
Comments on “Evalua/ng an accelerated forcing approach for improving computa/onal 
efficiency in coupled ice sheet-ocean modelling” by Qin Zhou and colleagues. 
 
This study proposes and evaluates a method to accelerate ocean–ice-sheet coupled 
simula/ons by considering that ocean simula/ons represent longer /me periods than the 
mode /me and by providing accelerated changes in ice geometry to the ocean model. 
Computa/onal cost is a strong limita/on of ocean–ice-sheet coupled models for sea level 
projec/ons, so it is an important inves/ga/on. However, I am not convinced that “this 
approach could be applicable in modelling studies related to Antarc/ca’s contribu/on to sea 
level rise projec/ons” for the reasons below. This is a very important aspect that should be 
clarified before modelling groups start implemen/ng this approach. 
 
Major comments 
 
I have two important concerns with the applicability to real world simula/ons, which should 
be discussed and probably reflected in the abstract:  
 
1- Numerous studies have highlighted the significant impact of ice-shelf and iceberg 

meltwater on the ocean stra/fica/on, with important consequences for the evolu/on of 
sea ice (Bintanja et al, 2013; Swart and Fyfe 2013; Merino et al., 2018), Antarc/c boZom 
water forma/on (Li et al., 2023), ocean currents around Antarc/ca (Moorman et al., 2020) 
and global climate (Bronselaer et al., 2018; Purich and England, 2023). If a global ocean 
model represen/ng ice-shelf cavi/es is run with the accelerated approach over something 
like a (real) century, the total freshwater flux into the Southern Ocean won’t be the same 
as in the regular simula/on, which may significantly affect the climate system. Similarly, in 
some coupled ocean-ice sheet models like in Smith et al. (2021), the ice-sheet model sends 
its calving flux to the ocean model; how could this work with the accelerated approach? I 
guess that all these fluxes could be mul/plied by alpha, but this would change the ocean 
dynamics. I am also unsure how it would work with an atmospheric forcing (which is 
absent from the idealised configura/ons presented here). 
 

2- This work evaluates the accelerated forcing approach with two periods of variability: 
0.6 year and 30 years (in real years). It is clearly shown that the accelerated method does 
not well capture the changes in response to the 30-year forcing (Fig.11). How about 
periods of 2-7 years that correspond both to ENSO (which significantly influences regions 
like the Amundsen Sea) and is closer to the residence /me? Isn’t it an important issue that 
this range is poorly represented by the accelerated method. 

 
Minor comments and edits: 
 
- L. 22: this is not only a carbon emission scenario, there are other anthropogenic emissions. 
 
- L. 24: a beZer or complementary reference on the uncertainty is Seroussi et al. (2023). 
 
- L. 30: “local” (instead of “regional”) would be more in line with the results cited here (the 
increase is rela/vely small at the scale of an ice shelf). 
 



- L. 40: “primarily in tes/ng phases or for sensi/vity studies (Muntjewerf et al., 2021)” is not 
so relevant for UKESM which has been used for scenario-based projec/ons by Siahaan et al. 
(2022) even if there are important model biases. Furthermore, I don’t understand the 
reference to Muntjewerf’s paper which is about the Greenland ice sheet. 
 
- L. 57: replace “Specifically” with something like “In this case” or “Under this assump/on”. 
 
- L. 59-62: the formula/ons 𝑧̇!(𝑡)&&&&&&& and  𝑧̇!(𝑡/𝛼)&&&&&&&&&& are not clear to me as the bar indicates a /me 
average. Wouldn’t 𝑧̇!&&&

"  and 𝑧̇!&&&
"/$  be clearer? 

 
- L. 66-84: at this stage, the reader does not know that you are using the ISOMIP+/MISOMIP1 
configura/ons, so “boundary condi/ons” may refer to the surface boundary condi/ons 
(especially for a global ocean model) as well as the ocean lateral boundary condi/ons. 
Similarly, “far field” is not so clear at this stage. 
 
- L. 99 & L. 104: these equa/ons are not so clear to me. Why not using two variables for the 
model /me (tM) and the representated /me (tR). 
 
- Table 4: I am not sure that averaging the barotropic stream func/on is the most accurate way 
to calculate the residence /me because this func/on is defined in a rela/ve way (only its 
gradients are physical). Taking the maximum minus the minimum seems more relevant. I am 
also wondering whether the relevant /me in the ISOMIP+ case is the residence /me in the 
en/re rectangular domain. 
 
- L. 216: correct “Notably,Although”. 
 
- L. 219: another very ood reference for this is Jenkins et al. (2018). 
 
- Fig. 6 is interes/ng. Do the authors have an explana/on for the weaker melt at the frequency 
of the barotropic circula/on? On the lep of the plot, the ocean temperature does not have 
/me to adjust in the water entering the cavity ends up at a temperature of 0.5(TC+TW). 
Towards the right of the plot (and beyond), the temperatures tend to follow the oscillatory 
forcing (equa/on 7 of the manuscript). If you assume a melt dependency to the quadra/c 
thermal forcing and average the melt rate over /me, you can probably explain the lep-right 
asymmetry. My guess for the low central value is that the melt-induced circula/on starts to 
increase in response to thermal forcing just when the forcing switches back to cold condi/on, 
which quickly cools the cavity, while the return to a warm phase is slower due to the low melt-
induced circula/on in cold condi/ons. In this case, the mean temperature in the cavity is closer 
to TC, so mel/ng is at its weakest value. 
 
- Fig. 10, panel a: explain PFast1-mm in the cap/on. 
 
- Fig. 10, panel b: the yellow red curves seem to show the rela/ve difference (in %), not the 
absolute difference as indicated in the cap/on. Showing ∆V for the three experiments as in 
Fig. 11 (not the rela/ve difference) would probably be easier to read. I also don’t understand 
the values: why don’t PFast3 and PFast10 start with 0% difference at month zero. 
 



- L. 392: “Here exists a few loca/ons” -> exist ? 
 
- L. 401-404: I find this sentence hard to follow. 
 
- L. 476: I do see reasons, see my main comments. 
 
L. 455-468: Ok but the real ocean has a lot of variability associated with periods between 
1 year and 30 years (e.g., El Niño Southern Oscilla/on; Holland et al., 2019). For this reason, 
Fig. 11 is quite concerning for an applica/on to a real ocean. 
 
The method should be compared to Lofverstrom et al. (2020) who present an approach for 
the atmosphere forcing of Greenland, but has some similari/es with the method presented 
here. 
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