing SDM-orig and SDM-new as the contributions of the

stencil calculations that are not relevant to the innovations in this study become small. However, the comparison of SDM-new

with the two-moment bulk and the bin methods may not be fair. In general, the computational efficiency improves in actual

use cases
::::::
real-life

::::::::
scenarios

:
when the number of grids per MPI process is increased. The number of grids in each MPI process

used in Sect. 4.2 was relatively small. In addition, the numerical settings of warm bubble experiments were too simple to be815

regarded as representative of real-world problems. Therefore, we also evaluated computational and physical performances for

the BOMEX case and a case study of isolated cumulus congestus observed during the Small Cumulus Microphysics Study field

campaign (Lasher-Trapp et al., 2005)—this case is referred to as the SCMS case—, as they present more practical problems.

The experimental settings for the BOMEX case were based on Siebesma et al. (2003). The computational domain was

7.2km×7.2km×3.0km for x, y, and z directions, and the horizontal and vertical grid lengths were 50m and 40m, respectively.820

The experimental settings for the SCMS case were based on the model intercomparison project for the bin methods and particle-

based methods conducted in International Cloud Modeling Workshop 2021 (see Xue et al. (2022) and reference therein).

The computational domain was 10.0km× 10.0km× 8.0km, and the grid length was 50m. For both cases, the time interval

was ∆tdyn = 0.1s, ∆tadv = 2∆tdyn = 0.2s, ∆tphy = 0.2s. The Rayleigh damping imposed was 500m and 1,000m from the

top of the domains for the BOMEX and SCMS cases, respectively.
:::
For

:::
the

:::::::::::
two-moment

::::
bulk

:::::::
method,

:::
we

::::
used

:::
the

:::::::
mixing825

:::::::
scenario

::::::::
parameter

::::::::
m= 0.5

:::
for

::::::::
BOMEX

:::
and

:::::
0.75

:::
for

::::::
SCMS

:::::
cases

::
as

::::::
typical

::::::
values

:::
on

:::
the

:::::::
pristine

:::
and

::::::::
polluted

::::
cases

:::
in

::::::::::::::::
Jarecka et al. (2013)

:
,
::::::::::
respectively.

:
In the SDM, SDs were not initially placed in the Rayleigh damping layers, and we did not

generate or remove SDs in the regions during simulations. For initialization, the uniform sampling method (i.e., the proposed

method using α= 1.0) was adopted for both BOMEX and SCMS cases. For the SCMS case, we also used the proposed method

using α= 0.5 and 0.0 for SDM128 to investigate the sensitivity of cloud microphysical variability to the initialization method.830
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Figure 8. Computational resources of BOMEX and SCMS experiments for various cloud microphysics schemes and different numbers of

tracers or mean SDs per cell: (a) node-hours
:::
node

:::::
hours using normal and boost mode, (b) energy consumption using boost and boost eco

:::::::
boost-eco

:
mode. Here, for (a), the results for the boost and normal modes are shown by filled and open markers, respectively. For (b), the

results for boost eco
:::::::
boost-eco mode and boost mode are shown by filled and open markers, respectively. The red dotted lines show the lines

proportional to N .

Ensemble experiments with three members using different initial perturbations controlled by other random seeds were con-

ducted for each experiment. The number of nodes used for simulations was determined as the minimum values so that the

memory usage was within the system memory per node. For example, one node of FX1000 was used in both cases for the

two-moment bulk method, and one node and two nodes of FX1000 were used in BOMEX and SCMS cases for SDM128, re-

spectively. For time measurement, we used MPI_Wtime but did not use barrier synchronization. At the same time of simulating835

::::::
During

::
the

:::::::::
simulation

::
of

:
three ensemble experiments, we operated Power API to switch among

::::
used the normal mode

::::::::
(2.0GHz,

:::
two

::::::::
pipelines), boost mode

::::::::
(2.2GHz,

:::
two

:::::::::
pipelines), and boost-eco mode

::::::::
(2.0GHz,

::::
one

:::::::
pipeline)

:
for each ensemble member.

We measured the energy consumption per node
:::::::::
(estimated)

::::::
energy

:::::::::::
consumption

::
of

:::::
entire

:::::
nodes

:
between measurement inter-

valsby operating Power API. The measured energy accounted for the energy consumed by all computing and assistant cores,

L2 cache, memory, Tofu interconnect, optical modules, and PCI Express.840

The computational resources for various cloud microphysics schemes using the normal, boost, and boost eco
::::::::
boost-eco

modes for each numerical setting are shown in Fig. 8. We first focused on the node-hours
::::
node

:::::
hours

:
when the normal mode is

used. Here, node-hours
::::
node

:::::
hours is a measure of the amount of time for which computing nodes are used, and it is calculated
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as the product of occupied nodes and the hours. Comparing the results between the SDM with 32 SDs per cell on average

(SDM32) and the bin method with 32 bins (BIN32), the node-hours
::::
node

:::::
hours of BIN32 are 6.8 times and 11.1 times that of845

SDM32 for BOMEX and SCMS cases, respectively. The node-hours
::::
node

:::::
hours consumed using the SDM with 64 to 128

::
32

::
to

::
64

:
SDs per cell are comparable to those consumed when using the two-moment bulk method, and

:
;
::::::::::
furthermore,

:
they do not

increase linearly with increasing number of mean SDs .
:::::
when

:::
the

::::::
number

::
is
::::
less

::::
than

::::
256.

:
The results are important because

we should use larger than 128 SDs per cell to obtain converging solutions such as the cloud droplet number concentration with

respect to the number of SDs (Shima et al., 2020; Matsushima et al., 2021). In terms of memory usage, the simulations using850

the two-moment bulk method consumed about 28.5GB of system memory, whereas those using the SDM with 128 SDs per

cell consumed about twice that memory. When the number of available nodes is limited, the simulations using the two-moment

bulk method still have the advantage of increasing the problem scales
:::
can

:::
be

::::::::
performed

:::::
with

::::
more

:::::
grids.

In Fig. 8, we see that the difference in the patterns among the modes and between (a) and (b) is qualitatively small, and the

advantage of SDM over the two-moment bulk method and bin method is apparent. For example, the energy consumption of855

BIN32 is 8.0 times and 6.4 times that of SDM32 for BOMEX and SCMS cases, respectively, when the boost eco
::::::::
boost-eco

mode is used. In terms of node-hours
::::
node

::::
hours

:
(Fig. 8(a)

:
a), the following relations are observed: boost mode < normal mode.

Further, node-hours for the boost eco
::::
node

:::::
hours

::
for

:::
the

:::::::::
boost-eco mode is closer to that for the normal mode (not shown in the

figure). For energy consumption (Fig. 8(b)), the boost eco
::
b),

:::
the

::::::::
boost-eco

:
mode < boost mode, and the energy consumption

by the normal mode is higher than that by the boost eco
::::::::
boost-eco mode (not shown in the figure). The results obtained for the860

boost eco
::::::::
boost-eco

:
mode have the best power performance from the viewpoint of computational resources among different

modes. Although the boost eco
::::::::
boost-eco mode offers an option to improve power performance when floating-point operations

per time
::::::
FLOPS

:
are not large, the power performances when using not only two-moment bulk and the bin method but also

SDM are improved.

We evaluated the physical performance of microphysical spatial variability obtained by the SCMS case experiments. This865

case is suited for investigating the effect of entrainment-mixing
:::::::::
entrainment

:::::::
mixing, which may lead to different results among

microphysics schemes. In this study, we focused on analyzing the results obtained using the SDM with 128 SDs per cell on

average; the computational resources
::::
used in this case are comparable to those for

::::
about

:::::
twice

:::
as

:::
that

:::
of the two-moment

bulk method but smaller than those for the bin method with 32 bins. The top panel of Fig. 9 shows contoured frequency

by altitude diagrams (CFADs) of the cloud droplet number concentration (CDNC), LWC, mean radius, and standard devia-870

tion of radius for one member (α= 1.0) of SDM128 at t= 6,600s. The selected time of the snapshot was when the cloud

top
::::::::
cloud-top

:
height almost reached its (local) maximum first (the movie of the CFADs from t= 3,600s to t= 10,800s is

available in the supplements: SCMS-R50SD128-CFAD-m1.mp4). Once the clouds evolved to have depths larger than approx-

imately ∼ 3km, the CFAD patterns did not change much with time qualitatively even for the other ensemble members (in

supplement: SCMS-R50SD128-CFAD-m2.mp4,SCMS-R50SD128-CFAD-m3
:::::::::::::::::::::::
SCMS-R50SD128-CFAD-m[

::
2,3].mp4). To en-875

able intercomparison of models for the readers, each variable was calculated from onlythe SDs in one
::::::::::::
microphysical

:::::::
variable

::
of

:
a
:::
cell

::::
was

::::::::
calculated

:::
by

:::::
taking

::::::::
statistics

::
for

::::
SDs

::::::
(only)

:::::
within

:::
the cell. However, the spatial scales of the variables were shorter

than the scales of effective resolution, which may introduce a numerical influence on the statistics (Matsushima et al., 2021).
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Figure 9. Contoured frequency by altitude diagrams (CFADs) of cloud droplet number concentration (CDNC), LWC, and mean and standard

deviation of the radius for SCMS experiments. Snapshots of (top row) SDM128 and (middle row) SDM128 obtained using FP64 as floating-

point number operations and those with collision–coalescence calculations in all grids and (bottom row) SN14
::::::::::
BULK2MOM

:
are shown.

Units of each variable are m−1 · cm3, m−1 · kg · g−1, m−1µm−1, m−1µm−1, respectively. In each panel, the quartiles of variables at each

height are indicated by white lines. The adiabatic predictions of CDNC and LWC are indicated by black lines in the panels of CDNC and

LWC.
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The adiabatic liquid water content (ALWC) was calculated using Eq. (6) in Eytan et al. (2021), which is recommended for the

most accurate comparison with the passive tracer test as a reference solution. In addition, we calculated the adiabatic CDNC.880

The activated CDNC depends on the updraft of the parcel when crossing the cloud base, and hence, on the supersaturation of

the parcel. However, we simply assign an adiabatic CDNC at the cloud base 1,155cm−3 as the maximum value assuming large

supersaturation, and all haze droplets activate to the cloud droplets. Then, we define CDNC including the height dependency

as Na = 1,155ρa(z)/ρa(zcbase)cm
−3, where ρa(z) is the air density of the most undiluted cells in z-section, and zcbase is the

cloud base height.885

One of the drawbacks of the SDM is the statistical fluctuations caused by finite samples. Indeed, CDNC varies largely

centered around 500cm−3, and some samples exceed simple adiabatic prediction, and some samples of LWC also exceed

ALWC. However, the frequencies, for which CDNC and LWC are larger than their adiabatic limits, are about one order of

magnitude smaller than frequencies within adiabatic limits. Near the cloud base, the most frequent values of LWC are close

to ALWC. At z = 2,500m, the simulated congestus have a kink formed by detrainment indicating that cloud elements are890

left behind from the upward flow or moved followed by a downward flow (not shown in figures). The frequency for which

LWC∼ 0 is large here. Above the middle layer of the clouds (z > 2,500m), the LWC is strongly diluted. The mean radius

narrowly varies in the lower layers of the clouds, but the variation becomes large above z = 2,500m for small droplets because

of entrainment and activation. The most frequent values of the standard deviation of radius decrease as the height increases

below z = 2,500m in the adiabatic cores of the clouds. Above the middle layers of the clouds, the most frequent values of the895

standard deviation of radius remain almost constant or increase with height, and the medians of the frequencies at each height

reach 3µm at the upper layers of the clouds. These features are consistent with typical observations (Arabas et al., 2009). To

compare the obtained solution with a reference solution, we also adopted the same experimental setup as that of SDM128 but

used mainly FP64 (50 bits per grid for SD tracking). Meanwhile, we changed the tolerance relative error for Newton iterations

in condensation calculations to 10−6 and computed the collision–coalescence process in all grids.
::::
Here,

::::
the

::::::
elapsed

:::::
time900

:::
and

:::::::
memory

:::::
usage

:::
for

::::
only

:::::::::::
microphysics

::::
with

:::::
FP64

::::
were

:::::::::::::
1.03(1.45)NH

::::::
without

::::::
(with)

::::::::::::::::::
collision–coalescence

::::::::::
calculations

::
in

:::::::::
non-cloudy

:::::::
volumes

::::
and

::::::::
54.9GB,

:::::
which

:::
are

:::::::
1.3–1.6

:::::
times

:::
and

:::
1.8

:::::
times

:::::
larger

::::
than

:::
the

::::
case

:::::
with

::::
FP32

:::
for

::::::::::::::
0.625(1.14)NH

:::
and

:::::::
29.7GB

:::::::
memory

::::::
usage,

::::::::::
respectively.

:
The middle panel of Fig. 9 shows the CFAD analyzed by the reference experiment.

Although our innovations include the use of FP32 for the numerical representation of droplet radius, the differences in the

patterns of the mean radius between the top and middle panels of Fig. 9 are minor. As we will show in Sect. 6.4.1, simply using905

FP16 may cause stagnation of the droplet radius and numerical broadening of the DSD for condensational growth, but the use

of FP32 does not cause these problems. Therefore, our innovations do not worsen the physical performance compared with the

reference solution and typical observation.

The CFAD for the two-moment bulk method (BULK2MOM) is shown in the bottom panel of Fig. 9. The variability of the

CDNC and LWC for BULK2MOM is smaller than those for SDM128. As in the SDM128, the mean radius increases with910

heightbut exhibits a strange mode at 6µm. The relative standard deviation of the cloud droplet radius for the two-moment bulk

method
:::::::::::
BULK2MOM

:
was analytically calculated to be 0.248 because it prescribes the shape parameters of the generalized

gamma distribution. Thus, the mean and standard deviation of the radius have identical patterns except for scaling. The standard
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Figure 10. CFADs of CDNC, LWC, and mean and standard deviation of radius for SCMS experiments using different initialization parameter

(α= 0.5,0.0). Units of each variable are m−1 · cm3, m−1 · kg · g−1, m−1µm−1, m−1µm−1, respectively. In each panel, the quartiles of the

variables at each height are shown by white lines. The adiabatic predictions of CDNC and LWC are shown by black lines in the corresponding

panels.

deviation of radius for BULK2MOM is smaller than that for SDM128 and does not decrease as height decreases in the adiabatic

core, as seen in the case of SDM128. To understand the origin of this strange pattern of the mean and standard deviation of the915

radius, we calculated the mean and standard deviation of SDM128 from the CDNC and LWC, assuming that the DSD shape

follows the empirical DSD of
::::
These

:::::::
happen

:::::::
because the two-moment bulk method . In this case, the strange pattern did not

appear (not shown). Therefore, to investigate intracloud microphysical variability, it is not appropriate to use the two-moment

bulk method because the CDNC and LWC thus obtained are restricted by the effect of empirical assumptions . Our
::::::
cannot

:::::::
represent

:::::
many

::::::::
possible

::::::::
scenarios

:::::
inside

::::
the

:::::
clouds

::::
due

::
to

::::
the

::::::::
empirical

::::::::::
assumptions

:::
of

:::
the

:::::
DSD.

::::::
Based

::
on

:::::
these

:::::::
results,920

:::
our numerical simulations using new SCALE-SDM provide a qualitatively better solution than that obtained using the two-

moment bulk methodwith comparable computational resources
:
,
::
if

:::::
twice

:::
the

::::::::::::
computational

::::::::
resources

:::
are

:::::
used

:::
by

:::
the

::::
new

:::::::::::
SCALE-SDM.

In Sect. 3.2, we proposed a new initialization method for ultrahigh
:::::::::::::::::::
meter-to-submeter-scale resolution simulations. Because

the aerosol number concentration of the SCMS case is high (11 times that in VanZanten et al. (2011)), the importance of925

collision–coalescence is relatively low. Then
:::::
Hence, it may be reasonable to use another initialization parameter instead of

α= 1.0, which is favorable for
:::::
favors

:
faster convergence of collision–coalescence with a number of SDs per cell. Despite the
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original motivation to develop an initialization method for high-resolution
:::::::::
meter-scale

:::::::::
resolution simulations, we investigated

the sensitivity of microphysical variability to α for the SCMS case by 50m resolution simulations. The CFADs for the initial-

ization parameters α= 0.5 and 0.0 are shown in Fig. 10. The selected times of the snapshots are t= 6,720s and t= 6,540s930

respectively, which are determined for the same reason as in the case of α= 1.0. If we assume no spatial variability of aerosol

number concentrations and that all aerosols (haze droplets) are activated to cloud droplets, the maximum CDNC for the SCMS

case is 1,155cm−3. Nevertheless, the maximum values of CDNC reach 1,500cm−3 for α= 1.0. As α decreases, the variation

in CDNC decreases, and the maximum values of CDNC are almost limited within 1,155cm−3 for α= 0.0. These results show

that the statistical fluctuation of aerosol number concentration for large α affects that of the CDNC. We can interpret the cause935

of the statistical fluctuation of the CDNC as follows. Suppose that for a given supersaturation, the haze droplets that have

an aerosol dry radius larger than the specific threshold activate to form cloud droplets, as assumed in the Twomey activation

model. Then, the CDNC in each grid cell is determined by the SDs that have an aerosol dry radius larger than the threshold

size. If the proposal distribution with a limited area of the support (domain of the random variable) for aerosol dry radius is

not similar to the aerosol size distribution, the distribution of the CDNC also has a statistical fluctuation due to the property940

of importance sampling. Of course, the actual 3D simulations exhibit other effects, such as spatially varying supersaturation,

considering a more detailed activation process and the dynamical fluctuation induced by varying the numbers of SDs per cell.

On the other hand, the statistical fluctuation of aerosol mass concentration for small α does not affect that of LWC. Instead, the

fluctuations of the LWC decrease as α decreases, and LWC is almost within the ALWC. This finding can be physically inter-

preted as follows. As α decreases, the samples of small droplets that have a small contribution to the aerosol mass concentration945

increase, leading to more significant statistical fluctuations of aerosol mass. Similarly, the statistical fluctuation of the LWC for

only haze droplets is larger as α decreases (not shown in figures). However, without the turbulence effect, droplet growth by

condensation causes the droplet radius of the samples to be more similar with time, thereby damping the statistical fluctuations.

In terms of microphysical variability without collision–coalescence, the obtained results for small α are considered to be more

accurate because the prediction of the microphysical variable for each grid is less variable. The sensitivity of variability for950

the mean and standard deviation of radius to α is unclear. However, the largest values of the mean radius become larger as

α increases. This is consistent with the fact that such initialization that leads to a larger
::::
large

:
dynamic range of multiplicity

(larger α in this study) creates more large droplet samples ,
:::::
larger

::::::
droplet

:::::::
samples

:
and triggers precipitation, as observed in

the study using a box model (Unterstrasser et al., 2017). The results suggest that for nonprecipitating clouds, small α may be

allowed even for low-resolution simulations, and optimization of α or proposal distribution by constraints from observations955

can be explored. For ultrahigh
:::::::::::::::::::
meter-to-submeter-scale

:
resolution simulations, when using small α such that the multiplicity

of SDs is not smaller than 1, the microphysical variability induced by condensation/evaporation (majority of the droplets) and

precipitation (triggered by rare, lucky droplets), and turbulent fluctuations interacting with clouds through phase relaxation can

simultaneously better represent the natural variability of clouds.
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5 Applicability for large-scale problems960

5.1 Scalability

In Sect. 4, we evaluated the computational and physical performances of SCALE-SDM by relatively low-resolution experi-

ments using at most four nodes. Here, we show the feasibility of using our model for large-scale problems using more com-

puting nodes. First, we show the scaling performance of the new SCALE-SDM for the BOMEX case. Although our numerical

model adopts a hybrid type of 3D and 2D domain decompositions using the MPI, we investigated only weak scaling perfor-965

mance in horizontal directions with the vertical domain fixed. This is because almost all clouds localize in the troposphere, and

hence, extending the vertical domain does not provide any benefit.

For all directions, the grid length is set to 2m. The number of grids without halo grids per MPI process is 72× 72× 96 and

18×18×1,536 for the 3D and 2D domain decompositions, respectively. The shape of network topologies is a 3D torus. In one

direction of the 3D torus, the number of 16 MPI processes/nodes are used for vertical domain decomposition. In each node,970

2×2 MPI processes per node are used for horizontal domain decomposition. For grid conversions between 3D and 2D domain

decompositions, Nz = 16 is decomposed by (Nxl,Nyl) = (4,4). For the grid system in 2D domain decompositions, grids are

divided into groups of 6× 6× 6 for cache blocking. For arithmetic precision, FP64 is used for the dynamical process , and

mixed-precision
::
and

::::::
mixed

::::::::
precision is used for the SDM. Here, most of the representations and operations for the SDM use

FP32/INT32. In contrast, reduction operations
:
, such as calculation of SDs within a cell,

:
to liquid water in the cell use FP64,975

and
:::::
while calculations of SD cell positions use INT16. The scales of problems per node are mainly limited by memory capacity

because the usable system memory of HBM2 is 28GB, and SD information consumes 8.32GB memory capacity per node for

the above setting if extra 36% of the buffer arrays for the SDs is reserved.

The node shapes are 4×4×16, 24×16×24, 48×16×48 with horizontal domains of 1,152m, 6,912m, 13,824m, respectively.

For the BOMEX case, streaks and roll convection with about 1km wavelength are apparent for high-resolution
:::
well

::::::::
resolved980

::
for

:::::::::
12.5/10m

:::::::::
resolution simulations, and they restrict cloud patterns (Sato et al., 2018). To exclude the effect of domain size,

we evaluated the weak scaling performance from the horizontal domain of 1,152m.

Time integrations were performed for 3,680s. The time interval was ∆tdyn = 0.0046s, ∆tadv = 4∆tdyn = 0.0184s, ∆tphy =

0.0736s for dynamical process, tracer advection, and physical process, respectively. The short integration time compared with

the standard numerical settings for the BOMEX case is because some challenges remain in outputting large restart files (see985

Sect. 6.3) and mitigating load imbalance due to clouds. Further, it takes longer to obtain profiles of the computational per-

formance. However, since the integration time is sufficiently long for clouds to be generated in the domain and to approach

a quasisteady state, the obtained performance is a good approximation of the actual sustained performance. Note that we set

∆tadv smaller than the constraint of CFL condition for tracer advection (typical wind velocity of shear flows is about 10ms−1

for the BOMEX case). Because the time-splitting method was applied for compressible equations, the noise induced by the990

acoustic wave is dominant on the tracer fields if ∆tadv is larger than several times ∆tdyn. If an instantaneous value for dynam-

ical variables is used for the time integration of physical processes, and ∆tphy is several times ∆tdyn, a compressional pattern

37



102 103 104 105

# of nodes

0

100

200

300

400

500

600

tim
e 

[m
in

]
47.3 % 50.1 % 50.4 %

50.5 % 47.4 % 47.6 %

dynamics microphysics others

Figure 11. Weak scaling performance of 2m resolution experiments for the BOMEX case.

may arise for the SD density because the instantaneous dynamic variables have a specific phase of the acoustic wave pattern.

To reduce these effects, we used dynamic variables averaged over ∆tadv for physical process calculations.

For measuring the computational performance, we used both timer (MPI_Wtime) and fapp. We used the results obtained by995

the timer only for obtaining a quick view of the elapsed time and the results
:::
that obtained by fapp for other detailed analysis,

such as the number of floating point
:::::::::::
floating-point number operations, number of instructions, and amount of memory transfer.

We note that the measured results have an overhead through the use of fapp. The I/O time is included in the total elapsed

time of the time integration loops, but it is quite small. We did not use explicit barrier synchronization before and after the

time measurement intervals. All-to-all communications with blocking in the local communicator, which consists of Nz MPI1000

processes, were used for converting the grid systems. Since barrier synchronization is not performed for all MPI processes, the

:::::
effect

::
of wait time of communication can affect

:::
will

:::
be

::::::::::
experienced

:
across dynamics and microphysics processes. However,

even if the variations in the presence of clouds in each MPI process is large, these effects become small when the variation of

the clouds in each group of Nz MPI processes is small. Since no large-scale cloud organization occurs in this case, we evaluated

the computational performance of individual components separately, such as the components of dynamics and microphysics.1005

The weak scaling performance of the new SCALE-SDM obtained for the above settings is shown in Fig. 11. We adopted

the grid system for 3D domain decomposition as the default grid system. The elapsed time for the grid system conversion

from 3D to 2D or from 2D to 3D domain decomposition is included in a required physics process. In this case, it is only

included in the elapsed time for the microphysics process during the time integration loop. The total elapsed time of the

experiments was 566min for 256 nodes and exhibits 98% weak scaling for 36,864 nodes. In addition, the elapsed time for1010

dynamics and microphysics was 268min and 286min for 256 nodes and exhibit 92% and 104% weak scaling for 36,864 nodes,
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respectively. All-to-all communications during the conversion of grid systems do not degrade the weak-scaling performance

for microphysics because the hop counts of communications are small, and the number of MPI processes involved is small.

Other physics processes, such as the turbulence scheme, surface flux, and idealized radiation, consume only about 2%
:::
2% of

the total elapsed times.1015

5.2 Largest-scale problem

Table 3. Elapsed time, FLOPS (peak ratio of the FLOPS [%
:
%]), Peta instructions per second, memory throughput (peak ratio of the memory

throughput [%
::
%]), and particle throughput (# of floating point

::::::::::
floating-point

:
operations per SD)

Time [min] Speed [PFLOPS] PIPS Memory Throughput [PB/s] Part. Throughput [particle·step/s]

Time integration loop 576 7.97 (7.04) 1.86 13.7 (37.2)

Dynamics 290 8.55 (7.55) 2.03 20.5 (55.7)

Microphysics 274 7.50 (6.62) 1.69 6.25 (16.9) 2.86× 1013

Short time step 238 9.50 (8.39) 2.19 21.3 (57.9)

Tracer time step 15.0 5.85 (5.17) 1.78 21.6 (58.7)

Tracking 87.9 15.3 (13.5) 2.14 2.89 (10.5) 8.91× 1013 (171)

Condensation 32.6 18.2 (16.1) 5.35 5.28 (14.3) 2.40× 1014 (75.9)

Coalescence 5.75 7.58 (6.69) 2.96 17.5 (47.3) 1.36× 1015 (5.57)

::
SD

::::::
sorting

::::
79.2

:::
12.5

:::::
(33.9)

:

::
3D

::::::
to/from

:::
2D

::::::::
conversion

: ::::
53.47

:

The detailed profile of the largest problems among our experiments for the weak scaling test is summarized in Table 3. The

peak ratio is obtained against the theoretical peak performance of FP64 operations. The overall time integration loop (excluding

the initialization and finalization of the simulation) achieves 7.97 peta floating-point operations per second (PFLOPS)
:::::::
PFLOPS,

which is 7.04%
::::::
7.04% of the theoretical peak performance, and 13.7PB/s which is 37.2%

::::::
37.2% of the peak performance.1020

The achieved peak ratio of the FLOPs
::::::
FLOPS is comparable to that of 6.6%

::::
6.6%

:
by NICAM-LETKF (Yashiro et al., 2020),

which was nominated for the 2020 Gordon Bell Prize. In addition, because the effective peak ratio of memory throughput

performance is approximately > 80%
::::::
> 80% for the STREAM Triad benchmark, the obtained peak ratio achieves about

half of it, implying that the overall calculations utilize HBM2 well. At the subprocess level, the short time step (for acous-

tic waves), which consumes most of the elapsed time in dynamics, achieves 9.5PFLOPS (8.39%
:::::
8.39%

:
of the peak) and1025

21.3PB/s (57.9%
::::::
57.9%). SD tracking and condensation achieve 15.3PFLOPS (13.5%

::::::
13.5% of the peak) and 18.2PFLOPS

(16.1%
::::::
16.1%

:
of the peak), respectively. These relatively high performances are partly attributed to the use of FP32 for most

operations. For these cases, the effective peak ratios for the calculations should be the ratio against peak performance for FP32,

which are half of the ratio against FP64 and hence not high. The bottleneck of these processes is a large L1 cache latency of

A64FX due to the random access of the grid fields. For collision–coalescence, the peak ratio of the floating-point operations1030
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::::::
FLOPS

:
is very low. However, in terms of instructions per second (IPS), which includes integer operations, store and load

operations, and computation for conditional branches, the performance is not low compared with those of the other processes.

In the SDM, SD tracking, condensation, and collision–coalescence computations consume 44%
::::
44%

:
of the elapsed time.

Others contributors are the mainly the times for data movement
:::::::
Elapsed

::::
time

:
is
::::
also

::::::::
consumed

:::
by

:::
the

:::
data

:::::::::
movement

::::
time, such

as the
:::
SD

::::::
sorting

:::
and conversion of grid systems, sorting SDs with a block as a key, and load imbalance for the presence of the1035

clouds, which still needs improvement.
::::::::
However,

::
it

:::::
should

:::
be

:::::
noted

:::
that

:::
the

::::::
elapsed

::::
time

::::
may

:::
not

::
be

:::
the

::::
time

::::::
needed

::
to

:::::::
process

:::
SD

::::::
sorting

:::
and

::::::::::
conversion

::
of

::::
grid

:::::::
systems

::
as

::::
load

::::::::::
imbalances

::::
from

:::::
other

::::::::
processes

::::
will

:::::
likely

::::::
affect

::
it. In this experiment,

because of the limited memory capacity, we divided loops with a block into small groups to reduce the memory usage for

sorting. This affects the increase in the latency and wait time because of synchronization by increasing the communication

counts and inefficient OpenMP parallelization by decreasing the loop counts—this is one reason for the long time required for1040

data movement.

The data throughput of the SDM, which we define as shown in Eq. (10) in Sect. 4, as well as the elapsed time, is a fundamental

measure that includes not just the number of floating-point operations
::::::
FLOPs

:
but also all the information about a numerical

model, a scheme, an implementation, and a computer. In terms of data throughput, we attempted to compare our results with

those of a tokamak plasma PIC simulation, a study that shares similarities in computational algorithms but has an entirely1045

different target. The tokamak plasma PIC simulation performed by Xiao et al. (2021) was nominated for the 2020 Gordon Bell

Prize. It used the total
::::
entire

:
system of the Sunway OceanLight, which has a higher theoretical peak performance than the

Fugaku. For the largest-scale problems, the throughput of the SDM reaches 2.86× 1013, which is comparable to 3.73× 1013

particle·steps/s of their study. In addition, the throughput of each subprocess is larger than the simulated throughputs. The major

difference between our and their results in terms of data throughput is the number of operations per particle—it is ∼ 5,000 in1050

their simulations, which is much larger than that achieved in our study. In research focusing on FLOPS as a measure for better

computational performance, it is common to reduce the application B/F by increasing the number of FLOPs per particle to fit a

computer that has a small B/F, which may result in small data throughput. However, we achieved data throughput comparable

to that of their study; this
::::::::
moreover,

::::
ours is a more practical measure for application than merely considering the FLOPS even

if the throughputs are comparable.1055

Finally, we roughly estimated
:::::::
compare the elapsed time considering that

::::
using

:::
the

:::::
SDM

::::
with

::::
the

::::::::
estimated

:::::::
elapsed

::::
time

::::
using

:
the two-moment bulk and the bin method were used for the same numerical experiments of the same problem size,

and we compared our results with the previous work
:::::::
methods,

::::::::::
specifically

:::::::
focusing

:::
on

:::
the

:::
SD

:::::::::
movement

:::
and

:::::
tracer

:::::::::
advection.

:::::
These

::::::::::
components

:::
are

::::::
chosen

::::::
because

:::
the

:::::::
elapsed

::::
time

::
for

:::
the

:::::::::::
microphysics

::::::::
schemes

:::::::
depends

::
on

:::
the

::::::::::::
computational

:::::::::
algorithms

:::
and

::::::
degree

::
of

:::::::::::
optimization,

::
as

::::::::
discussed

::
in

:::::
Sect.

:::
4.1.

::::::::
However,

:::
the

:::::::
elapsed

::::
time

:::
for

:::::
tracer

::::::::
advection

::
is

::::
more

::::::
robust

::
in

:::::
terms

::
of1060

:::::::::::
optimization.

::::::::
Moreover,

::
it
:::
can

:::
be

:::
one

:::
of

:::
the

:::::
major

::::::::::::
computational

::::::::::
bottlenecks

:::
and

:::
can

:::
be

:::::
easily

::::::::
estimated. From Table 3, the

elapsed time for tracer advection (only water vapor mass mixing ratio) is 15min , and the peak ratio of memory throughput

is 58.7%
::::::
58.7%, which indicates good performance from the viewpoint of the effective peak performance

::
of

:::::
tracer

::::::::
advection.

In the current implementation, since the time evolution of the tracers was solved by each tracer separately, the total elapsed

time for tracer advection was easily estimated as the product of 15min with the number of tracers. If water-vapor mass-mixing1065
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ratio plus
:::::
water

:::::
vapor

:::::
mass

::::::
mixing

::::
ratio

::::
plus

::
4

:
(10

:
) or 32 tracers are used for the bulk of the bin method, respectively, the

elapsed time for tracer advection is estimated as 165min
::::::::::
75(165)min

:
and 495min respectively; these values are larger than the

elapsed time of the sum of the SD movement and tracer advection (103min). For the bin method, the estimated elapsed time of

tracer advection is larger than the total elapsed time of the SDM. Here, we explain that this relationship is robust with respect

to the optimization of the bin method. The bottleneck of the tracer advection is memory throughput for B/F= 3.69> 0.3. We1070

computed the tracer flux in each direction from the mass flux and tracer variables of the previous step to update the tracer

variable based on the finite volume method. If the arrays are large, memory access occurs in nine arrays (one component

mass flux, tracer variable, and one component tracer flux for each direction). Since the mass flux is common for different

tracer variables, and memory access for the tracer variable occurs thrice for computing the tracer flux, our implementation is

not optimal for minimizing memory access. Thus, in principle, there is room for optimization. However, since there are no1075

known successful examples of such optimization in the Fugaku (and in the other general-purpose CPUs), tracer advection is

a memory-bound application in practice. Then, a possible optimization may be to simply refactor the codes, and we may be

able to improve the memory throughput performance of tracer advection to achieve up to 80%
::::
80%

::
of

:::
the

:::::::::
theoretical

:::::
peak

::::::::::
performance. However, even with such optimization, the elapsed time of tracer advection with 33 tracers is estimated to be

363min. Therefore, our simulations with the SDM still have an advantage against the bin method.1080

6 Discussion

6.1 Mixed-phased cloud
::::::::
processes

In this study, we optimized and sophisticated the SDM for only warm microphysics processes and compared the computational

performance using the warm SDM with the two-moment bulk method with tracers for ice categories. However, unless a

similar method can be applied for cold processes(Shima et al., 2020), the efficacy of our method for practical problems may1085

be small
::::::::::
liquid-phase

::::::::
processes. Here, we discuss

::
the

:
possible extensions to such cases

:::::::::
incorporate

:::::::::::
mixed-phase

::::::::
processes

::::
into

:::
our

:::::
model.

Shima et al. (2020) extends the SDM approach to consider the morphology of ice particles. Ice processes considered in

Shima et al. (2020) include immersion/condensation and homogeneous freezing; melting; deposition and sublimation; and

coalescence, riming, and aggregation. To solve these processes, new attributes, such as freezing temperature, equatorial radius,1090

polar radius, and apparent density, are introduced. A critical aspect of the approach using the SDM is that despite many

attributes for water and ice particles, the effective number of attributes decreases if particles are in either the water or ice state.

For example, when warm and cold processes are considered, the apparent density is necessary for ice particles
:
, but it is not

so
:::::::
required

:
for liquid droplets. Indeed, the memory space used for the attributes for ice particles can be reused to represent

the attributes of droplets when they change to liquids, and vice versa. Thus, if well implemented, the increase of the memory1095

requirement for considering both warm and cold processes can be mitigated. In addition, if we can easily discriminate the

particle state as water or ice, the computational cost of the mixed phase
::::::::::
mixed-phase

:
SDM when used for warm clouds will be

almost identical to that of the warm SDM .
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Thus, this is relatively easy. The initial freezing temperature takes values from −38◦C to −12◦C, and its low-precision

representation is reasonable because of its small dynamic range. For the mixed-phase SDM, a water droplet is converted to an1100

ice particle when the environmental temperature falls below the freezing temperature. An ice particle is converted to a water

droplet if the environmental temperature exceeds 0◦C. All SDs in the cell are ice particles if the environmental temperature is

below −38◦C. In contrast, all SDs in the cell are water droplets if the environmental temperature is above 0◦C. For such cases,

we can use specialized codes for water droplets or ice particles, thereby reducing the cost of conditional branches for each

particle. This justifies our comparison between the SDM and
::::::::::
liquid-phase

::::
SDM

::::::
while,

::::::::::::
computational

::::
costs

::
of

:
the two-moment1105

bulk method
::::
bulk

::::::
method

:::::::
increase

:::
due

:::
to

::
the

::::
new

::::::
tracers

::
of

:::
ice

:::::::::
substances

::::
and

::::::::::
mixed-phase

::::::::
processes

::::
(see

:::::
Figs.

::
4,

:
5
:::
and

:::
8).

On the other hand
::::::::::
Alternatively, if water droplets and ice particles are mixed in the cell, the

::
its

:
computational performance

will decreased because of some
:::::::
decrease

:::::::
because

::
of challenges such as the different formats of information of water droplets

and ice particles and SIMD vectorization.
:::
For

::::::::
example,

::::
such

:::::::::
situations

::::::
would

::::
arise

:::::
when

:::
ice

::::::::
particles

:::::
grow

::
by

::::::
riming

:::
in

::::::::::
mixed-phase

::::::
regime

::
of

:::::::
−38◦C

::
to

::::
0◦C

:::
for

::::
deep

::::::::::
convection.

:
In addition, they make assumptions such as particles are in either1110

the water or ice states, and instantaneous melting occurs above 0◦C. These problems should be addressed in future works by

making fewer assumptions.

6.2 Terrain

An extension of this study to the case with terrain is also essential. For terrain-following coordinates with the map factor used

in the regional model, our SD tracking using a fixed-point representation of the SD’s position can be applied when we map1115

from the terrain-following coordinate to the Cartesian coordinates. However, if coordinate mapping is introduced, the CVI

scheme may not guarantee consistency between air density and SD density. In addition, there is an additional computational

cost for SD tracking. If computational cost is critical, we can include the effect of terrain in the SCALE-SDM by combining it

with the immersed boundary or cut-cell methods. Then, the computational performance will not deteriorate because additional

cost arises only in the block with the terrain. When realistic terrain is considered, another additional cost will be incurred at the1120

top/bottom/side boundaries to impose inflow/outflow conditions. Moreover, it will be more complex to sample SDs by ensuring

consistency between air density and SD density because the probability for sampling will be a 3D distribution. However, the

cache-blocking algorithm introduced in this study also helps improve the computational efficiency for such complex processes.

By examining if and how we can construct a CVI for terrain-following coordinates and spherical coordinates is a future task.

6.3 Long-time run1125

In Sect. 5.2, we focused on the feasibility of large-scale problems and performed only about 1 h
::
1 h time integration. To

investigate the statistical behavior of clouds, longer time integration is required. However, if we create a checkpoint/restart file

for the largest-scale problems in this study, it will require approximately 225TB without compression for the total number

of SDs of 9.39× 1012 SDs, and each SD consists of six attributes with four bytes for each attribute. It is possible to output

such large-size files on the Fugaku because of its system design and to utilize most of the computing nodes in Fugaku for a1130

short period. However, it is usually difficult to use such a large amount of storage only for one project. One way to address
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this problem is further optimize to improve
:::::
Thus,

:::::
online

:::::::
analysis

::::::::
becomes

:::::::::
imperative

:
if
:::
we

::::::
require

::::::::::
information

:::::
from

::
all

:::::
SDs.

:::::
While

:::
the

::::::
output

::
of

::::
such

::
a

:::
big

::::
data

::
set

::
is
:::::::
feasible

:::
on

:::::::
Fugaku,

::::::::
extending

:::
the

:::::::::
integration

:::::
time

::
by

:::::::::
enhancing the strong scaling

performance for longer integration in a single run. Another way is to use lossy compression by giving up the
:::
and

:::::
using

::
a

:::::
larger

::::::
number

:::
of

:::::
nodes

::::
will

::
be

::::::
critical

::
if
:::
we

::::
plan

::
to

:::::::
increase

:::
the

:::::::
number

::
of

::::
SDs

:::::::
further.

:::::::::::
Alternatively,

:::
we

::::
may

::::::::
consider

:::
the1135

::::::::::
development

:::
of

::::
lossy

:::::::::::
compression

:::
for

::::
SDs,

::::::
which

::::::::
sacrifices

:::
the exact reproducibility of the simulations. For example, if we

do not store haze droplets on a disk, and resample SDs at the restart, the amount of data can be reduced to less than 10% for

BOMEX. On the other hand, this method will eliminate the effect of hysteresis on the SDs. A better resampling method from

compressed data is a challenge for future studies
::
the

::::::::::
simulations.

6.4 Can we achieve higher performance?1140

6.4.1 Lower precision
::::::::::::::
Lower-precision

:
arithmetic

Since A64FX is a general-purpose CPU with FP16/INT16, it may be possible to reduce memory usage and data movement

and achieve higher performance if low-precision arithmetic is utilized. Unfortunately, we could not use it simply for this study.

However, since using lower-precision arithmetic may be essential for future high-performance computing, we briefly discuss

the obstacles for the same.1145

Grabowski and Abade (2017) showed that supersaturation fluctuation can
:::::
could

:
broaden the DSD even in the adiabatic

parcel. Their method and Abade et al. (2018) serve as a type of parameterization of the turbulence effect for the SDM. Instead

of using the 3D numerical model, we discuss the sensitivity of the DSD to numerical precision based on Grabowski and Abade

(2017). The numerical settings of the adiabatic parcel model are the same as theirs. The box size of a parcel is 50m. Time

integration was performed for 1,000s by the time interval of ∆t= 0.2s. In contrast, we used different numerical precisions1150

(FP64, FP32, and FP16) and different rounding modes (round to the nearest and two modes of stochastic roundings) for time

integration of droplet radius. The detailed mathematical property of stochastic rounding is described in Connolly et al. (2021).

Mode 1 rounds to an up/down direction considering the precise position (calculated by other methods such as higher precision

arithmetic) in the interval between the upward and downward rounded values. Mode 2 rounds to an up/down direction with a

probability of 1/2. For basic operations such as the inner product, the expected values calculated using the stochastic rounding1155

of mode 1 are identical to true values.

The DSDs at 500s,1,000s are shown in Fig. 12. Without the effect of supersaturation fluctuations, the results obtained using

FP64 and FP32 are in good agreement. In contrast, the DSD obtained using FP16 is stagnant in time because the tendency of

condensational growth is too small to add to the droplet radius (i.e., loss of trailing digits). However, the DSD obtained using

FP16 with mode 1 rounding is similar to that obtained using FP64 or FP32 because the tendencies can be added to droplet1160

radius stochastically. If we focus on individual SDs, some SD may experience more rounding down, and some may experience

more rounding up. That is, the DSD is slightly diffusive compared with that obtained using FP64 and FP32. If we use FP16

with mode 2, the obtained DSD shifts toward a larger droplet radius, indicating that the probability for rounding direction

is essential to ensure accuracy. With supersaturation fluctuations, the DSD obtained using FP16 is less stagnant because the
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magnitude of tendencies does not reach 0 because of the fluctuations. The DSD obtained using FP16 with mode 1 is similar to1165

that obtained using FP64 or FP32 except for a slight diffusional trend.

These results indicate that we cannot simply use FP16, but we can use FP16 with mode 1 rounding for some problems. For

example, suppose ∆t is used in low-resolution simulations. In that case, the DSD becomes less diffusive because the effect

of rounding becomes small, and the magnitude of supersaturation fluctuations becomes large. On the other hand, if ∆t is

small in high-resolution simulations, the effect of rounding error on the DSD becomes large. In such cases, the use of FP161170

is not suitable even if stochastic rounding is used. For SD movement, because of the variable precision for SD position, it

may be feasible to use fixed-point number representation such as INT16 using mode 1 in high-resolution simulations. For

collision–coalescence, FP16/INT16 may be troublesome. For example, since the mass of aerosol dissolved in droplets has a

wide dynamic range (at least 109 from Fig. 1), it is difficult to represent it by FP16 even if scaling is performed by adopting an

appropriate unit.1175

The design of the A64FX architecture also makes the use of FP16 difficult. Since the terminal velocity is calculated based

on polynomial fittings from laboratory experiments, and these fittings include measurement errors, the calculations using

higher-precision floating-point operations may not improve the accuracy of the results. For such cases, the use of FP16 can be

considered. The formula proposed by Beard (1976) for terminal velocity can be divided into three intervals depending on the

droplet radius. To apply SIMD vectorization for such loops, we must group particles of similar droplet radii. However, due to1180

a lack of suitable load/store instructions to deal with the jumped data for FP16, a loop cannot be fully vectorized on A64FX.

Similarly, the grid fields referenced by each SD are randomly accessed and cannot be vectorized by SIMD. Therefore, we

cannot expect faster computation because of the wider SIMD vectorization. We also cannot expect faster computation because

of faster data transfer, as the SD movement and condensation/evaporation are not memory-bound computations. These points

should be considered when designing computer architecture in the future.1185

6.4.2 Reduction of data movement

For the largest-scale problems, the time for data movement (i.e., other than SD tacking, condensation, and collision–coalescence)

in the SDM accounts for 53.9
::::
53.9% of the time in the SDM, which accounts for 25.7

::::
25.7% of the total elapsed time. To further

reduce the time-to-solution
::::::
further, it is necessary to optimize data movement.

One possible optimization is to not to sort SDs with a block as a key for every time step of the SDM. Although such an1190

approach is adopted in the tokamak plasma PIC application (Xiao et al., 2021), it requires some consideration for application to

the SDM. For collision–coalescence, all SDs in a block must be in the same MPI process to calculate the interaction between

SDs in a cell; however, this is not necessary for SD movement and condensation processes. That is, if the ∆tcoll/coalse for

collision–coalescence process can be taken larger than ∆tmove for SD movement and ∆tcond for condensation, the sorting

frequency can be reduced by ∆tsort for sorting equals to ∆tcoll/coalse. In addition, when cloud or rain droplets are not included1195

in a block, collision–coalescence process is not calculated. Then, it is possible to set ∆tsort larger than ∆tmove and ∆tcond to

reduce the sorting frequency.

44



8 10 12 14 16 18 20
Radius [ m]

0

50

100

150

200

250
sp

ec
tru

m
 [c

m
3

m
1 ]

(a)
FP64
FP32
FP16
FP16 mode1
FP16 mode2

8 10 12 14 16 18 20
Radius [ m]

0

10

20

30

40

50

60

sp
ec

tru
m

 [c
m

3
m

1 ]

(b)
FP64
FP32
FP16
FP16 mode1
FP16 mode2

Figure 12. DSD obtained by using different numerical precisions of floating-point number operations and rounding modes for (a) without and

(b) with the effect of supersaturation fluctuations. The DSD for t= 500s and t= 1,000s are shown by dotted and solid lines, respectively.

The DSDs obtained using FP16 mode 2 for t= 1,000s are flat in the range shown in figures. At that time, the mean radius of the DSD

are approximately 36µm for both cases—that is, without and with supersaturation fluctuations. The standard deviation of the DSD are

approximately 1.7µm and 3.0µm for the cases without and with supersaturation fluctuations, respectively.

The second possible optimization is to merge the loops divided by subprocesses in microphysics to lower the required B/F

of the SDM. However, this approach may be less effective on computers with high B/F, such as A64FX, and it requires a large

amount of L2 cache to store all SDs information in a block.1200

From the operations in each subprocess listed in Table 3, the minimum B/F for the SDM is estimated as BF = (6× 4×
2)/(171+75.9+5.57) = 0.190< 0.3 where we assume read/write for six attributes (positions, radius, multiplicity, and aerosol

mass) that consist of each four-byte information. On the other hand, if we separate each subprocess and create a working array

for two-byte SD cell positions instead of using SD positions, the minimum B/F for SD movement and condensation are

BF = (4×3×2+4)/171 = 0.164< 0.3 (assuming read/write for four byte 3 positions and read for 4 bytes multiplicity), and1205

BF = (2+4×2+4×2)/75.9 = 0.237< 0.3 (assuming read for 2 bytes cell position, read for 4 bytes multiplicity and mass of

aerosol, and read/write for 4 bytes droplet radius), respectively. These results are consistent with the measured B/F (from speed

and memory throughput in Table 3) (0.189 and 0.290, respectively). The minimum B/F for SD movement and condensation

are smaller than the B/F of the A64FX. However, since the measured B/F for the SDM and collision–coalescence is 0.833 and

2.31, respectively, collision–coalescence is a memory-bound computation, and it causes an increase in the level of the total B/F1210

for the SDM.
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As is the case with many computers, the B/F values are expected to be smaller in future. For future high-performance

computing, merging
:::::::
Merging loops will be necessary ,

::
for

::::::
future

:::::::::::::::
high-performance

:::::::::
computing

::::
after

:
assuming that the high-

capacity and high B/F cache or local memory may be achieved by developing
:::
with

:
new technologies such as 3D stacking.

6.5 Possible research directions1215

Our study focused on the optimization and sophistication of
:::::::::
optimizing

::::
and

::::::::
improving

:
the numerical model. The developed

model can be applied to many fields of research from technical and scientific viewpoints.

For model development, in addition to the discussion in Sect. 6.1 to 6.3, the sensitivity of the microphysical variability

and precipitation to initialization parameter α should be further explored by high-resolution simulations. The
:::::::::
meter-scale

::::::::
resolution

::::::::::
simulations.

::
A

:
reduction in the variance of prediction for the SDM, such as when using low-discrepancy sequences,1220

should also be explored. We did not examine this impact in this study. Moreover, the continuation of proposal distributions

between the DNS and LES may help in realizing more sophisticated model components. The computational performance of our

numerical model may be further improved by applying Grabowski et al. (2018). Their method can reduce computational cost

only when the cloud volume occupies a small fraction of the total volumes and cannot reduce memory usage unless dynamic

load balancing is employed. In contrast, our optimization can improve the performance and reduce memory usage even when1225

the cloud volume occupies a large fraction. Suppose we could further reduce the computational cost and data movement for SD

tracking by applying Grabowski et al. (2018). In this case, our model may be more practical than a bulk method in terms of the

costs for complex real-world problems because we have already achieved performance comparable to that of a bulk method.

For scientific research, the study enables us to address the problems described in Introduction as ∼ 1m resolution numerical

experiments are now possible. For example, we can investigate the cloud turbulence structure in shallow cumuli (Hoffmann1230

et al., 2014) and its interaction with boundary layer turbulence (Sato et al., 2017) in detail. We can also confidently compare

the simulation results with observational studies (Matsushima et al., 2021) because the effective resolution of simulations is

now comparable to the observational scale (∼ 10m). We also improved the initialization method. For stratocumulus, we can

investigate the statistical quasisteady state DSD, which is affected by cloud-top entrainment and a realistic radiation process.

7 Conclusions1235

In the present study, we developed a particle-based cloud model to perform ultrahigh-resolution
::::::::::::::::::::
meter-to-submeter-scale

::::::::
resolution

:
simulations to reduce the uncertainty in weather and climate simulations. The SDM is promising for complex

microphysical process modeling. The main contributions of our SDM-based work are as follows: (1) the development of an

initialization method for SDs that can be used for simulating spatial resolutions between the centimeter and meter
::::
meter

::::
and

:::::::
submeter

:
scales, (2) improvement of the algorithms of the SDM, and computational and physical performance evaluations, and1240

(3) demonstration of the feasibility for large-scale problems using supercomputer Fugaku.

(1) The uniform sampling method, which has good convergence property for the mass of SDs, results in many invalid

samples when the number of SDs is large because the number of SDs becomes larger than the number of real droplets, and
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multiplicity falls below 1 for rare but important SDs. In contrast, the constant multiplicity method is a natural choice for DNS.

We developed a new initialization method that is suitable for scales between the centimeter and meter
:::::
meter

:::
and

::::::::
submeter scales1245

by connecting the uniform sampling method and constant multiplicity method. The developed initialization method requires

a proposal distribution apart from the aerosol distribution. The proposal distribution is formulated as an α-weighted Fréchet

mean of proposal distributions between the uniform sampling method and the constant multiplicity method. To calculate the

Fréchet mean, we require a measure of the distance between elements. For this metric, instead of using the L2 norm, we suggest

using the Wasserstein distance, which is the natural distance between probability distributions , or the Sinkhorn distance, which1250

is
::::::::
distances,

:::::
which

:::
are

:
a regularization of Wasserstein distance

:::::::
distances. The developed method gives a larger minimum and

reduces the dynamic range of SD multiplicity. As α decreases, importance sampling for the aerosol size distribution gradually

changes from a variance reduction effect for mass concentration to a variance reduction effect for number concentration.

(2) We improved the algorithms of the SDM to achieve high performance on Fujitsu A64FX processor, which is used in

supercomputer Fugaku. The developed model employs a hybrid type of 3D and 2D domain decompositions using MPI to1255

reduce communication cost and load imbalance of calculations for the SDM. The SDM, or more generally the PIC method, has

a limitation in high-performance computing because such codes include many complex calculation patterns and conditional

branches. We further divided the decomposed domain for the cache block into blocks and set the block size with a spatial

scale equivalent to the effective resolution of the LES so that the variables within the block were nearly uniform. We converted

the conditional branches for each SD, which depends on supersaturation or the presence of clouds, into conditional branches1260

for each block. This conversion improved the ratio of identical instructions for each SD and resulted in parallelization by

SIMD vectorization even for Newton iterations and reducing the costs of calculations and data movement for the collision–

coalescence process. For SD movement, the 3D CVI of
::
the

:
second-order spatial accuracy on the C-grid was derived to guarantee

consistency of
::::::
ensure

::::::::::
consistency

:::::::
between

:
the SD number density and air density.

:::
The

::::::::::
interpolated

:::::::
velocity

::::
can

::::::::
represent

:::::
simple

:::::::
vortical

:::
and

:::::
shear

:::::
flows

:::::
within

::
a

:::
cell,

::::
and

:::
the

:::::::::
divergence

::
at

:::
the

:::::::
position

::
of

:::
SDs

::::
that

:::
are

::::::::
calculated

:::::
from

:::
the

::::::::::
interpolated1265

::::::
velocity

::
is
:::::::::
consistent

::::
with

:::::::::
divergence

::
at

:::
the

::::
cell. We subtracted partition information using MPI processes and blocks from the

information of SD global positions to reduce information per SD. Then, we stored the relative position of the SD in a block by

::::
with a fixed-point number using FP32to guarantee uniform representation precision in the domain

:
.
::::
This

::::::::
approach

:::::::::
guarantees

::::::
uniform

::::::::
precision

::
in
:::::::::::
representing

:::
the

:::::::
absolute

:::::::
position

::
of

:::
SD

::::::
across

:::
the

::::::::::::
computational

:::::::
domain

:::
and

:::::
good

::::::::
numerical

::::::::
accuracy

::
for

::::::::::::::::
meter-to-submeter

::::::::
resolution

::::::::::
simulations,

::::
even

:::::
when

:::::
using

::
a

:::::::::::
low-precision

::::::
format.1270

Next, we evaluated the computational and physical performances of the model on A64FX by comparing the results obtained

using SDM-new, two-moment bulk method, bin method, and SDM-orig. The simple warm bubble experiments showed that the

time-to-solution obtained by using SDM-new is smaller than that for
:::::::
obtained

::::
with the bin method with

::
for

:
the same number

of tracers or SDs per cell, and
:
;
::::::::::
furthermore,

::::
this is comparable to that of

:::::::
obtained

::::
with

:
the two-moment bulk method when an

average of 128 SDs per cell is used. The factors contributing to the enhancements are fewer calculations, higher compactness,1275

and more reasonable use of low-precision arithmetic for SD tracking than for the conventional tracer advection used with

the bulk and the bin methods. The data throughput of SDM-new is 57.6
::::
61.3 times that of SDM-orig. For the BOMEX and

SCMS cases, the computational resources consumed in terms of node hours and energy consumption using the SDM with
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about 100
:::
128

:
SDs per cell are comparable to

::
at

::::
most

:::::
twice

::
as

:
those consumed using the two-moment bulk method; this is an

important result because previous studies showed that the SDM requires about 128 SDs per cell for the convergence of statistics1280

such as the CDNC. For the SCMS, new SCALE-SDM yielded realistic microphysical variability comparable with that typically

observed in nature, including features that cannot be simulated by the two-moment bulk method. As the initialization parameter

α decreased, the in-cloud variabilities of CDNC and LWC gradually improved, and they were distributed within their simple

adiabatic limits. We confirmed that new SCALE-SDM yields qualitatively better solutions than the two-moment bulk method

for a comparable time-to-solution.1285

(3) Finally, we demonstrated the feasibility of using our approach for simulating large-scale problems using supercomputer

Fugaku. The target problem was based on the BOMEX case but with a wider domain and higher spatial resolutions. The new

SCALE-SDM exhibited 98% weak scaling from 256 to 36,864 nodes (23% of the total system) on Fugaku. For the largest-

scale experiment, the horizontal and vertical extents were 13,824m and 3,072m covered with 2m grids, respectively, and 128

SDs per cell were initialized on average. The time integration was performed for about 1 h. This experiment required about1290

104 and 442 times the number of grids and SDs compared to the current state-of-the-art experiment (Sato et al., 2018). The

overall calculations achieved 7.97PFLOPS (7.04% of the peak), and the maximum performance was 18.2PFLOPS (16.1% of

the peak) for the condensation process in the SDM. The overall throughput in the SDM was 2.86× 1013 particle·step/s. These

results are comparable to those reported by the recent Gordon Bell prize finalists, such as the peak ratio of the simulation part of

the NICAM-LETKF and the particle throughput of the tokamak plasma PIC simulation. We did not examine the largest-scale1295

problem by using the bin model or the two-moment bulk model; instead, we used a simple extrapolation to estimate that for

the largest problem, the time-to-simulation of the SDM is shorter than that of the bin method and is comparable to that of the

two-moment bulk method.

Several challenges remain—for example, optimization for
:::::::::::
incorporating mixed-phase clouds

::::::::
processes, inclusion of terrain,

and long-time integration. However, our approach can handle such further sophistication. The simplification of a loop body1300

innovated in this study can contribute to optimizing the mixed-phase SDM. We also discussed the possibility of reducing at-

tributes, which increases when using mixed-phase SDM, to obtain effective attributes. However, our approach cannot simply

be applied to improve the computational performance when the water and ice states are both present in a cell. Thus, further

sophistication
::::::::
refinement

:
is necessary. The developed CVI scheme can be applied to cases with terrain if we combine our

algorithm with the immersed boundary or cut-cell methods. The computational performance of our model will not be degraded1305

in such cases. However, SD tracking over a larger area and in spherical coordinates remains a challenge. The long-time inte-

gration of SCALE-SDM is still difficult because of the large data volume. Additional study on reducing data volume by using

lossy compression and resampling to restore the data is necessary. For future supercomputers, reducing data movement will

be the key to achieving high computational performance. This can be achieved, for example, by reducing information on SD

positions, reducing the SD sorting frequency, lowering the application B/F by merging the loops for physics subprocesses, and1310

developing computers that will make this possible.

Our study is still in the stage of demonstrating the feasibility of large-scale problems for ultrahigh-resolution
::::::::::::::::::::
meter-to-submeter-scale

::::::::
resolution

:
simulations. However, suppose the ultrahigh-resolution

:::::::::
meter-scale

:::::::::
resolution

:
cloud simulations demonstrated in
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this study can be performed routinely. In this case, these results can be compared with DNS, laboratory experiments, and field

studies to study turbulence and microphysics processes over a vast range of scales. Therefore, we strongly believe that our1315

approach is a critical building block of the future cloud microphysics models and advances the scientific understanding of

clouds and contributes to reducing the uncertainties of weather simulation and climate projection.

Code and data availability. The numerical model codes and configuration files used in this study are available at Matsushima et al. (2023a).

The supplemental codes, figures, movies, and datasets are available at Matsushima et al. (2023b).

Appendix A: Wasserstein distance1320

As described in Sect. 3.2, the Wasserstein distance was used to develop a new initialization method for the SDM. The Wasser-

stein distance and its strongly related optimal transport theory are powerful mathematical tools for tackling problems dealing

with a probability distribution, such as machine learning. Here, we briefly introduce the Wasserstein distance, its regularization,

and displacement interpolation (McCann, 1997) for readers who are unfamiliar with them.

Let two probability distributions as a and b. If we allow mass split during transportation, the amount of transportation from1325

i-th bin ai to j-th bin bj is represented using a coupling matrix Pij . Let a set of coupling matrix U as

U(a,b) =P ∈Rn×n : Pij ≥ 0,
∑
j

Pij = ai,
∑
i

Pij = bj

 . (A1)

The pth (p≥ 1) Wasserstein distance Wp for two probability density distributions (a,b) is defined as

Wp(a,b) =

 min
P∈U(a,b)

∑
i,j

|i− j|pPij

 1
p

. (A2)1330

That is, W p
p is the minimum total cost of transportation from a to b when transport cost from i to j is |i− j|p. On the other

hand, the difference between two distributions are often measured using Lp norm:

Lp(a,b) =
∑
i

(ai − bi)
p. (A3)

The significant difference between the Wasserstein distance and Lp norm is that distance between two distributions is mea-

sured in terms of horizontal or vertical differences. Therefore, the Wasserstein distance is a useful measure if the location1335

of the random variable is essential. A coupling matrix P can be obtained by solving a linear programming problem, which

is computationally expensive for large-scale problems because its computational complexity is of the order of O(N3) for

N dimension. If the computational cost is important, the Sinkhorn distance (Cuturi, 2013), which is a regularization of the
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Wasserstein distance, can be used instead:

Sγ(a,b) = min
P∈U(a,b)

∑
i,j

|i− j|pPij + γ
∑
i,j

Pij(logPi,j − 1)

 . (A4)1340

The negative sign of the second term on the right-hand side is the entropy of the probability distribution, which is non-negative

and increases with the uncertainty.

For the one-dimensional case, the Wasserstein distance has a simple alternative form:

Wp(a,b) =

 1∫
0

|F−1
a (y)−F−1

b |pdy


1
p

, (A5)

where F−1
a , and F−1

b are quantile functions (inverse functions of the cumulative function) for a and b, respectively. In this1345

case, the displacement interpolation (a solution of continuous case of Eq. (5)) is represented as

F−1
a (y) = (1−α)F−1

b1
(y)+αF−1

b2
(y). (A6)

When we denote right-hand side of Eq. (A6) as

x= (1−α)F−1
b1

(y)+αF−1
b2

(y), (A7)

then Eq. (A6) is rewritten as1350

F−1
a (y) = x. (A8)

Here, we describe a method to obtain y = Fa(x), assuming we already know the specific forms of Fb1 ,Fb2 , and F−1
b2

. We

change the variable from y to x′ in Eq. (A7) as y = Fb1(x
′) and we get

x= (1−α)x′ +αF−1
b2

Fb1(x
′). (A9)

This means that if we assign a value to x′, we can obtain a function of x as y = Fa(x). The simple discretization of these cal-1355

culations yields practical numerical algorithms to obtain y = Fa(x). For example, in this study, we assign b1 as the normalized

aerosol distribution and b2 as the uniform distribution. Because b1 is close to 0 near the edge of the support for the distribution

and because the quantile function of b1 changes sharply, it is difficult to construct discrete points in y directly. However, if

we discretize x′ using equidistant points, the points in y are automatically ensured to resolve the sharp changes in the quantile

function.1360
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Appendix B: Second-order conservative velocity interpolation on Arakawa C-grid
::::::::::
Arakawa-C

::::
grid

For simplicity, we considered interpolation within a cell, and let the coordinates be (x,y,z) and let the regions be 0≤ x≤
∆x, 0≤ y ≤∆y, 0≤ z ≤∆z. Coordinates and velocities are nondimensionalized as follows.

x′ =
x

∆x
, y′ =

y

∆y
, z′ =

z

∆z
, (B1)

u′ =
u∆t

∆x
, v′ =

v∆t

∆y
, w′ =

w∆t

∆z
. (B2)1365

In the following discussion, ′ is omitted, and only the results are shown (the proof is available at Matsushima et al. (2023b)).

Let u(x,y,z), v(x,y,z), w(x,y,z) be the nondimensional velocities, and let its values on the C-grid be represented as

follows:

u0 = u(0,1/2,1/2),u1 = u(1,1/2,1/2), (B3)

v0 = v(1/2,0,1/2),v1 = v(1/2,1,1/2), (B4)1370

w0 = v(1/2,1/2,0),w1 = w(1/2,1/2,0). (B5)

Further, let the partial differential coefficient for the nondimensional velocities be represented as

δyu0 =
∂u

∂y
(0,1/2,1/2). (B6)

Then, the velocity at the SD position U = (up,vp,wp) obtained using the second-order conservative velocity interpolation
::::
CVI

is represented as follows:1375

uf{0,1} = u{0,1} + δyu{0,1}

(
y− 1

2

)
+ δzu{0,1}

(
z− 1

2

)
, (B7)

vf{0,1} = v{0,1} + δxv{0,1}

(
x− 1

2

)
+ δzv{0,1}

(
z− 1

2

)
, (B8)

wf{0,1} = w{0,1} + δxw{0,1}

(
x− 1

2

)
+ δyw{0,1}

(
y− 1

2

)
, (B9)

up = (1−x)uf0 +xuf11380

+x(1−x)

{
1

2
(δxw1 − δxw0)+

1

2
(δxv1 − δxv0)

}
, (B10)

vp = (1− y)vf0 + yvf1

+ y(1− y)

{
1

2
(δyw1 − δyw0)+

1

2
(δyu1 − δyu0)

}
, (B11)

wp = (1− z)wf0 + zwf1

+ z(1− z)

{
1

2
(δzv1 − δzv0)+

1

2
(δzu1 − δzu0)

}
. (B12)1385
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If all partial differential coefficients in Eq. (B7)–(B12) are set as 0, the interpolated velocity becomes identical to the results

obtained using the first-order conservative velocity interpolation
:::
CVI. The coefficients are evaluated simply by calculating the

second-order central difference from the velocities at the cell boundaries.

Appendix C: Conditions for existence and uniqueness of the solutions of discretized activation/condensation equation

To solve Eq. (7) numerically, we consider two cases in which the uniqueness of the solution can be easily determined. Here, f1390

is continuous function of R2 in the interval R2 ∈ (0,∞), and it behaves as f(+0) =−∞ and f(+∞) =∞. The intermediate

value theorem states that Eq. (7) has at least one solution in the interval (0,∞).

To derive the Case 1 condition, we first differentiate f with respect to R2:

f ′(R2) = 1− ∆tA

(R2)3/2

[
a− 3b

R2

]
, (C1)

f ′′(R2) =
3∆tA

2

1

(R2)5/2

[
a− 5b

R2
.

]
(C2)1395

Since f ′ has a minimum value at α2 = 5b/a where (f ′)′ = 0, f ′ is always positive in R2 ∈ (0,∞) if f ′(α2)> 0. In this case,

there is one unique solution in the interval. From f ′(α2)≥ 0, we obtain Case 1 condition of Eq. (8). On the other hand, the

solution for f = 0 has at most three solutions if f ′(α2)< 0, and one or two of them may not be physical solutions. Our purpose

is neither to find sufficient conditions for the uniqueness of solutions nor to discriminate physical solutions from at most three

solutions. Although Eq. (8) is a more stringent condition than the condition for the uniqueness of solutions, it has the advantage1400

that Newton’s method becomes more stable because f ′ is always positive.

Case 2 condition is obtained when we constrain the initial values and environmental conditions. We consider the interval

0<R2 ≤ 3b/a where f behaves as f ′(R2)≥ 1 and f(+0) =−∞. The intermediate value theorem states that Eq. (7) has the

unique solution in the interval if f(3b/a)> 0:

f

(
3b

a

)
=

3b

a
− p2 − 2∆tA

[
S− 1− 2a

3

√
a

3b

]
. (C3)1405

If we give S−1≤ 2a
√
a/(3

√
3b), then f(3b/a)≥ 3b/a−p2. Therefore, the condition f(3b/a)> 0 is met if p2 < 3b/a. Since

b depends on an attribute of the droplets, we can make the condition more stringent to depend on only a variable at a cell. For

an unsaturated environment, S− 1≤ 0 and p2 < 3b/a.
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