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Abstract. This article presents the C-grid implementation of the CICE sea ice model, including the C-grid discretization of the

momentum equation, the boundary conditions, and the modifications to the code required to use the incremental remapping

transport scheme. To validate the new C-grid implementation, many numerical experiments were conducted and compared to

the B-grid solutions. In idealized experiments, the standard advection method (incremental remapping with C-grid velocities

interpolated to the cell corners) leads to a checkerboard pattern. A modal analysis demonstrates that this computational noise5

originates from the spatial averaging of C-grid velocities at corners. The checkerboard pattern can be eliminated by adjusting

the departure regions to match the divergence obtained from the solution of the momentum equation. We refer to this novel

approach as the edge flux adjustment method. The C-grid discretization with edge flux adjustment allows transport in channels

that are one grid cell wide—a capability that is not possible with the B-grid discretization nor with the C-grid and standard

remapping advection. Simulation results match the predicted values of a novel analytical solution for one-grid-cell-wide chan-10

nels.

Copyright statement. TEXT

1 Introduction

CICE (Hunke et al., 2023) is a dynamic and thermodynamic sea ice model used for a variety of applications such as climate15

modeling (e.g., DeRepentigny et al., 2020), sub-seasonal sea ice forecasting (e.g., Barton et al., 2021) and short-term sea ice
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forecasting (e.g., Smith et al., 2021). Since 2017, the model has been developed by the CICE Consortium, a group of institu-

tions from the USA, Canada, Denmark, and Poland.

Earlier versions of CICE used the Arakawa B-grid (Arakawa and Lamb, 1977, i.e., the horizontal velocity components u and20

v are co-located at cell corners) for the spatial discretization. This co-location of u and v simplifies the treatment of the Coriolis

term and of the off-diagonal part of the water stress term. Another interesting characteristic of the B-grid is the straightforward

implementation of no-slip/no-outflow boundary conditions.

Recently, many CICE users have requested a C-grid capability, in which the u component is defined on east and west cell25

edges and the v component on north and south edges. The C-grid also has appealing characteristics. First, it allows straightfor-

ward coupling with C-grid ocean models (e.g., NEMO, HYCOM, Madec, 2008; Metzger et al., 2014) and atmospheric models

(e.g., GEM, McTaggart-Cowan et al., 2019). Second, as opposed to a B-grid, it can represent transport along channels that

are only one grid cell wide. Finally, the C-grid discretization better represents inertial–plastic compressive waves (Bouillon

et al., 2009). For these reasons, members of the CICE Consortium decided to implement a finite-difference C-grid capability30

in CICE, presented here.

Other widely used continuum-based sea ice models with a C-grid discretization include the Sea Ice modelling Integrated

Initiative (SI3, Vancoppenolle et al., 2023), the sea ice component of the Massachusetts Institute of Technology general cir-

culation model (MITgcm, Losch et al., 2010) and the Sea Ice Simulator (SIS2, Adcroft et al., 2019). In terms of dynamics,35

these sea ice models have many similarities (e.g., they include the elastic-viscous-plastic scheme) but differ in the way sea

ice (and snow) transport is implemented. SI3 uses the Prather (1986) transport scheme which is based on the conservation

of second-order moments. The default approach for transport in the MITgcm is a second order scheme with a superbee flux

limiter. Other options for transport in the MITgcm include upwind schemes and a fifth order scheme with WENO limiters. The

default transport method for sea ice and snow in SIS2 is a non-directionally split first-order upwind scheme, and SIS2 also in-40

cludes options for directionally-split piecewise parabolic, directionally-split piecewise linear, and directionally-split piecewise

constant methods.

When we started working on the C-grid discretization, CICE already included a first-order upwind transport scheme. Up-

wind transport is naturally suited for a C-grid discretization, since edge velocities can be used directly to calculate fluxes on45

the four sides of a quadrilateral grid cell. Although upwind has some desirable characteristics (e.g., it is conservative, stable,

computationally efficient, and sign-preserving), it is very diffusive. Sharp features such as the ice edge are quickly smeared out

when simulating transport with an upwind scheme.

The default advection algorithm for the B-grid in CICE is the remapping transport scheme (Dukowicz and Baumgardner,50

2000; Lipscomb and Hunke, 2004). Although remapping is fundamentally a B-grid transport scheme, we decided to adapt it
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for the C-grid discretization. An important reason for doing this is to be able to reuse a significant part of the code and there-

fore speed up the implementation. The attractive properties of remapping also motivated our choice. Like upwind, incremental

remapping is conservative, stable, and sign-preserving. Although the geometric calculations (computing departure regions for

each cell edge) are relatively expensive, the method scales well when there are many tracers, as is the case in CICE. Also,55

with linear reconstruction of scalar fields, remapping is much less diffusive than upwind and therefore better preserves sharp

features (Lipscomb and Hunke, 2004).

In our first implementation of remapping for the C-grid, the C-grid velocities on cell edges were interpolated to the corners,

and remapping was then applied the same way as for the B-grid. This approach, however, does not simulate transport in one-60

grid-cell-wide channels. Also, some idealized tests showed the presence of numerical noise (a checkerboard pattern) in fields

such as sea ice concentration.

We therefore introduce a novel method for adapting the remapping transport scheme for the C-grid discretization. We re-

fer to this approach as the edge flux adjustment (EFA) method. The EFA method is necessary to eliminate the checkerboard65

numerical noise. Another crucial advantage of the EFA method is that it allows transport in one-grid-cell-wide channels—a

capability that is not possible with the B-grid discretization. As such, our implementation of remapping with the EFA method

should be seen as a hybrid B- and C-grid transport scheme.

The main contribution of this work is (1) the introduction of the novel EFA method for the remapping transport scheme.70

Other contributions include (2) a detailed description and validation of the CICE C-grid spatial discretization, including the

formulation of boundary conditions, (3) the derivation of analytical solutions for one-grid-cell-wide channels and (4) the inter-

pretation of the checkerboard pattern associated with the interpolation of C-grid velocities when using the standard remapping

scheme.

75

This article is structured as follows. Section 2 introduces the momentum and stress equations (2.1) and the equations for

transport (2.2). Section 3 briefly introduces the C-grid spatial and temporal discretizations; more details can be found in Ap-

pendix A. Section 4 describes our initial implementation of incremental remapping for the C-grid along with its weaknesses.

These weaknesses are corrected with the edge flux adjustment method, explained in Sect. 5. Section 6 gives an overview of

the different tests used to validate the new C-grid discretization. Concluding remarks and future work are given in Sect. 7.80

Appendix B presents a modal analysis of the remapping checkerboard pattern. Appendix C describes some modifications to

improve the robustness of the remapping method. Finally, Appendix D introduces a novel analytical solution for one-grid-cell-

wide channels.
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2 Model equations85

2.1 Momentum equation and rheology

The 2D sea ice momentum equation is given by

m
Du

Dt
=−k×mfu+ τ a + τw + τ b +∇ ·σ−mge∇H0, (1)

wherem is the combined mass per m2 of sea ice and snow, u= ui+vj is the horizontal velocity vector with components u and

v, i, j and k are unit vectors respectively aligned with the x,y and z axes of the coordinate system, f is the Coriolis parameter,90

τ a is the air stress, τw is the water (or ocean) stress, τ b is a seabed stress which represents the effect of grounded pressure

ridges, ∇ ·σ is the rheology term with horizontal stress components σ11 = σxx, σ22 = σyy and σ12 = σxy , ge is the Earth’s

gravitational acceleration, and ∇H0 is the sea surface tilt.

When using the B-grid discretization in CICE, there are different approaches for representing sea ice rheology and for95

solving the momentum equation: the viscous-plastic (VP, Hibler, 1979) rheology, which involves an implicit solution; the

elastic-viscous-plastic framework (EVP, Hunke, 2001), which is based on the VP rheology but relies on an explicit method; the

revised EVP approach (rEVP, Lemieux et al., 2012; Bouillon et al., 2013; Kimmritz et al., 2015), and the elastic-anisotropic-

plastic model (EAP, Tsamados et al., 2013). In the current C-grid implementation, only the EVP and rEVP approaches are

available. The EVP implementation is presented below.100

Before describing the EVP equations for the internal stresses, we list a few modifications that were done recently to improve

the flexibility of the VP (B-grid only) and (r)EVP (B-grid and C-grid) approaches. First, following König Beatty and Holland

(2010), the yield curve can include tensile strength (see Lemieux et al. (2016) for details about the implementation in CICE).

Tensile strength improves the simulation of landfast ice in regions of deep water (Lemieux et al., 2016). Second, the stresses105

are formulated in terms of viscosities, as introduced by Hibler (1979). Although only the elliptical yield curve is currently

available, the formulation with viscosities offers more flexibility for defining other yield curves (e.g., Zhang and Rothrock,

2005). Finally, the current implementation includes the plastic potential approach of Ringeisen et al. (2021). Due to the normal

flow rule, the standard VP rheology tends to simulate fracture angles that are too wide compared to observations (Ringeisen

et al., 2019; Hutter et al., 2022). This problem can be remedied with the use of the plastic potential, which defines post-fracture110

deformations (or flow rule) independently from the yield curve. Following Ringeisen et al. (2021), the plastic potential is also

defined by an elliptical curve.

Given these latest innovations, the EVP equations for the internal stresses are given by

∂σ1
∂t

+
σ1
2Td

+
p

2Td
=

ζ

Td
Dd, (2)115
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∂σ2
∂t

+
σ2
2Td

=
η

Td
Dt, (3)

∂σ12
∂t

+
σ12
2Td

=
η

2Td
Ds, (4)

where σ1 = σ11 +σ22, σ2 = σ11 −σ22, p is the replacement pressure (defined below), ζ and η = e−2
G ζ are respectively the

bulk and shear viscosities, eG is the plastic potential’s ellipse ratio of major to minor axes, and Td is a damping time scale for

elastic waves (Hunke, 2001). It is defined as Td = E0∆t where 0<E0 < 1 is a parameter and ∆t is the advective time step.120

Dd = ϵ̇11 + ϵ̇22, Dt = ϵ̇11 − ϵ̇22 and Ds = 2ϵ̇12 are the divergence, the horizontal tension, and the shearing strain rate defined

from the components of a symmetric strain rate tensor. To improve the damping of elastic waves, Eqs. (3) and (4) follow the

formulation proposed by Bouillon et al. (2013) (see also Koldunov et al. (2019) for details).

The bulk viscosity ζ is given by125

ζ =
P (1+ kt)

2∆
, (5)

where P is the ice strength, kt is a parameter between 0 and 1 that determines tensile strength (König Beatty and Holland, 2010)

and ∆ is a deformation (i.e., strain rate) associated with the elliptical yield curve and expressed as ∆=
[
D2

d +
e2F
e4G

(D2
t +D2

s)
]1/2

with eF the elliptical yield curve axis ratio. When ∆ tends toward zero, ζ tends toward infinity. To prevent this singularity,

the denominator ∆ in Eq. (5) is replaced by ∆∗. There are two approaches in the code to define ∆∗. By default, the capping130

approach of Hibler (1979) is used. In this case, ∆∗ =max(∆,∆min) where ∆min is a small deformation. A second approach

with ∆∗ = (∆+∆min) allows a smoother formulation (Kreyscher et al., 2000). Finally, the replacement pressure p ensures

that stresses are zero in the absence of deformations:

p=
P (1− kt)∆

∆∗ . (6)

The ice strength can be calculated with the approach of Hibler (1979) (referred to as H79) or with the Rothrock (1975)135

parameterization (referred to as R75). With H79, P is given by

P = P ∗h̄e−C∗(1−a), (7)

where P ∗ and C∗ are parameters, a is the sea ice concentration, and h̄ is the mean thickness. Details about the more compli-

cated R75 approach can be found in Rothrock (1975) and Lipscomb et al. (2007).

140
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2.2 Transport equation

Roach et al. (2018) recently introduced in CICE a joint probability distribution f(h,r) of sea ice thickness h and floe size r.

For simplicity, the transport equation is introduced here by only considering the sea ice thickness distribution g(h). Further

information about horizontal transport in CICE can be found in Lipscomb and Hunke (2004).

145

The evolution of g(h) is given by

∂g

∂t
=−∇ · (gu)− ∂(gft)

∂h
+ψ, (8)

where ft is the rate of thermodynamic ice growth and ψ is a mechanical redistribution term. CICE solves this equation using

an operator-splitting approach; the change of g(h) from one time level to the next is computed in three steps where only one

term on the right hand side is nonzero in each step. The last two terms in Eq. (8) are handled by the column physics model in150

CICE, called Icepack. Here, we only consider the change of g(h) due to the horizontal transport term −∇ · (gu).

3 Spatial and temporal discretizations of the momentum equation

The spatial discretization of the new C-grid implementation is based on finite differences using curvilinear coordinates on a

fixed Eulerian mesh. It differs from the B-grid implementation in the way the stresses, strain rates, and other terms in Eqs. (1)–155

(4) are discretized. Our implementation mostly follows the work of Bouillon et al. (2009), Bouillon et al. (2013) and Kimmritz

et al. (2016). In this section we give a brief overview of the C-grid spatial and temporal discretizations of the momentum

equation. Appendix A describes in detail the C-grid spatial discretization of the air stress (A1), the seabed stress (A2) and

the rheology term as well as the time-stepping of the internal stresses (A3); A4 presents the time-stepping of the momentum

equation. For both B- and C-grid implementations, the momentum equation is advanced in time first (with the ice thickness160

distribution held fixed), followed by the transport equation using the newly calculated sea ice velocity field.

Figure 1 shows where variables are defined for the C-grid discretization. Scalar variables such as ice thickness and ice con-

centration are defined at the tracer point T . Unlike the B-grid, where both velocity components are co-located at the corners

(the U points), the C-grid u component is at the midpoint of the east (E) edge, while the v component is at the midpoint of the165

north (N ) edge. In the derivations below, a variable such as uE refers to the u component of velocity evaluated on the east edge

(Fig. 1), and similarly for variables with subscript N , U , or T , which are respectively evaluated at the north edge, the northeast

corner, or the tracer point. The land-ocean mask is originally defined at the T point and referred to as MT , with MT = 1 for

ocean cells and MT = 0 for land cells. Other masks (MU , ME , and MN ) are defined based on MT . For example, MU = 1

only if the four surrounding cells are ocean cells in the MT mask.170
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Figure 1. Schematic of a grid cell (i, j) used for the spatial discretization. The indices i and j define the positions of variables respectively

along the x and y axes. Scalars such as the ice concentration a are defined at the T point, while the C-grid velocity components uE(i, j) and

vN (i, j) are respectively defined at the E and N points. The U point, where both B-grid velocity components are located, is used for some

C-grid variables such as the shear stress σ12.

For the momentum equation, the most complex part of the C-grid implementation is the spatial discretization of the rheology

term (A3). This involves the calculations of strain rates at theU (A3.1) and T (A3.2) points, of ζ, η and the replacement pressure

at the T points (A3.3), and of η at the U points (A3.5). No-slip/no-outflow boundary conditions are applied at the land-ocean

boundaries using ghost velocities (see A3.1 for details). Following Bouillon et al. (2013), D2
s at a T point is obtained from a175

spatial average of D2
s from the four neighboring U points. This is done to enhance numerical stability. Following Kimmritz

et al. (2016), the code includes two methods for calculating η at the U points; the default method averages ηT from the

neighboring ocean cells while the other approach is based on an averaging of the ice strength. Sections A3.4 and A3.6 describe

the time-stepping of the stresses at the T and U points. The calculation of the x and y components of ∇·σ (section A3.7) at the

E points (F1E) and the N points (F2N ) requires σ1T , σ2T , and σ12U . Also, σ12T is calculated in order to diagnose normalized180

internal stresses (Lemieux and Dupont, 2020) at the T points.

4 Initial approach for remapping using C-grid velocity components

Considering only the horizontal transport term, we discretize Eq. (8) in terms of partial ice concentrations an. The transport

equation for thickness category n is given by

∂an
∂t

+∇ · (anu) = 0, (9)185

where an is the ice concentration for category n. Snow volume, ice volume, snow enthalpy, and ice enthalpy also need to be

transported, using equations of the form

∂(anhn)

∂t
+∇ · (anhnu) = 0, (10)
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∂(anhnqn)

∂t
+∇ · (anhnqnu) = 0, (11)

where hn is the snow or ice thickness for category n and qn is the enthalpy.190

The incremental remapping scheme solves Eqs. (9)–(11) in a unified way. Given the velocity field u, departure regions are

computed for each grid cell. Then the quantities an, anhn, and anhnqn are integrated over each departure region, so that

volume and internal energy are transferred conservatively between cells.

Our initial implementation of remapping for the C-grid discretization mostly followed that in Lipscomb and Hunke (2004).195

The differences are related to the interpolation of C-grid velocity components to the U points, as described in Sect. 4.1 below.

4.1 Interpolation of C-grid velocity components and computation of departure regions

Departure regions in the remapping transport scheme are defined by approximating backward trajectories using corner veloci-

ties (U points). In our first implementation of remapping for the C-grid, C-grid velocities were interpolated to the corners, and200

remapping was used in the same way as for the B-grid. The velocity components uE and vN are interpolated to the U points as

uU (i, j) =MU (i, j)

[
uE(i, j)AE(i, j)+uE(i, j+1)AE(i, j+1)

AE(i, j)+AE(i, j+1)

]
, (12)

vU (i, j) =MU (i, j)

[
vN (i, j)AN (i, j)+ vN (i+1, j)AN (i+1, j)

AN (i, j)+AN (i+1, j)

]
, (13)

where AE and AN are grid cell areas evaluated at the E and N points, respectively, and the multiplication by MU (i, j) ensures

that the no-slip/no-outflow boundary conditions (BCs) are respected.205

To improve the accuracy of the estimated departure regions, midpoints of the backward trajectories are computed first. Then,

velocity components are bilinearly interpolated to these midpoints. Finally, these interpolated velocities are used to calculate

the departure points defining the departure regions (Lipscomb and Hunke, 2004).

210

Panel (a) in Figure 2 shows an example of a departure region on the North edge of cell (i, j). The departure region is a

quadrilateral defined by the left (cl) and right (cr) corner points and the left (dl) and right (dr) departure points.

4.2 Weaknesses of the initial approach for remapping using C-grid velocity components

We identified two notable weaknesses with this initial C-grid discretization and remapping implementation. First, a C-grid215

discretization offers the possibility of representing transport in one-grid-cell-wide channels, but our initial implementation did
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Figure 2. Schematic of departure regions (in green) on the north edge of grid cell i, j (in blue) with the standard remapping (a) and the edge

flux adjustment method (b). The departure regions are defined by the left corner point (cl), the right corner point (cr), the left departure point

(dl), and the right departure point (dr). With the edge flux adjustment method, an additional triangle (in orange) is created by shifting the

middle departure point dm based on the edge flux associated with vN (i, j).

not do so. Because of the no-slip/no-outflow BCs, the U velocities are zero on both sides of such a channel, in which case the

departure regions have zero area. Second, we found a numerical problem: in some idealized tests, we observed a checkerboard

pattern in fields such as sea ice concentration. Panel (a) in Fig. 3 shows an example of this pattern, which indicates the presence

of spurious numerical mode(s). This numerical noise is not present when using the upwind scheme (not shown).220

Appendix B presents a modal analysis of a simplified set of perturbed equations (momentum and transport). We show that

a stationary wave explains the formation of the checkerboard pattern. This stationary wave is a consequence of the spatial

averaging used to obtain uU and vU (Eqs. (12) and (13)) for the remapping scheme.

225
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Figure 3. Sea ice concentration field after 15 days for a C-grid simulation with standard remapping (a) or with remapping and the edge

flux adjustment method (b). The domain has 80×80 grid cells with ∆x=∆y = 16 km. The simulation is initialized with a block of ice

with a= 0.8 and h̄= 0.8 m. The wind blows from the west with a magnitude of 5 m s−1, the Coriolis parameter f = 0, and the ocean is

at rest. The displayed range is 0.95 to 1 in order to better visualize the checkerboard pattern. This experiment is referred to as exp1. Some

information (i.e., physical and numerical parameters) about this experiment is given in Table 1.

5 The edge flux adjustment method

5.1 Description of the method

To eliminate the checkerboard pattern, we introduce a novel approach which we refer to as the edge flux adjustment (EFA)

method. With this method, the remapping scheme still calculates departure regions using the U point velocities. However, the

C-grid velocity components are then used to adjust the edge fluxes (or departure regions). Following the example in Fig. 2,230

the departure region is adjusted so that the total flux area Atot is equal to vN∆xN∆t, where ∆t is the advective time step

and vN < 0 in the example shown in Fig. 2. (Note that Atot has the same sign as vn.) This is done by shifting the midpoint

dm of the line segment connecting the departure points dl and dr. Geometrically speaking, this creates an additional departure

triangle (the orange triangle in Fig. 2b).

235

The code computes the coordinates of the shifted dm in a nondimensional coordinate system. In this coordinate system, the

points cl and cr have coordinates (−0.5,0) and (0.5,0). The nondimensional flux area, denoted as Ãtot, is equal to Atot/AN ,

where AN is the grid cell area evaluated at the N point. Given nondimensional coordinates (xdl,ydl) and (xdr,ydr) for the

10



departure points, the nondimensional coordinates (x∗dm,y
∗
dm) for the shifted departure midpoint are obtained as

x∗dm = xdm +α(ydr − ydl), (14)240

y∗dm = ydm −α(xdr −xdl), (15)

where xdm = (xdl +xdr)/2 and ydm = (ydl + ydr)/2 are the initial departure midpoint coordinates, and α is given by

α=
2Ãtot +(xdr −xcl)ydl +(xcr −xdl)ydr

(xdr −xdl)2 +(ydr − ydl)2
. (16)

The adjusted area flux can finally be computed using the points cl = (xcl,ycl), dl = (xdl,ydl), cr = (xcr,ycr), dr = (xdr,ydr)

and dm∗ = (x∗dm,y
∗
dm).245

The initial departure region shown in Fig. 2a is confined to the central region (i.e., cell (i, j) and/or cell (i, j+1)). When

part of the departure region (i.e., a triangle) is located for example in a corner cell (e.g., the northwestern cell (i−1, j+1), not

shown), the area of this corner triangle is subtracted from Atot before adjusting the central portion of the departure region (the

part lying in cell (i, j+1)). In this case, we identify the point (0,yi) where the segment joining dl and dr intersects the left250

edge of cell (i, j+1). The departure point dl is reset to (0,yi) before finding the shifted midpoint dm∗. Thus, the new triangle

with vertices (dl,dr,dm∗) is always located within the central region.

The calculation of (x∗dm,y
∗
dm) as described above is the most common case, with both initial departure points on the same

side of the edge (i.e., ydrydl ≥ 0). We give another less common example in which ydr and ydl have opposite signs. Then there255

are two departure triangles: one on the left with vertices (cl,dl, ip) and one on the right with vertices (cr,dr, ip), where ip

denotes the point (xi,0) where the departure segment intersects the x axis.

In the case shown (Fig. 4), the nondimensional coordinate xi of the intersection point is greater than zero. There is a similar

case not discussed here with xi < 0.

260

The strategy is to fix the right-hand triangle (the ‘lone triangle’) while modifying the left-hand triangle. Given the required

total area flux Atot = vN∆xN∆t and the area Ar△ of the right-hand triangle (in yellow), the EFA method first calculates

the remaining area flux Al =Atot −Ar△. The middle departure point is reset to (xdl+xi

2 , ydl

2 ), and then dm is shifted so that

the nondimensional area of the green and orange triangles is equal to Ãl =Al/AN . The shifted middle departure point has

nondimensional coordinates265

x∗dm = xdm −αydl, (17)

y∗dm = ydm −α(xi −xdl), (18)
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Figure 4. Schematic of departure regions on the north edge of grid cell i, j (in blue) with the standard remapping (a) and the edge flux

adjustment method (b). The departure region in (a) is defined by the green triangle (with vertices cl, dl, and ip) and the yellow triangle (with

vertices cr, dr, and ip). With the EFA method in (b), the departure region has an additional triangle (orange, with vertices ip, dl, and the

shifted middle departure point dm∗). The orange triangle is calculated based on the edge flux associated with vN (i, j). The yellow triangle

is referred to as the ‘lone triangle’.

where in this case α is given by

α=
2Ãl +(xi −xcl)ydl
(xi −xdl)2 + y2dl

. (19)

When part of the departure region is a corner triangle lying outside cells (i, j) and (i, j+1), it is treated as described above for270

the most common case.

The EFA method ensures that the divergence (associated with edge fluxes) implied by the remapping is consistent with the

divergence calculated by the dynamical solver (i.e., the EVP solver, see Eq. (A24)). Figure 3b shows that the EFA method

prevents the formation of the checkerboard pattern. This pattern originates from an interaction between the solution of the

momentum equation and the standard remapping scheme. To support this conclusion, we conducted the following experiment:275

Velocity fields obtained with the C-grid discretization and the use of the EFA method in the remapping scheme were first

stored. In a second simulation, both the dynamics (i.e., EVP) and EFA method are turned off, and the stored velocity fields are

used for transport in the remapping scheme. In this case, no checkerboard pattern develops, and the concentration field is very

similar to the one shown in Fig. 3b.

280
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The EFA code was added to the standard CICE remapping algorithm described in Lipscomb and Hunke (2004). Although

the remapping algorithm for the B-grid is very robust, we found that some approximations in the computation of departure

regions can be problematic with the new EFA method for the C-grid discretization. Long-term C-grid simulations with the

EFA method exhibited rare failures on non-uniform grids. The remapping code in CICE includes many consistency checks

to ensure that the solution is physically sound, for example that transport does not lead to negative area or mass. The code285

failed on rare occasions with negative area and mass values close to land or the ice edge. These negative values were a result

of approximations in the area of the departure region. Appendix C describes the changes in the remapping algorithm that were

required to fix this robustness issue. Note that many of these modifications slightly alter the departure areas for both the B-grid

and the C-grid (with the EFA method) discretizations. With these changes to the remapping, the algorithm is now robust for

both B-grid and C-grid simulations on non-uniform grids.290

5.2 Transport through one-grid-cell-wide channels

Interestingly, the EFA method also remedies the other weakness of our initial implementation: the absence of transport in

one-grid-cell-wide channels. Although the initial departure regions have zero area (because the U point velocities are zero

along the channel edges), the departure regions are adjusted based on C-grid velocity components (e.g., the vN component295

would be non-zero for a north–south channel). In this case, the departure region is simply defined by (xcl,ycl), (xcr,ycr), and

(x∗dm,y
∗
dm) with x∗dm = 0.

A minor code modification was nevertheless required. Before this modification, the edge fluxes were calculated only when

at least one of the two departure points was displaced from its corner. Given non-displaced departure points for the north edge300

(i.e., uU (i− 1, j) = vU (i− 1, j) = 0 and uU (i, j) = vU (i, j) = 0), edge fluxes are now computed whenever |vN∆xN∆t|> 0.

Similarly for the east edge (i.e. uU (i, j) = vU (i, j) = 0 and uU (i, j− 1) = vU (i, j− 1) = 0), edge fluxes are now computed

whenever |uE∆yE∆t|> 0. Given that the remapping with the EFA method uses velocity components at the U and at the E,N

points and that it allows transport in one-grid-cell-wide channels, it should be viewed as a hybrid B-grid and C-grid approach.

305

To test the new capability for transport, we implemented an idealized configuration with a long one-grid-cell-wide channel.

The initial ice conditions are a= 0.5 and h̄= 1 m over a length of five grid cells (80 km), with a= 0, h̄= 0 m elsewhere.

The wind blows from the west, and the fields are analysed after 30 days of simulation. As expected, there is no transport with

the B-grid discretization (not shown). Using the C-grid discretization, both the upwind method and remapping with the EFA

method lead to transport in the channel (Fig. 5). As shown by Lipscomb and Hunke (2004) for more complex configurations,310

remapping is much less diffusive than upwind.
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Figure 5. Simulated thickness after 30 days along a one-grid-cell-wide channel for the C-grid with remapping (blue) and upwind (orange).

These simulations were initialized with a= 0.5 and h̄= 1 m over a region five grid cells long (gray). The wind blows from the west at 5 m

s−1, ∆x=∆y = 16 km, and the ocean is at rest. This experiment is referred to as exp2 in Table 1.

6 Validation of the C-grid implementation

We validated the new C-grid implementation with the EFA method using several approaches, including (1) symmetry tests,

(2) thorough comparison of C-grid simulations with the default B-grid simulations, (3) comparison of C-grid simulations with315

analytical solutions, and (4) diagnostics of simulated stress states. This section gives an overview of the different tests. For

all the simulations presented here, we used version 6.5.0 of CICE, which includes our C-grid modifications. Unless otherwise

specified, we used default values for most physical and numerical parameters. In the experiments described below, we mostly

modified the strength parameterization, P ∗, ∆min, the number of EVP subcycles (nevp) andE0, in order to broaden the variety

of tests (e.g., ice strength parameterization) and in some cases to improve the numerical convergence of the EVP method (nevp320

and E0). See Table 1 for experiment details.

We conducted many idealized tests to verify the symmetry of simulated fields. Figure 6 shows an example. The thickness

fields after 14 days are perfectly symmetrical (bit-for-bit) for the four oblique (i.e., northeast, southeast, southwest and north-

west) wind directions. Similar tests with the wind blowing from the west, east, north, and south also give symmetrical results,325

but with small differences (maximum difference is 4×10−4 m). Changing the capping method to the smoother formulation
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(i.e., capping_method = ’sum’) leads to bit-for-bit results.

Figure 6. Simulated sea ice thickness after 14 days for winds blowing toward the northwest (a), northeast (b), southwest (c), and southeast

(d). The domain has 80×80 grid cells with ∆x=∆y = 16 km. The simulation is initialized with uniform ice conditions with a= 0.8 and

h̄= 0.8 m. The wind components have values of ±5 m s −1. The ocean is at rest and f = 0. This experiment is referred to as exp3 in Table

1.

We also evaluated more realistic simulations with B-grid runs as references. We compared C-grid runs on 1◦ and 3◦ global

grids to B-grid runs initialized and forced by the same fields. The JRA-55 reanalysis (Kobayashi et al., 2015) is used for the330

atmospheric forcing fields while the ocean forcing was derived from a Community Earth System Model (CESM) simulation

(Kay et al., 2015). Panels a) and b), respectively, in Fig. 7 show the total simulated sea ice volume for the Northern and South-

ern Hemispheres for a 1◦ B-grid simulation with remapping transport (reference, orange), a 1◦ B-grid simulation with upwind

transport (blue), and a 1◦ C-grid simulation with remapping transport (dashed violet). Only the C-grid simulation uses the EFA

method. Compared to the reference B-grid simulation, changing the grid discretization has a smaller impact on the total volume335
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than changing the advection scheme. This is particularly evident in the Southern Hemisphere.

This conclusion is further supported by spatial maps of sea ice thickness. The monthly mean ice thickness in December

2009 for a 1◦ C-grid simulation with remapping is qualitatively correct, with the thickest ice found north of Greenland and

in the Canadian Arctic Archipelago (Fig. 8). When compared to the reference simulation (B-grid with remapping), the ice is340

thinner in the regions of thick ice (Fig. 9a) although these differences are generally less pronounced than those for a B-grid

with upwind compared to the reference (Fig. 9b). The same is true for the Southern Hemisphere (not shown).

The checkerboard pattern was not visible in our initial 1◦ and 3◦ C-grid simulations without EFA. Instead, the error mani-

fested as much thicker ice in convergent regions. We speculate this was due to a feedback between excessive ridging associated345

with the checkerboard pattern in velocities (and hence divergence and convergence), and ice growth in open water formed

through the ridging process.

The most complex part of the discretization of the momentum equation is the rheology term. A crucial test is to verify that the

simulated internal stresses are inside (viscous) or on (plastic) the elliptical yield curve. To improve the numerical convergence350

of the EVP solver, the number of subcycling iterations nevp was increased from 240 (default) to 1200 and the elastic damping

parameter E0 was reduced from 0.36 (default) to 0.09 (exp5 in Table 1). Following the approach of Lemieux and Dupont

(2020), we plotted the states of stress, in stress-invariant coordinates, of a snapshot after five days of a 1◦ C-grid simulation.

Figure 10 confirms that the solution is viscous-plastic.

355

Analytical solutions are useful tools for verifying a numerical implementation. We derived novel analytical solutions for

a one-grid-cell-wide channel with cyclic boundary conditions; see Appendix D for the derivation. As sea ice conditions are

assumed constant in space and time, these solutions cannot be used to verify the simulated transport. Nevertheless, they provide

steady-state analytical velocity values. Following the assumptions of this analytical solution with a= 0.8 and h̄= 0.8 m for

an east–west channel, the ice should be in the plastic (viscous) regime for winds larger (lower) than ua∗ = 3.176 ms−1. Given360

ua = 4 ms−1 (i.e., ua > ua∗), the steady-state analytical solution uE calculated independently using a Python code is 0.04095

ms−1. The steady-state solution uE obtained with the new C-grid implementation matches the analytical solution up to the

12th digit. Similarly, for ua = 1.5 ms−1 (i.e., ua < ua∗), the steady-state analytical solution uE is much smaller and is equal

to 7.135×10−6 ms−1. The new C-grid steady-state solution uE matches the analytical solution up to the 9th digit (a difference

less than 10−16 ms−1). The same results are found for a north–south channel. This experiment is referred to as exp6 in Table365

1.
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strength P ∗ ∆min nevp E0

exp1 H79 10 kNm−2 2× 10−9 s−1 1200 0.12

exp2 H79 27.5 kNm−2 1× 10−11 s−1 240 0.36

exp3 H79 10 kNm−2 2× 10−9 s−1 1200 0.12

exp4 R75 - 1× 10−11 s−1 240 0.36

exp5 R75 - 2× 10−9 s−1 1200 0.09

exp6 H79 27.5 kNm−2 2× 10−9 s−1 1200 0.12
Table 1. Table of some physical and numerical parameters used for the experiments.

7 Conclusions

We have designed and implemented a C-grid version of the CICE sea ice model. The C-grid spatial discretization is based

on a finite-difference approach and follows the work of Bouillon et al. (2009, 2013) and Kimmritz et al. (2016). This arti-370

cle describes the finite-difference spatial discretization of the momentum equation, the implementation of no-slip/no-ouflow

boundary conditions, and the use of the remapping transport scheme with C-grid velocities.

The most notable contribution of this work is a novel method for the remapping referred to as the edge flux adjustment

(EFA) method. Preliminary results from idealized experiments showed that the new C-grid discretization for the momentum375

equation and the use of the standard remapping transport scheme could produce checkerboard patterns in fields such as ice

concentration. This numerical noise is not present when using the upwind transport scheme. A modal analysis of a simplified

set of perturbed equations (i.e., momentum and transport with spatial discretization) shows that a stationary wave is responsible

for the checkerboard pattern. This stationary wave results from the interpolation of C-grid velocity components to the U points

for use with remapping, which is fundamentally a B-grid scheme (Dukowicz and Baumgardner, 2000; Lipscomb and Hunke,380

2004). This interpolation can be viewed as a spatial averaging. Many authors (e.g., Batteen and Han (1981)) have demonstrated

that spatial averaging can lead to checkerboard patterns when solving the shallow-water equations, which are similar to our

simplified set of equations. The checkerboard pattern is eliminated by the EFA method.

The EFA method uses C-grid velocity components at their natural locations to modify the departure regions calculated by385

the remapping, such that the implied divergence in the remapping is consistent with the divergence calculated by the dynamical

solver. We also introduced some modifications to the calculation of the area of departure regions to increase the robustness of

remapping with the EFA method on non-uniform grids.

A C-grid discretization offers the possibility of representing transport in one-grid-cell-wide channels. Because of the no-390

slip/no-outflow boundary conditions, the U point velocities at the channel edges are zero, and there is therefore no transport
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when using the standard remapping. The EFA method, however, allows transport in these channels, by creating departure re-

gions with nonzero area based on the C-grid velocities. As such, the remapping with the EFA method should be seen as a

hybrid B- and C-grid transport scheme. Moreover, remapping with the EFA method is much less diffusive than upwind for

idealized channel tests.395

For VP sea ice models, there are few existing analytical solutions due to the complexity of the rheology. We derived novel

analytical solutions for one-grid-cell-wide channels and showed that with several simplifications (uniform ice conditions, con-

stant wind, cyclic boundary conditions, and transport turned off), the sea ice velocity can be obtained analytically for both

plastic and viscous regimes. The steady-state values simulated by CICE match the analytical ones.400

We also conducted multiyear 1◦ global simulations to compare the C-grid solution (using the EFA method) to the reference

B-grid solution (with standard remapping). We ran an additional B-grid simulation with upwind transport. Compared to the

reference B-grid run, the C-grid discretization has a smaller impact on the total volume (and spatial differences) than changing

the advection scheme from remapping to upwind, especially in the Southern Hemisphere.405

Ongoing work within CICE Consortium modeling centers includes coupling this new CICE C-grid implementation to ocean

models such as MOM6 and NEMO and to atmospheric models such as GEM.

Appendix A: Spatial and temporal discretization of the momentum equation410

The spatial discretization is presented below in the same order as in the code.

A1 Air stress at the E and N points

For both B-grid and C-grid implementations, the air stress is calculated at the T point and then interpolated to the required

locations. For the C-grid, τax at the E point and τay at the N point are weighted averages of the values at the neighboring T415

points and are given by

τaxE(i, j) =
1

2AE(i, j)
[τaxT (i, j)AT (i, j)+ τaxT (i+1, j)AT (i+1, j)] , (A1)

τayN (i, j) =
1

2AN (i, j)
[τayT (i, j)AT (i, j)+ τayT (i, j+1)AT (i, j+1)] , (A2)

where AE , AN , and AT are cell areas evaluated at the E, N and T points.420
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A2 Seabed stress at the E and N points

The seabed stress components are τbxE =−CbEuE and τbyN =−CbNvN , where the Cb coefficients are calculated as in

Lemieux et al. (2016) or following the probabilistic approach of Dupont et al. (2022). For both approaches, CbE and CbN are

written as425

CbE(i, j) =
TbE(i, j)

(
√
u2E(i, j)+ v2E(i, j)+u0)

, (A3)

CbN (i, j) =
TbN (i, j)

(
√
u2N (i, j)+ v2N (i, j)+u0)

, (A4)

where TbE and TbN are factors that characterize the maximum possible seabed stress, and u0 is a small velocity parameter

that ensures a smooth transition between the static and dynamic regimes of the seabed stress. The velocity vE is obtained by430

interpolating vN to theE point, and uN is found similarly by interpolating uE to theN point. Using spatial weighted averages,

vE and uN can be concisely written as

vE(i, j) =
1

ANtot

1∑
k=0

0∑
l=−1

vN (i+ k,j+ l)AN (i+ k,j+ l), (A5)

uN (i, j) =
1

AEtot

0∑
k=−1

1∑
l=0

uE(i+ k,j+ l)AE(i+ k,j+ l), (A6)435

whereANtot =
∑1

k=0

∑0
l=−1AN (i+k,j+l) andAEtot =

∑0
k=−1

∑1
l=0AE(i+k,j+l). For example, to clarify the notation,

ANtot =
∑1

k=0

∑0
l=−1AN (i+ k,j+ l) =AN (i, j− 1)+AN (i, j)+AN (i+1, j− 1)+AN (i+1, j).

As opposed to the denominators in Eq. (A3), and (A4), the factors TbE and TbN do not vary during the EVP subcycling.

They are therefore calculated before the subcycling. Following the approach of Lemieux et al. (2016), TbE and TbN are440

TbE(i, j) = k2max[0,(h̄E −hcE)]e
−αb(1−aE), (A7)

TbN (i, j) = k2max[0,(h̄N −hcN )]e−αb(1−aN ), (A8)

where h̄E =max[h̄T (i, j), h̄T (i+1, j)], aE =max[aT (i, j),aT (i+1, j)], hcE = aEhwE/k1, hwE =min[hwT (i, j),hwT (i+

1, j)], h̄N =max[h̄T (i, j), h̄T (i, j+1)], aN =max[aT (i, j),aT (i, j+1)], hcN = aNhwN/k1 and hwN =min[hwT (i, j),hwT (i, j+

1)]. h̄E (h̄N ), hcE (hcN ) and hwE (hwN ) are the mean ice thickness (or ice volume), the critical thickness, and the water depth445
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at the E (N ) point calculated using values at the T point. k1 and k2 are two parameters of the seabed stress parameterization

(Lemieux et al., 2016). The Tb factors are set to zero when the water depth is larger than 30 m.

When the seabed stress is computed based on the probabilistic approach, the calculation of Tb factors is more complicated

than with the method of Lemieux et al. (2016). Details can be found in Dupont et al. (2022). With the probabilistic approach,450

Tb factors are first calculated at the T points, and TbE and TbN are then given by

TbE(i, j) = max[TbT (i, j),TbT (i+1, j)], (A9)

TbN (i, j) = max[TbT (i, j),TbT (i, j+1)]. (A10)

A3 Discretization of rheology455

As opposed to the variational method used for the B-grid (Hunke and Dukowicz, 1997, 2002), our C-grid spatial discretization

is based on finite differences. With this approach, the discretization of ∇ ·σ requires the calculation of σ1 and σ2 at the T

points and of σ12 at the U points. The stresses are calculated in three steps: the computation of strain rates, the computation

of viscosities and replacement pressure, and finally the time-stepping of the stresses from subcycle k to k+1. The subsections

below explain how this is done for the T and U points. The sequence of computations follows that in the code.460

The spatial discretization requires the computation of strain rates and components of the rheology term in curvilinear coor-

dinates. The strain rates are given by

Dd = ϵ̇11 + ϵ̇22 =
1

h1h2

[
∂

∂ξ1
(h2u)+

∂

∂ξ2
(h1v)

]
, (A11)

Dt = ϵ̇11 − ϵ̇22 =
h2
h1

∂

∂ξ1

(
u

h2

)
− h1
h2

∂

∂ξ2

(
v

h1

)
, (A12)465

Ds = 2ϵ̇12 =
h1
h2

∂

∂ξ2

(
u

h1

)
+
h2
h1

∂

∂ξ1

(
v

h2

)
, (A13)

where Dd is the divergence, Dt is the tension, Ds is the shear strain rate, ξ1 and ξ2 are nondimensional coordinates, and h1

and h2 are scale factors referred to as ∆x and ∆y.

In curvilinear coordinates, the x and y components of the divergence of the stress tensor are respectively

F1 =
1

2

[
1

h1

∂σ1
∂ξ1

+
1

h1h22

∂(h22σ2)

∂ξ1
+

2

h21h2

∂(h21σ12)

∂ξ2

]
, (A14)470

20



F2 =
1

2

[
1

h2

∂σ1
∂ξ2

− 1

h21h2

∂(h21σ2)

∂ξ2
+

2

h1h22

∂(h22σ12)

∂ξ1

]
, (A15)

which are Eqs. (20) and (21) in Hunke and Dukowicz (2002).

A3.1 Strain rates at the U points

To solve the momentum equation, shear stresses σ12 are needed at the U points including at land-ocean boundaries. This im-475

plies that strain rates and shear viscosities must be computed at these locations. In the code, strain rates at the U points are first

calculated. The reason for doing this is to follow what is suggested in Bouillon et al. (2013); to enhance numerical stability,

D2
sT in ∆T is a weighted average of the D2

sU around it.

As described later in Sect. A3.5, there are two methods for calculating η at the U points. Following Kimmritz et al. (2016),480

we refer to these methods as C1 and C2. The C1 method requires only DsU , while the C2 method requires DdU , DtU , and

DsU . C1 is the default method, but for completeness we explain here how DdU , DtU , and DsU are computed.

To ease the implementation of the boundary conditions (BCs) in the code, strain rates at theU points are calculated differently

than at the T points. To do so, the derivatives in Eqs. (A11), (A12), and (A13) are expanded. First, for the divergence, Eq. (A11),485

we expand the derivatives and write

Dd =
1

h1h2

[
h2
∂u

∂ξ1
+u

∂h2
∂ξ1

+h1
∂v

∂ξ2
+ v

∂h1
∂ξ2

]
. (A16)

The discretized form of divergence at the U point (i, j) is therefore

DdU (i, j) =
1

h1U (i, j)h2U (i, j)
[h2U (i, j)(u

∗
N (i+1, j)−u∗N (i, j))+uU (i, j)(h2N (i+1, j)−h2N (i, j))+

h1U (i, j)(v
∗
E(i, j+1)− v∗E(i, j))+ vU (i, j)(h1E(i, j+1)−h1E(i, j))], (A17)

where u∗N (i+1, j), u∗N (i, j), v∗E(i, j+1), and v∗E(i, j) are modified versions of uN (i+1, j), uN (i, j), vE(i, j+1), and vE(i, j)490

to take into account the BCs. This is explained below. The velocity components interpolated to the U points follow Eqs. (12)

and (13).

Similarly, to calculate Dt at the U points we expand the derivatives in Eq. (A12) and write the tension as

Dt =
1

h1h2

[
h2
∂u

∂ξ1
−u

∂h2
∂ξ1

−h1
∂v

∂ξ2
+ v

∂h1
∂ξ2

]
. (A18)495

The discretized form of this equation is
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DtU (i, j) =
1

h1U (i, j)h2U (i, j)
[h2U (i, j)(u

∗
N (i+1, j)−u∗N (i, j))−uU (i, j)(h2N (i+1, j)−h2N (i, j))−

h1U (i, j)(v
∗
E(i, j+1)− v∗E(i, j))+ vU (i, j)(h1E(i, j+1)−h1E(i, j))]. (A19)

Finally, for the shear strain rate we write Eq. (A13) as

Ds =
1

h1h2

[
h1
∂u

∂ξ2
−u

∂h1
∂ξ2

+h2
∂v

∂ξ1
− v

∂h2
∂ξ1

]
, (A20)

with the discretized form500

DsU (i, j) =
1

h1U (i, j)h2U (i, j)
[h1U (i, j)(u

∗
E(i, j+1)−u∗E(i, j))−uU (i, j)(h1E(i, j+1)−h1E(i, j))+

h2U (i, j)(v
∗
N (i+1, j)− v∗N (i, j))− vU (i, j)(h2N (i+1, j)−h2N (i, j))]. (A21)

Away from the land-ocean boundaries, u∗E(i, j) = uE(i, j), u∗E(i, j+1) = uE(i, j+1), v∗N (i, j) = vN (i, j), etc. However, at

ocean-land boundaries, no-slip, no-outflow BCs are implemented by setting uU (i, j) = vU (i, j) = 0 and by using ghost values

for the other terms. As an example, consider vN (i, j) and vN (i+1, j) when the T cells at (i+1, j) and (i+1, j+1) are land

cells. We need vN (i, j) and vN (i+1, j) to calculate the ∂v/∂ξ1 term in DsU . As vN (i, j) is in the ocean, v∗N (i, j) = vN (i, j).505

However, as vN (i+1, j) is on land, it is not defined and must be formulated using the BCs. We assume that vN varies linearly

at the ocean-land boundary. We therefore write vN =mx+ b where m is the slope and b is the value of vN at x= 0 which is

defined at the ocean-land boundary. Using the no-outflow condition implies that b= 0. Given h1N (i, j)/2 (the distance between

the ocean-land boundary and the N(i, j) point) and h1N (i+1, j)/2 (the distance between the ocean-land boundary and the

N(i+1, j) point), it is easy to show that510

v∗N (i+1, j) =−vN (i, j)
h1N (i+1, j)

h1N (i, j)
, (A22)

where in the case of a uniform Cartesian grid, v∗N (i+1, j) is simply vN (i, j) multiplied by −1. To take into account all the

possible cases, the mask at the N point (MN ) is used for the final formulation of v∗N (i+1, j):

v∗N (i+1, j) = vN (i+1, j)MN (i+1, j)− [MN (i, j)−MN (i+1, j)]MN (i, j)
h1N (i+1, j)

h1N (i, j)
vN (i, j), (A23)

which reduces to v∗N (i+1, j) = vN (i+1, j) away from the ocean-land boundary (i.e., all four T cells are ocean cells).515

A3.2 Strain rates at the T points

Using Eq. (A11), a finite-difference approximation of the divergence at the T point is given by
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DdT (i, j) =
1

h1T (i, j)h2T (i, j)
[h2E(i, j)uE(i, j)−h2E(i− 1, j)uE(i− 1, j)+h1N (i, j)vN (i, j)−h1N (i, j− 1)vN (i, j− 1)]

(A24)

Similarly, using Eq. (A12), the tension at the T point is given by520

DtT (i, j) =
h2T (i, j)

h1T (i, j)

[
uE(i, j)

h2E(i, j)
− uE(i− 1, j)

h2E(i− 1, j)

]
− h1T (i, j)

h2T (i, j)

[
vN (i, j)

h1N (i, j)
− vN (i, j− 1)

h1N (i, j− 1)

]
. (A25)

Following Bouillon et al. (2013), D2
sT is obtained as a weighted average of the neighboring D2

sU :

D2
sT (i, j) =

1

AUtot

0∑
k=−1

0∑
l=−1

D2
sU (i+ k,j+ l)AU (i+ k,j+ l), (A26)

where AU (i, j) is the cell area evaluated at the U point and AUtot =
∑0

k=−1

∑0
l=−1AU (i+k,j+ l). At the T point, the strain

rate ∆T for the viscosities is then calculated as525

∆T (i, j) =

[
D2

dT (i, j)+
e2F
e4G

(D2
tT (i, j)+D2

sT (i, j))

]1/2
. (A27)

A3.3 Viscosities and replacement pressure at the T points

Given ∆T (i, j) as calculated in Eq. (A27), ζT (i, j) with the capping approach of Hibler (1979) is obtained as

ζT (i, j) =
(1+ kt)PT (i, j)

2max(∆T (i, j),∆min)
, (A28)

where the ice strength PT is also evaluated at the T point. Similarly, the replacement pressure at the T point is530

pT (i, j) =
(1− kt)PT (i, j)

max(∆T (i, j),∆min)
∆T (i, j). (A29)

If ζT and pT are regularized with the smoother approach, as in Kreyscher et al. (2000), the denominator max(∆T (i, j),∆min)

in Eqs. (A28) and (A29) is replaced by (∆T (i, j)+∆min). The approach of Hibler (1979) can be used by setting cap-

ping_method = ’max’ in the namelist, while the smoother formulation is used by setting capping_method = ’sum’. Finally

the shear viscosity at the T point is simply ηT (i, j) = e−2
G ζT (i, j).535

A3.4 Time-stepping of the stresses at the T points

For our C-grid implementation, only σ1 and σ2 are required at the T points for time-stepping the velocity components using

the momentum equation. Nevertheless, σ12 is also computed at the T points in order to calculate normalized stresses (Lemieux

23



and Dupont, 2020) as diagnostics. Following Eqs. (2)–(4), the stresses at the T points are time-stepped from subcycle k to540

k+1 as

σk+1
1T (i, j)−σk

1T (i, j)

∆te
+
σk+1
1T (i, j)

2Td
+
pT (i, j)

2Td
=
ζT (i, j)DdT (i, j)

Td
, (A30)

σk+1
2T (i, j)−σk

2T (i, j)

∆te
+
σk+1
2T (i, j)

2Td
=
ηT (i, j)DtT (i, j)

Td
, (A31)

σk+1
12T (i, j)−σk

12T (i, j)

∆te
+
σk+1
12T (i, j)

2Td
=
ηT (i, j)DsT (i, j)

2Td
, (A32)

where ∆te is the subcycling time step.545

It is straightforward to solve the equations above for σk+1
2T (i, j), σk+1

1T (i, j) and σk+1
12T (i, j). Note that ζT , ηT , pT and strain

rates in the equations above are calculated with a velocity field at iteration k.

A3.5 Viscosities at the U points

With our C-grid implementation, only the shear viscosity η is needed at the U points. Two methods in the code can be used to550

calculate ηU . The default method (visc_method = ’avg_zeta’ in the namelist) is a weighted spatial average of the values at the

T points. This is the C1 method of Kimmritz et al. (2016) and is the same method used in Bouillon et al. (2013). With the C1

method, ηU is obtained from a weighted average of the ηT values in ocean cells around the U points. This can be concisely

written as

ηU (i, j) =
1

ATtot

1∑
k=0

1∑
l=0

ηT (i+ k,j+ l)AT (i+ k,j+ l)MT (i+ k,j+ l), (A33)555

where ATtot =
∑1

k=0

∑1
l=0AT (i+ k,j+ l)MT (i+ k,j+ l).

The second method (visc_method = ’avg_strength’ in the namelist) relies on a weighted spatial average of the ice strength

values at the surrounding ocean T points. This is the C2 method of Kimmritz et al. (2016) and also the method used in Bouillon

et al. (2009). The ice strength at the U point is given by560

PU (i, j) =
1

ATtot

1∑
k=0

1∑
l=0

PT (i+ k,j+ l)AT (i+ k,j+ l)MT (i+ k,j+ l), (A34)

where ATtot is the same as for Eq. (A33) above.
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Given ∆U (i, j) =
[
D2

dU (i, j)+ e2F e
−4
G (D2

tU (i, j)+D2
sU (i, j))

]1/2
, the shear viscosity at the U point with capping_method

= ’max’ is given by565

ηU (i, j) = e−2
G

(1+ kt)PU (i, j)

2max(∆U (i, j),∆min)
. (A35)

With capping_method = ’sum’, it is given by

ηU (i, j) = e−2
G

(1+ kt)PU (i, j)

2(∆U (i, j)+∆min)
. (A36)

A3.6 Time-stepping of the stresses at the U points

Using ηU and DsU , the shear stress at the U point is advanced in time from subcycle k to subcycle k+1 according to570

σk+1
12U (i, j)−σk

12U (i, j)

∆te
+
σk+1
12U (i, j)

2Td
=
ηU (i, j)DsU (i, j)

2Td
, (A37)

which can easily be solved for σk+1
12U (i, j). Note that ηU and DsU in the equation above are calculated with a velocity field at

iteration k.

A3.7 Divergence of the stress tensor575

Once the stresses at the T and U points have been advanced in time from k to k+1, the components of the rheology term can

be calculated. Eqs. (A14) and (A15) introduced earlier can be rewritten as

F1 =
1

h1h2

[
h2
2

∂σ1
∂ξ1

+
1

2h2

∂(h22σ2)

∂ξ1
+

1

h1

∂(h21σ12)

∂ξ2

]
, (A38)

F2 =
1

h1h2

[
h1
2

∂σ1
∂ξ2

− 1

2h1

∂(h21σ2)

∂ξ2
+

1

h2

∂(h22σ12)

∂ξ1

]
. (A39)

Using finite differences, the discretized formulation of F1 at the E points is580

F1E(i, j) =
1

h1E(i, j)h2E(i, j)
[
h2E(i, j)

2
[σ1T (i+1, j)−σ1T (i, j)]+

1

2h2E(i, j)
[h22T (i+1, j)σ2T (i+1, j)−h22T (i, j)σ2T (i, j)]+

1

h1E(i, j)
[h21U (i, j)σ12U (i, j)−h21U (i, j− 1)σ12U (i, j− 1)]], (A40)
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while the discretized formulation of F2 at the N points is

F2N (i, j) =
1

h1N (i, j)h2N (i, j)
[
h1N (i, j)

2
[σ1T (i, j+1)−σ1T (i, j)]−

1

2h1N (i, j)
[h21T (i, j+1)σ2T (i, j+1)−h21T (i, j)σ2T (i, j)]+

1

h2N (i, j)
[h22U (i, j)σ12U (i, j)−h22U (i− 1, j)σ12U (i− 1, j)]]. (A41)

A4 Time-stepping of the momentum equation

When using the B-grid discretization, the sea ice momentum equation in CICE can be solved either explicitly with the EVP585

(or revised EVP) approach or implicitly with a Picard solver (similar to the one described in Lemieux et al. (2008)). For now,

only the EVP and revised EVP approaches are implemented for the C-grid discretization.

As this subsection describes the time-stepping, the grid indices (i, j) are omitted to simplify the description. Hence, uE(i, j)

and vN (i, j) are here referred to as uE and vN . Neglecting the advection of momentum and introducing the EVP time-stepping,590

the momentum equations for the uE and vN components are

mEu
k+1
E

∆te
=
mEu

k
E

∆te
+mEfEv

k
E + τaxE + τwxE + τbxE +F1E −mEge

∂H0

∂x
, (A42)

mNv
k+1
N

∆te
=
mNv

k
N

∆te
−mNfNu

k
N + τayN + τwyN + τbyN +F2N −mNge

∂H0

∂y
, (A43)

where the interpolated quantities vE and uN are calculated using Eqs. (A5) and (A6). The terms mE and mN are

mE =
mT (i, j)AT (i, j)+mT (i+1, j)AT (i+1, j)

AT (i, j)+AT (i+1, j)
, (A44)595

mN =
mT (i, j)AT (i, j)+mT (i, j+1)AT (i, j+1)

AT (i, j)+AT (i, j+1)
. (A45)

All the terms in Eq. (A42) are evaluated at the E points, while all the terms in Eq. (A43) are evaluated at the N points.

The seabed stress components are τbxE =−CbEu
k+1
E and τbyN =−CbNv

k+1
N , where the Cb coefficients are calculated as in

Lemieux et al. (2016) or following the probabilistic approach of Dupont et al. (2022). Decomposing the water stress term,

Eqs. (A42) and (A43) can be written as600

(
mE

∆te
+CwE cosθw +CbE

)
uk+1
E = (mEfE ±CwE sinθw)v

k
E + cx, (A46)

(
mN

∆te
+CwN cosθw +CbN

)
vk+1
N =−(mNfN ±CwN sinθw)u

k
N + cy, (A47)
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with

cx =mEu
k
E/∆te + τaxE +CwE (uwE cosθw ∓ vwE sinθw)+F1E −mEge∂H0/∂x,

cy =mNv
k
N/∆te + τayN +CwN (±uwN sinθw + vwN cosθw)+F2N −mNge∂H0/∂y,

CwE = aEρwCdw[(uwE −ukE)
2 +(vwE − vkE)

2]
1
2 ,

CwN = aNρwCdw[(uwN −ukN )2 +(vwN − vkN )2]
1
2 , (A48)

where ρw is the water density, Cdw is the ocean drag coefficient, θw is the turning angle, the sinθw terms have a hemispheric605

dependent sign, uw,vw are the near surface water velocity components (evaluated either at the E or N point) and aE and aN

(the concentration at the E and N points) are given by

aE(i, j) =
aT (i, j)AT (i, j)+ aT (i+1, j)AT (i+1, j)

AT (i, j)+AT (i+1, j)
, (A49)

aN (i, j) =
aT (i, j)AT (i, j)+ aT (i, j+1)AT (i, j+1)

AT (i, j)+AT (i, j+1)
. (A50)610

In a coupled framework, for example, uwE , vwE , uwN , and vwN could come from a C-grid ocean model.

As opposed to what is done for the B-grid, the Coriolis term and part of the water stress are explicit (i.e., at iteration

k) because uE and vN are not co-located. Introducing lE = mE

∆te
+CwE cosθw +CbE , lN = mN

∆te
+CwN cosθw +CbN , rE =

mEf ±CwE sinθw, and rN =mNf ±CwN sinθw, Eqs. (A46) and (A47) become615

lEu
k+1
E = rEv

k
E + cx, (A51)

lNv
k+1
N =−rNukN + cy, (A52)

which can be solved easily for uk+1
E and vk+1

N .

620

The explicit approach for the off-diagonal C-grid terms (as described above) is the same as used by Kimmritz et al. (2016).

Note that for the C-grid, the semi-implicit approach of Bouillon et al. (2009) could be used to solve for uk+1 and vk+1 (see

their Eqs. 34 and 35).

Appendix B: Modal analysis of the remapping checkerboard pattern

We conducted many numerical experiments to understand and simplify the conditions that lead to the checkerboard pattern.625

The goal of this simplification is to allow us to perform a modal analysis and identify the cause of this spurious mode. From

the original experiment with results shown in Fig. 3a, we further simplify the problem by forcing the v component of velocity
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and the shear viscosity η to be zero. Having η = 0 is equivalent to setting eG to infinity. The ice strength is parameterized

according to Hibler (1979). We neglect the snow. We also assume that the concentration is close to 1 and that the ice is in a

single thickness category. In experiments for which the wind pushes the ice against a wall, the checkerboard starts to develop630

close to the wall, This was verified in a few idealized numerical experiments (not shown). We further noticed that when the

checkerboard develops close to the wall, there is convergence and the ice is in the plastic regime. Considering the plastic regime

and the absence of shear stress, the stress σ = σ11 is expressed as

σ =
P

2∆
Dd −

P

2
, (B1)

which becomes σ =−P because ∆= |Dd| and Dd < 0 (convergence).635

We write the momentum and transport equations as

ρh̄
∂u

∂t
= τa + τw −P ∗ ∂h̄

∂x
, (B2)

∂h̄

∂t
+
∂(h̄u)

∂x
= 0, (B3)

where P = P ∗h̄ as we assume that the concentration is close to 1.640

We linearize these equations around h0 and u0. That is, h̄= h0+h
′ and u= u0+u

′, where h′ and u′ are small perturbations.

As |u0| ≫ |u′|, we write the water stress as ρwCdw|u0|(u0+u′). Because Eqs. (B2) and (B3) are valid for the base state h0,u0

and neglecting h′u′ terms, we have

ρh0
∂u′

∂t
+ ρh′

∂u0
∂t

+ ρwCdw|u0|u′ +P ∗ ∂h
′

∂x
= 0, (B4)645

∂h′

∂t
+
∂(h0u

′)

∂x
+
∂(h′u0)

∂x
= 0. (B5)

Because the ice is compact and subject to a no-flow boundary condition, it is reasonable to assume that the base state u0 is

small close to the wall and that we can neglect products of u0 with h′ and with u′. Hence, we neglect the terms ρh′∂u0/∂t,

ρwCdw|u0|u′ and ∂(h′u0)/∂x and finally have

ρh0
∂u′

∂t
+P ∗ ∂h

′

∂x
= 0, (B6)650

∂h′

∂t
+h0

∂u′

∂x
= 0, (B7)
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Equations (B6) and (B7) are similar to the one-dimensional shallow-water equations (with Coriolis set to zero). Many authors

have studied these equations and described the checkerboard patterns that depend on the spatial discretization (Schoenstadt,

1980; Batteen and Han, 1981; Walters and Carey, 1983; Le Roux et al., 2005).655

We assume solutions of the form u′ = ûe−iωt and h′ = ĥe−iωt, where i is the unit imaginary number. Following Batteen and

Han (1981), we adopt a semi-discrete approach; we analyze only the impact of the spatial discretization and do not consider

the time discretization. We first obtain

−iωρh0û+P ∗ ∂ĥ

∂x
= 0, (B8)660

−iωĥ+h0
∂û

∂x
= 0. (B9)

We write û= ũei(kx+ly) and ĥ= h̃ei(kx+ly), where ũ, h̃ define the amplitudes and k, l the wavenumbers, and we conduct

the analysis for a uniform Cartesian grid with grid cells of size ∆x×∆y. The origin of our x and y coordinate system is at

the T point of a grid cell, that is, the T point is at (0,0) while the E and U points are respectively at (∆x
2 ,0) and (∆x

2 ,
∆y
2 ).665

Evaluating Eq. (B8) at the E point, we obtain

−iωρh0ũe
ik∆x

2 +
P ∗h̃

∆x
[eik∆x − 1] = 0, (B10)

which can be rearranged as

ωρh0ũ−
2P ∗h̃

∆x
sin(

k∆x

2
) = 0. (B11)

If the standard remapping (our initial implementation) is used, the departure regions are defined by trapezoids in our670

simple 1D problem. The shape of these trapezoids depends on the U point velocities, which are calculated from the aver-

age C-grid velocities as uU (i, j) =
[uE(i,j)+uE(i,j+1)]

2 . The area of the trapezoid on the east edge is therefore proportional

to [uE(i,j−1)+2uE(i,j)+uE(i,j+1)]
4 . In this case, considering the (perturbed) fluxes for both edges in our simple 1D problem,

Eq. (B9) can be written as

−iωh̃+ h0ũ

4∆x
[ei(

1
2k∆x+l∆y) +2ei(

k∆x
2 ) + ei(

1
2k∆x−l∆y) − ei(−

1
2k∆x+l∆y) − 2ei(

−k∆x
2 ) − ei(−

1
2k∆x−l∆y)] = 0, (B12)675

which becomes

ωh̃− h0ũ

∆x
sin(

k∆x

2
)(1+ cos(l∆y)) = 0, (B13)

Using Eq. (B11) to replace h0ũ in Eq. (B13), we obtain the dispersion relation

ω2 =
2P ∗

ρ(∆x)2
sin2(

k∆x

2
)[1+ cos(l∆y)]. (B14)
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Considering the smallest possible wavelength in the y direction (λ= 2∆y), the wavenumber l is then l = π/∆y. With that680

value of l, we have ω = 0 in Eq. (B14), which means that this wave does not propagate: it is a stationary wave, explaining

the presence of the checkerboard pattern. This [1+ cos(l∆y)] term characterizes the spurious divergence associated with the

interpolation of velocities to the U points. Note that the smallest wavelength in the other direction, λ= 2∆x, is not a problem

because sin2(k∆x
2 ) = sin2(π2 ) = 1.

685

On the other hand, if the EFA method is used, the fluxes are based on rectangles defined by the uE velocity components.

Given the fluxes on the west and east edges, Eq. (B9) can be written as

−iωh̃+ h0ũ

∆x
[e

ik∆x
2 − e

−ik∆x
2 ] = 0, (B15)

which can be rearranged as

ωh̃− 2h0ũ

∆x
sin(

k∆x

2
) = 0. (B16)690

Using Eq. (B11) to replace h0ũ in Eq. (B16), we find the dispersion relation

ω2 =
4P ∗

ρ(∆x)2
sin2(

k∆x

2
). (B17)

Compared to Eq. (B14), the dispersion relation associated with the EFA method (Eq. B17) does not have the [1+cos(l∆y)]

term. As for the sin2(k∆x
2 ) term in Eq. (B14), the smallest wavelength λ= 2∆x does not create a stationary wave.

695

Appendix C: Improved robustness of remapping

Long-term C-grid simulations showed that the novel EFA method with the original remapping algorithm (Lipscomb and Hunke,

2004) sometimes failed on non-uniform grids. These rare failures were due to negative area and mass values close to land or

the ice edge.

700

These negative values were a result of approximations in the area of the departure regions. As explained in Sect. 5.1, the

points defining the departure triangles and the shifted departure midpoints are calculated in nondimensional coordinates. Once

the triangles have been found, their areas are scaled to the true grid dimensions, with an area factorAf assigned to each triangle.

This factor is simply an approximation of the grid cell area at a certain location. Triangle areas A△ are calculated as

A△ =
Af

2
[(x2 −x1)(y3 − y1)− (y2 − y1)(x3 −x1)] , (C1)705

where (x1,y1), (x2,y2), and (x3,y3) are the nondimensional coordinates of the three triangle vertices.
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To enhance the robustness of the remapping, the new code modifies some of the area factors. We show two examples to sum-

marize the problems and solutions. In the first example (Fig. C1), we assume that the ocean cell (i, j) has no ice in category n

before the transport step. We examine the transport calculation for that category. We assume that cells (i− 1, j) and (i, j+1)710

are land cells, while cells (i+1, j) and (i, j− 1) are ocean cells. This means that cell (i, j) can have fluxes only across its east

and south edges. We finally assume that cell (i+1, j) has ice in category n. On the south edge (Fig. C1a), the shifted middle

departure point (dm∗) is in the same cell (i, j) as the initial middle departure point. This reflects the fact that vN (i, j− 1) has

the same sign as vU (i, j− 1) (i.e., vN (i, j− 1)< 0 and vU (i, j− 1)< 0). Less commonly, the departure region on the east

edge is as shown in Fig. C1b, with uE(i, j)> 0, uU (i, j−1)< 0, and |uE(i, j)|> |uU (i, j−1)|. In that case, the initial middle715

departure point dm (not shown) in cell (i+1, j) is shifted to dm∗ in cell (i, j).

On the east edge of cell (i, j), the orange triangle represents an area flux out of the cell, while the yellow triangle is an

incoming flux. On the south edge, all three triangles represent outgoing fluxes. As an = 0 in cell (i, j), the fluxes associated

with the orange and the dark blue triangle are zero. The only triangles that matter are the yellow triangles associated with the720

south and the east edges. The triangle associated with the south edge has vertices (cr,dr, ipy), while the one associated with

the east edge has vertices (cr,dr, ipx). In nondimensional coordinates, the incoming area flux across the east edge is larger than

the outgoing flux across the south edge. This should not lead to a negative net flux for cell (i, j). However, if the area factors

Af are different for the two yellow triangles, the outgoing area can exceed the incoming area, leading to negative ice area in

cell (i, j).725

As described in Sect. 5.1, the EFA method uses the cell area evaluated at the midpoint of the edge to calculate the nondi-

mensional area of the departure region. Both yellow and orange triangles in Fig. C1b therefore have Af =AE(i, j), where

AE(i, j) is the cell area evaluated at theE point. For the south edge, the dark blue and orange triangles haveAf =AN (i, j−1)

(Fig. C1a). Because the yellow triangle is not in the central region of the south edge, it is not part of the adjustment process.730

In the previous version of the remapping, the area factor assigned to this triangle was Af =AU (i, j− 1). On highly deformed

grids, AU (i, j− 1) can be larger than AE(i, j), resulting in negative fluxes.

To improve the robustness of the remapping for C-grid simulations, we modified the code by assigning the area factor

AE(i, j) to the yellow triangle associated with the south edge. Similar modifications are required for triangles referred to as735

TL (top left), BL (bottom left), TR (top right), and BR (bottom right) in the code. These modifications apply with or without

the EFA method.

Differing area factors are less of an issue for the B-grid. Considering the same example, the departure region for the east

edge would be defined by the points cr, dr, and cl (Fig. C1b). The area flux into cell (i, j) would be much larger than the area740

flux out of the cell (yellow triangle in Fig. C1a), and there would be no negative fluxes.
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We omit the details here, but a similar problem can arise with lone triangles (e.g., the yellow triangle in Fig. 4). This triangle

is now assigned Af =AN (i, j) instead of AU (i, j), as was done before in the original code. All the lone triangles now use Af

at the center of the edge that they border.745

As a result of the code modifications described above, another change was required to prevent negative areas. For simplicity,

we omit the EFA triangles in this explanation; see Fig. C2. Here, we assume that the ocean cells (i, j), (i−1, j), and (i+1, j) do

not have ice in category n. Moreover, there are ocean cells to the north with an > 0, while the southern boundary is a coastline

(i.e., land cells). We look at the fluxes for category n.750

In rare situations, the segment joining dl and dr crosses two edges to form two corner triangles on the north edge of cell

(i, j), as shown in Fig. C2a. Since an = 0 in this cell, the departure region inside this cell associated with the north edge does

not contribute to the total flux. This region, defined by the points cl, dl, ipy , and cr, is shown in dark blue in Fig. C2a. Sim-

ilarly, since an = 0 in cell (i+1, j), the green triangle for the north edge (Fig. C2a) and the green triangle for the east edge755

(Fig. C2b) do not contribute to the total flux. The two triangles that matter are the yellow ones. The one for the north edge,

defined by (cr,dr, ipx), represents a flux out of cell (i,j), while the one for the east edge defined by (cl,dl, ipy), corresponds

to an incoming flux. In nondimensional coordinates, the incoming area flux is greater than the outgoing flux. But if the two

triangles have different area factors as described above, the net flux can be negative.

760

With the code changes described above, the yellow triangle for the east edge uses Af =AN (i+1, j). To ensure robustness

(i.e., positive areas) with these changes, the code now uses Af =AN (i+1, j) for the yellow triangle associated with the north

edge (Fig. C2a). This triangle is referred to as TR1 in the code. The green triangle, known as BR1, uses the area factorAE(i, j).

Similar modifications are required for the analogous TL1, BL2, and BR2 triangles.

765

Appendix D: C-grid analytical solution for a one-grid-cell-wide channel

We consider a uniform Cartesian grid with an east-west oriented, one-grid-cell-wide channel, applying cyclic boundary condi-

tions. The wind is constant and blows from the west. We further simplify the problem by assuming that the ocean is at rest and

that the sea surface tilt term, the turning angle and the Coriolis parameter are zero. The ice conditions are considered constant

along the channel with a the concentration and h̄ the mean thickness. For this test, these fields do not change in time, since770

transport, redistribution, and thermodynamics are turned off. Finally, we do not consider the plastic potential and simply set

eG = eF = e. With these simplifications, v = 0 and the u-momentum equation becomes

m
∂u

∂t
= τa + τw +

∂σ11
∂x

+
∂σ12
∂y

. (D1)

32



Because of the cyclic boundary conditions, ∂σ11

∂x = 0. At steady-state, the u-momentum equation therefore becomes

τa + τw +
∂σ12
∂y

= 0. (D2)775

Discretizing Eq. (D2) at the E point, we obtain

τaE(i, j)+ τwE(i, j)+
σ12U (i, j)−σ12U (i, j− 1)

∆y
= 0. (D3)

At steady-state, the shear stresses are given by

σ12 = ηDs, (D4)

where DS = ∂u/∂y because v is zero. Given the ellipse parameter e, η is expressed as780

η =
e−2P

2△∗ , (D5)

where the capping formulation △∗ =max(△,△min) is used. Because ϵ̇11 and ϵ̇22 are zero, △= e−1|DS |.

With τaE(i, j) = aρaCdau
2
a and τwE(i, j) =−aρwCdwu

2
E(i, j), Eq. (D3) can be written as

aρaCdau
2
a − aρwCdwu

2
E(i, j)+

ηU (i, j)DsU (i, j)− ηU (i, j− 1)DsU (i, j− 1)

∆y
= 0, (D6)785

where ρa is the air density, Cda the air drag coefficient and ua the surface wind velocity.

With the no-slip boundary condition, we can approximate the shear strain rate as

DsU (i, j) =
0−uE(i, j)

∆y/2
, (D7)

790

DsU (i, j− 1) =
uE(i, j)− 0

∆y/2
, (D8)

which means that DsU (i, j)< 0 and DsU (i, j− 1) =−DsU (i, j).

We want to solve Eq. (D6) for uE(i, j). For simplicity, we drop (i, j), i.e. uE(i, j) = uE . With strong winds, the ice is in the

plastic regime, that is △∗ =△= e−1|Ds|. We can write Eq. (D6) as795

aρaCdau
2
a − aρwCdwu

2
E − P

e∆y
= 0. (D9)

The transition between the plastic and viscous regimes occurs for a wind velocity ua = ua∗. At this transition, △=△min,

which leads to a sea ice velocity of e△min∆y/2. Replacing uE in Eq. (D9) by that expression gives

aρaCdau
2
a∗ − aρwCdw

[
e△min∆y

2

]2
− P

e∆y
= 0. (D10)
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Solving for ua∗ we get800

ua∗ =

[
ρwCdw

ρaCda

(
e△min∆y

2

)2

+
P

aρaCdae∆y

]1/2

. (D11)

If ua > ua∗ the ice is in the plastic regime and uE can be found by solving Eq. (D9):

uE =

[
ρaCdau

2
a

ρwCdw
− P

aρwCdwe∆y

]1/2
, (D12)

where the first term is the free-drift velocity and the second term, which is due to the rheology, slows down the ice. In the

plastic regime, the shear stresses σ12U (i, j) and σ12U (i, j− 1) are respectively −e−1P/2 and e−1P/2.805

On the other hand, if the wind is weak (i.e, ua < ua∗), the ice is in the viscous regime. In this case △∗ =△min and Eq. (D6)

becomes

aρaCdau
2
a − aρwCdwu

2
E − 2PuE

e2△min∆y2
= 0, (D13)

which can be rewritten as810

u2E +
2P

aρwCdwe2△min∆y2
uE − ρaCdau

2
a

ρwCdw
= 0. (D14)

The solution of Eq. (D14) is thus

uE =− P

aρwCdwe2△min∆y2
+

√(
P

aρwCdwe2△min∆y2

)2

+
ρaCdau2a
ρwCdw

. (D15)

Code and data availability. The CICE code is available on GitHub at https://github.com/CICE-Consortium/CICE. The simulations for

this article were done with release 6.5.0 which can be obtained at https://github.com/CICE-Consortium/CICE/releases/tag/CICE6.5.0 and815

on Zenodo at https://doi.org/10.5281/zenodo.10056499. Release 6.5.0 includes Icepack 1.4.0. The atmospheric forcing fields (JRA55)

and CESM oceanic forcing fields used for the global simulations can be found on Zenodo at https://zenodo.org/records/8118239 and

https://zenodo.org/records/4660188.
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Figure 7. Simulated sea ice volume in the Northern Hemisphere (a) and the Southern Hemisphere (b) as a function of time for the B-grid

with remapping transport (orange), the B-grid with upwind transport (blue) and the C-grid with remapping transport (dashed violet). These

are 5-year simulations on a 1◦ global grid initialized from a long simulation. This experiment is referred to as exp4 in Table 1.
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Figure 8. Monthly mean sea ice thickness (m) after five years (December 2009) for a 1◦ C-grid simulation with the remapping transport

scheme. This experiment is referred to as exp4 in Table 1.
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Figure 9. (a) Difference of the monthly mean sea ice thickness (m) after five years (December 2009) between a 1◦ C-grid simulation with

remapping and a 1◦ B-grid simulation with remapping (reference). (b) Difference of the monthly mean sea ice thickness after five years

(December 2009) between a 1◦ B-grid simulation with upwind and a 1◦ B-grid simulation with remapping (reference). This experiment is

referred to as exp4 in Table 1.
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Figure 10. Stress invariants σI and σII normalized by the ice strength P . These are obtained from a snapshot after five days of a 1◦ C-grid

simulation. This experiment is referred to as exp5 in Table 1.
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Figure C1. Schematic of departure regions on the south (a) and the east (b) edges of grid cell i, j (in light blue). The same code is used to

calculate the departure region for both edges. To do so, the nondimensional coordinate system is rotated by 90◦ for the east edge. This is

why the corners for the east edge are also labeled as left (cl) and right (cr). The same convention applies to the departure points (dr). The

orange triangles on both edges are defined by the EFA method by shifting the middle departure point to dm∗. The intersection point ipy on

the y axis for the south edge has nondimensional coordinates (0,yi) while ipx for the east edge (on the rotated x axis) has nondimensional

coordinates (xi,0).

Figure C2. Schematic of departure regions on the north (a) and the east (b) edges of grid cell i, j (in light blue). The same code is used to

calculate the departure region for both edges. To do so, the nondimensional coordinate system is rotated by 90◦ for the east edge. The corners

are labeled as left (cl) and right (cr). The departure points are dl and dr, and ipx and ipy are intersecting points on the x and y axes.
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