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Abstract.

Reflecting recent advances in our understanding of soil organic carbon (SOC) turnover and persistence, a new generation

of models increasingly makes the distinction between the more labile soil particulate organic matter (POM) and the more per-

sistent mineral-associated organic matter (MAOM). Unlike the typically poorly defined conceptual pools of traditional SOC

models, the POM and MAOM soil fractions can be directly measured for their carbon content and isotopic composition, allow-5

ing for fraction-specific data assimilation. However, the new-generation models’ predictions of POM and MAOM dynamics

have not yet been validated with fraction-specific carbon and 14C observations. In this study, we evaluate 5 influential and

actively developed new-generation models (CORPSE, MEND, Millennial, MIMICS, SOMic) with fraction-specific and bulk

soil 14C measurements of 77 mineral topsoil profiles in the International Soil Radiocarbon Database (ISRaD). We find that

all 5 models consistently overestimate the 14C content (∆14C) of POM by 69‰ on average, and 2 out of the 5 models also10

strongly overestimate the ∆14C of MAOM by more than 80‰ on average, indicating that the models generally overestimate

the turnover rates of SOC and do not adequately represent the long-term stabilization of carbon in soils. These results call for

more widespread usage of fraction-specific carbon and 14C measurements for parameter calibration, and may even suggest that

some new-generation models might need to restructure or further subdivide their simulated carbon pools in order to accurately

reproduce SOC dynamics.15

1 Introduction

The terrestrial carbon reservoir sequesters an estimated 29% of anthropogenic CO2 emissions each year (Friedlingstein et al.,

2022), significantly reducing the accumulation rate of CO2 in the atmosphere and thus slowing down climate change. However,

the future role of the terrestrial carbon reservoir as a net CO2 sink is uncertain, as Earth System Models (ESMs) produce a wide

range of projections for the net land-atmosphere carbon flux over the course of the 21st century, partly due to high uncertainties20

in the carbon–climate feedback (Friedlingstein et al., 2014; Arora et al., 2020). Moreover, a study by He et al. (2016) using

the radiocarbon (14C) isotope suggests that some of the most widely used CMIP5 (Coupled Model Intercomparison Project
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Phase 5) ESMs may be systematically overestimating the future land carbon sink, further casting doubt on the reliability of

future land sink predictions. All five ESMs tested in their study strongly underestimated the 14C age of soil organic carbon,

which indicates an overestimation of the simulated carbon cycling rates, particularly in the most stable soil carbon pools. After25

He et al. (2016) adjusted the soil carbon cycling rates to fit the observed 14C data, the ESMs ended up predicting 40± 27%

lower carbon sequestration by the terrestrial sink in the 21st century than with their default parameters. This result puts into

question the ability of current ESMs to accurately model soil carbon dynamics, and highlights the importance of validating

model predictions with 14C data.

Almost all ESMs rely on soil organic carbon (SOC) modules that are ultimately based either on the Century model (Parton30

et al., 1987) (e.g., CESM2, Danabasoglu et al., 2020) or the RothC model (Coleman and Jenkinson, 1996) (e.g., JULES,

Clark et al., 2011). Even though Century and RothC have been used for many decades to predict SOC dynamics in various

landscapes with moderate success (Leifeld, 2008; Leifeld et al., 2008, 2009; Abramoff et al., 2022; Zhang et al., 2020), both

modeling frameworks were developed in the 1980s, and thus reflect the comparatively limited understanding of soil carbon

cycling of that time. Indeed, the model design of RothC is inspired by the now obsolete humification theory (Lehmann and35

Kleber, 2015; Schmidt et al., 2011), and neither RothC nor Century explicitly simulate specific processes of SOC cycling, such

as physico-chemical protection of SOC or adsorption and desorption of dissolved organic carbon, because their mechanisms

were previously not understood well enough.

According to our current understanding, the most important control on SOC stability is not so much the molecular compo-

sition or “quality” of organic matter, but rather its protection from microbial and abiotic decomposition through occlusion in40

aggregates and mineral association (Kleber et al., 2011; Dungait et al., 2012; Lehmann and Kleber, 2015; Lavallee et al., 2020).

When SOC gets enclosed into aggregates or stabilized by interactions with reactive soil mineral surfaces of pedogenic oxides or

phyllosilicates through cation bridging, electrostatic interactions, or the formation of inner- and outer-sphere complexes (Ras-

mussen et al., 2018a; Rowley et al., 2018; Vogel et al., 2014; Kleber et al., 2015), it becomes less accessible to decomposers

and thus significantly increases its persistence in soils (Basile-Doelsch et al., 2020; Schrumpf et al., 2013; Doetterl et al., 2015).45

A new generation of SOC models is now being developed to incorporate the theory of SOC protection through occlusion and

interactions with soil minerals into our carbon cycle predictions. A common feature of new-generation soil models is their dis-

tinction between particulate organic matter (POM) and mineral-associated organic matter (MAOM). The POM fraction largely

consists of partially decomposed litter fragments smaller than 2mm (Lavallee et al., 2020; Basile-Doelsch et al., 2020), which

may be covered with a thin mineral coating (Wagai et al., 2009). On the other hand, the MAOM fraction contains organic50

matter chemically adsorbed onto reactive mineral surfaces, or stabilized by occlusion or adsorption inside micro-aggregates

formed around sand, silt, or clay particles (Basile-Doelsch et al., 2020; Lavallee et al., 2020). Unlike the carbon pools of RothC

and Century, the POM and MAOM fractions simulated by new-generation models are designed to be “measurable”: they can

be operationally defined with experimental protocols by which they can be separated from soil samples and then analyzed indi-

vidually for their elemental and isotopic composition (von Lützow et al., 2007). This allows for a closer look into the processes55

governing soil carbon stabilization and for potentially much larger datasets for model calibration and validation. However, the
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use of fraction-specific measurements to validate models is still limited, even for new-generation models (Zhang et al., 2021,

Table S1).

The theory that protection and accessibility are the most important controls on SOC stability is strongly supported by
14C studies (Gaudinski et al., 2000; Schrumpf et al., 2013, 2021), which could indicate that new-generation SOC models60

might perform better with 14C than the traditional SOC models integrated into ESMs. 14C is an effective carbon cycle tracer

because it is chemically indistinguishable from the other carbon isotopes and therefore participates in the same carbon exchange

mechanisms as the more abundant 12C and 13C isotopes. Over the past century, the atmospheric 14C levels have undergone

dramatic changes, most notably as a result of thermonuclear weapons tests in the 1950s and ’60s, which have almost doubled

the amount of atmospheric 14CO2 in the Northern Hemisphere (see Figure 2). As this bomb-derived 14CO2 spreads into the65

terrestrial carbon reservoirs through photosynthesis and into oceans through air-sea gas exchanges (Graven et al., 2020), the

level of enrichment in bomb-derived 14C across different terrestrial and oceanic carbon reservoirs helps to evaluate the speed

and magnitude of carbon exchanges with the atmosphere on annual and decadal scales. Meanwhile for slower-cycling reservoirs

such as deep soils or permafrost, the level of 14C depletion due to radioactive decay (half-life of 5700± 30 years (Roberts and

Southon, 2007)) helps to estimate the time scales of carbon stabilization in those reservoirs on the order of centuries and70

millennia. 14C is therefore a powerful tool to study the exchanges and storage of carbon from decadal to millennial time

scales. However, new-generation models do not generally implement 14C simulations, and only a handful have systematically

assimilated observed 14C data (e.g., Tipping and Rowe, 2019; Braakhekke et al., 2014; Ahrens et al., 2020).

In this study, we use 14C measurements of the organic carbon in the mineral topsoil to evaluate the performance of five

new-generation SOC models: CORPSE (Sulman et al., 2014), MEND-new (Wang et al., 2022), Millennial v2 (Abramoff et al.,75

2022), MIMICS-CN v1.0 (Kyker-Snowman et al., 2020), and SOMic 1.0 (Woolf and Lehmann, 2019). These models were

chosen because they are open source, actively developed, and influential in the soil modeling community. Leveraging the

measurability of their pools, we compare these models’ predictions to 14C measurements of POM and MAOM, in addition

to the total soil 14C. This provides a detailed picture of the modeled SOC dynamics and enables us to carry out an in-depth

analysis of the models’ performances.80

2 Methods

Throughout this paper, we report the 14C content of a given carbon sample as ∆14C, which is the deviation of the sample’s
14C/12C ratio from the “modern” standard, corresponding to the pre-industrial atmospheric 14CO2/12CO2 ratio (Trumbore

et al., 2016).

2.1 Fraction-specific carbon and radiocarbon measurements85

We compare model predictions to three types of measured data for the topsoil: (1) the total SOC stocks in the topsoil, (2) the

relative mass contributions of POM and MAOM to the total SOC stocks, and (3) the ∆14C of POM, MAOM, and bulk SOC.
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For this study, we use the International Soil Radiocarbon Database (ISRaD) (Lawrence et al., 2020) for carbon and 14C mea-

surements of POM and MAOM obtained from soil samples using a combination of density fractionation and ultra-sonication.

Density fractionation with ultra-sonication is currently one of the most effective and commonly employed methods for isolat-90

ing POM and MAOM (Golchin et al., 1994; Griepentrog et al., 2015, 2014; Cerli et al., 2012; von Lützow et al., 2007; Poeplau

et al., 2018). This method separates the soil into three “density fractions” – the free light fraction, occluded light fraction, and

heavy fraction – in a three step process: (1) obtain the free light fraction from the soil sample by density fractionation; (2) in

the remaining sample, destroy loosely-bound aggregates with ultra-sonication, thus releasing the occluded fraction; (3) isolate

the occluded light fraction from the relatively denser heavy fraction by density fractionation. The resulting free and occluded95

light fractions, jointly referred to as the light fraction, correspond approximately to the POM, while the heavy fraction is a

good proxy for MAOM (Mikutta et al., 2019; Lavallee et al., 2020).

ISRaD provides carbon and 14C data for the bulk soil, and the free light, occluded light, and heavy fractions. We directly

associate MAOM with the heavy fraction in ISRaD, and POM with the light fraction (i.e., the sum of the free and occluded

light fractions in ISRaD, see Appendix A1). When the ∆14C of the bulk soil is not measured or reported in ISRaD, we calculate100

it with a weighted average of the light and heavy fractions’ ∆14C (see Appendix A2). In this study, we evaluate models only

for the topsoil, which we strictly define as at least the top 5 cm and at most the top 10 cm of the mineral soil (see Appendix

A3 for more details). This way, we can ignore the effect of vertical mixing of soil carbon, which plays a more important role

in deeper soil 14C dynamics (Koven et al., 2013; Chen et al., 2019; Braakhekke et al., 2011, 2014), and instead focus more

on the effectiveness of the model designs in terms of their simulated carbon pools and biochemical processes. Furthermore,105

by choosing such a narrow depth interval, we can treat the topsoil as one single homogeneous soil layer, which allows us to

also evaluate models which are not vertically resolved and are only intended for topsoil simulations. The current version of

ISRaD (v 2.5.5.2023-09-20, International Soil Radiocarbon Database, 2023) contains complete 14C datasets of the light and

heavy density fractions in the topsoil of 77 soil profiles spread across 39 sampling sites, covering forests, shrubland, cultivated

landscapes, and rangeland and grassland. See Appendix A3 for more information on the choice of profiles, and Appendix A4110

for the derivation of the topsoil carbon and 14C data from layer data. Almost all of the sampling sites are in North America

and Europe, and the remaining sites are located in Hawaii and Puerto Rico (see map in Figure 1). The dataset does not contain

any permafrost, thermokarst, peatland, or wetland soils, and 75 of the 77 samples are from 1997–2015, with only one sample

from 1949 and one sample from 1978. As shown in Figure 2, most datapoints bear a positive ∆14C value, demonstrating an

enrichment in bomb-derived 14C in the topsoil. See Table S.4 in the Supplementary Material for more details on the data and115

the data sources for the 77 selected soil profiles.

2.2 Selection of new-generation models

We reviewed the literature to find new-generation models whose pools are fully compatible with the POM–MAOM distinction,

and that are capable of running global simulations (i.e., their parameter values depend on the environmental conditions and are

not just optimized for a few specific sites). Table 1 gives an overview of the features and capabilities of such new-generation120

models, almost all of which have been developed starting in the 2010s. Many new-generation SOC models also explicitly
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Figure 1. Map of selected topsoil sampling sites from ISRaD (Lawrence et al., 2020). 37 of the 39 sites are located in North America and

Europe, and the two remaining sites are in Hawaii and Puerto Rico. All sites have a complete 14C dataset for the bulk soil and density fractions

in the top 5 or 10 cm of the mineral soil. The map also shows two of the most important environmental controls on soil carbon persistence:

soil temperature (at 4 cm depth, averaged over 1970–2010 period, 1 degree horizontal resolution) from the CESM2 Large Ensemble product

(Rodgers et al., 2021) on the map background, and clay content in the topsoil from ISRaD or SoilGrids (Poggio et al., 2021) for each sampling

site.
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Figure 2. Measured ∆14C data of the POM and MAOM density fractions and total soil organic carbon (bulk SOC) at the selected topsoil

profiles from ISRaD (Lawrence et al., 2020), overlaid on the atmospheric ∆14CO2 curve of the Northern Hemisphere (Graven et al., 2017).

All POM and MAOM fractions shown here were produced using the method of density fractionation with ultra-sonication. These ISRaD

data were originally published in Baisden et al. (2002); Berhe et al. (2012); Harden et al. (2002); Heckman (2010); Heckman et al. (2018);

Lybrand et al. (2017); Marín-Spiotta et al. (2008); McFarlane et al. (2013); Meyer et al. (2012); Rasmussen et al. (2018b); Schrumpf et al.

(2013).
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represent the microbial biomass as a separate carbon pool, since microbes are the main drivers of SOC turnover (Crowther

et al., 2019; Basile-Doelsch et al., 2020; Schimel, 2023). The newest version of the MEND model simulates a variety of

microbial exo-enzyme pools in addition to its microbial biomass pools (Wang et al., 2022). About half of the models listed in

Table 1 already implement 14C simulations. However, none of them have systematically assimilated fraction-specific 14C data,125

instead relying on 14C data of bulk SOC or 14CO2 data from soil respiration.

For this 14C study, we chose to evaluate the following models, as they are open-source and still actively developed:

– Millennial v2 (with Michaelis-Menten kinetics), Abramoff et al. (2022),

– SOMic 1.0, Woolf and Lehmann (2019),

– MEND-new (with default equations), Wang et al. (2022),130

– CORPSE-fire-response (as implemented in Sulman, 2024a), Sulman et al. (2014),

– MIMICS-CN v1.0, Kyker-Snowman et al. (2020).

Figure 3 shows the general structure of the above models. All the selected models have pools which can be associated to the

POM and MAOM fractions (see Appendix C for details on how we associate the pools to each fraction), and they all have at

least one microbial biomass pool. We generally chose to evaluate the most recent version of each model. However, we found an135

error in the 14C implementation of the most recent version of MIMICS (Wang et al., 2021) (see Appendix E2), so we chose to

use the coupled carbon-nitrogen version MIMICS-CN published one year prior in Kyker-Snowman et al. (2020). See Appendix

B and Figures C1–C5 for more details on the exact versions and implementations of each model. Appendix D explains how we

re-implemented the models to produce 14C predictions.

Figure 3. General structure of the new-generation models which we chose for this study. The MIMICS and CORPSE models additionally

feature a CO2 flux leaving MAOM and POM, which depends on the carbon use efficiency of the microbes. The SOMic and CORPSE models

do not allow any flux from the DOM, Microbes, or MAOM back into the POM. More detailed diagrams for the MEND, Millennial, SOMic,

CORPSE, and MIMICS models are shown in Figures C1–C5. Abbreviations: POM, particulate organic matter; MAOM, mineral-associated

organic matter; DOM, dissolved organic matter.
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Table 1. Summary of features and capabilities of new-generation models. All of the listed models are compatible with the distinction between

POM and MAOM and are capable of running global simulations. The models selected for evaluation with 14C in this study are indicated

with an asterisk (∗). The first two columns are the year of the first publication and, if applicable, the year of the latest published revision

of each model at the time of writing. The “Open-source”, “Implements 14C”, and “Explicitly models” columns are checkmarked if at least

one version of the model has open-source code, implements 14C simulations, or explicitly models a specified pool or feature, respectively.

In the “Vertical mixing” subcolumn, models with a downward arrow (↓) simulate any kind of downward transport or leaching for at least

one of their pools, often in dissolved form, and sometimes using an advection equation. Models featuring an up–down arrow (↕) additionally

implement vertical mixing with a diffusion equation for at least one of their pools.
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Notes

∗ Millennial 1 2018 2022 ✓ ✓ ✓ ↓

∗ SOMic 2 2019 ✓ ✓ ✓ ✓ ↓

∗ MEND 3 2013 2022 ✓ ✓ ✓ ✓ ✓ 14C only in 2015

∗ CORPSE 4 2014 2020 ✓ ✓

∗ MIMICS 5 2014 2021 ✓ ✓ ✓ ↓↕ 14C and ↓↕ only in 2021

MIND 6 2021 ✓ ✓ only a subset can be run globally†

AggModel 7 2013 ✓ incubation model

JSM 8 2020 (✓) ✓ ✓ ✓ ↓↕ source code accessible upon request

COMISSION 9 2015 2020 ✓ ✓ ✓ ↓↕ 14C introduced in v2.0

Tipping & Rowe 10 2019 ✓ ✓ ↓

MEMS 11 2019 2021 ✓ ✓ ↓↕ ↕ introduced in v2.0

SOMPROF 12 2011 2014 ✓ ↓↕ 14C introduced in 2014

CAST 13 2013 ↓

Struc-C 14 2009

PROCAAS 15 2020 incubation model

Explicitly models

1Abramoff et al. (2018, 2022) | 2Woolf and Lehmann (2019) | 3Wang et al. (2013, 2015, 2022) | 4Sulman et al. (2014, 2017); Salazar

et al. (2018); Hicks Pries et al. (2018); Moore et al. (2020) | 5Wieder et al. (2014, 2015); Zhang et al. (2020); Kyker-Snowman et al.

(2020); Wang et al. (2021) | 6Fan et al. (2021) | †Only the microbial necromass pools of MIND were run globally; some of the

parameters (e.g., Vmax,P and KM,P ) necessary to run the live microbial biomass and plant-derived carbon pools do not have

fitted values outside of 4 experimental test cases. | 7Segoli et al. (2013) | 8Yu et al. (2020) | 9Ahrens et al. (2015, 2020) | 10Tip-

ping and Rowe (2019) | 11Robertson et al. (2019); Zhang et al. (2021) | 12Braakhekke et al. (2011, 2013, 2014) | 13Stamati et al.

(2013) | 14Malamoud et al. (2009) | 15Liu et al. (2020)
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2.3 Model input data140

For each measurement site, the models are run for the topsoil with local environmental forcing data from 1850 to 2014. The

initial conditions in 1850 are found by spinning up the models, looping over a “pre-industrial” year, where the forcing data is

averaged over the 1850–1879 period, until the system reaches equilibrium, i.e. does not experience any significant inter-annual

variability. In practice, the carbon-nitrogen component of the MEND model is spun up from its default initial condition for 400

years and its 14C component for 1000 years, the SOMic model is spun up for 50,000 years, and the remaining three models are145

spun up for 200 years from their pre-industrial steady-state solution. More details on the spinup methods for each model are

given in Appendix B.

The selected models require a number of constant and time-dependent forcing data to be run at each study site. We as-

sume that soil properties such as sand, clay and silt content, soil density, and land use are time-invariant since pre-industrial

times. Where these site-specific soil properties are not reported in ISRaD, they are taken from the SoilGrids database (Pog-150

gio et al., 2021), accessed with the soilgrids python package, v0.1.4 (Gan, 2023). The MIMICS model also requires the

lignin content of litter inputs, which we set to be a constant value depending only on the land use type. We assume that the

lignin content is 25% for forest litter and 7% for shrubland litter (Rahman et al., 2013, Table 1). For grassland and cultivated

landscapes, we assume a lignin content of 9% based on measurements of grasses at the seeding stage (Armstrong et al., 1950,

Table 1). Weather-dependent and other dynamic environmental properties, such as soil temperature and 14C influx, are taken155

from global model predictions with monthly time resolution. We use the monthly averaged CESM2 Large Ensemble (CESM2-

LE) product (IBS Center for Climate Physics et al., 2021; Rodgers et al., 2021) for vertically resolved soil temperature and

moisture, above- and below-ground net primary production (NPP), total gross primary productivity (GPP), litterfall and litter

heterotrophic respiration, and the carbon-to-nitrogen ratio and ∆14C of total litter carbon from 1850 to 2014 with 1 degree

spatial resolution. Since the below-ground NPP from the CESM2-LE output is not vertically resolved, we derive the topsoil160

portion of the below-ground NPP using the exponential function model from Xiao et al. (2023). For nitrogen deposition rates,

we use monthly data simulated by the NCAR Chemistry-Climate Model Initiative (CCMI) on a 0.5 degree grid from 1860 to

2016 (Tian et al., 2018) downloaded from the ISIMIP Repository (ISIMIP; Rosenzweig et al., 2017). We extend these data

back to 1850 by setting the monthly nitrogen deposition rates for the 1850–1860 period to be equal to the average monthly

rates over the 1860–1870 period.165

Since none of the selected soil models represent lateral carbon transport or upward vertical mixing of soil carbon, the

simulated topsoil systems receive all of their carbon exclusively from vegetation inputs. We can therefore estimate the ∆14C

of the carbon influx into the soil with the ∆14C of litter from the CESM2-LE product. These litter ∆14C data account for the

pre-aging of carbon in vegetation (Herrera-Ramírez et al., 2020; Solly et al., 2018) because the litter carbon first passes through

the vegetation pools in the land module of CESM2 (CLM5, Lawrence et al., 2019). For Millennial, CORPSE, and MIMICS,170

we estimate the carbon influx into the soil with the topsoil NPP, setting the slightly negative NPP values in the CESM2-LE

output to zero. In the case of the MEND model, we use total GPP instead of NPP as a model input, as prescribed by MEND’s

developers (Wang, 2024). SOMic is the only model to require the use of litter inputs instead of NPP or GPP as a model input.
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Following the example of the global simulations performed in SOMic’s original publication (Woolf and Lehmann, 2019), we

estimate litter inputs as the annual average of litterfall minus litter heterotrophic respiration, setting litter inputs to zero in the175

rare instances where annual litterfall is less than annual litter heterotrophic respiration. We derive the topsoil portion of litter

inputs assuming they have the same vertical distribution as NPP.

3 Results

We produced carbon and 14C predictions with the MEND, Millennial, SOMic, CORPSE and MIMICS models for the 77

selected soil profiles, and compared them to the observed carbon and 14C data from ISRaD. Our main performance metrics are180

the root mean squared error (RMSE) and mean bias of the predictions with respect to the observational datasets described in

Section 2.1. Table 2 gives a summary of the model performances. Detailed tables of the results, and plots of predictions against

observations for each variable and each model can be found in the Supplementary Material (Tables S.3 and S.5, and Figures

S.3). Note that the MEND model failed to run on 9 of the 77 selected soil profiles due to some numerical instability, and was

unable to produce 14C data for 6 other profiles. Note also that the SOC stocks are not available for 17 of the 77 selected profiles.185

Table 2. Root mean squared error (RMSE) and mean bias for each model with respect to each dataset. In the case of the MEND model, the

RMSE and bias were calculated based on results of n= 62 profiles for the ∆14C rows, n= 55 for the SOC stocks, and n= 68 for the rows

of POM and MAOM contributions. For all other models, n= 77 for all rows, except SOC stocks, where n= 60.

MEND Millennial SOMic CORPSE MIMICS Average

Bulk SOC ∆14C (‰)
RMSE 84 115 122 77 80 96

Bias +59 +69 +13 +43 0 +37

POM ∆14C (‰)
RMSE 94 119 105 119 129 113

Bias +50 +63 +64 +87 +80 +69

MAOM ∆14C (‰)
RMSE 103 117 116 61 74 94

Bias +83 +81 +18 +7 –39 +30

SOC stocks (kgCm−2)
RMSE 4.0 3.8 1.9 6.5 2.3 3.7

Bias –1.3 +2.7 +0.3 +4.1 –1.6 +0.9

POM contribution (%)
RMSE 35 40 34 24 17 30

Bias +22 –33 –26 +12 –2 –5

MAOM contribution (%)
RMSE 34 41 33 22 21 30

Bias –22 +35 +25 –10 –9 +4

3.1 Carbon stocks and partitioning between pools

While the Millennial and CORPSE models tend to overestimate the topsoil SOC stocks of the selected soil profiles, MEND

and MIMICS generally underestimate the SOC stocks (see Figure 4a). The SOMic model, which is the only model to estimate
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carbon inputs into soils with litter inputs instead of primary productivity, produces the best predictions for the topsoil SOC

stocks with a positive mean bias of only 0.3 kgCm−2 (+13% relative to the observational mean) and a RMSE of 1.9 kgCm−2.190

With the exception of the MIMICS model, the new-generation models generally fail to simulate the full range of variability

in the observations of SOC partitioning between POM and MAOM (Figure 4b–c). The Millennial model’s partitioning is nearly

fixed around 8% POM and 92% MAOM for all sites, never deviating more than 1.5 percentage points from those values. The

CORPSE and MIMICS models produce the best predictions of POM and MAOM contributions to the total SOC stocks. They

follow the one-to-one line of model predictions versus observations much better than the other models (see Figures S.3.2 and195

S.3.4 in the Supplementary Material), and they both have a RMSE around 20 percentage points and a bias of around 10 points

or less in magnitude (Table 2). In comparison, the MEND, Millennial, and SOMic models have an average RMSE of 36 points

and an average absolute bias of 27 points in their predictions of POM and MAOM contributions (Table 2).
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Figure 4. Observed and modeled SOC stocks in the topsoil (top 5 or 10 cm of mineral soil) plotted on a log-transformed axis in subplot

(a), and contributions of the POM and MAOM fractions to the topsoil SOC stocks in subplots (b) and (c), respectively. Black diamonds are

outliers. In subplot (a), n= 60 for the boxplot of observed data, n= 68 for MEND, and n= 77 for all other models. In subplots (b) and (c),

n= 77 for all boxplots, except for MEND, where n= 68.

3.2 Performance with 14C

With the notable exception of MIMICS, the new-generation models consistently overestimate the ∆14C of bulk SOC, and200

their 14C predictions do not capture the full variability of the observations (see Figure 5a). This is reminiscent of the ESMs’
14C predictions from He et al. (2016), which also overestimate the ∆14C of SOC and underestimate its variability, though

to a different extent and over a larger depth interval (top 1m instead of the top 5 or 10 cm of the mineral soil). Our results

could therefore suggest that the new generation of soil models may be facing similar issues as the traditional SOC models

incorporated into ESMs.205
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Figure 5. Observed and modeled ∆14C of bulk SOC (a), POM (b), and MAOM (c) in the topsoil (top 5 or 10 cm of mineral soil). Black

diamonds are outliers. Note that some extreme outliers are outside of the plotting range. To have a uniform and consistent 14C dataset, we

excluded the 1949 and 1978 samples so that we end up with more compact data spanning only 18 years at the tail end of the bomb spike.

Therefore, n= 75 for all boxplots, except for MEND’s, where n= 60.

The pool-specific 14C results, shown in Figure 5b-c, shed a more critical light on the performance of MIMICS with the

∆14C of bulk SOC. MIMICS overestimates the ∆14C of POM by 80‰ and underestimates the ∆14C of MAOM by around

40‰ on average, and these biases happen to cancel out in such a way that MIMICS produces very good predictions for the

∆14C of bulk SOC with a RMSE of just 80‰ and no bias, the best performance among the evaluated models (see Table 2). All

five models overestimate the ∆14C of POM, with an average positive bias of 69‰, and MEND and Millennial also strongly210

overestimate the ∆14C of MAOM by more than 80‰. CORPSE is good at predicting the ∆14C of MAOM with effectively

no bias, but its POM ∆14C predictions have the largest bias (+87‰) among all the models. On average, the evaluated models

have a positive bias between 37‰ and 69‰, and a RMSE around 100‰ in their ∆14C predictions for POM, MAOM, and bulk

SOC (see Table 2 for more details).

The models produce contrasting predictions for the evolution of soil 14C over the second half of the 20th century. In Figure215

6, we can see in a representative example of the model biases that the CORPSE, SOMic and MIMICS models produce very

distinct 14C dynamics for POM and MAOM, with POM having a predicted ∆14C at least 200‰ higher than MAOM in the

1980s. On the other hand, the ∆14C curves of MAOM and POM predicted by the MEND and Millennial models remain very

close to each other throughout the post-bomb period. This is because Millennial and MEND have faster turnover rates than

the other models, and their pools rapidly exchange carbon between themselves, thus homogenizing the 14C signal across their220

simulated soil fractions (see Appendix F for more details on the turnover rates in Millennial, which are particularly fast).
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Figure 6. Observed and predicted ∆14C of POM, MAOM, and bulk SOC in the top 10 cm of the mineral soil of an abandoned alpine

grassland in the Stubai valley, Austria. The observed 14C data from 2008 are published in Meyer et al. (2012), where the “observed POM”

and “observed MAOM” data come from light and heavy density fraction measurements, respectively. The atmospheric ∆14CO2 of the

Northern Hemisphere (Graven et al., 2017) is shown for reference. With SOMic, CORPSE and MIMICS, the predicted ∆14C of POM is

distinct from the predicted ∆14C of MAOM. On the other hand, the POM and MAOM fractions in MEND and Millennial have very similar

∆14C throughout the bomb-spike period. Plots of the predicted and observed ∆14C of all the other profiles are provided in the Supplementary

Material (Figures S.2).

3.3 Role of environmental parameters

We further investigate how simulations depend on soil temperature and clay content, as these are considered some of the most

important factors controlling SOC turnover and persistence (Basile-Doelsch et al., 2020; Leifeld et al., 2009).

Higher soil temperatures enhance microbial activity and generally increase the turnover rate of carbon in soils (German225

et al., 2012; Leifeld et al., 2009; Sierra et al., 2015). While the observed SOC stocks and POM and MAOM contributions are

not correlated with temperature (Figure 7a–c), the observed ∆14C of POM, MAOM, and bulk SOC significantly increase with

higher temperature (Figure 7d–f). In contrast, the predicted ∆14C of POM, MAOM, and bulk SOC are either uncorrelated or

negatively correlated with soil temperature. All of the selected models modify carbon decomposition rates with a temperature-

dependent scaling factor (Abramoff et al., 2022; Woolf and Lehmann, 2019; Kyker-Snowman et al., 2020; Wang et al., 2022;230

Sulman et al., 2014), but these results could indicate that they may need to increase or change the effect of temperature on

carbon turnover rates.
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Figure 7. Relationships of observed and predicted carbon and ∆14C data with respect to mean annual temperature of the topsoil (averaged

over the 1970–2010 period). Circles are datapoints, and lines are best linear fits through the points. The observed ∆14C of bulk SOC, POM,

and MAOM have a strong positive relationship with temperature. Meanwhile, the predicted ∆14C are more weakly and sometimes negatively

correlated with temperature. The linear fit line of CORPSE in subplot (c) is completely covered by the linear fit line of MIMICS. Note that

some extreme outliers are outside of the plotting range, and that we once again excluded the 1949 and 1978 samples for these plots. Separate

plots for each individual model are provided in the Supplementary Material (Figures S.1.2.32–36).

In Figure 8c, the clay content of the sampled topsoils seems to be a decisive factor controlling the observed contribution

of MAOM carbon to the SOC stocks, with higher clay content correlating with higher MAOM contribution. This is also true

for the modeled MAOM contributions predicted by the MIMICS and CORPSE models, which produce the most accurate235

predictions of MAOM contribution (see Table 2). However, MIMICS appears to struggle with correctly simulating the effects

of increased clay content on overall SOC dynamics, as evidenced by the inaccurate relationships of SOC stocks and ∆14C with

clay (see Figure 8a and Figure 8d–f). It appears that MIMICS correctly reproduces the evolution of MAOM contribution with

clay content by increasing the turnover time of carbon in MAOM, which in turn lowers the ∆14C of MAOM and increases

SOC stocks, contrary to the observations.240

It is important to note that the regression lines in the ∆14C plots in Figures 7d–f and 8d–f could potentially be biased due to

the different sampling years of soil profiles with different environmental parameters. However, those biases most likely do not

affect our analysis of the results (see Appendix G, and plots with “normalized” ∆14C data in Figures S.1.1). The Supplementary

Material also contains figures of the model biases and absolute errors plotted against temperature and clay content (Figures

S.1.2.1–24).245
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Figure 8. Relationships of observed and predicted carbon and ∆14C data with respect to clay content in the topsoil. Circles are datapoints,

and lines are best linear fits through the points. CORPSE and MIMICS successfully reproduce the positive relationship between topsoil clay

content and the observed MAOM contribution to the SOC stocks in subplot (c). However, in subplot (f), MIMICS has a strong negative

correlation of MAOM ∆14C with clay content, unlike the observations, which do not show a correlation. The linear fit line of CORPSE in

subplot (f) overlaps with that of the observations. Note that some extreme outliers are outside of the plotting range, and that we once again

excluded the 1949 and 1978 samples for these plots. Separate plots for each individual model are provided in the Supplementary Material

(Figures S.1.2.26–30).

4 Discussion

The comparison of topsoil 14C measurements with predictions by new-generation models reveals inaccuracies in the modeled

time scales of carbon turnover and persistence in soils. Like the Earth System Models (ESMs) evaluated in He et al. (2016),

most new-generation models do not correctly reproduce the ∆14C of bulk soil organic carbon (SOC) and they, too, may there-

fore be unsuitable for studying the effectiveness of soils as a net atmospheric CO2 sink in the 21st century. The model biases in250

the partitioning of SOC between particulate organic matter (POM) and mineral-associated organic matter (MAOM) may also

affect the accuracy of future projections. POM and MAOM have been shown to have different sensitivities to environmental

variables such as temperature and are thus expected to react differently to a changing climate (Georgiou et al., 2024; Heckman

et al., 2022; Hicks Pries et al., 2017; Kleber et al., 2011). Therefore, if models do not correctly partition SOC into POM and

MAOM and misrepresent their 14C, they will probably produce inaccurate predictions of SOC dynamics under climate change.255
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We identify three likely reasons why the new-generation models generally underperform with 14C, and discuss how these

problems could potentially be solved:

1. Insufficient datasets for the calibration of carbon turnover parameters,

2. Lack of a pool with very slow turnover to account for highly persistent SOC components,

3. Pools which do not capture the full range of SOC turnover rates.260

The last point invites further research on the stability of the different constituents of SOC, and a discussion on the most

effective way to partition SOC into pools which are more representative of the diversity of cycling rates and persistence of

carbon in soils.

4.1 Insufficient calibration datasets

Our 14C results suggest that the new-generation models selected for this study overestimate some carbon turnover rates. The265

most extreme case is Millennial v2, which gives its micro-aggregate pool and mineral-adsorbed carbon pool turnover times of

just a few months (see Appendix F). On the other hand, 14C-based studies find that the MAOM fraction, which includes micro-

aggregates and mineral-adsorbed carbon, typically turns over on time scales of many decades or centuries (Gaudinski et al.,

2000; Schrumpf and Kaiser, 2015; Van der Voort et al., 2017; Baisden et al., 2002). The overestimation of turnover rates may

be due to inadequate or insufficient data for the calibration of the models’ turnover parameters. Even though new-generation270

models can model measurable soil fractions such as POM and MAOM, they do not usually assimilate fraction-specific carbon

and 14C data, probably because such data are currently very sparse. The only models in our evaluation to calibrate their

parameters with fraction-specific carbon data are CORPSE (with data from only 2 soil profiles, according to Zhang et al.,

2021, Table S1) and Millennial (as described in Abramoff et al., 2022), and none of them assimilated fraction-specific 14C

data. Instead, new-generation models primarily rely on less informative bulk soil data, as well as some soil incubation results,275

for parameter optimization. However, as the dataset of fraction-specific carbon and 14C measurements is growing larger, new-

generation models should start to take full advantage of the measurability of their pools and assimilate those highly informative

data.

4.2 Lack of passive pool

Another explanation for the consistent overestimation of soil ∆14C by new-generation models is the inability of the models280

to account for the presence of highly persistent compounds in the soil, which negatively offset the bulk ∆14C. For example,

some soils with a history of wildfires may contain a considerable fraction of pyrogenic carbon (Reisser et al., 2016; González-

Domínguez et al., 2019), which is composed of highly durable aromatic compounds and can remain in soils over thousands of

years (Eckmeier et al., 2009; Hajdas et al., 2007; Leifeld, 2008). Due to its longevity, pyrogenic carbon is depleted in 14C as

a result of radioactive decay, bringing down the overall ∆14C of both POM (Van der Voort et al., 2017; Baisden et al., 2002)285

and MAOM (Soucémarianadin et al., 2019). In deeper soils, the ∆14C of SOC can be even further depleted due to a larger
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proportion of petrogenic carbon, which is devoid of 14C (Grant et al., 2023; Van der Voort et al., 2019). Whereas the two major

traditional SOC models explicitly account for such extremely old components with a “passive” pool (1000 year turnover time)

in the Century model (Parton et al., 1987) and an “inert organic matter” pool (no turnover at all) in the RothC model (Coleman

and Jenkinson, 1996), the new-generation models effectively force virtually inert components to fit into their actively cycling290

carbon pools. By adding slow-turnover pools to account for highly persistent compounds such as pyrogenic carbon, the new-

generation models would be able to lower the overall ∆14C of POM and MAOM, and more accurately reproduce the measured
14C data.

4.3 Search for more representative pools

Finally, the underperformance of the models with respect to 14C may also be due to a choice of pools which are not truly295

representative of the full spectrum of carbon turnover rates in soils. Whereas traditional models simply define the number and

turnover rates of their SOC pools such that they can reproduce observed SOC dynamics while minimizing their degrees of

freedom, new-generation models additionally need to make sure their pools are at once easily measurable and representative

of the various time scales of SOC persistence. If a measurable fraction contains two or more components with very different

turnover rates, as is the case for the POM and MAOM fractions (von Lützow et al., 2007; Poeplau et al., 2018; Baisden et al.,300

2002), a model will not be able to correctly reproduce the fraction’s ∆14C with one single carbon pool because it assumes

a homogeneous turnover rate for the entire pool. Most new-generation models already address this problem by splitting the

POM and MAOM fractions into multiple smaller subpools with contrasting turnover rates. For example, the SOMic model

distinguishes between soluble and insoluble POM, and the MEND model between oxidizable and hydrolysable POM. Some

new-generation models subdivide the MAOM fraction into micro-aggregates and mineral-adsorbed carbon (e.g., Millennial305

model), or into an active layer of adsorbed DOC (dissolved organic carbon) and a more stable MAOM component (e.g.,

MEND model). However, these subpools might still not be homogeneous enough in their turnover rates for effective 14C

simulations. Recent 14C studies determining the stability of MAOM under the action of peroxide oxidation show that it may be

necessary to further split clay-sized MAOM into two measurable subpools which are decomposable or resistant to microbial

exo-enzymes (Schrumpf et al., 2021; Jagadamma et al., 2010; Poeplau et al., 2018). Within the POM fraction, the occluded310

light fraction could serve as an easily measurable proxy for the more persistent POM (Schrumpf et al., 2013; Wagai et al.,

2009), and measurements of the pyrogenic carbon content (e.g., with hydrogen pyrolisis, as in González-Domínguez et al.,

2019) could give clues on the size of the most persistent pool in the POM fraction. Finally, “continuous” SOC fractionation

methods such as ramped pyrolysis oxidation (Stoner et al., 2023) could provide a much higher resolution of the SOC turnover

rate spectrum. However, the resulting measurable pools are more difficult to interpret in terms of their role in the soil carbon315

cycle, and their incorporation into mechanistic SOC models is therefore less straightforward. In order to correctly reproduce

the time scales of SOC persistence and turnover, new-generation models may need a more detailed subdivision of the POM

and MAOM fractions into more representative subpools, thus potentially increasing the number of simulated pools and degrees

of freedom. However, as discussed in section 4.1, such an increase in model complexity must also be accompanied with an

16



expansion of the observational datasets, in particular fraction-specific isotopic measurements, for effective model calibration320

and validation.

4.4 Limitations of this study

The accuracy of our model evaluation is affected by several factors. Though we took care to accurately match the modeled pools

to the measured fractions (see Appendix C), the correspondences are imperfect and further complicated by non-standardized

definitions and density cut-offs for the light and heavy fractions published on ISRaD. Nevertheless, this does not change the325

overall overestimation of soil ∆14C by most models. The use of forcing data from possibly inaccurate CESM2-LE and CCMI

outputs with low spatial resolution may also affect the accuracy of our model evaluation. Furthermore, the ∆14C of the carbon

inputs from the CESM2-LE product could be inaccurate, especially in soils with a thick organic layer, which pre-ages the

carbon before it enters the mineral soil. However, the consistency and magnitude of the models’ overestimation of the topsoil’s

∆14C with respect to observed data indicate that this overestimation is evidently a real pattern among the studied models.330

Finally, it is also important to note that our study only produces an incomplete picture of model performances on a global

scale, since most of the measured datapoints represent North American and European forest ecosystems.

5 Summary

Despite their incorporation of the latest advances in soil sciences, new-generation soil organic carbon (SOC) models currently

face similar problems with predicting 14C as the traditional SOC models. The new-generation models’ consistent overestima-335

tion of the ∆14C in both particulate organic matter (POM) and mineral-associated organic matter (MAOM) and their inaccurate

partitioning of SOC between the POM and MAOM fractions suggest that these models underestimate the time scales of carbon

storage in soils and might produce unreliable future predictions under climate change. To improve their predictions, new-

generation models should take advantage of the measurability of their pools and calibrate their parameters with the rapidly

growing dataset of fraction-specific carbon and 14C measurements in addition to incubation and bulk soil data. They may also340

have to reconsider their model design and simulate carbon pools which better capture the full spectrum of carbon turnover

rates present in the soils. In particular, the consideration of highly persistent SOC such as pyrogenic carbon could significantly

improve 14C predictions. As more effective measurable pools are being discovered and the dataset of fraction-specific 14C data

is expanding, new-generation soil models have the potential to eventually supersede the traditional SOC models employed by

ESMs if they take full advantage of the measurability of their pools and assimilate the available data.345

Code and data availability. The source code to download the input data, run the models, and reproduce all the results presented in this

manuscript and the supplementary material is available in our GitHub repository https://github.com/asb219/evaluate-SOC-models, published

on Zenodo at https://zenodo.org/records/10575139 (Brunmayr, 2024).
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Appendix A: ISRaD data selection and processing

A1 Derivation of LF data from fLF and oLF data350

We calculate the ∆14C and carbon contribution of the light fraction (LF) by combining the soil density fraction data of the free

light fraction (fLF) and the occluded light fraction (oLF) from the International Soil Radiocarbon Database (ISRaD) (Lawrence

et al., 2020). The fractional contribution of LF to the total soil organic carbon (cLF) is calculated as the sum of the fLF and

oLF contributions (cfLF and coLF, respectively), and the ∆14C of LF is derived with a weighted average of the ∆14C of fLF and

oLF:355

∆14C
LF

=
cfLF ·∆14CfLF

+ coLF ·∆14CoLF

cLF , (A1)

where cLF = cfLF + coLF.

A2 Derivation of bulk data from LF and HF data

If the ∆14C data for the bulk soil (∆14Cbulk) are not available, we derive them with a weighted average of ∆14CLF and ∆14CHF,

the ∆14C of the light fraction (LF) and heavy fraction (HF), respectively:360

∆14C
bulk

=
cLF ·∆14CLF

+ cHF ·∆14CHF

cLF + cHF , (A2)

where cLF and cHF are the LF’s and HF’s relative contributions to the soil organic carbon stocks, respectively. Note that the sum

cLF+cHF is generally very close to 1, but not necessarily equal to 1, depending on the methods employed by the data producers.

A3 Definition of topsoil and selection of profiles

We define the topsoil as at least the top 5 cm and at most the top 10 cm of the mineral soil, i.e., the interval from 0 cm to x cm365

depth such that 5≤ x≤ 10. All profiles in this study must have depth layers which fully span the topsoil without a gap. We

only use layers whose top boundary is less than 5 cm deep and whose bottom boundary is less than 10 cm deep. For example,

if a profile has layers 0-5 cm and 5-10 cm, we only use the 0-5 cm layer to represent the topsoil and discard the data from the

5-10 cm layer.

Examples of profiles we would choose for this study:370

– Profile with layer 0-10 cm

– Profile with layers 0-3 cm and 3-8 cm

– Profile with layers 0-4 cm and 3-8 cm (overlapping is allowed)

Examples of profiles that we would have to reject:

– Profile with layer 0-15 cm (extends beyond 10 cm depth)375
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– Profile with topmost layer 1-8 cm (missing top 1 cm)

– Profile whose top two layers are 0-3 cm and 4-8 cm (gap between layers)

A4 Derivation of topsoil data from layer data

The carbon and 14C data for the topsoil are derived by integrating over the layers comprising the topsoil. The total soil organic

carbon stocks in the topsoil (SOC) are found by summing the SOCℓ stocks in each layer ℓ. If the SOCℓ data are not reported,380

they are derived from the layer thickness hℓ, soil bulk density ρℓ, and carbon concentration Cℓ in each layer ℓ:

SOC =
∑

ℓ SOCℓ =
∑

ℓhℓρℓCℓ . (A3)

In order to find the ∆14C of bulk soil, light fraction (LF), and heavy fraction (HF) in the topsoil (∆14Cbulk, ∆14CLF, and

∆14CHF, respectively), as well as the LF and HF fractional contributions to the total carbon stocks in the topsoil (cLF and cHF,

respectively), we take a weighted average over the layers ℓ:385

∆14C
bulk

=
∑

ℓ SOCℓ ·∆14Cbulk
ℓ /SOC (A4)

∆14C
LF

=
∑

ℓ SOCℓ · cLF
ℓ ·∆14CLF

ℓ /(SOC · cLF) (A5)

∆14C
HF

=
∑

ℓ SOCℓ · cHF
ℓ ·∆14CHF

ℓ /(SOC · cHF) (A6)

cLF =
∑

ℓ SOCℓ · cLF
ℓ /SOC (A7)

cHF =
∑

ℓ SOCℓ · cHF
ℓ /SOC (A8)390

If there are overlapping layers in the topsoil (e.g., a profile with layers 0-2 cm, 0-4 cm, and 3-10 cm), we integrate over depth

while averaging overlapping layers in the intervals where those layers overlap.

Appendix B: Further information on model versions and implementations

The original source codes of all the selected model versions are openly available. By having direct access to the code with

which the model developers produced their results, we can be more confident that we test an implementation of the models as395

intended by their respective authors.

Our final implementations of Millennial, CORPSE, MIMICS, and the 14C component of MEND are available as python

modules in our GitHub repository https://github.com/asb219/evaluate-SOC-models, published on Zenodo at https://zenodo.

org/records/10575139 (Brunmayr, 2024). For the carbon and nitrogen components of MEND, we compile the Fortran source

code from https://zenodo.org/records/11065513 (Wang and Brunmayr, 2024). Finally, we use the install_url function400

of the devtools package in R (Wickham et al., 2022) to install SOMic as an R package directly from https://zenodo.org/

records/11068749 (Woolf and Brunmayr, 2023).
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B1 MEND

We use the MEND-new version of the MEND model as described in Wang et al. (2022). Our 14C re-implementation is based

on the code from commit 92323c7 of the GitHub repository https://github.com/wanggangsheng/MEND (Zenodo publication:405

Wang, 2024). We forked the repository from that commit to https://github.com/asb219/MEND so that we could adapt the model

input and output to our purposes. On our fork, the original version of MEND-new is released under tag name “MEND-new”,

and the version we used to produce our results is released under tag name “MEND-new-asb219” (Zenodo publication: Wang

and Brunmayr, 2024). We use all the default model settings and the optimized parameter values provided in the Fortran namelist

file MEND_namelist.nml in the repository. The pre-industrial soil carbon and nitrogen stocks are found by initializing the410

model with the default initial state from file userio/inp/SOIL_ini.dat and spinning up the non-isotopic carbon–

nitrogen component of the model for 400 years with pre-industrial forcing data. The pre-industrial soil 14C levels are then

found by running the 14C component of the model for another 1000 years, looping over the final year of the carbon–nitrogen

spinup. The final states of the carbon–nitrogen and 14C spinups are then used for the initial condition of the final run of MEND

over the 1850–2014 period. The model runs with hourly time steps and uses the forward Euler integration method.415

B2 Millennial

We use Millennial V2 with Michaelis-Menten kinetics as described in Abramoff et al. (2022). We re-implemented the model

with 14C in Python based on the original R code in the https://github.com/rabramoff/Millennial repository released under

the tag “v2”, commit e95bca9 (Zenodo publication: Abramoff and Xu, 2022). We used the model equations from file R/

models/derivs_V2_MM.R in the repository and ran the model with the fitted parameter values from the file Fortran/420

MillennialV2/simulationv2/soilpara_in_fit.txt in the repository. The initial condition for both carbon

and 14C stocks is found by first solving for a pre-industrial steady state (similarly to the model tutorial R/simulation/

model_tutorial.Rmd in the repository), and then running the model from steady state for 200 years using time-varying

pre-industrial forcing data featuring a seasonal cycle. The final state of that spinup is then used as the initial condition for the

final run of the model over the 1850–2014 period. The model runs with daily time steps, and though the model tutorial uses the425

4th order Runge-Kutta integration method, we integrate the equations simply with the forward Euler method, which is stable

and precise enough with daily time steps.

B3 SOMic

We use version 1.0 of the SOMic model as described in (Woolf and Lehmann, 2019). The original code is released under version

“SOMic v 1.00” (commit be34e56) in the GitHub repository https://github.com/domwoolf/somic1 (Zenodo publication:430

Woolf, 2024). However, we had to fork the repository from commit be34e56 to https://github.com/asb219/somic1 in order

to fix a minor issue in the 14C implementation (see reason in Appendix E1), and to allow for distinct 14C values in the initial

condition of each pool (previously, all pools were always initialized with the same 14C value). To produce our results, we used

the version released under the tag “v1.1-asb219” in our fork (Zenodo publication: Woolf and Brunmayr, 2023). The model is
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spun up for 50,000 years to get the initial carbon and 14C stocks. The model runs with monthly time steps and uses the forward435

Euler integration method.

B4 CORPSE

The CORPSE model was originally described in Sulman et al. (2014). There are currently six publicly available versions of

CORPSE owned by GitHub user https://github.com/bsulman. Since we are mostly interested in carbon dynamics, the lead

developer Benjamin Sulman recommended we use the most up-to-date carbon-only implementation in https://github.com/440

bsulman/CORPSE-fire-response (commit 19ee2c7 released as version v1.0; Zenodo publication: Sulman, 2024a). We re-

implemented CORPSE with 14C based on the equations in file CORPSE_array.py and using the parameter values from

file Whitman_sims.py in that repository. However, the equation for the clay-related rate modifying factor is taken from

file code/CORPSE_integrate.py in repository https://github.com/bsulman/CORPSE-N (commit 4a689ef released as

version v1.0; Zenodo publication: Sulman, 2024b), since the model seems to be working more reliably with that version of the445

equation. Like in Millennial, the initial condition is found by solving for a pre-industrial steady state and spinning up for 200

years from that steady state. If the solver is unable to find a steady state, the model is spun up for 10,000 years. The steady-state

solution was found for all the profiles in this study. The model runs with daily time steps and uses the forward Euler integration

method.

B5 MIMICS450

We use MIMICS-CN v1.0, as published in Kyker-Snowman et al. (2020), because the latest version of MIMICS (Wang et al.,

2021; Wang, 2020) did not correctly implement 14C (see Appendix E2). The original R code of MIMICS-CN v1.0 is available

on https://zenodo.org/records/3534562 (Kyker-Snowman, 2019). It already implements stable isotope tracers, but no radioac-

tive isotopes such as 14C, so we re-implemented the model with 14C in python. Like for Millennial and CORPSE, we spin up

for 200 years from the pre-industrial steady-state solution. If no steady state can be found, we spin up for 10,000 years. The455

steady-state solution was found for all the profiles in this study. The model runs with hourly time steps and uses the forward

Euler integration method.

Appendix C: Correspondences between pools and soil fractions

This section explains how we associate the simulated pools of each model with either the POM fraction (“particulate organic

matter”, corresponding to the “light fraction” resulting from density fractionation) or the MAOM fraction (“mineral-associated460

organic matter”, corresponding to the “heavy fraction” resulting from density fractionation). We assume that the POM fraction

is composed of fragmented and partially processed plant litter which is not stabilized in the soil matrix through mineral

association. We assume that the MAOM fraction is composed of soil organic carbon which is enclosed in stable aggregates

or strongly adsorbed to minerals. Since the live microbial biomass and dissolved organic carbon generally represent a small

fraction of soil organic carbon, we can neglect them and assume they belong to neither POM nor MAOM.465
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See Table C1 for a summary of the correspondences between the modeled pools and the POM and MAOM fractions.

Table C1. Correspondences between simulated carbon pools and the POM fraction, MAOM fraction, or other carbon fractions. See Appendix

sections C1–C5 for more information.

Model POM fraction MAOM fraction Other soil organic carbon pools Litter pools

MEND POMO, POMH MOM, QOM
DOM, MBA, MBD, EPO, EPH, EM, nosZ, norB,

nirS & nirK, narG & napA, amoA & nxrA/B, nifH

Millennial POM MAOM, Aggregate C LMWC, Microbial Biomass

SOMic SPM, IPM MAC DOC, MB

CORPSE SPCu, CPCu SPCp, CPCp, MNp MNu, LMB

MIMICS SOMc SOMp SOMa, MICr, MICK LITm, LITs

C1 MEND

List of organic carbon pools in the MEND-new model by Wang et al. (2022) (model diagram in Figure C1):

– POMO and POMH (particulate organic matter decomposed by oxidative and hydrolytic enzymes, respectively).

– MOM (mineral-associated organic matter).470

– QOM: “active layer of MOM” which can exchange carbon with DOM through adsorption and desorption (Wang et al.,

2022).

– DOM (dissolved organic matter).

– MBA and MBD (active and dormant microbial biomass, respectively).

– EPO, EPH, EM, nosZ, norB, nirS, nirK, narG, napA, amoA, nxrA/B, nifH: various microbial exo-enzymes.475

Note that the “Above-ground biomass”, “Root biomass” and “Litter” boxes in the MEND model diagram in Figure C1 are not

explicitly modeled as pools and therefore do not feature in the above list of organic carbon pools.

We assume that the POM fraction is composed of the POMO and POMH pools, and that the MAOM fraction is composed of

the MOM and QOM pools. The DOM, MBA, MBD, and exo-enzyme pools belong to neither fraction.

C2 Millennial480

List of organic carbon pools in Millennial v2 by Abramoff et al. (2022) (model diagram in Figure C2):

– POM (particulate organic matter).

– Aggregate C: “stable microaggregates which remain after dispersion in the larger particle size fraction (>50–60 µm)”

(Abramoff et al., 2022), so this corresponds to the coarse heavy fraction.
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Figure C1. MEND-new model diagram. Source: Wang et al. (2022). Reuse permission received with Copyright Clearance Center license

number 5691380194276.

– MAOM (mineral-associated organic matter): consists of organic matter associated to minerals through sorption (Abramoff485

et al., 2022).

– Microbial Biomass: live microbial biomass.

– LMWC (low molecular weight carbon): “LMWC could be analogous to dissolved organic C (DOC) if there is enough

moisture in the soil matrix, and if we do not consider DOC molecules that are too large to be taken up by microbes”

(Abramoff et al., 2022).490

We assume that the MAOM fraction is the sum of the Aggregate C and MAOM pools, and that the POM fraction is entirely

composed of the POM pool. The Microbial Biomass and LMWC pools belong to neither fraction.

Figure C2. Millennial V2 diagram. Source: Abramoff et al. (2022). License: CC BY.
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C3 SOMic

List of organic carbon pools in SOMic 1.0 by Woolf and Lehmann (2019) (model diagram in Figure C3):

– SPM and IPM (soluble and insoluble plant matter, respectively).495

– MAC (mineral-associated carbon): “mineral-sorbed or -occluded SOC” (Woolf and Lehmann, 2019).

– DOC (dissolved organic carbon).

– MB (microbial biomass).

We assume that the MAOM fraction is composed of the MAC pool, and the POM fraction is composed of the SPM and IPM

pools. The DOC and MB pools belong to neither fraction.500

Figure C3. SOMic 1.0 diagram. Source: Woolf and Lehmann (2019). License: CC BY.

C4 CORPSE

List of organic carbon pools in the CORPSE-fire-response version (Sulman, 2024a) of the CORPSE model, first published in

Sulman et al. (2014) and last updated in Moore et al. (2020) (model diagram in Figure C4):

– SPCu, CPCu, and MNu (Unprotected simple plant carbon, Unprotected complex plant carbon, and Unprotected microbe

necromass, respectively).505

– SPCp, CPCp, and MNp (Protected simple plant carbon, Protected complex plant carbon, and Protected microbe necro-

mass): “protected organic matter is inaccessible to microbial decomposition through chemical sorption to mineral sur-

faces or occlusion within microaggregates” (Moore et al., 2020).
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– LMB (live microbial biomass).

We associate the MAOM fraction with the SPCp, CPCp, and MNp pools, since they represent mineral-adsorbed and micro-510

aggregated carbon (Moore et al., 2020). We associate the POM fraction with the SPCu and CPCu pools, but not the microbial

MNu pool, because POM is mostly composed of unprotected plant-derived carbon. The MNu and LMB pools belong to neither

fraction.

Figure C4. CORPSE diagram. Source: Moore et al. (2020). Reuse permission received with Copyright Clearance Center license number

5691370621010.

C5 MIMICS

List of organic carbon pools in MIMICS-CN v1.0 by Kyker-Snowman et al. (2020) (model diagram in Figure C5):515

– LITm and LITs (metabolic and structural litter, respectively): litter pools which are not considered part of soil organic

matter.

– SOMp (physicochemically protected soil organic matter): “is primarily composed of microbial products that are adsorbed

onto mineral surfaces” and is “analogous to heavy fraction or MAOM pools” (Kyker-Snowman et al., 2020).

– SOMc (chemically recalcitrant soil organic matter): “consists of decomposed or partially decomposed litter” and is520

“analogous to light fraction or POM pools” (Kyker-Snowman et al., 2020).

– SOMa (available soil organic matter): “the only SOM pool that is available for microbial decomposition; it contains a

mixture of fresh microbial residues, products that are desorbed from the SOMp pool (e.g., Jilling et al., 2018), as well as

depolymerized organic matter from the SOMc pool” (Kyker-Snowman et al., 2020). This pool is usually small and we

associate it to neither POM nor MAOM.525
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– MICr and MICK (“low-efficiency, r strategist” microbes and “high-efficiency, K strategist” microbes, respectively): live

microbial biomass pools.

According to Kyker-Snowman et al. (2020), the SOMc pool corresponds to the POM fraction, and the SOMp pool corre-

sponds to the MAOM fraction. The SOMa, MICr, and MICK pools belong to neither fraction.

Figure C5. MIMICS-CN v1.0 diagram. Source: Kyker-Snowman et al. (2020). License: CC BY.

Appendix D: Radiocarbon predictions with non-isotopic models530

Among the new-generation models selected for this study, SOMic, MIMICS, and MEND have already implemented 14C.

However, the most recent and only open-source version of MEND does not include 14C, and SOMic and MIMICS incorrectly

implemented their 14C simulations (see Appendix E). Nevertheless, we can still produce 14C predictions with non-isotopic

models by individually tracking the carbon fluxes at every time step and attaching a 14C signal to each flux. Since none of the

models define an internal structure for their pools, we will assume by default that the pools are well-mixed, which means that535

the ∆14C of a pool’s outflux is equal to the pool’s ∆14C. This assumption is common practice for 14C modeling in soils (Sierra

et al., 2017).

We run all of the selected models using the forward Euler method to advance from one time step to the next. The models

either implicitly or explicitly produce the internal flux matrix Φi at each time step i, where Φi
jk ≥ 0 is the flux of carbon from

pool k into pool j (with j ̸= k), and Φi
jj ≤ 0 is the total outflux of carbon out of pool j at time step i. They also define the540

external influx vector Ii such that Iij ≥ 0 is the influx of carbon entering the modeled system through pool j at time step i.

Matrix Φ contains all the fluxes between the pools and out of the system, and vector I contains all the influxes of carbon from

outside the system into the modeled pools. We can therefore find the carbon stocks Ci+1
j of pool j at time step i+1 based on

the Φi, Ii, and Ci of the previous time step i:

Ci+1
j = Ci

j + Iij +
∑
k

Φi
jk , (D1)545
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where the summation of internal fluxes Φi
jk is performed over all donor pools k to get the total internal carbon flux into pool j

(when k ̸= j), subtracted by the flux out of pool j (when k = j).

Assuming the pools are well-mixed, we can now produce 14C predictions by tagging each flux Φjk with the 14C signal

of pool k. We measure the 14C signal in terms of the unitless “absolute Fraction Modern” (FMabs) as defined in Trumbore

et al. (2016), such that FMabs = 1+ (∆14C/1000‰). The FMabs is proportional to the 14C/12C ratio normalized to a δ13C of550

−25‰ (Trumbore et al., 2016), and is thus proportional to the normalized ratio of 14C to total carbon (14C/C), considering the

negligible abundance of 14C compared to 12C and 13C. Therefore, if we know F i
j , the FMabs of pool j at time step i, we can find

F i+1
j at time step i+1 with the following equation (provided all the pools and the influx have comparable δ13C signatures):

F i+1
j Ci+1

j = (1−λ)F i
jC

i
j + IijF

i
influx +

∑
k

Φi
jkF

i
k , (D2)

where Ci+1
j is given by equation (D1), λ is the radioactive decay rate of 14C in units of inverse time step size, and F i

influx is the555

FMabs of the external carbon influx at time step i given by the forcing data. We can then recover the ∆14C at each time step i

and for each pool j with (F i
j − 1)× 1000‰.

Appendix E: Incorrect or inaccurate 14C implementations

E1 SOMic

The original implementation (available on Zenodo: Woolf, 2024) of the SOMic model (Woolf and Lehmann, 2019) does not560

produce accurate 14C predictions. Instead of working with the more typical ∆14C or absolute Fraction Modern (FMabs) units,

this implementation tracks the 14C age, which we summarily define as Age =− log(FMabs)λ
−1, where λ is the radioactive

decay rate of 14C. This causes complications when updating the 14C ages of the pools at each time step and when computing

the total 14C age of the soil from the 14C ages of the individual pools. Indeed, to find the combined age AgeA+B of pools A and

B, the implementation of SOMic takes a weighted average over the ages, which is not entirely accurate:565

AgeA+B =
CAAgeA +CBAgeB

CA +CB
, (E1)

where Agei and Ci are the 14C age and the carbon stocks, respectively, of pool i. This weighted average formula is used to

integrate the 14C ages of carbon fluxes into the pools at each time step on lines 154–160, and to compute the 14C age of the

total soil on line 210 of file src/SOMIC.cpp (available on Zenodo: Woolf, 2024).

In order to prove that equation (E1) is inaccurate, let us derive how to correctly add the 14C ages of pools A and B. Let 14Ci570

denote the 14C stocks and Ci the total carbon stocks of pool i. Then, by conservation of mass, we have

14CA+B = 14CA + 14CB and CA+B = CA +CB ⇒
14CA+B

CA+B
=

14CA + 14CB

CA +CB
. (E2)

Since the FMabs is proportional to the 14C/C ratio (assuming pools A and B have similar δ13C signatures), the above is

equivalent to

FA+B =
CAFA +CBFB

CA +CB
, (E3)575
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where Fi and Ci are the FMabs and carbon stocks, respectively, of pool i. It follows that the combined 14C age of pools A and

B is given by

AgeA+B =−λ−1 · log
(
CA exp(−λ ·AgeA)+CB exp(−λ ·AgeB)

CA +CB

)
. (E4)

Notice that equation (E1) is the first non-zero term of the above result’s Taylor expansion around AgeA = 0, AgeB = 0. This

means that equation (E1) works well for ages that are close to zero, i.e. when the ∆14C is close to zero. However, it fails to580

accurately predict the propagation of the bomb spike into the soil ecosystem in the latter half of the 20th century, as shown

in Figure E1. While the error induced by the incorrect implementation exceeds 20‰ for the bulk soil ∆14C in the 1970s, the

average error in the 2000s and 2010s is only around 10‰, which is relatively minor.
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Figure E1. Comparison of ∆14C predicted by SOMic with the more and less accurate 14C implementations. For this example simulation,

SOMic was run with forcing data corresponding to the top 5 cm of the mineral soil of the Bugac grassland site in Hungary, sampled in 2004

(Schrumpf et al., 2013). The atmospheric ∆14CO2 of the Northern Hemisphere (Graven et al., 2017) is plotted for reference. The plotted

model output data are available in the Supplementary Material (Table S.2).

E2 MIMICS

The only MIMICS version already implemented with 14C is published in Wang et al. (2021), and the source code is available585

at https://data.csiro.au/collection/csiro:47942v1 (Wang, 2020). However, this 14C implementation is incorrect (see Figure E2).

The time evolution of the carbon stocks in MIMICS is given by function f(C,t), which depends on the carbon stocks vector

C and time t. Function f is implemented as subroutine modelx in the source file vsoilmic05f_ms25.f90. We can write

function f in terms of internal carbon transfer matrix A and carbon influx vector I:

dC/dt= f(C,t) =A(C,t)C + I(t) , (E5)590
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where matrix A(C,t) is a function of carbon stocks C and time t, and vector I(t) is time-dependent.

Then, following the same procedure which yielded equation (D2), we can derive the equation governing the evolution of the
14C stocks (14C):

d14C/dt=−λ14C +A(C,t)14C + 14I(t) , (E6)

where λ is the radioactive decay rate of 14C, and 14I is the external influx of 14C.595

However, in the 14C-implementation of MIMICS, the evolution of the 14C stocks is predicted with

d14C/dt=−λ14C + f(14C,t) =−λ14C +A(14C,t)14C + 14I(t) . (E7)

The above equation is incorrect because, for this model, A(14C,t) ̸=A(C,t) when the pools have ∆14C ̸= 0‰. This is espe-

cially problematic during the bomb-spike period, where 14C undergoes big changes while C remains stable, causing A(14C,t)

to deviate significantly from A(C,t). The incorrect implementation causes a strong attenuation of the ∆14C curves of the600

metabolic and structural litter pools (see Figure E2), which should more closely follow the atmospheric curve, considering

the fast turnover rates of the litter pools. Another noticeable effect of the incorrect implementation, as seen in Figure E2, is

that the SOMp pool (corresponding to the MAOM fraction) incorporated much more bomb-derived 14C than the SOMc pool

(corresponding to the POM fraction) in the 1970s, which is highly improbable.

Appendix F: Turnover times in the Millennial model605

In Millennial version 2 (Abramoff et al., 2022), the POM, MAOM, and Aggregate C pools exchange carbon with each other

on the scale of a few months. The aggregate formation rate of the POM pool is between 0.012/day and 0.026/day (kpa in Table

A1 of Abramoff et al., 2022), which translates to an average aggregation time of 1–3 months. Meanwhile, the optimized rate of

aggregate formation for the MAOM pool is between 0.0038/day and 0.0052/day (kma in Table A1 of Abramoff et al., 2022),

giving MAOM an average aggregation time of 6–8 months. The Aggregate C pool has a breakdown rate of around 0.02/day610

(kb in Table A1 of Abramoff et al., 2022), so aggregates have a turnover time of just 50 days. POM and MAOM exchange their

carbon rapidly with the Aggregate C pool, which then redistributes the carbon back to the POM and MAOM pools in less than

2 months, on average. This means that, under the assumption of well mixed pools, the 14C signals of the POM, MAOM, and

Aggregate C pools get homogenized within a couple years.

Appendix G: Effect of sampling year on relationships between 14C and environmental parameters615

The results and analysis in section 3.3 on the dependency of observed and predicted ∆14C on environmental parameters could

potentially be biased due to the different sampling years of soil profiles with different environmental parameters. While there

is no strong relationship between soil temperature and the sampling year (Figure S.1.4), it turns out that most of the profiles

with higher clay content (>20%) were sampled before 2005 and those with lower clay content (<20%) were sampled after
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Figure E2. ∆14C output of MIMICS (Wang et al., 2021) with incorrect isotopic implementation. The model was run with the default

parameters and forcing data published with the original source code (Wang, 2020). Our only modification to the source code was to output

the pools’ 14C and 12C stocks for each year. The atmospheric ∆14CO2 of the Northern Hemisphere (Graven et al., 2017) is plotted for

reference. MIMICS pool names: LITm, metabolic litter; LITs, structural litter; MICr , r-strategist microbes; MICK , K-strategist microbes;

SOMp, physically protected soil organic matter; SOMc, chemically protected soil organic matter; SOMa, active soil organic matter. The

plotted model output data are available in the Supplementary Material (Table S.1).

2005 (Figure S.1.3). Even though the data shown in Figure 8 are only spanning a period of 18 years (1997–2015), the rapid620

changes in atmospheric ∆14CO2 in the post-bomb period could mean that the regression lines of ∆14C against clay in subplots

d–f are biased. We can attempt to remove this bias by “normalizing” the ∆14C data to the year 2000. The predicted ∆14C

data are normalized simply by selecting the model output for 1 July 2000. The normalized ∆14C predictions for all models,

profiles, and soil fractions are reported in Table S.5 (column names ending in “_14c_2000”). Normalizing the observed

∆14C data, however, is highly problematic, especially in the context of this manuscript, because it requires the use of a625

simplistic soil carbon model. Following the normalization method used in Shi et al. (2020) and Heckman et al. (2022), we fit

a steady-state linear one-pool model to the observed ∆14C data and then predict the ∆14C in the year 2000 with the fitted

model. Table S.5 in the Supplementary Material lists the normalized ∆14C from the observed data (column names ending in

“_14c_2000”), as well as the turnover rate of the one-pool model fitted with scipy.optimize.minimize in python

(column names ending with “_k”, units of inverse years), and whether optimization terminated successfully (column names630

ending with “_success”), for each soil fraction and each profile. We then remade Figures 7 and 8 with all the ∆14C data

normalized to the year 2000 (see Figures S.1.1.31 and S.1.1.25, respectively). Although normalization slightly shifted some of

the ∆14C data, the slopes of the regression lines through the ∆14C data essentially remained the same. Therefore, our analysis

and interpretation of the results presented in section 3.3 are likely not affected by the different sampling years.
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