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Abstract.

Reflecting recent advances in our understanding of soil organic carbon (SOC) turnover and persistence, a new generation

of models increasingly makes the distinction between the more labile soil particulate organic matter (POM) and the more

persistent mineral-associated organic matter (MAOM). Unlike the typically poorly defined conceptual pools of traditional SOC

models, the POM and MAOM pools
::
soil

::::::::
fractions can be directly measured for their carbon content and isotopic composition,5

allowing for pool-specific
:::::::::::::
fraction-specific

:
data assimilation. However, the new-generation models’ predictions of POM and

MAOM dynamics have not yet been validated with pool-specific
:::::::::::::
fraction-specific carbon and 14C observations. In this study,

we evaluate 5 influential and actively developed new-generation models (CORPSE, Millennial, MEND,
::::::
MEND,

::::::::::
Millennial,

MIMICS, SOMic) with pool-specific
:::::::::::::
fraction-specific and bulk soil 14C measurements of 77 mineral topsoil profiles in the

International Soil Radiocarbon Database (ISRaD). We find that all 5 models consistently overestimate the 14C content (∆14C)10

of POM by 67
::
69‰ on average, and 3

:
2
:
out of the 5 models also strongly overestimate the ∆14C of MAOM by 74

::::
more

::::
than

::
80‰ on average, indicating that the models generally overestimate the turnover rates of SOC and do not adequately represent

the long-term stabilization of carbon in soils. These results call for more widespread usage of pool-specific
:::::::::::::
fraction-specific

carbon and 14C measurements for parameter calibration, and may even suggest that some new-generation models might need to

restructure their simulated pools (e.g., by adding inert pools to POM and MAOM)
::
or

::::::
further

::::::::
subdivide

::::
their

:::::::::
simulated

::::::
carbon15

::::
pools

:
in order to accurately reproduce SOC dynamics.

1 Introduction

The terrestrial carbon reservoir sequesters an estimated 29% of anthropogenic CO2 emissions each year (Friedlingstein et al.,

2022), significantly reducing the accumulation rate of CO2 in the atmosphere and thus slowing down climate change. However,

the future role of the terrestrial carbon reservoir as a net CO2 sink is uncertain, as Earth System Models (ESMs) produce a wide20

range of projections for the net land-atmosphere carbon flux over the course of the 21st century, partly due to high uncertainties

in the carbon–climate feedback (Friedlingstein et al., 2014; Arora et al., 2020). Moreover, a study by He et al. (2016) using
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the radiocarbon (14C) isotope suggests that some of the most widely used CMIP5 (Coupled Model Intercomparison Project

Phase 5) ESMs may be systematically overestimating the future land carbon sink, further casting doubt on the reliability of

future land sink predictions. All five ESMs tested in their study strongly underestimated the 14C age of soil organic carbon,25

which indicates an overestimation of the simulated carbon cycling rates, particularly in the most stable soil carbon pools. After

He et al. (2016) adjusted the soil carbon cycling rates to fit the observed 14C data, the ESMs ended up predicting 40± 27%

lower carbon sequestration by the terrestrial sink in the 21st century than with their default parameters. This result puts into

question the ability of current ESMs to accurately model soil carbon dynamics, and highlights the importance of validating

model predictions with 14C data.30

Almost all ESMs rely on soil organic carbon (SOC) modules that are ultimately based either on the Century model (Parton

et al., 1987) (e.g., CESM2, Danabasoglu et al., 2020) or the RothC model (Coleman and Jenkinson, 1996) (e.g., JULES, Clark

et al., 2011). Even though Century and RothC have been used for many decades to predict SOC dynamics in various landscapes

with moderate success (Leifeld et al., 2008; Leifeld, 2008; Leifeld et al., 2009; Abramoff et al., 2022; Zhang et al., 2020)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Leifeld, 2008; Leifeld et al., 2008, 2009; Abramoff et al., 2022; Zhang et al., 2020)

, both modeling frameworks were developed in the 1980s, and thus reflect the comparatively limited understanding of soil car-35

bon cycling of that time. Indeed, the model design of RothC is inspired by the now obsolete humification theory (Lehmann and

Kleber, 2015; Schmidt et al., 2011), and neither RothC nor Century explicitly simulate specific processes of SOC cycling, such

as physico-chemical protection of SOC or adsorption and desorption of dissolved organic carbon, because their mechanisms

were previously not understood well enough.

According to our current understanding, the most important control on SOC stability is not so much the molecular com-40

position or “quality” of organic matter, but rather its protection from microbial and abiotic decomposition through occlusion

in aggregates and mineral association (Kleber et al., 2011; Dungait et al., 2012; Lehmann and Kleber, 2015; Lavallee et al.,

2020). When SOC gets enclosed into aggregates or stabilized onto
::::::::
stabilized

::
by

::::::::::
interactions

::::
with

:::::::
reactive soil mineral surfaces

through the action of pedogenic oxides
::
or

::::::::::::
phyllosilicates

:::::::
through

:::::
cation

::::::::
bridging,

:::::::::::
electrostatic

::::::::::
interactions,

::
or

:::
the

:::::::::
formation

::
of

:::::
inner-

:::
and

:::::::::::
outer-sphere

:::::::::
complexes

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Rasmussen et al., 2018a; Rowley et al., 2018; Vogel et al., 2014; Kleber et al., 2015), in45

particular iron, aluminum and calcium associated with clay particles (Rasmussen et al., 2018a; Rowley et al., 2018; Vogel et al., 2014)

, it becomes less accessible to decomposers and thus significantly increases its residence time
:::::::::
persistence

:
in soils (Basile-

Doelsch et al., 2020; Schrumpf et al., 2013; Doetterl et al., 2015). A new generation of SOC models is now being developed

to incorporate the theory of SOC protection through occlusion and interactions with soil minerals into our carbon cycle pre-

dictions. A common feature of new-generation soil models is their distinction between particulate organic matter (POM) and50

mineral-associated organic matter (MAOM). The POM pool
::::::
fraction

:
largely consists of partially decomposed litter fragments

smaller than 2mm (Lavallee et al., 2020; Basile-Doelsch et al., 2020), which are usually
::::
may

::
be

:
covered with a thin mineral

coating (Wagai et al., 2009). On the other hand, the MAOM pool
::::::
fraction contains organic matter chemically adsorbed onto

reactive mineral surfaces, as well as strongly bound
::
or

::::::::
stabilized

:::
by

::::::::
occlusion

:::
or

:::::::::
adsorption

:::::
inside

:
micro-aggregates formed

around sand, silt, or clay particles (Basile-Doelsch et al., 2020; Lavallee et al., 2020). Unlike the carbon pools of RothC and55

Century, the POM and MAOM pools of the
:::::::
fractions

::::::::
simulated

:::
by

:
new-generation models

::
are

::::::::
designed

::
to

:::
be

::::::::::::
“measurable”:

:::
they

:
can be operationally defined with experimental protocols by which they can be separated from soil samples and then
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analyzed individually for their elemental and isotopic composition (von Lützow et al., 2007). This allows for a closer look into

the processes governing soil carbon stabilization and for potentially much larger datasets for model calibration and validation.

However, the use of pool-specific
:::::::::::::
fraction-specific measurements to validate models is still limited, even for new-generation60

models (Zhang et al., 2021, Table S1).

The theory that protection and accessibility are the most important controls on SOC stability is strongly supported by
14C studies (Gaudinski et al., 2000; Schrumpf et al., 2013, 2021), which could indicate that new-generation SOC models

might perform better with 14C than the traditional SOC models integrated into ESMs. 14C is an effective carbon cycle tracer

because it is chemically indistinguishable from the other carbon isotopes and therefore participates in the same carbon exchange65

mechanisms as the more abundant 12C and 13C isotopes. Over the past century, the atmospheric 14C levels have undergone

dramatic changes, most notably as a result of thermonuclear weapons tests in the 1950s and ’60s, which have almost doubled

the amount of atmospheric 14CO2 in the Northern Hemisphere (see Figure 2). As this bomb-derived 14CO2 spreads into the

terrestrial carbon reservoirs through photosynthesis and into oceans through air-sea gas exchanges (Graven et al., 2020), the

level of enrichment in bomb-derived 14C across different terrestrial and oceanic carbon reservoirs helps to evaluate the speed70

and magnitude of carbon exchanges with the atmosphere on annual and decadal scales. Meanwhile for slower-cycling reservoirs

such as deep soils or permafrost, the level of 14C depletion due to radioactive decay (half-life of 5700± 30 years (Roberts and

Southon, 2007)) helps to estimate the time scales of carbon stabilization in those reservoirs on the order of centuries and

millennia. 14C is therefore a powerful tool to study the exchanges and storage of carbon from decadal to millennial time

scales. However, new-generation models do not generally implement 14C simulations, and only a handful have systematically75

assimilated observed 14C data (e.g., Tipping and Rowe, 2019; Braakhekke et al., 2014; Ahrens et al., 2020).

In this study, we use 14C measurements of the organic carbon in the mineral topsoil to evaluate the performance of five

new-generation SOC models: CORPSE (Sulman et al., 2014), MEND-new (Wang et al., 2022), Millennial v2 (Abramoff et al.,

2022), MIMICS-CN v1.0 (Kyker-Snowman et al., 2020), and SOMic 1.0 (Woolf and Lehmann, 2019). These models were

chosen because they are open source, actively developed, and influential in the soil modeling community. Leveraging the80

measurability of their pools, we compare these models’ predictions to 14C measurements of POM and MAOM, in addition

to the total soil 14C. This provides a detailed picture of the modeled SOC dynamics and enables us to carry out an in-depth

analysis of the models’ performances.

2 Methods

Throughout this paper, we report the 14C content of a given carbon sample as ∆14C, which is the deviation of the sample’s85
14C/12C ratio from the “modern” standard, corresponding to the pre-industrial atmospheric 14CO2/12CO2 ratio (Trumbore

et al., 2016).
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2.1 Pool-specific
::::::::::::::
Fraction-specific carbon and radiocarbon measurements

We compare model predictions to three types of measured data for the topsoil: (1) the total SOC stocks in the topsoil, (2) the

relative mass contributions of POM and MAOM to the total SOC stocks, and (3) the ∆14C of POM, MAOM, and bulk SOC.90

For this study, we will use the International Soil Radiocarbon Database (ISRaD) (Lawrence et al., 2020) for carbon and
14C measurements of POM and MAOM obtained from soil samples using a combination of density fractionation and ultra-

sonication. Density fractionation with ultra-sonication is currently one of the most effective and commonly employed methods

for isolating POM and MAOM (Golchin et al., 1994; Griepentrog et al., 2015, 2014; Cerli et al., 2012; von Lützow et al.,

2007; Poeplau et al., 2018). This method separates the soil into three “density fractions” – the free light fraction, occluded95

light fraction, and heavy fraction – in a three step process: (1) obtain the free light fraction from the soil sample by density

fractionation; (2) in the remaining sample, destroy loosely-bound aggregates with ultra-sonication, thus releasing the occluded

fraction; (3) isolate the occluded light fraction from the relatively denser heavy fraction by density fractionation. The resulting

free and occluded light fractions,
::::::
jointly

:::::::
referred

::
to

::
as

:::
the

::::
light

:::::::
fraction,

:
correspond approximately to the POMpool, while the

heavy fraction is a good proxy for the MAOM pool (Mikutta et al., 2019; Lavallee et al., 2020). We will from now on refer to100

the soil density fractions (light and heavy) by the names of the corresponding pools (POM and MAOM, respectively).
:::::::
MAOM

::::::::::::::::::::::::::::::::::
(Mikutta et al., 2019; Lavallee et al., 2020)

:
.

ISRaD provides carbon and 14C data for the bulk soil, and the free light, occluded light, and heavy fractions. We derive the

relative carbon contributions and of POM with a weighted average
::::::
directly

::::::::
associate

:::::::
MAOM

::::
with

:::
the

:::::
heavy

::::::
fraction

::
in

:::::::
ISRaD,

:::
and

:::::
POM

::::
with

:::
the

::::
light

:::::::
fraction

::::
(i.e.,

:::
the

::::
sum of the free and occluded light fractions , and we directly associate MAOM with105

the heavy fraction in ISRaD.
::
in

::::::
ISRaD,

::::
see

::::::::
Appendix

::::
A1).

:
When the ∆14C of the bulk soil is not measured or reported in

ISRaD, we calculate it with a weighted average of POM and MAOM
:::
the

::::
light

:::
and

::::::
heavy

::::::::
fractions’ ∆14C . Since most of the

available 14C data is for the topsoil, we will
:::
(see

:::::::::
Appendix

::::
A2).

::
In

:::
this

::::::
study,

::
we

:
evaluate models only for the

::::::
topsoil,

::::::
which

::
we

::::::
strictly

::::::
define

::
as

::
at

::::
least

:::
the top 5 cm or

:::
and

::
at

::::
most

:::
the

:
top 10 cm of the mineral soil .

:::
(see

:::::::::
Appendix

::
A3

:::
for

:::::
more

:::::::
details).

::::
This

::::
way,

:::
we

:::
can

::::::
ignore

:::
the

:::::
effect

:::
of

::::::
vertical

:::::::
mixing

::
of

::::
soil

::::::
carbon,

::::::
which

:::::
plays

:
a
:::::
more

::::::::
important

::::
role

::
in
::::::

deeper
::::

soil
::::

14C110

::::::::
dynamics

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Koven et al., 2013; Chen et al., 2019; Braakhekke et al., 2011, 2014),

::::
and

::::::
instead

:::::
focus

:::::
more

:::
on

:::
the

:::::::::::
effectiveness

::
of

:::
the

:::::
model

:::::::
designs

::
in

:::::
terms

:::
of

::::
their

::::::::
simulated

::::::
carbon

:::::
pools

::::
and

::::::::::
biochemical

:::::::::
processes.

:::::::::::
Furthermore,

:::
by

::::::::
choosing

::::
such

::
a

::::::
narrow

:::::
depth

:::::::
interval,

:::
we

:::
can

::::
treat

:::
the

::::::
topsoil

::
as

::::
one

:::::
single

::::::::::::
homogeneous

:::
soil

:::::
layer,

:::::
which

::::::
allows

::
us

:::
to

:::
also

:::::::
evaluate

:::::::
models

:::::
which

:::
are

:::
not

::::::::
vertically

::::::::
resolved

:::
and

:::
are

::::
only

::::::::
intended

:::
for

::::::
topsoil

::::::::::
simulations.

:
The current version of ISRaD (v 2.5.5.2023-

09-20, International Soil Radiocarbon Database, 2023) contains complete 14C datasets of the POM and MAOM
::::
light

::::
and115

:::::
heavy density fractions in the topsoil of 77 soil profiles spread across 39 sampling sites, covering forests, shrubland, cultivated

landscapes, and rangeland and grassland.
::
See

:::::::::
Appendix

:::
A3

:::
for

::::
more

::::::::::
information

:::
on

:::
the

::::::
choice

::
of

:::::::
profiles,

:::
and

:::::::::
Appendix

:::
A4

::
for

:::
the

:::::::::
derivation

::
of

:::
the

::::::
topsoil

::::::
carbon

::::
and

::::

14C
::::
data

::::
from

:::::
layer

::::
data.

:
Almost all of the sampling sites are in North America

and Europe, and the remaining sites are located in Hawaii and Puerto Rico (see map in Figure 1). The dataset does not contain

any permafrost, thermokarst, peatland, or wetland soils, and 75 of the 77 samples are from 1997–2015, with only one sample120

from 1949 and one sample from 1978. As shown in Figure 2, most datapoints bear a positive ∆14C value, demonstrating an
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enrichment in bomb-derived 14C in the topsoil.
:::
See

:::::
Table

:::
S.4

:::
in

:::
the

::::::::::::
Supplementary

::::::::
Material

::
for

:::::
more

::::::
details

::
on

:::
the

::::
data

::::
and

::
the

::::
data

:::::::
sources

:::
for

:::
the

::
77

:::::::
selected

:::
soil

:::::::
profiles.

:
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Figure 1. Map of selected topsoil sampling sites from ISRaD (Lawrence et al., 2020). 37 of the 39 sites are located in North America and

Europe, and the two remaining sites are in Hawaii and Puerto Rico. All sites have a complete 14C dataset for the bulk soil and density fractions

in the top 5 or 10 cm of the mineral soil. The map also shows two of the most important environmental controls on soil carbon persistence:

soil temperature (at 4 cm depth, averaged over 1970–2010 period, 1 degree horizontal resolution) from the CESM2 Large Ensemble product

(Rodgers et al., 2021) on the map background, and clay content in the topsoil from ISRaD or SoilGrids (Poggio et al., 2021) for each sampling

site.

2.2 Selection of new-generation models

We reviewed the literature to find new-generation models whose pools are fully compatible with the observed POM and125

MAOM density fractions
::::::::::::
POM–MAOM

:::::::::
distinction, and that are capable of running global simulations (i.e., their parameter

values depend on the environmental conditions and are not just optimized for a few specific sites). Table 1 gives an overview

of the features and capabilities of such new-generation models, almost all of which have been developed starting in the 2010s.

Many new-generation SOC models also explicitly represent the microbial biomass as a separate carbon pool, since microbes

are the main drivers of SOC turnover (Crowther et al., 2019; Basile-Doelsch et al., 2020; Schimel, 2023). The newest version130

of the MEND model simulates a variety of microbial exo-enzyme pools in addition to its microbial biomass pools (Wang et al.,

2022). About half of the models listed in Table 1 have already been implemented with
:::::
already

::::::::::
implement 14C

:::::::::
simulations.

However, none of them have systematically assimilated fraction-specific 14C data, instead relying on 14C data of bulk SOC or
14CO2 data from soil respiration.

For this 14C study, we chose to evaluate the following models, as they are open-source and still actively developed:135

– Millennial v2 (with Michaelis-Menten kinetics), Abramoff et al. (2022),

– SOMic 1.0, Woolf and Lehmann (2019),
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Figure 2. Measured ∆14C data of the POM and MAOM density fractions and total soil organic carbon (
:::
bulk SOC) at the selected topsoil

profiles from ISRaD (Lawrence et al., 2020), overlaid on the atmospheric ∆14CO2 curve of the Northern Hemisphere (Graven et al., 2017).

All POM and MAOM fractions shown here were produced using the method of density fractionation with ultra-sonication. These ISRaD

data were originally published in Baisden et al. (2002); Berhe et al. (2012); Harden et al. (2002); Heckman (2010); Heckman et al. (2018);

Lybrand et al. (2017); Marín-Spiotta et al. (2008); McFarlane et al. (2013); Meyer et al. (2012); Rasmussen et al. (2018b); Schrumpf et al.

(2013).

– MEND-new (with default equations), Wang et al. (2022),

– CORPSE-fire-response (as implemented in GitHub repository ), the CORPSE model was first described in
::::::::::::::::::::::::::::
(as implemented in Sulman, 2024a)

:
, Sulman et al. (2014),140

– MIMICS-CN v1.0, Kyker-Snowman et al. (2020).

Figure 3 shows the general structure of the above models. All the selected models have pools which can be associated to the

POM and MAOM fractions (see Appendix C for details on how we associate the pools to each fraction), and they all have at

least one microbial biomass pool. We generally chose to evaluate the most recent version of each model. However, we found an

error in the 14C implementation of the most recent version of MIMICS (Wang et al., 2021) (see Appendix E2), so we chose to145

use the coupled carbon-nitrogen version MIMICS-CN published one year prior in Kyker-Snowman et al. (2020). See Appendix

B and Figures C1–C5 for more details on the exact versions and implementations of each model. Appendix D explains how we

re-implemented the models to produce 14C predictions.

2.3 Model input data

For each measurement site, the models are run
:::
for

:::
the

::::::
topsoil with local environmental forcing data from 1850 to 2014. The150

initial conditions in 1850 are found by spinning up the models, looping over a “pre-industrial” year, where the forcing data is

averaged over the 1850–1879 period, until the system reaches equilibrium, i.e. does not experience any significant inter-annual
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Table 1. Summary of features and capabilities of new-generation models. All of the listed models are compatible with the distinction between

POM and MAOM and are capable of running global simulations. The models selected for evaluation with 14C in this study are indicated

with an asterisk (∗). The first two columns are the year of the first publication and, if applicable, the year of the latest published revision

of each model at the time of writing. The “Open-source”, “Implements 14C”, and “Explicitly models” columns are checkmarked if at least

one version of the model has open-source code, implements 14C simulations, or explicitly models a specified pool or feature, respectively.

In the “Vertical mixing” subcolumn, models with a downward arrow (↓) simulate any kind of downward transport or leaching for at least

one of their pools, often in dissolved form, and sometimes using an advection equation. Models featuring an up–down arrow (↕) additionally

implement vertical mixing with a diffusion equation for at least one of their pools.

Model name Fi
rs

tp
ub

lic
at

io
n

L
at

es
tr

ev
is

io
n

O
pe

n-
so

ur
ce

Im
pl

em
en

ts
1
4
C

D
O

M

M
ic

ro
be

s

E
nz

ym
es

V
er

tic
al

m
ix

in
g

Notes

∗ Millennial 1 2018 2022 ✓ ✓ ✓ ↓

∗ SOMic 2 2019 ✓ ✓ ✓ ✓ ↓

∗ MEND 3 2013 2022 ✓ ✓ ✓ ✓ ✓ 14C only in 2015

∗ CORPSE 4 2014 2020 ✓ ✓

∗ MIMICS 5 2014 2021 ✓ ✓ ✓ ↓↕ 14C and ↓↕ only in 2021

MIND 6 2021 ✓ ✓ only a subset can be run globally†

AggModel 7 2013 ✓ incubation model

JSM 8 2020 (✓) ✓ ✓ ✓ ↓↕ source code accessible upon request

COMISSION 9 2015 2020 ✓ ✓ ✓ ↓↕ 14C introduced in v2.0

Tipping & Rowe 10 2019 ✓ ✓ ↓

MEMS 11 2019 2021 ✓ ✓ ↓↕ ↕ introduced in v2.0

SOMPROF 12 2011 2014 ✓ ↓↕ 14C introduced in 2014

CAST 13 2013 ↓

Struc-C 14 2009

PROCAAS 15 2020 incubation model

Explicitly models

1Abramoff et al. (2018, 2022) ;| 2Woolf and Lehmann (2019) ;
:
| 3Wang et al. (2013, 2015, 2022) ;| 4Sulman et al. (2014, 2017);

Salazar et al. (2018); Hicks Pries et al. (2018); Moore et al. (2020) ;
:
| 5Wieder et al. (2014, 2015); Zhang et al. (2020); Kyker-Snow-

man et al. (2020); Wang et al. (2021) ;
:
| 6Fan et al. (2021) ;

:
| †Only the microbial necromass pools of MIND were run globally; some

of the parameters (e.g., Vmax,P and KM,P ) necessary to run the live microbial biomass and plant-derived carbon pools do not have

fitted values outside of 4 experimental test cases. ;
:
| 7Segoli et al. (2013) ;

:
| 8Yu et al. (2020) ;| 9Ahrens et al. (2015, 2020) ;

:
| 10Tip-

ping and Rowe (2019) ;
:
| 11Robertson et al. (2019); Zhang et al. (2021) ;| 12Braakhekke et al. (2011, 2013, 2014) ;| 13Stamati et al.

(2013) ;
:
| 14Malamoud et al. (2009) ;| 15Liu et al. (2020)
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Figure 3. General structure of the new-generation models which we chose for this study. The MIMICS and CORPSE models additionally

feature a CO2 flux leaving MAOM and POM, which depends on the carbon use efficiency of the microbes. The SOMic and CORPSE models

do not allow any flux from the DOM, Microbe
:::::::
Microbes, or MAOM pools back into the POMpool. More detailed diagrams for the MEND,

Millennial, SOMic, CORPSE, and MIMICS models are shown in Figures C1–C5. Abbreviations: POM, particulate organic matter; MAOM,

mineral-associated organic matter; DOM, dissolved organic matter.

variability.
::
In

:::::::
practice,

:::
the

:::::::::::::
carbon-nitrogen

:::::::::
component

:::
of

::
the

:::::::
MEND

:::::
model

::
is

::::
spun

:::
up

::::
from

::
its

::::::
default

:::::
initial

::::::::
condition

:::
for

::::
400

::::
years

::::
and

::
its

:::

14C
::::::::::
component

:::
for

::::
1000

:::::
years,

:::
the

::::::
SOMic

::::::
model

::
is

::::
spun

::
up

:::
for

::::::
50,000

:::::
years,

::::
and

:::
the

::::::::
remaining

:::::
three

::::::
models

:::
are

::::
spun

::
up

:::
for

::::
200

:::::
years

::::
from

::::
their

::::::::::::
pre-industrial

::::::::::
steady-state

:::::::
solution.

:
More details on the spinup methods for each model are155

given in Appendix B.

The selected models require a number of constant and time-dependent forcing data to be run at each study site. We assume

that soil properties such as sand, clay and silt content, soil density, and land use are time-invariant since pre-industrial times.

Where these site-specific soil properties are not reported in ISRaD, they are taken from the SoilGrids database (Poggio et al.,

2021), accessed with the soilgrids python package, v0.1.3 (Gan, 2022)
:
.4

::::::::::
(Gan, 2023). The MIMICS model also requires160

the lignin content of litter inputs, which we set to be a constant value depending only on the land use type. We assume that the

lignin content is 25% for forest litter and 7% for shrubland litter (Rahman et al., 2013, Table 1). For grassland and cultivated

landscapes, we assume a lignin content of 9% based on measurements of grasses at the seeding stage (Armstrong et al., 1950,

Table 1). Weather-dependent and other dynamic environmental properties, such as soil temperature and 14C influx, are taken

from global model predictions with monthly time resolution. We use the monthly averaged CESM2 Large Ensemble (CESM2-165

LE) product (IBS Center for Climate Physics et al., 2021; Rodgers et al., 2021) for vertically resolved soil temperature and

moisture, above- and below-ground net primary production (NPP), total gross primary productivity (GPP), and
::::::
litterfall

::::
and

::::
litter

:::::::::::
heterotrophic

:::::::::
respiration,

::::
and the carbon-to-nitrogen ratio and ∆14C of total litter carbon from 1850 to 2014 with 1 degree

spatial resolution. Since the below-ground NPP from the CESM2-LE output is not vertically resolved, we derive the topsoil

portion of the below-ground NPP using the exponential function model from Xiao et al. (2023). For nitrogen deposition rates,170

we use monthly data simulated by the NCAR Chemistry-Climate Model Initiative (CCMI) on a 0.5 degree grid from 1860 to

2016 (Tian et al., 2018) downloaded from the ISIMIP Repository (ISIMIP; Rosenzweig et al., 2017). We extend these data

back to 1850 by setting the monthly nitrogen deposition rates for the 1850–1860 period to be equal to the average monthly

rates over the 1860–1870 period.
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Since none of the selected soil models represent lateral carbon transport or upward vertical mixing of soil carbon, the175

simulated topsoil systems receive all of their carbon exclusively from vegetation inputs. We can therefore estimate the ∆14C
::
of

::
the

:
carbon influx into the soil with the NPP, and the ∆14C of the influx with the of litter from the CESM2-LE product

:::::::
product.

:::::
These

::::
litter

:
∆14C

:::
data

:::::::
account

:::
for

:::
the

:::::::::
pre-aging

::
of

::::::
carbon

::
in
::::::::::

vegetation
::::::::::::::::::::::::::::::::::::::::
(Herrera-Ramírez et al., 2020; Solly et al., 2018)

::::::
because

:::
the

::::
litter

::::::
carbon

::::
first

:::::
passes

:::::::
through

:::
the

:::::::::
vegetation

::::
pools

::
in

:::
the

::::
land

::::::
module

:::
of

::::::
CESM2

::::::::::::::::::::::::::
(CLM5, Lawrence et al., 2019)

:
.
:::
For

:::::::::
Millennial,

:::::::::
CORPSE,

:::
and

:::::::::
MIMICS,

::
we

::::::::
estimate

:::
the

::::::
carbon

:::::
influx

:::
into

:::
the

::::
soil

::::
with

:::
the

::::::
topsoil

::::
NPP,

::::::
setting

:::
the

:::::::
slightly180

:::::::
negative

::::
NPP

:::::
values

::
in
:::
the

:::::::::::
CESM2-LE

:::::
output

::
to

::::
zero. In the case of the MEND model, we use

:::
total

:
GPP instead of NPP as a

model input, as prescribed by MEND’s developers .
:::::::::::
(Wang, 2024)

:
.
::::::
SOMic

::
is

:::
the

::::
only

:::::
model

::
to
:::::::
require

:::
the

:::
use

::
of

::::
litter

::::::
inputs

::::::
instead

::
of

::::
NPP

:::
or

::::
GPP

:::
as

:
a
::::::
model

:::::
input.

:::::::::
Following

:::
the

::::::::
example

::
of

:::
the

::::::
global

::::::::::
simulations

:::::::::
performed

::
in

::::::::
SOMic’s

:::::::
original

:::::::::
publication

:::::::::::::::::::::::
(Woolf and Lehmann, 2019)

:
,
:::
we

:::::::
estimate

::::
litter

::::::
inputs

::
as

:::
the

::::::
annual

:::::::
average

::
of

:::::::
litterfall

:::::
minus

:::::
litter

:::::::::::
heterotrophic

:::::::::
respiration,

::::::
setting

:::::
litter

:::::
inputs

:::
to

::::
zero

::
in

::::
the

:::
rare

:::::::::
instances

:::::
where

::::::
annual

:::::::
litterfall

:::
is

:::
less

:::::
than

::::::
annual

::::
litter

::::::::::::
heterotrophic185

:::::::::
respiration.

:::
We

::::::
derive

:::
the

:::::
topsoil

:::::::
portion

::
of

::::
litter

::::::
inputs

::::::::
assuming

::::
they

::::
have

:::
the

::::
same

:::::::
vertical

:::::::::
distribution

:::
as

::::
NPP.

:

3 Results

We produced carbon and 14C predictions with the MEND, Millennial, SOMic, CORPSE and MIMICS models for the 77

selected soil profiles, and compared them to the observed carbon and 14C data from ISRaD. Our main performance metrics are

the root mean squared error (RMSE) and mean bias of the predictions with respect to the observational datasets described in190

Section 2.1. Table 2 gives a summary of the model performances. Detailed tables of the results, and plots of predictions against

observations for each variable and each model can be found in the Supplementary Material
::::::
(Tables

:::
S.3

::::
and

::::
S.5,

:::
and

:::::::
Figures

:::
S.3). Note that the MEND model failed to run on 12

:
9
:
of the 77 selected soil profiles due to some numerical instability, and

was unable to produce 14C data for 3
:
6
:
other profiles. Note also that the SOC stocks

::
are

:::
not

::::::::
available for 17 of the 77 selected

profilesare not available in ISRaD.195

3.1 Carbon stocks and partitioning between pools

The SOMic, Millennial ,
:::::
While

:::
the

::::::::
Millennial

:
and CORPSE models tend to overestimate the topsoil SOC stocks of the selected

soil profiles, while MEND and MIMICS
::::::::
generally underestimate the SOC stocks (see Figure 4a). In their predictions of SOC

partitioning into POM and MAOM
:::
The

:::::::
SOMic

::::::
model,

:::::
which

::
is

:::
the

::::
only

::::::
model

::
to

:::::::
estimate

::::::
carbon

:::::
inputs

::::
into

::::
soils

::::
with

:::::
litter

:::::
inputs

::::::
instead

::
of

:::::::
primary

:::::::::::
productivity,

::::::::
produces

:::
the

::::
best

:::::::::
predictions

:::
for

:::
the

::::::
topsoil

:::::
SOC

:::::
stocks

::::
with

::
a
:::::::
positive

:::::
mean

:::
bias

:::
of200

::::
only

:::
0.3 kgCm−2

:::::
(+13%

:::::::
relative

::
to

:::
the

:::::::::::
observational

::::::
mean)

:::
and

:
a
::::::
RMSE

:::
of

:::
1.9 kgCm−2.

:

::::
With

:::
the

:::::::::
exception

::
of

:::
the

::::::::
MIMICS

::::::
model, the new-generation models generally fail to cover

:::::::
simulate the full range of

variability in the observations , with the exception of the MIMICS model (see
:
of

:::::
SOC

::::::::::
partitioning

:::::::
between

:::::
POM

:::
and

:::::::
MAOM

:
(Figure 4b–c). The

:::::::::
Millennial

:::::::
model’s

::::::::::
partitioning

::
is

::::::
nearly

:::::
fixed

::::::
around

:::
8%

::::::
POM

:::
and

:::::
92%

:::::::
MAOM

:::
for

:::
all

:::::
sites,

:::::
never

:::::::
deviating

:::::
more

::::
than

::::
1.5

:::::::::
percentage

::::::
points

:::::
from

:::::
those

::::::
values.

::::
The CORPSE and MIMICS models perform the best , and205

::::::
produce

::::
the

:::
best

::::::::::
predictions

::
of

:::::
POM

::::
and

:::::::
MAOM

:::::::::::
contributions

::
to

:::
the

::::
total

:::::
SOC

::::::
stocks.

:::::
They

:::::
follow

:::
the

::::::::::
one-to-one

:::
line

:::
of

9



Table 2. Root mean squared error (RMSE) and mean bias for each model with respect to each dataset. In the case of the MEND model,

the RMSE and bias were calculated based on results of n= 62 profiles for the ∆14C rows, n= 52
:::::
n= 55

:
for

:::
the SOC stocks, and n= 65

:::::
n= 68

:
for the rows of POM and MAOM contributions. For all other models, n= 77 for all rows, except SOC stocks, where n= 60.

MEND Millennial SOMic CORPSE MIMICS Average

Bulk SOC ∆14C (‰)
RMSE 84 115 101

::
122

:
90

:
77

:
80 94

::
96

:

Bias +59 +69 +46
::
13 +35

::
43 0 +42

::
37

POM ∆14C (‰)
RMSE 94 120

:::
119 100

::
105

:
119 129 112

:::
113

:

Bias +50 +63 +56
::
64 +86

::
87 +80 +67

::
69

MAOM ∆14C (‰)
RMSE 103 117 102

::
116

:
83

:
61

:
74 96

::
94

:

Bias +83 +82
::
81

:
+57

::
18 -3

::
+7

:
-39

:::
–39 +36

::
30

SOC stocks (kgCm−2)
RMSE 4.1

::
4.0

:
3.8 3.2

::
1.9 6.2

::
6.5 2.3 3.9

:::
3.7

Bias −1.3
::::
–1.3 +2.7 +1.9

::
0.3

:
+4.0

::
4.1

:
−1.6

::::
–1.6 +1.1

::
0.9

:

POM contribution (%)
RMSE 35 40 32

:
34

:
23

:
24

:
17 29

::
30

:

Bias +24
:
22

:
−33

:::
–33 −22

:::
–26 +11

::
12 −2

::
–2

:
−4

:
–5

:

MAOM contribution (%)
RMSE 35

::
34 41 30

:
33

:
21

:
22

:
21 30

Bias −24
:::
–22

:
+35 +20

::
25 −9

:::
–10

:
−9

::
–9

:
+2

:
4

:::::
model

::::::::::
predictions

:::::
versus

:::::::::::
observations

:::::
much

:::::
better

::::
than

:::
the

:::::
other

::::::
models

::::
(see

:::::::
Figures

:::::
S.3.2

:::
and

:::::
S.3.4

::
in

:::
the

:::::::::::::
Supplementary

::::::::
Material),

:::
and

::::
they

:
both have a RMSE of around 20 percentage points , and a bias of around 10 points or less in magnitude .

Meanwhile, the remaining
:::::
(Table

::
2).

::
In

:::::::::::
comparison,

:::
the

:::::::
MEND,

:::::::::
Millennial,

:::
and

:::::::
SOMic models have an average RMSE of 35

::
36

:
points and an average absolute bias of around 25

::
27 points in their predictions of POM and MAOM contributions to total210

SOC stocks (see (Table 2).

3.2 Performance with 14C

With the notable exception of MIMICS, the new-generation models consistently overestimate the ∆14C of bulk SOC, and their
14C predictions do not capture the full variability of the observations (see Figure 5a). This is reminiscent of the ESMs’ 14C

predictions (He et al., 2016)
::::
from

:::::::::::::
He et al. (2016), which also overestimate the ∆14C of SOC and underestimate its variability.215

Therefore, our results could ,
::::::
though

::
to

::
a

:::::::
different

:::::
extent

::::
and

:::
over

::
a
:::::
larger

:::::
depth

::::::
interval

::::
(top

::
1m

::::::
instead

::
of

:::
the

:::
top

:
5
::
or

:::
10 cm

::
of

:::
the

::::::
mineral

:::::
soil).

:::
Our

::::::
results

:::::
could

::::::::
therefore suggest that the new generation of soil models may be facing similar issues as

the traditional SOC models incorporated into ESMs.

The pool-specific 14C results, shown in Figure 5b-c, shed a more critical light on the performance of MIMICS with the

∆14C of bulk SOC. MIMICS overestimates the ∆14C of POM by 80‰ and underestimates the ∆14C of MAOM by around220

40‰ on average, and these biases happen to cancel out in such a way that MIMICS produces very good predictions for the

∆14C of bulk SOC with a RMSE of just 80‰ and no bias, the best performance among the evaluated models (see Table 2).

All five models overestimate the ∆14C of POM, with an average positive bias of 67
::
69‰, and SOMic, Millennial, and MEND
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Figure 4. Observed and modeled total SOC stocks in the topsoil (top 5 or 10 cm of mineral soil) plotted on a log-transformed axis in subplot

(a), and contributions of the POM and MAOM pools
::::::
fractions

:
to the topsoil SOC stocks in subplots (b) and (c), respectively. Black diamonds

are outliers. In subplot (a), n= 60 for the boxplot of observed data, n= 65
:::::
n= 68 for MEND, and n= 77 for all other models. In subplots

(b) and (c), n= 77 for all boxplots, except for MEND, where n= 65
:::::
n= 68.
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Figure 5.
::::::

Observed
::::

and
::::::
modeled

:
∆14C

:
of

::::
bulk

::::
SOC

:::
(a),

::::
POM

::::
(b),

:::
and

::::::
MAOM

:::
(c)

:
in
:::

the
::::::
topsoil

:::
(top

::
5

::
or

::
10 cm

::
of

::::::
mineral

::::
soil).

:::::
Black

:::::::
diamonds

:::
are

::::::
outliers.

::::
Note

:::
that

:::::
some

::::::
extreme

::::::
outliers

:::
are

:::::
outside

::
of
:::
the

::::::
plotting

:::::
range.

:::
To

:::
have

::
a
::::::
uniform

:::
and

::::::::
consistent

:::

14C
::::::
dataset,

:::
we

::::::
excluded

:::
the

::::
1949

:::
and

:::::
1978

::::::
samples

::
so

:::
that

:::
we

:::
end

::
up

::::
with

::::
more

:::::::
compact

::::
data

:::::::
spanning

:::
only

:::
18

::::
years

::
at

:::
the

::
tail

::::
end

::
of

::
the

:::::
bomb

:::::
spike.

::::::::
Therefore,

:::::
n= 75

:::
for

::
all

:::::::
boxplots,

:::::
except

:::
for

:::::::
MEND’s,

:::::
where

::::::
n= 60.

:

also overestimate MAOM
::::::
MEND

::::
and

::::::::
Millennial

::::
also

:::::::
strongly

:::::::::::
overestimate

:::
the ∆14C by 74‰ on average

::
of

:::::::
MAOM

::
by

:::::
more

:::
than

:::::
80‰. CORPSE is good at predicting the ∆14C of MAOM with effectively no bias, but its POM ∆14C predictions have225
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the largest bias (+119
::
87‰) among all the models. On average, the evaluated models have a positive bias between 36

::
37‰ and

67
::
69‰, and a RMSE around 100‰ in their ∆14C predictions for the POM, MAOM, and bulk SOC (see Table 2 for more

details).

Observed and modeled of total SOC (a), POM (b), and MAOM (c) in the topsoil (top 5 or 10 of mineral soil). Black diamonds

are outliers. Note that some extreme outliers are outside of the plotting range. To have a uniform and consistent 14C dataset,230

we excluded the 1949 and 1978 samples so that we end up with more compact data spanning only 18 years at the tail end of

the bomb spike. Therefore, n= 75 for all boxplots, except for MEND’s, where n= 62.

The models produce contrasting predictions for the evolution of soil 14C over the second half of the 20th century. In the

example of an alpine pasture (Figure 6)
::
In

::::::
Figure

::
6, we can see

:
in
::

a
::::::::::::
representative

::::::::
example

::
of

:::
the

::::::
model

::::::
biases that the

CORPSE, SOMic and MIMICS models predict
::::::
produce

::::
very

:::::::
distinct

:::

14C
::::::::
dynamics

:::
for

:::::
POM

:::
and

::::::::
MAOM,

::::
with

:::::
POM

::::::
having235

:
a
::::::::
predicted ∆14C curves for POM which are distinct from MAOM, while the

::
at

::::
least

:::::
200‰

::::::
higher

::::
than

:::::::
MAOM

::
in

:::
the

::::::
1980s.

::
On

::::
the

::::
other

:::::
hand,

::::
the ∆14C

:::::
curves

::
of

:::::::
MAOM

::::
and

:::::
POM

::::::::
predicted

:::
by

:::
the MEND and Millennial models produce similar

dynamics for POM and MAOM. That is because the
::::::
remain

::::
very

:::::
close

::
to

::::
each

:::::
other

:::::::::
throughout

:::
the

:::::::::
post-bomb

:::::::
period.

::::
This

:
is
:::::::
because

:
Millennial and MEND models have faster turnover rates than the other models, and their pools rapidly exchange

carbon between themselves. ,
::::
thus

::::::::::::
homogenizing

:::
the

::::

14C
:::::
signal

:::::
across

:::::
their

::::::::
simulated

:::
soil

::::::::
fractions

:::
(see

:::::::::
Appendix

:
F
:::
for

:::::
more240

:::::
details

:::
on

:::
the

:::::::
turnover

::::
rates

::
in

::::::::::
Millennial,

:::::
which

:::
are

::::::::::
particularly

::::
fast).

:

3.3 Role of environmental parameters

We further investigate how simulations depend on soil temperature and clay content, as these are considered some of the most

important factors controlling SOC turnover and persistence (Basile-Doelsch et al., 2020; Leifeld et al., 2009).

Higher soil temperatures enhance microbial activity and generally increase the turnover rate of carbon in soils (German245

et al., 2012; Leifeld et al., 2009; Sierra et al., 2015). While the observed SOC stocks and POM and MAOM contributions are

not correlated with temperature (Figure 7a–c), the observed ∆14C of POM, MAOM, and bulk SOC significantly increase with

higher temperature (Figure 7d–f), probably due to shorter carbon residence times in warmer soils. .
:
In contrast, the predicted

∆14C of POM, MAOM, and bulk SOC are either uncorrelated or negatively correlated with soil temperature. All of the

selected models modify carbon decomposition rates with a temperature-dependent scaling factor (Abramoff et al., 2022; Woolf250

and Lehmann, 2019; Kyker-Snowman et al., 2020; Wang et al., 2022; Sulman et al., 2014), but these results could indicate that

they may need to increase or change the effect of temperature on carbon turnover rates.

Relationship of observed and predicted carbon and data with respect to clay content in the topsoil. Circles are datapoints, and

lines are best linear fits through the points. CORPSE and MIMICS successfully reproduce the positive relationship between

topsoil clay content and the observed MAOM contribution to total SOC stocks in subplot (c). However, in subplot (f), MIMICS255

has a strong negative correlation of MAOM with clay content, unlike the observations, which do not show a correlation. The

linear fit line of CORPSE in subplot (f) overlaps with that of the observations. Note that some extreme outliers are outside of

the plotting range, and that we once again excluded the 1949 and 1978 samples for these plots. For separate plots for each

individual model, see the Supplementary Material.
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Figure 6. Observed and predicted ∆14C of POM, MAOM, and bulk SOC in the top 10 cm of the mineral soil of an
::::::::
abandoned alpine

pasture
:::::::
grassland in the Matsch

::::
Stubai

:
valley, Italy

::::::
Austria. The observed 14C data from 2008 are published in Meyer et al. (2012)

:
,
:::::
where

::
the

::::::::
“observed

:::::
POM”

:::
and

::::::::
“observed

:::::::
MAOM”

:::
data

::::
come

::::
from

::::
light

:::
and

:::::
heavy

::::::
density

::::::
fraction

:::::::::::
measurements,

:::::::::
respectively. The atmospheric

∆14CO2 of the Northern Hemisphere (Graven et al., 2017) is shown for reference. With the SOMic, CORPSE and MIMICSmodels, the

predicted ∆14C of POM is distinct from the predicted ∆14C of MAOM. On the other hand, the POM and MAOM pools
::::::
fractions

:
in MEND

and Millennial have very similar ∆14C signals throughout the bomb-spike period. Plots with
:
of

:
the predicted and observed ∆14C for

:
of
:

all

::
the

:
other profiles are available

:::::::
provided in the Supplementary Material

::::::
(Figures

::::
S.2).

In Figure 8c, the clay content of the sampled topsoils seems to be a decisive factor controlling the observed contribution260

of MAOM carbon to the total SOC stocks, with higher clay content correlating with higher MAOM contribution. This is also

true for the
:::::::
modeled

:
MAOM contributions predicted by the MIMICS and CORPSE models, which produce the most accurate

predictions of MAOM contribution (see Table 2). However, MIMICS appears to struggle with correctly simulating the effects

of increased clay content on overall SOC dynamics, as evidenced by the inaccurate relationships of SOC stocks and ∆14C with

clay (see Figure 8a and Figure 8d–f). It appears that MIMICS correctly reproduces the evolution of MAOM contribution with265

clay content by increasing the residence
:::::::
turnover

:
time of carbon in MAOM, which in turn lowers the ∆14C of MAOM and

increases SOC stocks, contrary to the observations.

:
It
::
is

::::::::
important

::
to

::::
note

::::
that

:::
the

::::::::
regression

:::::
lines

::
in

:::
the ∆14C

::::
plots

::
in

:::::::
Figures

::::
7d–f

:::
and

::::
8d–f

:::::
could

:::::::::
potentially

:::
be

:::::
biased

::::
due

::
to

::
the

::::::::
different

::::::::
sampling

::::
years

::
of
::::
soil

::::::
profiles

::::
with

::::::::
different

::::::::::::
environmental

::::::::::
parameters.

::::::::
However,

::::
those

::::::
biases

::::
most

:::::
likely

:::
do

:::
not

:::::
affect

:::
our

::::::
analysis

::
of
:::
the

::::::
results

::::
(see

::::::::
Appendix

::
G,

:::
and

:::::
plots

::::
with

:::::::::::
“normalized” ∆14C

::::
data

::
in

::::::
Figures

::::::
S.1.1).

:::
The

:::::::::::::
Supplementary270

:::::::
Material

::::
also

:::::::
contains

::::::
figures

::
of

:::
the

::::::
model

::::::
biases

:::
and

:::::::
absolute

::::::
errors

::::::
plotted

::::::
against

::::::::::
temperature

::::
and

::::
clay

::::::
content

::::::::
(Figures

::::::::::
S.1.2.1–24).
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Figure 7. Relationship
:::::::::

Relationships
:

of observed and predicted carbon and ∆14C data with respect to mean annual temperature of the

topsoil (averaged over the 1970–2010 period). Circles are datapoints, and lines are best linear fits through the points. The observed ∆14C

of bulk SOC, POM, and MAOM have a strong positive relationship with temperature. Meanwhile, the predicted ∆14C are more weakly and

sometimes negatively correlated with temperature. The linear fit line of CORPSE in subplot (c) is completely covered by the linear fit line of

MIMICS. Note that some extreme outliers are outside of the plotting range, and that we once again excluded the 1949 and 1978 samples for

these plots. For separate
::::::
Separate plots for each individual model , see

::
are

:::::::
provided

::
in the Supplementary Material

::::::
(Figures

::::::::::
S.1.2.32–36).

4 Discussion

The comparison of new-generation model predictions with
:::::
topsoil 14C observations

::::::::::::
measurements

::::
with

:::::::::
predictions

::
by

:::::::::::::
new-generation

::::::
models

:
reveals inaccuracies in the estimations of the

::::::
modeled

:
time scales of carbon exchanges and stabilization

:::::::
turnover275

:::
and

::::::::::
persistence in soils. Just like ESMs

:::
Like

::::
the

:::::
Earth

::::::
System

:::::::
Models

:::::::
(ESMs)

:::::::::
evaluated

::
in

::::::::::::::
He et al. (2016), most new-

generation models overestimate
::
do

::::
not

:::::::
correctly

:::::::::
reproduce

:
the ∆14C of bulk soil organic carbon (SOC) and they, too, may

therefore be overestimating
::::::::
unsuitable

:::
for

:::::::
studying

:
the effectiveness of soils as a net atmospheric CO2 sink in the 21st cen-

tury(He et al., 2016). The
:
.
:::
The

::::::
model

:
biases in the predictions of the repartition of

::::::::::
partitioning

::
of

:
SOC between particulate

organic matter (POM) and mineral-associated organic matter (MAOM) may also affect the accuracy of future projections. POM280

and MAOM have been shown to have different sensitivities to environmental variables such as temperature and are thus ex-

pected to react differently to a changing climate (Hicks Pries et al., 2017; Kleber et al., 2011)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Georgiou et al., 2024; Heckman et al., 2022; Hicks Pries et al., 2017; Kleber et al., 2011)

. Therefore, if models do not correctly partition SOC into POM and MAOM and misrepresent their 14C, they will probably

produce inaccurate predictions of SOC dynamics under climate change.
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Figure 8.
::::::::::
Relationships

::
of

:::::::
observed

:::
and

:::::::
predicted

::::::
carbon

:::
and ∆14C

:::
data

::::
with

:::::
respect

::
to
::::
clay

::::::
content

::
in

::
the

::::::
topsoil.

::::::
Circles

::
are

:::::::::
datapoints,

:::
and

:::
lines

:::
are

:::
best

:::::
linear

:::
fits

::::::
through

::
the

::::::
points.

:::::::
CORPSE

:::
and

:::::::
MIMICS

:::::::::
successfully

::::::::
reproduce

::
the

:::::::
positive

::::::::
relationship

:::::::
between

:::::
topsoil

::::
clay

:::::
content

::::
and

::
the

:::::::
observed

:::::::
MAOM

:::::::::
contribution

::
to

:::
the

::::
SOC

:::::
stocks

::
in

::::::
subplot

:::
(c).

::::::::
However,

::
in

::::::
subplot

::
(f),

::::::::
MIMICS

:::
has

:
a
:::::
strong

:::::::
negative

::::::::
correlation

::
of

::::::
MAOM

:
∆14C

::::
with

:::
clay

::::::
content,

:::::
unlike

:::
the

::::::::::
observations,

:::::
which

::
do

:::
not

::::
show

::
a
::::::::
correlation.

::::
The

::::
linear

::
fit

:::
line

:::
of

:::::::
CORPSE

::
in

:::::
subplot

:::
(f)

::::::
overlaps

::::
with

:::
that

::
of

:::
the

::::::::::
observations.

::::
Note

:::
that

::::
some

:::::::
extreme

:::::
outliers

:::
are

::::::
outside

::
of

::
the

:::::::
plotting

:::::
range,

:::
and

:::
that

::
we

::::
once

:::::
again

::::::
excluded

:::
the

::::
1949

:::
and

:::::
1978

::::::
samples

:::
for

::::
these

::::
plots.

:::::::
Separate

::::
plots

:::
for

::::
each

:::::::
individual

:::::
model

:::
are

:::::::
provided

::
in

:::
the

:::::::::::
Supplementary

:::::::
Material

::::::
(Figures

::::::::::
S.1.2.26–30).

:

We identify three likely reasons why the new-generation models generally underperform with 14C, and discuss how these285

problems could potentially be solved:

1. Insufficient datasets for the calibration of carbon turnover rates
:::::::::
parameters,

2. Lack of a “passive” pool with very slow turnover to account for inert
::::::
highly

::::::::
persistent SOC components,

3. Modeled pools
:::::
Pools

:::::
which

:
do not capture the full range of SOC turnover rates.

The last point raises questions on the effectiveness of the new-generation models and the POM–MAOM distinction as a290

whole. This invites further research on the stability of the different constituents of SOC,
:
and a discussion on the most effective

way to partition SOC into representative measurable pools
::::
pools

::::::
which

::
are

:::::
more

::::::::::::
representative

::
of

:::
the

:::::::
diversity

::
of

::::::
cycling

:::::
rates

:::
and

:::::::::
persistence

::
of

::::::
carbon

::
in
:::::
soils.
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4.1 Insufficient calibration datasets

Our 14C results suggest that the new-generation models selected for this study overestimate some carbon turnover rates. The295

most extreme case is Millennial v2, which gives its micro-aggregate pool and mineral-adsorbed carbon pool turnover times of

just a few months (see Appendix F). On the other hand, 14C-based studies find that the MAOM fraction, which includes micro-

aggregates and mineral-adsorbed carbon, typically turns over on time scales of many decades or centuries (Gaudinski et al.,

2000; Schrumpf and Kaiser, 2015; Van der Voort et al., 2017; Baisden et al., 2002). The overestimation of turnover rates may

be due to inadequate or insufficient data for the calibration of the models’ turnover parameters. Even though new-generation300

models have measurable pools
::
can

::::::
model

::::::::::
measurable

:::
soil

::::::::
fractions

::::
such

::
as

:::::
POM

::::
and

:::::::
MAOM, they do not usually assimilate

pool-specific
:::::::::::::
fraction-specific carbon and 14C data, probably because such data are currently very sparse. The only models in

our evaluation to calibrate their parameters with pool-specific
:::::::::::::
fraction-specific carbon data are CORPSE (with data from only

2 soil profiles, according to Zhang et al., 2021, Table S1) and Millennial (as described in Abramoff et al., 2022), and none of

them assimilated pool-specific
:::::::::::::
fraction-specific

:

14C data. Instead, new-generation models primarily rely on less informative305

bulk soil data, as well as some soil incubation results, for parameter optimization. However, as the dataset of fraction-specific

carbon and 14C measurements is growing larger, new-generation models should start to take full advantage of the measurability

of their pools and assimilate those highly informative data.

4.2 Lack of passive pool

Another explanation for the consistent overestimation of soil ∆14C by new-generation models is the inability of the mod-310

els to account for the presence of practically inert
::::::
highly

::::::::
persistent

:
compounds in the soil, which negatively offset the

bulk ∆14C. For example, some soils with a history of wildfires may contain a considerable fraction of pyrogenic carbon

:::::::::::::::::::::::::::::::::::::::::::::
(Reisser et al., 2016; González-Domínguez et al., 2019), which is composed of highly durable aromatic compounds and can

remain in soils over thousands of years (Eckmeier et al., 2009; Hajdas et al., 2007; Leifeld, 2008). Due to its extreme

longevity, pyrogenic carbon is depleted in 14C as a result of radioactive decay, bringing down the overall ∆14C of both POM315

(Van der Voort et al., 2017)
:::::::::::::::::::::::::::::::::::::::
(Van der Voort et al., 2017; Baisden et al., 2002) and MAOM (Soucémarianadin et al., 2019). In

deeper soils, the ∆14C of SOC can be even further depleted due to a larger proportion of petrogenic carbon, which is devoid of
14C (Van der Voort et al., 2019)

:::::::::::::::::::::::::::::::::::::
(Grant et al., 2023; Van der Voort et al., 2019). Whereas the two major traditional SOC models

explicitly account for such extremely old components with a “passive” pool (1000 year turnover time) in the Century model

(Parton et al., 1987) and an “inert organic matter” pool (no turnover at all) in the RothC model (Coleman and Jenkinson,320

1996), the new-generation models effectively force virtually inert components to fit into their actively cycling carbon pools. By

creating a passive pool
:::::
adding

::::::::::::
slow-turnover

::::
pools

:
to account for inert

:::::
highly

::::::::
persistent compounds such as pyrogenic carbon,

the new-generation models would be able to lower the overall ∆14C of POM and MAOM, and more accurately reproduce the

measured 14C data.
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4.3 Search for more representative measurable pools325

Finally, the underperformance of the models with respect to 14C may also be due to a choice of pools which are not truly

representative of the full spectrum of turnover rates of the different SOC components.
::::::
carbon

:::::::
turnover

::::
rates

::
in
:::::

soils.
:
Whereas

traditional models simply define the number and turnover rates of their SOC pools such that they can reproduce observed SOC

dynamics while minimizing
::::
their degrees of freedom, new-generation models also

:::::::::
additionally

:
need to make sure their pools

are at once easily measurable and representative of the various time scales of soil carbon
::::
SOC

:
persistence. If a measurable pool330

::::::
fraction

:
contains two or more components with very different turnover rates, the model may

:
as

::
is
:::
the

::::
case

:::
for

:::
the

:::::
POM

::::
and

::::::
MAOM

::::::::
fractions

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(von Lützow et al., 2007; Poeplau et al., 2018; Baisden et al., 2002),

::
a
::::::
model

::::
will not be able to correctly

reproduce the
:::::::
fraction’s

:
∆14C of that

::::
with

:::
one

::::::
single

::::::
carbon

:
pool because it assumes a single, homogeneous turnover rate

for the entire carbon pool. Although some models already split POM into various
::::
pool.

:::::
Most

:::::::::::::
new-generation

::::::
models

:::::::
already

::::::
address

:::
this

:::::::
problem

:::
by

:::::::
splitting

:::
the

::::
POM

::::
and

:::::::
MAOM

:::::::
fractions

::::
into

:::::::
multiple

::::::
smaller subpools with contrasting turnover times335

(e.g.,
::::
rates.

:::
For

::::::::
example,

:::
the

:::::::
SOMic

:::::
model

:::::::::::
distinguishes

:::::::
between

:
soluble and insoluble litter pools in SOMic, or

:::::
POM,

::::
and

::
the

:::::::
MEND

::::::
model

:::::::
between oxidizable and hydrolysable POMpools in MEND), they miss the most recalcitrant POM pool of

pyrogenic carbon, which even in minute amounts can significantly alter the and apparent turnover of POM (Leifeld, 2008).

Some new-generation models subdivide the MAOM pool
:::::::
fraction into micro-aggregates and mineral-adsorbed carbon (e.g.,

Millennial
:::::
model), or into an active layer of adsorbed DOC

::::::::
(dissolved

:::::::
organic

:::::::
carbon) and a more stable MAOM compo-340

nent (e.g., MEND ). However, those MAOM
::::::
model).

::::::::
However,

:::::
these

:
subpools might still not be homogeneous enough in

their turnover times
::::
rates for effective 14C simulations. Recent 14C studies determining the stability of MAOM under the

action of peroxide oxidation show that it may be necessary to further split clay-sized MAOM into two measurable subpools

which are decomposable or resistant to microbial exo-enzymes (Schrumpf et al., 2021; Jagadamma et al., 2010). Additionally,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Schrumpf et al., 2021; Jagadamma et al., 2010; Poeplau et al., 2018)

:
.
::::::
Within

:::
the

:::::
POM

::::::::
fraction,

:::
the

::::::::
occluded

:::::
light

:::::::
fraction345

::::
could

:::::
serve

::
as

::
an

:::::
easily

::::::::::
measurable

:::::
proxy

:::
for

::
the

:::::
more

::::::::
persistent

:::::
POM

::::::::::::::::::::::::::::::::::
(Schrumpf et al., 2013; Wagai et al., 2009)

:
,
:::
and

::::::::::::
measurements

::
of

:::
the

::::::::
pyrogenic

::::::
carbon

::::::
content

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., with hydrogen pyrolisis, as in González-Domínguez et al., 2019)

::::
could

::::
give

::::
clues

:::
on

:::
the

:::
size

::
of

::::
the

::::
most

::::::::
persistent

:::::
pool

::
in

:::
the

:::::
POM

:::::::
fraction.

:::::::
Finally,

:
“continuous” SOC fractionation methods such as ramped py-

rolysis oxidation (Stoner et al., 2023) could provide a much higher resolution of the SOC turnover rate spectrum. However,

the resulting measurable pools are more difficult to interpret in terms of their role in the soil carbon cycle, and their incorpo-350

ration into mechanistic SOC models is therefore less straightforward.
:
In

:::::
order

::
to

::::::::
correctly

::::::::
reproduce

::::
the

::::
time

:::::
scales

::
of

:::::
SOC

:::::::::
persistence

:::
and

::::::::
turnover,

:::::::::::::
new-generation

::::::
models

::::
may

::::
need

::
a

::::
more

:::::::
detailed

::::::::::
subdivision

::
of

:::
the

::::
POM

::::
and

:::::::
MAOM

:::::::
fractions

::::
into

::::
more

::::::::::::
representative

::::::::
subpools,

::::
thus

:::::::::
potentially

:::::::::
increasing

:::
the

::::::
number

::
of

:::::::::
simulated

:::::
pools

:::
and

:::::::
degrees

::
of

:::::::
freedom.

:::::::::
However,

::
as

::::::::
discussed

::
in

::::::
section

:::
4.1,

::::
such

::
an

:::::::
increase

::
in

::::::
model

:::::::::
complexity

::::
must

::::
also

::
be

:::::::::::
accompanied

::::
with

::
an

:::::::::
expansion

::
of

:::
the

:::::::::::
observational

:::::::
datasets,

::
in

::::::::
particular

::::::::::::::
fraction-specific

::::::
isotopic

:::::::::::::
measurements,

:::
for

:::::::
effective

::::::
model

:::::::::
calibration

:::
and

:::::::::
validation.355
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4.4 Limitations of this study

The accuracy of our model evaluation is affected by several factors. Though we took care to accurately match the modeled pools

to the measured fractions (see Appendix C), the correspondences are imperfect and further complicated by non-standardized

definitions and density cut-offs for the light and heavy fractions published on ISRaD. Nevertheless, this does not change the

overall overestimation of soil ∆14C by most models. The use of forcing data from possibly inaccurate CESM2-LE and CCMI360

outputs with low spatial resolution may also affect the accuracy of our model evaluation. Furthermore, the ∆14C of the carbon

inputs from the CESM2-LE product could be inaccurate, especially in soils with a thick organic layer, which pre-ages the

carbon before it enters the mineral soil. However, the consistency and magnitude of the models’ overestimation of the topsoil’s

∆14C with respect to observed data indicate that this overestimation is evidently a real pattern among the studied models.

Finally, it is also important to note that our study only produces an incomplete picture of model performances on a global365

scale, since most of the measured datapoints represent North American and European forest ecosystems.

5 Summary

Despite their incorporation of the latest advances in soil sciences, new-generation soil organic carbon (SOC) models currently

show similar discrepancies with
:::
face

:::::::
similar

::::::::
problems

::::
with

:::::::::
predicting

:

14C data as the traditional SOC models. The new-

generation models’ consistent overestimation of the ∆14C in both particulate organic matter (POM) and mineral-associated370

organic matter (MAOM) and their inaccurate partitioning of SOC between
::
the

:
POM and MAOM

:::::::
fractions suggest that these

models underestimate the time scales of carbon storage in soils and might produce unreliable future predictions under climate

change. To improve their predictions, new-generation models should take advantage of the measurability of their pools and

calibrate their parameters with the rapidly growing dataset of pool-specific
:::::::::::::
fraction-specific carbon and 14C measurements in

addition to incubation and bulk soil data. They may also have to reconsider their model design and simulate measurable
::::::
carbon375

pools which better capture the full spectrum of carbon turnover rates present in the soils. In particular, the consideration of

highly persistent soil carbon
::::
SOC such as pyrogenic carbon could significantly improve 14C predictions. As more effective

measurable pools are being discovered and the dataset of pool-specific
:::::::::::::
fraction-specific

:

14C data is expanding, new-generation

soil models have the potential to eventually supersede the traditional SOC models employed by ESMs if they take full advantage

of the measurability of their pools and assimilate the available data.380

Code and data availability. The source code to download the input data, run the models, and reproduce all the results presented in this

manuscript and the supplementary material is available in our GitHub repository https://github.com/asb219/evaluate-SOC-models, published

on Zenodo at https://zenodo.org/records/10575139 (Brunmayr, 2024).

18

https://github.com/asb219/evaluate-SOC-models
https://zenodo.org/records/10575139


Appendix A:
::::::
ISRaD

::::
data

::::::::
selection

::::
and

:::::::::
processing

A1
::::::::::
Derivation

::
of

:::
LF

::::
data

:::::
from

:::
fLF

::::
and

::::
oLF

::::
data385

:::
We

:::::::
calculate

:::
the

:
∆14C

:::
and

::::::
carbon

:::::::::::
contribution

::
of

:::
the

::::
light

:::::::
fraction

:::::
(LF)

::
by

:::::::::
combining

::::
the

:::
soil

:::::::
density

::::::
fraction

::::
data

:::
of

:::
the

:::
free

:::::
light

:::::::
fraction

:::::
(fLF)

:::
and

:::
the

::::::::
occluded

:::::
light

:::::::
fraction

:::::
(oLF)

:::::
from

:::
the

:::::::::::
International

::::
Soil

:::::::::::
Radiocarbon

::::::::
Database

::::::::
(ISRaD)

:::::::::::::::::::
(Lawrence et al., 2020).

::::
The

::::::::
fractional

::::::::::
contribution

::
of

:::
LF

::
to
:::
the

:::::
total

:::
soil

::::::
organic

::::::
carbon

:::::
(cLF)

::
is

::::::::
calculated

:::
as

:::
the

::::
sum

::
of

:::
the

:::
fLF

:::
and

::::
oLF

:::::::::::
contributions

:::::
(cfLF

:::
and

:::::
coLF,

:::::::::::
respectively),

:::
and

:::
the

:
∆14C

::
of

:::
LF

::
is

::::::
derived

::::
with

::
a

::::::::
weighted

::::::
average

::
of

:::
the

:
∆14C

::
of

:::
fLF

::::
and

::::
oLF:390

∆14C
LF

=
cfLF ·∆14CfLF

+ coLF ·∆14CoLF

cLF ,
:::::::::::::::::::::::::::::::::::

(A1)

:::::
where

:::::::::::::::
cLF = cfLF + coLF.

A2
::::::::::
Derivation

::
of

::::
bulk

::::
data

:::::
from

:::
LF

::::
and

:::
HF

::::
data

:
If
:::
the

:
∆14C

:::
data

:::
for

:::
the

::::
bulk

:::
soil

:::::::::
(∆14Cbulk)

:::
are

:::
not

::::::::
available,

:::
we

:::::
derive

::::
them

::::
with

::
a

:::::::
weighted

:::::::
average

::
of

:::::::
∆14CLF

:::
and

::::::::
∆14CHF,

::
the

:
∆14C

::
of

:::
the

::::
light

:::::::
fraction

::::
(LF)

:::
and

:::::
heavy

:::::::
fraction

:::::
(HF),

:::::::::::
respectively:395

∆14C
bulk

=
cLF ·∆14CLF

+ cHF ·∆14CHF

cLF + cHF ,
:::::::::::::::::::::::::::::::::

(A2)

:::::
where

:::
cLF

::::
and

:::
cHF

:::
are

:::
the

:::::
LF’s

:::
and

:::::
HF’s

::::::
relative

:::::::::::
contributions

::
to
::::

the
:::
soil

:::::::
organic

::::::
carbon

::::::
stocks,

::::::::::
respectively.

:::::
Note

::::
that

:::
the

:::
sum

:::::::::
cLF + cHF

::
is

::::::::
generally

::::
very

:::::
close

::
to

::
1,

:::
but

:::
not

::::::::::
necessarily

:::::
equal

::
to

::
1,

:::::::::
depending

:::
on

:::
the

:::::::
methods

:::::::::
employed

:::
by

:::
the

::::
data

::::::::
producers.

:

A3
:::::::::
Definition

::
of

::::::
topsoil

::::
and

::::::::
selection

::
of

:::::::
profiles400

:::
We

:::::
define

:::
the

::::::
topsoil

::
as

::
at

::::
least

:::
the

:::
top

::
5 cm

:::
and

::
at

::::
most

:::
the

:::
top

:::
10 cm

::
of

:::
the

::::::
mineral

::::
soil,

::::
i.e.,

:::
the

::::::
interval

:::::
from

::
0 cm

:
to

::
x cm

::::
depth

:::::
such

:::
that

::::::::::
5≤ x≤ 10.

::::
All

::::::
profiles

::
in
::::
this

:::::
study

::::
must

:::::
have

:::::
depth

:::::
layers

::::::
which

::::
fully

::::
span

:::
the

::::::
topsoil

:::::::
without

::
a

::::
gap.

:::
We

::::
only

:::
use

:::::
layers

::::::
whose

:::
top

::::::::
boundary

::
is

:::
less

::::
than

::
5 cm

::::
deep

:::
and

::::::
whose

::::::
bottom

::::::::
boundary

::
is

::::
less

:::
than

:::
10 cm

:::::
deep.

:::
For

::::::::
example,

:
if
::
a

:::::
profile

::::
has

:::::
layers

:::
0-5 cm

::
and

:::::
5-10 cm,

:::
we

::::
only

:::
use

:::
the

::::
0-5 cm

::::
layer

::
to

::::::::
represent

:::
the

::::::
topsoil

:::
and

::::::
discard

:::
the

::::
data

:::::
from

:::
the

::::
5-10 cm

::::
layer.

:
405

::::::::
Examples

::
of

:::::::
profiles

::
we

::::::
would

::::::
choose

:::
for

:::
this

::::::
study:

–
:::::
Profile

::::
with

:::::
layer

::::
0-10 cm

–
:::::
Profile

::::
with

::::::
layers

:::
0-3 cm

:::
and

::::
3-8 cm

–
:::::
Profile

::::
with

::::::
layers

:::
0-4 cm

:::
and

::::
3-8 cm

::::::::::
(overlapping

::
is

:::::::
allowed)

:
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::::::::
Examples

::
of

:::::::
profiles

:::
that

:::
we

:::::
would

:::::
have

::
to

:::::
reject:

:
410

–
:::::
Profile

::::
with

:::::
layer

::::
0-15 cm

:::::::
(extends

:::::::
beyond

::
10 cm

::::::
depth)

–
:::::
Profile

::::
with

:::::::
topmost

:::::
layer

:::
1-8 cm

:::::::
(missing

:::
top

::
1 cm)

:

–
:::::
Profile

::::::
whose

:::
top

:::
two

::::::
layers

:::
are

:::
0-3 cm

:::
and

::::
4-8 cm

:::
(gap

:::::::
between

::::::
layers)

:

A4
::::::::::
Derivation

::
of

::::::
topsoil

::::
data

:::::
from

:::::
layer

::::
data

:::
The

::::::
carbon

:::
and

::::

14C
::::
data

:::
for

::
the

::::::
topsoil

:::
are

:::::::
derived

::
by

:::::::::
integrating

::::
over

:::
the

:::::
layers

::::::::::
comprising

:::
the

::::::
topsoil.

::::
The

::::
total

:::
soil

:::::::
organic415

:::::
carbon

::::::
stocks

::
in

:::
the

::::::
topsoil

::::::
(SOC)

:::
are

:::::
found

:::
by

::::::::
summing

:::
the

:::::
SOCℓ :::::

stocks
::
in
:::::
each

::::
layer

::
ℓ.

::
If

:::
the

:::::
SOCℓ::::

data
:::
are

:::
not

::::::::
reported,

:::
they

:::
are

:::::::
derived

::::
from

:::
the

:::::
layer

::::::::
thickness

::
hℓ,::::

soil
::::
bulk

::::::
density

:::
ρℓ,:::

and
::::::
carbon

::::::::::::
concentration

::
Cℓ::

in
:::::
each

::::
layer

::
ℓ:

SOC =
∑

ℓ SOCℓ =
∑

ℓhℓρℓCℓ .
::::::::::::::::::::::::::

(A3)

::
In

:::::
order

::
to

:::
find

:::
the

:
∆14C

::
of

::::
bulk

::::
soil,

::::
light

:::::::
fraction

:::::
(LF),

::::
and

:::::
heavy

:::::::
fraction

::::
(HF)

:::
in

:::
the

::::::
topsoil

:::::::::
(∆14Cbulk,

:::::::
∆14CLF,

::::
and

:::::::
∆14CHF,

:::::::::::
respectively),

:::
as

:::
well

:::
as

:::
the

::
LF

::::
and

:::
HF

::::::::
fractional

:::::::::::
contributions

::
to

:::
the

::::
total

::::::
carbon

::::::
stocks

::
in

:::
the

::::::
topsoil

::::
(cLF

:::
and

::::
cHF,420

:::::::::::
respectively),

:::
we

:::
take

::
a
::::::::
weighted

::::::
average

::::
over

:::
the

:::::
layers

::
ℓ:
:

∆14C
bulk

:::::::
=
∑

ℓ SOCℓ ·∆14Cbulk
ℓ /SOC

:::::::::::::::::::::::
(A4)

∆14C
LF

::::::
=
∑

ℓ SOCℓ · cLF
ℓ ·∆14CLF

ℓ /(SOC · cLF)
:::::::::::::::::::::::::::::::

(A5)

∆14C
HF

::::::
=
∑

ℓ SOCℓ · cHF
ℓ ·∆14CHF

ℓ /(SOC · cHF)
:::::::::::::::::::::::::::::::

(A6)

cLF
::

=
∑

ℓ SOCℓ · cLF
ℓ /SOC

::::::::::::::::::
(A7)425

cHF
::

=
∑

ℓ SOCℓ · cHF
ℓ /SOC

::::::::::::::::::
(A8)

:
If
:::::
there

:::
are

::::::::::
overlapping

:::::
layers

::
in

:::
the

::::::
topsoil

::::
(e.g.,

:
a
::::::
profile

::::
with

:::::
layers

::::
0-2 cm

:
,
:::
0-4 cm,

::::
and

::::
3-10 cm

:
),

:::
we

::::::::
integrate

::::
over

:::::
depth

::::
while

:::::::::
averaging

::::::::::
overlapping

:::::
layers

::
in

:::
the

:::::::
intervals

::::::
where

::::
those

::::::
layers

:::::::
overlap.

Appendix B: Further information on model versions and implementations

The original source codes of all the selected model versions are openly available. By having direct access to the code with430

which the model developers produced their results, we can be more confident that we test an implementation of the models as

intended by their respective authors.

Our final implementations of Millennial, CORPSE, MIMICS, and the 14C component of MEND are available as python

modules in our GitHub repository https://github.com/asb219/evaluate-SOC-models,
:::::::::
published

::
on

:::::::
Zenodo

::
at

:
https://zenodo.

org/records/10575139
:::::::::::::::
(Brunmayr, 2024). For the carbon and nitrogen components of MEND,

::
we

:::::::
compile

:
the Fortran source435
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code is in (forked and modified from ), which is added as a “git submodule” to our repository
::::
from https://zenodo.org/records/

11065513
:::::::::::::::::::::::
(Wang and Brunmayr, 2024). Finally, we use the install_github

::::
url function of the devtools package in

R (Wickham et al., 2022) to install SOMic as an R package after compiling the C++ code of the SOMic model released as

“v1.1-asb219” in (forked and modified from )
::::::
directly

::::
from

:
https://zenodo.org/records/11068749

:::::::::::::::::::::::::
(Woolf and Brunmayr, 2023b)

.440

B1 MEND

We use the MEND-new version of the MEND model as described in Wang et al. (2022). Our 14C re-implementation is based on

the code from commit 92323c7 of the GitHub repository https://github.com/wanggangsheng/MEND
::::::::::::::::::::::::::::
(Zenodo publication: Wang, 2024)

. We forked the repository from that commit to https://github.com/asb219/MEND so that we could adapt the model input and

output to our purposes. On our fork, the original version of MEND-new is released under tag name “MEND-new”(Wang, 2022)445

, and the version we used to produce our results is released under tag name “MEND-new-asb219” (Wang and Brunmayr, 2023)

::::::::::::::::::::::::::::::::::::::::
(Zenodo publication: Wang and Brunmayr, 2024). We use all the default model settings and the optimized parameter values

provided in the Fortran namelist file MEND_namelist.nml in the repository. The pre-industrial soil carbon and nitrogen

stocks are found by initializing the model with the default initial state from file userio/inp/SOIL_ini.dat and spinning

up the non-isotopic carbon–nitrogen component of the model for 400 years with pre-industrial forcing data. The pre-industrial450

soil 14C levels are then found by running the 14C component of the model for another 1000 years, looping over the final year

of the carbon–nitrogen spinup. The final states of
:::
the carbon–nitrogen and 14C spinups are then used for the initial condition

of the final run of MEND over the 1850–2014 period. The model runs with hourly time steps and uses the forward Euler

integration method.

B2 Millennial455

We use Millennial V2 with Michaelis-Menten kinetics as described in Abramoff et al. (2022). We re-implemented the model

with 14C in Python based on the original R code in the https://github.com/rabramoff/Millennial repository released under the

tag “v2”, commit e95bca9 (Abramoff and Xu, 2022b)
::::::::::::::::::::::::::::::::::::::
(Zenodo publication: Abramoff and Xu, 2022a). We used the model

equations from file R/models/derivs_V2_MM.R in the repository and ran the model with the fitted parameter values from

the file Fortran/MillennialV2/simulationv2/soilpara_in_fit.txt in the repository. The initial condition460

for both carbon and 14C stocks is found by first solving for a pre-industrial steady state (similarly to the model tutorial R/

simulation/model_tutorial.Rmd in the repository), and then running the model from steady state for 200 years

using time-varying pre-industrial forcing data featuring a seasonal cycle. The final state of that spinup is then used as the initial

condition for the final run of the model over the 1850–2014 period. The model runs with daily time steps, and though the model

tutorial uses the 4th order Runge-Kutta integration method, we integrate the equations simply with the forward Euler method,465

which is stable and precise enough with daily time steps.
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B3 SOMic

We use version 1.0 of the SOMic model as described in (Woolf and Lehmann, 2019). The original code is available on

:::::::
released

:::::
under

::::::
version

::::::::
“SOMic

:
v
:::::

1.00”
::::::::

(commit
:::::::::
be34e56

:
)
::
in

:
the GitHub repository https://github.com/domwoolf/somic1

(latest commit at time of writing: be34e56, Woolf, 2019)
::::::::::::::::::::::::::::
(Zenodo publication: Woolf, 2024). However, we had to fork the470

repository
::::
from

:::::::
commit

:::::::::
be34e56 to https://github.com/asb219/somic1 (Woolf and Brunmayr, 2023a) in order to fix a mi-

nor issue in its
:::
the 14C implementation (see reason in section

::::::::
Appendix E1), and to allow for distinct 14C values in the initial

condition of each pool (previously, all pools were always initialized with the same 14C value). To produce our results, we used

the version released under the tag “v1.1-asb219” in our fork
:::::::::::::::::::::::::::::::::::::::::
(Zenodo publication: Woolf and Brunmayr, 2023b). The model is

spun up for 5000
::::::
50,000 years to get the initial carbon and 14C stocks. The model runs with monthly time steps and uses the475

forward Euler integration method.

B4 CORPSE

The CORPSE model was originally described in Sulman et al. (2014). There are currently six publicly available versions of

CORPSE owned by GitHub user https://github.com/bsulman. Since we are mostly interested in carbon dynamics, the lead

developer Benjamin Sulman recommended we use the most up-to-date carbon-only implementation in https://github.com/480

bsulman/CORPSE-fire-response (latest commit at time of writing: 19ee2c7, Sulman, 2021a). We reimplemented
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(commit 19ee2c7 released as version v1.0; Zenodo publication: Sulman, 2024a)

:
.
:::
We

:::::::::::::
re-implemented

:
CORPSE with 14C based on the equations in file CORPSE_array.py and using the parameter val-

ues from file Whitman_sims.py in that repository. However, the equation for the clay-related rate modifying factor is

taken from file code/CORPSE_integrate.py in repository https://github.com/bsulman/CORPSE-N (Sulman, 2021b)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(commit 4a689ef released as version v1.0; Zenodo publication: Sulman, 2024b), since the model seems to be working more485

reliably with that version of the equation. Like in Millennial, the initial condition is found by solving for a pre-industrial steady

state and spinning up for 200 years from that steady state. If the solver is unable to find a steady state, the model is spun up for

4000
:::::
10,000

:
years. The

::::::::::
steady-state

:::::::
solution

:::
was

::::::
found

:::
for

::
all

:::
the

:::::::
profiles

::
in

:::
this

:::::
study.

::::
The

:
model runs with daily time steps

and uses the forward Euler integration method.

B5 MIMICS490

We use MIMICS-CN v1.0, as published in Kyker-Snowman et al. (2020), because the latest version of MIMICS (Wang et al.,

2021; Wang, 2020) did not correctly implement 14C (see section
::::::::
Appendix E2). The original R code of MIMICS-CN v1.0 is

available on https://zenodo.org/records/3534562 (Kyker-Snowman, 2019). It already implements stable isotope tracers, but no

radioactive isotopes such as 14C, so we re-implemented the model with 14C in python. Like for Millennial and CORPSE, we

spin up for 200 years from the pre-industrial steady-state solution. If no steady state can be found, we spin up for 4000
::::::
10,000495

years. The
:::::::::
steady-state

:::::::
solution

::::
was

:::::
found

:::
for

::
all

:::
the

:::::::
profiles

::
in

:::
this

:::::
study.

::::
The model runs with hourly time steps and uses the

forward Euler integration method.
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Appendix C: Correspondences between pools and density
:::
soil fractions

This section explains how we associate the simulated pools of each model with either the POM fraction (“particulate organic

matter”, corresponding to the “light fraction” resulting from density fractionation) or the MAOM fraction (“mineral-associated500

organic matter”, corresponding to the “heavy fraction” resulting from density fractionation). We assume that the POM fraction

is composed of fragmented and partially processed plant litter which is not stabilized in the soil matrix through mineral

association. We assume that the MAOM fraction is composed of soil organic carbon which is enclosed in stable aggregates

or strongly adsorbed to minerals. Since the live microbial biomass and dissolved organic carbon generally represent a small

fraction of soil organic carbon, we can neglect them and assume they belong to neither POM nor MAOM.505

See Table C1 for a summary of the correspondences between the modeled pools and the POM and MAOM fractions.

Table C1. Correspondences between simulated carbon pools and the POM fraction, MAOM fraction, or other carbon fractions. See Appendix

sections C1–C5 for more information.

Model POM fraction MAOM fraction Other soil organic carbon pools Litter pools

MEND POMO, POMH MOM, QOM
DOM, MBA, MBD, EPO, EPH, EM, nosZ, norB,

nirS & nirK, narG & napA, amoA & nxrA/B, nifH

Millennial POM MAOM, Aggregate C LMWC, Microbial Biomass

SOMic SPM, IPM MAC DOC, MB

CORPSE SPCu, CPCu SPCp, CPCp, MNp MNu, LMB

MIMICS SOMc SOMp SOMa, MICr, MICK LITm, LITs

C1 MEND

List of organic carbon pools in the MEND-new model by Wang et al. (2022) (model diagram in Figure C1):

– POMO and POMH (particulate organic matter decomposed by oxidative and hydrolytic enzymes, respectively).

– MOM (mineral-associated organic matter).510

– QOM: “active layer of MOM” which can exchange carbon with DOM through adsorption and desorption (Wang et al.,

2022).

– DOM (dissolved organic matter).

– MBA and MBD (active and dormant microbial biomass, respectively).

– EPO, EPH, EM, nosZ, norB, nirS, nirK, narG, napA, amoA, nxrA/B, nifH: various microbial exo-enzymes.515

Note that the “Litter” pool
::::::::::::
Above-ground

::::::::
biomass”,

:::::
“Root

::::::::
biomass”

::::
and

::::::
“Litter”

:::::
boxes

:
in the MEND model diagram in Figure

C1 is
::
are

:
not explicitly modeled as a pool, and therefore does

::::
pools

::::
and

:::::::
therefore

:::
do

:
not feature in the above list of organic

carbon pools.
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We assume that the POM fraction is composed of the POMO and POMH pools, and that the MAOM fraction is composed of

the MOM and QOM pools. The DOM, MBA, MBD, and exo-enzyme pools belong to neither fraction.520

Figure C1. MEND-new model diagram. Source: Wang et al. (2022). Reuse permission received with Copyright Clearance Center license

number 5691380194276.

C2 Millennial

List of organic carbon pools in Millennial v2 by Abramoff et al. (2022) (model diagram in Figure C2):

– POM (particulate organic matter).

– Aggregate C: “stable microaggregates which remain after dispersion in the larger particle size fraction (>50–60 µm)”

(Abramoff et al., 2022), so this corresponds to the coarse heavy fraction.525

– MAOM (mineral-associated organic matter): consists of organic matter associated to minerals through sorption (Abramoff

et al., 2022).

– Microbial Biomass: live microbial biomass.

– LMWC (low molecular weight carbon): “LMWC could be analogous to dissolved organic C (DOC) if there is enough

moisture in the soil matrix, and if we do not consider DOC molecules that are too large to be taken up by microbes”530

(Abramoff et al., 2022).

We assume that the MAOM fraction is the sum of the Aggregate C and MAOM pools, and that the POM fraction is entirely

composed of the POM pool. The Microbial Biomass and LMWC pools belong to neither fraction.
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Figure C2. Millennial V2 diagram. Source: Abramoff et al. (2022). License: CC BY.

C3 SOMic

List of organic carbon pools in SOMic 1.0 by Woolf and Lehmann (2019) (model diagram in Figure C3):535

– SPM and IPM (soluble and insoluble plant matter, respectively).

– MAC (mineral-associated carbon): “mineral-sorbed or -occluded SOC” (Woolf and Lehmann, 2019).

– DOC (dissolved organic carbon).

– MB (microbial biomass).

We assume that the MAOM fraction is composed of the MAC pool, and the POM fraction is composed of the SPM and IPM540

pools. The DOC and MB pools belong to neither fraction.

C4 CORPSE

List of organic carbon pools in the CORPSE-fire-response version
::::::::::::::
(Sulman, 2024a) of the CORPSE model, first published in

Sulman et al. (2014) and last updated in Moore et al. (2020) (model diagram in Figure C4):

– SPCu, CPCu, and MNu (Unprotected simple plant carbon, Unprotected complex plant carbon, and Unprotected microbe545

necromass, respectively).

– SPCp, CPCp, and MNp (Protected simple plant carbon, Protected complex plant carbon, and Protected microbe necro-

mass): “protected organic matter is inaccessible to microbial decomposition through chemical sorption to mineral sur-

faces or occlusion within microaggregates” (Moore et al., 2020).

– LMB (live microbial biomass).550
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Figure C3. SOMic 1.0 diagram. Source: Woolf and Lehmann (2019). License: CC BY.

We associate the MAOM fraction with the SPCp, CPCp, and MNp pools, since they represent mineral-adsorbed and micro-

aggregated carbon (Moore et al., 2020). We associate the POM fraction with the SPCu and CPCu pools, but not the microbial

MNu pool, because POM is mostly composed of unprotected plant-derived carbon. The MNu and LMB pools belong to neither

fraction.

Figure C4. CORPSE diagram. Source: Moore et al. (2020). Reuse permission received with Copyright Clearance Center license number

5691370621010.

C5 MIMICS555

List of organic carbon pools in MIMICS-CN v1.0 by Kyker-Snowman et al. (2020) (model diagram in Figure C5):
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– LITm and LITs (metabolic and structural litter, respectively): litter pools which are not considered part of soil organic

matter.

– SOMp (physicochemically protected soil organic matter): “is primarily composed of microbial products that are adsorbed

onto mineral surfaces” and is “analogous to heavy fraction or MAOM pools” (Kyker-Snowman et al., 2020).560

– SOMc (chemically recalcitrant soil organic matter): “consists of decomposed or partially decomposed litter” and is

“analogous to light fraction or POM pools” (Kyker-Snowman et al., 2020).

– SOMa (available soil organic matter): “the only SOM pool that is available for microbial decomposition; it contains a

mixture of fresh microbial residues, products that are desorbed from the SOMp pool (e.g., Jilling et al., 2018), as well as

depolymerized organic matter from the SOMc pool” (Kyker-Snowman et al., 2020). This pool is usually small and we565

associate it to neither POM nor MAOM.

– MICr and MICK (“low-efficiency, r strategist” microbes and “high-efficiency, K strategist” microbes, respectively): live

microbial biomass pools.

According to Kyker-Snowman et al. (2020), the SOMc pool corresponds to the POM fraction, and the SOMp pool corre-

sponds to the MAOM fraction. The SOMa, MICr, and MICK pools belong to neither fraction.570

Figure C5. MIMICS-CN v1.0 diagram. Source: Kyker-Snowman et al. (2020). License: CC BY.

Appendix D: Radiocarbon predictions with non-isotopic models

Among the new-generation models selected for this study, SOMic, MIMICS, and MEND have already implemented 14C.

However, the most recent and only open-source version of MEND does not include 14C, and SOMic and MIMICS incorrectly

implemented their 14C simulations (see Appendix E). Nevertheless, we can still produce 14C predictions with non-isotopic

models by individually tracking the carbon fluxes at every time step and attaching a 14C signal to each flux. Since none of the575

models define an internal structure for their pools, we will assume by default that the pools are well-mixed, which means that
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the ∆14C of a pool’s outflux is equal to the pool’s ∆14C. This assumption is common practice for 14C modeling in soils (Sierra

et al., 2017).

We run all of the selected models using the forward Euler method to advance from one time step to the next. The models

either implicitly or explicitly produce the internal flux matrix Φi at each time step i, where Φi
jk ≥ 0 is the flux of carbon from580

pool k into pool j (with j ̸= k), and Φi
jj ≤ 0 is the total outflux of carbon out of pool j at time step i. They also define the

external influx vector Ii such that Iij ≥ 0 is the influx of carbon entering the modeled system through pool j at time step i.

Matrix Φ contains all the fluxes between the pools and out of the system, and vector I contains all the influxes of carbon from

outside the system into the modeled pools. We can therefore find the carbon stocks Ci+1
j of pool j at time step i+1 based on

the Φi, Ii, and Ci
j ::
Ci

:
of the previous time step i:585

Ci+1
j = Ci

j + Iij +
∑
k

Φi
jk , (D1)

where the summation of internal fluxes Φi
jk is performed over all donor pools k to get the total internal carbon flux into pool j

(when k ̸= j), subtracted by the flux out of pool j (when k = j).

Assuming the pools are well-mixed, we can now produce 14C predictions by tagging each flux Φjk with the 14C signal

of pool k. We measure the 14C signal in terms of the unitless “absolute Fraction Modern” (FMabs) as defined in Trumbore590

et al. (2016), such that FMabs = 1+ (∆14C/1000‰). The FMabs is proportional to the 14C/12C ratio normalized to a δ13C of

−25‰ (Trumbore et al., 2016), and is thus proportional to the normalized ratio of 14C to total carbon (14C/C), considering

the negligible abundance of 14C compared to 12C and 13C. Therefore, if we know F i
j , the FMabs of pool j at time step i,

we can find F i+1
j at time step i+1 with the following equation (provided all the pools and the influx have comparable δ13C

signals
::::::::
signatures):595

F i+1
j Ci+1

j = (1−λ)F i
jC

i
j + IijF

i
influx +

∑
k

Φi
jkF

i
k , (D2)

where Ci+1
j is given by equation (D1), λ is the radioactive decay rate of 14C in units of inverse time step size, and F i

influx is the

FMabs of the external carbon influx at time step i given by the forcing data. We can then recover the ∆14C at each time step i

and for each pool j with (F i
j − 1)× 1000‰.

Appendix E: Incorrect or inaccurate 14C implementations600

E1 SOMic

The
:::::::
original

:::::::::::::
implementation

:::::::::::::::::::::::::::::
(available on Zenodo: Woolf, 2024)

::
of

:::
the SOMic model (Woolf and Lehmann, 2019) , as implemented

on the GitHub repository (commit be34e56, Woolf, 2019), does not produce accurate 14C predictions. Instead of working

with the more typical ∆14C or absolute Fraction Modern (FMabs) units, this implementation tracks the 14C age, which we

summarily define as Age =− log(FMabs)λ
−1, where λ is the radioactive decay rate of 14C. This causes complications when605

updating the 14C ages of the pools at each time step and when computing the total 14C age of the soil from the 14C ages of the
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individual pools. Indeed, to find the combined age AgeA+B of pools A and B, the implementation of SOMic takes a weighted

average over the ages, which is not entirely accurate:

AgeA+B =
CAAgeA +CBAgeB

CA +CB
, (E1)

where Agei and Ci are the 14C age and the carbon stocks, respectively, of pool i. This weighted average formula is used to inte-610

grate the 14C ages of carbon fluxes into the pools at each time step on lines 154–160, and to compute the 14C age of the total soil

on line 210 of file src/SOMIC.cpp in the repository (commit be34e56, Woolf, 2019).
:::::::::::::::::::::::::::::
(available on Zenodo: Woolf, 2024)

:
.

In order to prove that equation (E1) is inaccurate, let us derive how to correctly add the 14C ages of pools A and B. Let 14Ci

denote the 14C stocks and Ci the total carbon stocks of pool i. Then, by conservation of mass, we have615

14CA+B = 14CA + 14CB and CA+B = CA +CB ⇒
14CA+B

CA+B
=

14CA + 14CB

CA +CB
. (E2)

Since the FMabs is proportional to the 14C/C ratio (assuming pools A and B have a similar 13C content
::::::
similar

::::
δ13C

:::::::::
signatures),

the above is equivalent to

FA+B =
CAFA +CBFB

CA +CB
, (E3)

where Fi and Ci are the FMabs and carbon stocks, respectively, of pool i. It follows that the combined 14C age of pools A and620

B is given by

AgeA+B =−λ−1 · log
(
CA exp(−λ ·AgeA)+CB exp(−λ ·AgeB)

CA +CB

)
. (E4)

Notice that equation (E1) is the first non-zero term of the above result’s Taylor expansion around AgeA = 0, AgeB = 0. This

means that equation (E1) works well for ages that are close to zero, i.e. when the ∆14C is close to zero. However, it fails to

accurately predict the propagation of the bomb spike into the soil ecosystem in the latter half of the 20th century, as shown in625

Figure E1. While the error induced by the incorrect implementation exceeds 25
::
20‰ for the bulk soil ∆14C in the 1970s, the

average error in the 2000s and 2010s is only around 10‰, which is relatively minor.

E2 MIMICS

The only MIMICS version already implemented with 14C is published in Wang et al. (2021), and the source code is available

at https://data.csiro.au/collection/csiro:47942v1 (Wang, 2020). However, this 14C implementation is incorrect (see Figure E2).630

The time evolution of the carbon stocks in MIMICS is given by function f(C,t), which depends on the carbon stocks vector

C and time t. Function f is implemented as subroutine modelx in the source file vsoilmic05f_ms25.f90. We can write

function f in terms of internal carbon transfer matrix A and carbon influx vector I:

dC/dt= f(C,t) =A(C,t)C + I(t) , (E5)

where matrix A(C,t) is a function of carbon stocks C and time t, and vector I(t) is time-dependent.635
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Figure E1. Comparison of ∆14C predicted by SOMic with the more and less accurate 14C implementations. For this example simula-

tion, SOMic was run with forcing data corresponding to the top 10
:
5 cm of the mineral soil at

::
of the “Riverbank”

::::
Bugac

::::::::
grassland site in

California
::::::
Hungary,

:
sampled in 1997 (Baisden et al., 2002)

::::
2004

:::::::::::::::::
(Schrumpf et al., 2013). The atmospheric ∆14CO2 of the Northern Hemi-

sphere (Graven et al., 2017) is plotted for reference.
:::
The

:::::
plotted

:::::
model

:::::
output

:::
data

:::
are

:::::::
available

::
in

::
the

::::::::::::
Supplementary

::::::
Material

:::::
(Table

::::
S.2).

:

Then, following the same procedure which yielded equation (D2), we can derive the equation governing the evolution of the
14C stocks (14C):

d14C/dt=−λ14C +A(C,t)14C + 14I(t) , (E6)

where λ is the radioactive decay rate of 14C, and 14I is the external influx of 14C.

However, in the 14C-implementation of MIMICS, the evolution of the 14C stocks is predicted with640

d14C/dt=−λ14C + f(14C,t) =−λ14C +A(14C,t)14C + 14I(t) . (E7)

The above equation is incorrect because
:
,
:::
for

::::
this

::::::
model,

:
A(14C,t) ̸=A(C,t) .

::::
when

:::
the

:::::
pools

:::::
have

:::::::::::
∆14C ̸= 0‰.

:::::
This

::
is

::::::::
especially

::::::::::
problematic

::::::
during

::::
the

::::::::::
bomb-spike

::::::
period,

::::::
where

::::

14C
:::::::::
undergoes

:::
big

:::::::
changes

:::::
while

:::
C

:::::::
remains

::::::
stable,

:::::::
causing

::::::::
A(14C,t)

::
to

::::::
deviate

::::::::::
significantly

::::
from

:::::::
A(C,t).

::::
The

:::::::
incorrect

:::::::::::::
implementation

::::::
causes

:
a
::::::
strong

:::::::::
attenuation

::
of

:::
the ∆14C

::::::
curves

::
of

::
the

:::::::::
metabolic

:::
and

::::::::
structural

:::::
litter

::::
pools

::::
(see

::::::
Figure

::::
E2),

:::::
which

::::::
should

::::
more

:::::::
closely

:::::
follow

:::
the

::::::::::
atmospheric

::::::
curve,

::::::::::
considering645

::
the

::::
fast

:::::::
turnover

:::::
rates

::
of

:::
the

::::
litter

::::::
pools.

:::::::
Another

:::::::::
noticeable

:::::
effect

::
of

:::
the

::::::::
incorrect

::::::::::::::
implementation,

::
as

::::
seen

:::
in

:::::
Figure

::::
E2,

::
is

:::
that

:::
the

::::::
SOMp::::

pool
:::::::::::::
(corresponding

::
to

:::
the

:::::::
MAOM

:::::::
fraction)

:::::::::::
incorporated

:::::
much

:::::
more

:::::::::::
bomb-derived

::::

14C
::::
than

:::
the

::::::
SOMc ::::

pool

::::::::::::
(corresponding

::
to

:::
the

:::::
POM

:::::::
fraction)

::
in
:::
the

::::::
1970s,

:::::
which

::
is
::::::
highly

::::::::::
improbable.

:
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Figure E2. ∆14C output of MIMICS (Wang et al., 2021) with incorrect isotopic implementation. The model was run with the default

parameters and forcing data published with the original source code (Wang, 2020). Our only modification to the source code was to output

the pools’ 14C and 12C stocks for each year. The atmospheric ∆14CO2 of the Northern Hemisphere (Graven et al., 2017) is plotted for

reference. MIMICS pool names: LITm, metabolic litter; LITs, structural litter; MICr , r-strategist microbes; MICK , K-strategist microbes;

SOMp, physically protected soil organic matter; SOMc, chemically protected soil organic matter; SOMa, active soil organic matter.
:::
The

:::::
plotted

:::::
model

:::::
output

:::
data

:::
are

:::::::
available

::
in

::
the

::::::::::::
Supplementary

::::::
Material

:::::
(Table

::::
S.1).

:

Appendix F: Turnover times in the Millennial model

In Millennial version 2 (Abramoff et al., 2022), the POM, MAOM, and Aggregate C pools exchange carbon with each other650

on the scale of a few months. The aggregate formation rate of the POM pool is between 0.012/day and 0.026/day (kpa in Table

A1 of Abramoff et al., 2022), which translates to an average aggregation time of 1–3 months. Meanwhile, the optimized rate of

aggregate formation for the MAOM pool is between 0.0038/day and 0.0052/day (kma in Table A1 of Abramoff et al., 2022),

giving MAOM an average aggregation time of 6–8 months. The Aggregate C pool has a breakdown rate of around 0.02/day

(kb in Table A1 of Abramoff et al., 2022), so aggregates have a turnover time of just 50 days. POM and MAOM exchange their655

carbon rapidly with the Aggregate C pool, which then redistributes the carbon back to the POM and MAOM pools in less than

2 months, on average. This means that, under the assumption of well mixed pools, the 14C signals of the POM, MAOM, and

Aggregate C pools get homogenized within a couple years.

Appendix G:
:::::
Effect

::
of

:::::::::
sampling

::::
year

::
on

::::::::::::
relationships

:::::::
between

::::

14C
::::
and

::::::::::::
environmental

:::::::::::
parameters
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:::
The

::::::
results

:::
and

:::::::
analysis

::
in

::::::
section

:::
3.3

:::
on

:::
the

::::::::::
dependency

::
of

::::::::
observed

:::
and

::::::::
predicted ∆14C

::
on

::::::::::::
environmental

:::::::::
parameters

:::::
could660

:::::::::
potentially

::
be

::::::
biased

:::
due

::
to

:::
the

::::::::
different

:::::::
sampling

:::::
years

::
of

::::
soil

::::::
profiles

:::::
with

:::::::
different

::::::::::::
environmental

::::::::::
parameters.

:::::
While

:::::
there

:
is
:::
no

::::::
strong

::::::::::
relationship

:::::::
between

:::
soil

::::::::::
temperature

::::
and

:::
the

::::::::
sampling

::::
year

::::::
(Figure

::::::
S.1.4),

::
it
:::::
turns

:::
out

:::
that

:::::
most

::
of

:::
the

:::::::
profiles

::::
with

:::::
higher

::::
clay

:::::::
content

:::::::
(>20%)

:::::
were

:::::::
sampled

::::::
before

::::
2005

::::
and

:::::
those

::::
with

:::::
lower

::::
clay

::::::
content

::::::::
(<20%)

::::
were

:::::::
sampled

:::::
after

::::
2005

::::::
(Figure

::::::
S.1.3).

:::::
Even

::::::
though

:::
the

::::
data

::::::
shown

::
in

::::::
Figure

::
8

:::
are

::::
only

::::::::
spanning

:
a
::::::
period

::
of

:::
18

:::::
years

:::::::::::
(1997–2015),

:::
the

:::::
rapid

::::::
changes

::
in
:::::::::::
atmospheric ∆14CO

:2::
in

:::
the

:::::::::
post-bomb

::::::
period

::::
could

:::::
mean

::::
that

:::
the

::::::::
regression

::::
lines

:::
of ∆14C

::::::
against

::::
clay

::
in

:::::::
subplots665

:::
d–f

:::
are

::::::
biased.

:::
We

::::
can

::::::
attempt

:::
to

::::::
remove

::::
this

::::
bias

::
by

::::::::::::
“normalizing”

::::
the ∆14C

:::
data

::
to

:::
the

::::
year

:::::
2000.

::::
The

::::::::
predicted

:
∆14C

:::
data

:::
are

::::::::::
normalized

::::::
simply

:::
by

:::::::
selecting

:::
the

::::::
model

::::::
output

:::
for

:
1
::::
July

:::::
2000.

::::
The

::::::::::
normalized ∆14C

:::::::::
predictions

:::
for

:::
all

:::::::
models,

::::::
profiles,

::::
and

::::
soil

:::::::
fractions

::::
are

:::::::
reported

::
in

:::::
Table

::::
S.5

:::::::
(column

::::::
names

::::::
ending

::
in
::

“
:::::::::::
_14c_2000

::
”).

:::::::::::
Normalizing

:::
the

::::::::
observed

∆14C
::::
data,

::::::::
however,

::
is
::::::

highly
:::::::::::

problematic,
:::::::::
especially

::
in

::::
the

::::::
context

:::
of

:::
this

:::::::::::
manuscript,

:::::::
because

::
it

:::::::
requires

:::
the

::::
use

::
of

::
a

::::::::
simplistic

:::
soil

::::::
carbon

::::::
model.

:::::::::
Following

:::
the

::::::::::::
normalization

::::::
method

:::::
used

::
in

::::::::::::::
Shi et al. (2020)

:::
and

::::::::::::::::::
Heckman et al. (2022)

:
,
::
we

:::
fit670

:
a
::::::::::
steady-state

:::::
linear

::::::::
one-pool

::::::
model

::
to

:::
the

::::::::
observed ∆14C

:::
data

::::
and

::::
then

::::::
predict

:::
the

:
∆14C

::
in

:::
the

::::
year

:::::
2000

::::
with

:::
the

:::::
fitted

::::::
model.

:::::
Table

::::
S.5

::
in

:::
the

::::::::::::
Supplementary

::::::::
Material

::::
lists

:::
the

:::::::::
normalized

:
∆14C

::::
from

:::
the

::::::::
observed

::::
data

:::::::
(column

::::::
names

::::::
ending

::
in

:
“
:::::::::::
_14c_2000

::
”),

::
as

::::
well

::
as

:::
the

::::::::
turnover

:::
rate

:::
of

:::
the

::::::::
one-pool

:::::
model

:::::
fitted

::::
with

::::::::::::::::::::::::::::
scipy.optimize.minimize

::
in

::::::
python

:::::::
(column

:::::
names

::::::
ending

:::::
with

:
“
::
_k

::
”,

::::
units

:::
of

::::::
inverse

::::::
years),

:::
and

:::::::
whether

:::::::::::
optimization

:::::::::
terminated

:::::::::::
successfully

:::::::
(column

::::::
names

:::::
ending

:::::
with

:
“
::::::::::
_success

::
”),

:::
for

::::
each

::::
soil

::::::
fraction

::::
and

::::
each

::::::
profile.

::::
We

::::
then

::::::
remade

:::::::
Figures

:
7
::::

and
::
8

::::
with

::
all

:::
the

:
∆14C

::::
data675

:::::::::
normalized

::
to

:::
the

::::
year

::::
2000

::::
(see

:::::::
Figures

:::::::
S.1.1.31

:::
and

::::::::
S.1.1.25,

:::::::::::
respectively).

::::::::
Although

:::::::::::
normalization

:::::::
slightly

::::::
shifted

:::::
some

::
of

::
the

:
∆14C

::::
data,

:::
the

:::::
slopes

::
of
:::
the

:::::::::
regression

::::
lines

:::::::
through

:::
the ∆14C

:::
data

:::::::::
essentially

::::::::
remained

:::
the

:::::
same.

:::::::::
Therefore,

:::
our

:::::::
analysis

:::
and

:::::::::::
interpretation

::
of

:::
the

::::::
results

::::::::
presented

::
in

::::::
section

:::
3.3

:::
are

:::::
likely

:::
not

:::::::
affected

:::
by

:::
the

:::::::
different

::::::::
sampling

:::::
years.

:
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