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Abstract. Data assimilation (DA) in marine and freshwater systems combines numerical models and 15 
observations to deliver the best possible characterisation of a water body’s physical and biogeochemical state. 
This DA underpins the widely used 3D ocean state reanalyses and forecasts produced operationally by e.g. the 
Copernicus Marine Service. The use of DA in natural waters is an active field of research, but testing new 
developments in realistic setting can be challenging, as operational DA systems are demanding in terms of 
computational resources and technical skill. There is a need for testbeds that are sufficiently realistic but also 20 
efficient to run and easy to operate. Here, we present the Ensemble and Assimilation Tool (EAT): a flexible and 
extensible software package that enables data assimilation of physical and biogeochemical variables in a one-
dimensional water column. EAT builds on established open-source components for hydrodynamics (GOTM), 
biogeochemistry (FABM) and data assimilation (PDAF). It is easy to install and operate, and flexible through 
support for user-written plugins. EAT is well suited to explore and advance the state-of-the-art in DA in natural 25 
waters thanks to its support for (1) strongly and weakly coupled data assimilation, (2) observations describing 
any prognostic and diagnostic element of the physical-biogeochemical model, and (3) estimation of 
biogeochemical parameters. Its range of capabilities is demonstrated with three applications: ensemble-based 
coupled physical-biogeochemical assimilation, the use of variational methods (3D-Var) to assimilate sea surface 
chlorophyll, and the estimation of biogeochemical parameters. 30 

1. Introduction 
To understand and predict the ocean’s capacity for carbon sequestration, its ability to supply food, and its 
response to climate change, we need to know the ocean state: its physical and biogeochemical properties from 
surface to sea floor. Our ability to directly observe this state is limited: satellites have extensive, often global, 
geographic coverage but only observe the ocean surface, while platforms such as moorings and gliders may 35 
operate throughout the water column but are limited to specific sites or regions. Our best knowledge of the 
ocean state is obtained through data assimilation (DA), which combines numerical models and observations to 
deliver the best possible characterisation of ocean variables. This approach underpins, for instance, the 
multidecadal reanalyses and ten-day forecasts produced by the Copernicus Marine Service (CMEMS; 
https://marine.copernicus.eu). 40 

Data assimilation in marine systems has a long history and is widely used in operational setting (Brasseur et al., 
2009), but the field is still under active development (Moore et al., 2019; Carrassi et al., 2018). A first example: 
the arrival of autonomous observing platforms such as Biogeochemical Argo (Roemmich et al., 2019) and the 
development of new remote sensing products (Brewin et al., 2021) has increased spatial coverage and added 
new types of observations, notably for ocean biogeochemistry. Extensive experiments are needed to assess how 45 
best to integrate these observations in DA pipelines (Skákala et al., 2021; Ford, 2021; Teruzzi et al., 2021a). For 
instance, coupled assimilation of physical and biogeochemical variables shows promise but also comes with 
challenges: it can improve (Goodliff et al., 2019) or degrade assimilation results (Park et al., 2018), depending 
on model and observation specifics. Second, new and enhanced algorithms for blending model simulations and 
observations are continuously being developed, with established schemes such as 3D-Var and the Ensemble 50 
Kalman filter being supplemented by hybrid variational-ensemble schemes and the Particle Filter (Van Leeuwen 
et al., 2015). Third, extending data assimilation to estimate (biogeochemical) parameters (in addition to model 
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state) promises to help understand model deficiencies and to improve parametrisations. However, extensive 
experiments are needed to evaluate the viability of this approach, along with practical aspects such as the spatial 
correlation structure and regionalized setting of estimated parameters (Brankart et al., 2012). In short, the many 55 
promising developments in ocean data assimilation will require rigorous experiments before they can be 
integrated in established (3D) DA systems. 

Unfortunately, 3D data assimilation systems are computationally expensive and time-consuming to run. This 
applies in particular to ensemble-based methods that require potentially order of one hundred of simultaneous 
model simulations. As computational resources are limited, it is typically not feasible to perform extensive 60 
experiments with operational DA systems. A second obstacle is that these systems are technically complex, 
requiring considerable high-performance computing and programming skills to develop, modify and operate. 
The number of people capable of operating them is therefore limited. The consequence of these resource and 
skill requirements is that there is a considerable lag between the development of new DA theory and methods on 
the one hand, and their evaluation and application in production systems on the other. There is therefore a clear 65 
need for DA testbeds that are both efficient to run and easy to operate. 

Here we present the Ensemble and Assimilation Tool (EAT): a flexible and extensible software package that 
enables data assimilation of physical and biogeochemical variables in a one-dimensional (1D) water column. 
Water column models are an ideal test beds for data assimilation: they are sufficiently realistic to resolve 
vertical gradients in temperature, light and biogeochemistry, as well as the role of (turbulent) mixing and its 70 
response to meteorological forcing, yet they are efficient enough to allow one year to be simulated in under a 
minute on a single core of a regular computer workstation. For that reason, experiments in marine data 
assimilation often focus on 1D, for instance, when testing biogeochemical data assimilation in setups with 
parametrised physics (Pelc et al., 2012; Eknes and Evensen, 2002; Simon and Bertino, 2012; Bertino et al., 
2003), offline physics (Lenartz et al., 2007), and online physics (Torres et al., 2006, 2020; Hoteit et al., 2003; 75 
Allen et al., 2003), when assimilating rates as well as state (Mamnun et al., 2022), and when performing 
parameter-state-parameter estimation (Gharamti et al., 2017a, b). EAT is designed specifically to facilitate such 
experiments. At its core, EAT builds upon established open-source frameworks: water column hydrodynamics 
are modelled with the General Ocean Turbulence Model for modelling water column hydrodynamics (GOTM, 
Burchard et al., 1999), biogeochemistry with the Framework for aAquatic biogeochemistry Biogeochemical 80 
Models (FABM, Bruggeman and Bolding, 2014), and data assimilation methods are provided by the Parallel 
Data Assimilation Framework (PDAF, Nerger and Hiller, 2013). Through these frameworks, users have access 
to extensive collections of state-of-the-art biogeochemical models and data assimilation schemes. Moreover, 
these frameworks are also common ingredients of established 3D data assimilation systems; this benefits the 
transferability of developments from 1D EAT to 3D. In the next sections, we describe the feature set and 85 
structure of EAT, along with examples showcasing coupled physical-biogeochemical assimilation, the capability 
to use both ensemble-based and variational methods, and the ability to perform state-parameter estimation. 

2. Methods 
EAT consists of the Python package “eatpy” which manages the data assimilation filter and the observations to 
assimilate, and the Fortran executable “eat-gotm” that contains the 1D hydrodynamic-biogeochemical model 90 
(Fig. 1). In both components, the core functionality is provided by established, Fortran-based open-source 
software packages: 

 the General Ocean Turbulence Model (GOTM, Burchard et al., 1999) simulates the physics 
(temperature, salinity, mixing) of the water column. 

 the Framework for Aquatic Biogeochemical Models (FABM, Bruggeman and Bolding, 2014) 95 
integrates with GOTM to provide a wide range of biogeochemical models. 

 the Parallel Data Assimilation Framework (PDAF, Nerger and Hiller, 2013) provides a wide range of 
data assimilation algorithms. 

By wrapping these existing packages, the EAT-specific source code has remained relatively compact (< 5,000 
lines). 100 
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Figure 1. Components of EAT and its dependencies. Each box indicates a script, compiled executable, Python 
package, or library; arrows indicate dependencies. 

2.1. GOTM: General Ocean Turbulence Model 105 
The General Ocean Turbulence Model (GOTM, Burchard et al., 1999) is a 1D water column model that has 
been actively developed over the last 20 25 years. GOTM is written in Fortran 90. It was originally developed to 
test and compare different turbulence closure models under identical conditions, e.g., forcing and numerics. 
Accordingly, GOTM comes with a comprehensive library of turbulence closure schemes. In addition, it has over 
time been extended to become increasingly flexible and configurable (Burchard et al., 2006). As part of this, 110 
GOTM has been coupled to FABM (see below) to support coupled simulations with a wide variety of 
biogeochemical models. GOTM has numerous applications in the ocean and in lakes, several of which includes 
data assimilation (Torres et al., 2020, 2006; Mattern et al., 2010; Bagniewski et al., 2011; Gharamti et al., 
2017b). 

GOTM uses a single text file in YAML format (https://yaml.org/), gotm.yaml, to describe the physical model 115 
configuration. This file in turn can point to additional forcing files, which are text-based and use a format for a 
time-series of vertical profiles for depth-explicit variables (e.g., temperature, salinity), or a format for time-
series of depth-independent variables (e.g., meteorological forcing). All output is written in NetCDF format. The 
model state, which includes biogeochemistry if active, is written to and optionally read from a restart file; this 
also uses the NetCDF format. 120 

2.2. FABM: Framework for Aquatic Biogeochemical Models 
The Framework for Aquatic Biogeochemical Models (FABM, Bruggeman and Bolding, 2014) is a generic 
Fortran-based framework in which models for marine and freshwater biogeochemistry can be implemented. 
Several comprehensive models have been implemented in FABM, including those used by most CMEMS 
Monitoring and Forecasting Centers (MFCs): 125 

 ERSEM (Atlantic European North West shelves) (Butenschön et al., 2016) 
 BFM (Mediterranean Sea) (Vichi et al., 2020) 
 ECOSMO (Arctic Ocean) (Daewel and Schrum, 2013; Yumruktepe et al., 2022) 
 PISCES (global and Iberian Biscay Irish Sea) (Aumont et al., 2015) 
 ERGOM (Baltic Sea) (Leibniz Institute for Baltic Sea Research, 2015) 130 

Porting of additional CMEMS biogeochemical models (e.g., BAMHBI for the Black Sea) is currently 
undertaken in the project NECCTON (https://www.neccton.eu). 

FABM integrates with a large variety of hydrodynamic models: couplers have been developed for NEMO, 
HYCOM, ROMS, GETM, FVCOM, SCHISM, GOTM, among others. FABM-based biogeochemical models 
analysed in 1D GOTM water columns using EAT are directly available in all these hydrodynamic models, 135 
which notably covers all CMEMS MFCs (HYCOM for the Arctic Ocean, NEMO for the other domains). 
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Accordingly, our understanding of the controllability of BGC models developed by using EAT translates readily 
to production-ready 3D models. 

FABM is configured through a single text file in YAML format, fabm.yaml. This file specifies which 
biogeochemical processes are active during a simulation, their parameterisation, and default initial values for all 140 
state variables. This default initial value is constant across the model domain, but this can be overridden by the 
hydrodynamic model. For instance, when FABM is coupled to GOTM, depth-explicit initial values or 
biogeochemical variables can be read from restarts, or specified by pointing to a text file with profiles in 
gotm.yaml. 

2.3. PDAF: Parallel Data Assimilation Framework 145 
2.4. The parallel data assimilation framework (PDAF, https://pdaf.awi.de, Nerger and Hiller, 2013; Nerger 
et al., 2005) is a model-agnostic framework for data assimilation. PDAF provides different ensemble filters and 
smoothers as well as variational methods. In addition, PDAF provides ensemble diagnostics. As a framework it 
provides support to convert numerical models into models simulating an ensemble of model state realizations. 
The data assimilation methods are implemented in a generic way, allowing PDAF to be applied in various 150 
modelling applications like ocean physics (Brüning et al., 2021) and sea ice (Mu et al., 2019), ocean 
biogeochemistry (Goodliff et al., 2019; Pradhan et al., 2019), hydrology (Kurtz et al., 2016), geodynamo 
(Fournier et al., 2013) and geodynamics (Schachtschneider et al., 2022) or transport dynamics in the atmosphere 
(Pardini et al., 2020). PDAF is implemented in Fortran 95 with some functions of Fortran 2003 and uses 
parallelization with the Message Passing Interface (MPI, Gropp et al., 1994) and OpenMP. It is suited for small 155 
applications or toy models, but also high-dimensional models that run on several thousand processor cores (e.g., 
Kurtz et al., 2016; Nerger et al., 2020). PDAF consist of a core program library and templates for case-specific 
functions, which build the basis for the implementation for a particular model. The structure of PDAF provides a 
clear separation of concerns in between the data assimilation method, the model, and observations that are 
assimilated. 160 

There are different strategies to couple a model with PDAF. The offline coupling uses separate programs for the 
model and the data assimilation, which transfer information on the ensemble of model states via restart files. 
This avoids the need for changes in the model code, but the frequent writing and reading of files as well as full 
model restarts lead to overheads. Computationally more efficient is the online coupling, as used in EAT. In this 
case, the data assimilation step (analysis) is performed within the model avoiding model restarts. Online 165 
coupling is achieved by inserting function calls to PDAF. This can be done by augmenting the model source 
code itself, which then enables simulation of an ensemble of model states in a single execution of the model. 
Alternatively, for models already capable of ensemble simulations, it can be implemented in dedicated DA code 
after an ensemble of model results is received. The latter is the approach adopted by EAT. PDAF-specific 
additions to the code are usually four functions, all of which are placed outside of the actual numerical core of 170 
the model. Overall, the online coupling approach reduces the amount of data that needs to be written to files and 
allows efficient data assimilation, in particular when the forecast phase between two assimilation steps is short 
compared to the start-up time of a model, as is common for GOTM-FABM. 

Since the PDAF core is a program library, it is configured by function arguments. This allows to user to 
implement flexible configuration options that are consistent with the model. In EAT, these options are 175 
configured by the user in a Python run script. The ensemble state is stored internally in an array, which EAT 
synchronizes with the active GOTM-FABM processes before and after the data assimilation update. 

While PDAF supports both offline and online coupling (Nerger and Hiller, 2013; Nerger et al., 2020), EAT uses 
online coupling to connect the model to the DA framework: the model state is updated as part of the data 
assimilation step (analysis) while the simulation remains running. EAT stores the ensemble state internally in an 180 
array, which is synchronized with the active GOTM-FABM processes before and after the DA update. PDAF 
exposes numerous configuration options, which include the type of data assimilation filter to use as well as 
various filters-specific settings. EAT enables the user to set these configuration options in a Python run script. 
Internally, these options are then forwarded to PDAF functions. 

2.5.2.4. Implementation 185 
The data assimilation core of EAT is the “eatpy” Python package, which includes the filter algorithms as well as 
the logic for ensemble generation and observation handling. The user interacts with this package by writing 
compact Python scripts that generate the model ensemble (Fig 2) and that run the data assimilation experiment 
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(Fig 3). This scripting approach allows the user to retain full control: it provides access to all DA configuration 
settings, but also makes it straightforward to insert custom code, for instance, to introduce new ensemble 190 
generation methods or variable transformations. At run time, a data assimilation experiment combines the user’s 
Python run script and a number of instances of the coupled hydrodynamic-biogeochemical model (Fig 1). This 
uses the multiple program-multiple data paradigm, with different components (programs) communicating via 
the Message Passing Interface (MPI) protocol. The user starts a DA experiment using normal MPI syntax, e.g., 
mpiexec -n 1 python <RUNSCRIPT> : -n <NENSEMBLE> eat-gotm <EXTRA_ARGS>. Here, 195 
<RUNSCRIPT> is the name of the Python script that defines the data assimilation experiment (Fig. 3), 
<NENSEMBLE> is the number of ensemble members, and <EXTRA_ARGS> are additional arguments to pass to 
the model, e.g., --separate_gotm_yaml to indicate that different ensemble members use different 
configurations, or –separate_restart_file to indicate that different members use different initial states. 

200 

 
Figure 2. Example Python code for generating a data assimilation ensemble with members differing in the 
parameterisation of the surface momentum flux (scale factors applied to the eastward and northward wind 
components) and turbulence (the background turbulent kinetic energy kmin). These parameters are set in GOTM’s 
configuration file “gotm.yaml”, which specifies the physical model configuration (gotm.yaml), the biogeochemical 205 
model (fabm.yaml), and the initial state (restart.nc)in nested mappings; each parameter is identified by its full path in 
these mappings. Standard numpy functions are used to draw the values scale factor of each parameter and state 
variable from lognormal probability distributions, using an implied median value scale factor of 1 for the scale 
factors and an explicitly specified median value of 3×10-6 m2 s-2 for turbulent kinetic energy(a mean of 0 in log-
transformed space). 210 

 

import eatpy
import numpy as np

N = 20 # ensemble size
with eatpy.models.gotm.YAMLEnsemble("gotm.yaml", N) as f:

f["surface/u10/scale_factor"] = np.random.lognormal(sigma=0.1, size=N)
f["surface/v10/scale_factor"] = np.random.lognormal(sigma=0.1, size=N)
f["turbulence/turb_param/k_min"] = np.random.lognormal(mean=np.log(3e-6), sigma=0.1, size=N)
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Figure 3. An example run script, written in Python, Example code for an EAT experiment in which sea surface 
temperature and chlorophyll are assimilated. Total chlorophyll is a diagnostic of the biogeochemical model, made 215 
available to the DA filter by explicitly adding it to the model state. The Error Subspace Transform Kalman Filter 
Click or tap here to enter text. is used as filter. Biogeochemical state variables are identified by having an underscore in 
their name (this is the case for all FABM-based models). The “select.Select” plugin is used to restrict the filter to 
operating on temperature, salinity and all biogeochemical state variables (i.e., water velocities and turbulent 
quantities are not affected by assimilation). The “transform.Log” plugin is used to log-transform all BGC variables; 220 
any associated observations have already been log-transformed in preprocessing (therefore, transform_obs=False). 
Observations to assimilate are read from files “cci_sst.dat” and “cci_chl.dat” and mapped to model variables “temp” 
and “total_chlorophyll_calculator_result”, respectively. In both cases, the observations were obtaining through 
remote sensing; they are therefore linked to the water surface (the last model layer in GOTM, specified by index -1). 

Under the hood, EAT builds on numerous software components. These include the GOTM, FABM and PDAF 225 
Fortran codes that are distributed with EAT, as well as established Python packages (e.g., numpy, mpi4py). In 
turn, these components depend on third-party libraries such as MPI, BLAS, LAPACK, and NetCDF. It can be 
challenging to assemble and compile these codes and dependencies from scratch. To avoid this becoming a 
bottleneck, EAT uses the conda package manager (https://conda.io) to set up its compilation and execution 
environment. Conda pulls in all required packages (runtime dependencies and any necessary compilers) with a 230 
single command and further ensures the versions of these components are compatible. EAT offers three conda-
based installation options: (1) the user installs a pre-compiled EAT package with a single command that also 
pulls in all runtime dependencies, (2) the user creates the compilation and execution environment with a single 

import eatpy

gotm = eatpy.models.GOTM(diagnostics_in_state=['total_chlorophyll_calculator_result'])

filter = eatpy.PDAF(eatpy.pdaf.FilterType.ESTKF)

bgc_variables = [v for v in gotm.variables if '_' in v]
gotm.add_plugin(eatpy.plugins.select.Select(include=['temp', 'salt'] + bgc_variables))
gotm.add_plugin(eatpy.plugins.transform.Log(*bgc_variables, transform_obs=False, minimum=1e-12))

gotm.add_observations("temp[-1]", "cci_sst.dat")
gotm.add_observations("total_chlorophyll_calculator_result[-1]", "cci_chl.dat")

gotm.run(filter)
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command, and then uses this to compile EAT him/herself. This is appropriate if the user wants to integrate 
custom Fortran code, in particular, additional FABM-based biogeochemical models, (3) the user sets up a 235 
minimal execution environment with a single command, but uses pre-installed compilers to build EAT against 
pre-installed libraries (MPI, BLAS, LAPACK, NetCDF). This is appropriate for high-performance computing 
(HPC) systems, which typically have optimized compilers and libraries installed. These three options work on 
all major platforms – Linux, Mac and Windows. Together, they cover a wide range of use cases: from rapid 
installation on student laptops for a workshop or course, to custom tailored installations on HPC clusters that 240 
will run time-consuming experiments (large ensembles, long simulations, multiple configurations or scenarios, 
computationally expensive biogeochemistry). 

When using ensemble-based or hybrid data assimilation methods, the first step in running an EAT experiment is 
to generate the ensemble. Ensemble members can differ in their initial state (the “restart”), and in their physical 
and biogeochemical configuration (gotm.yaml and fabm.yaml, respectively), which includes parameter values as 245 
well as forcing files. EAT includes logic to manipulate GOTM-FABM’s NetCDF-based restart files and 
YAML-based configuration files (Fig 2). For restart files, EAT provides read/write access to all variables that 
are parts of the model state (physical and biogeochemical, depth-explicit and depth-independent). For 
configuration files, EAT provides read/write access to every setting, independent of its data type (floatfloating-
point, integer, Boolean, string). Thus, it is possible to vary real-valued configuration parameters across the 250 
ensemble, as well as directing different ensemble members to different forcing files (string-valued paths in the 
configuration file). Common perturbation strategies, e.g., scaling the original value(s) of a state variable or 
parameter with some factor drawn from some user-selected distribution, can be implemented with a single line 
of code per variable. As EAT provides full access to the spatially explicit initial state and model configuration, 
more complex strategies can be implemented as well, for instance, ones that impose spatial (vertical) 255 
correlations (Evensen, 2003) or cross-correlations among variables and/or parameters. 

 
Figure 4. The data assimilation cycle in EAT, showing the flow of information through the eatpy.model.GOTM.run 
routine, responsible for observation handling and analysis, and the eat-gotm model component. Dashed arrows 
indicate inter-process communication between eatpy.model.GOTM.run (1 process) and eat-gotm (1 process per 260 
ensemble member), via MPI. After the analysis state is sent back to the model instances (bottom), the cycle repeats 
with the updated state taking the role of state(timeprevious) on the eat-gotm side. 

The runtime data assimilation cycle in EAT is depicted in Fig 4. The eatpy package exchanges information with 
one or more instances of the coupled hydrodynamic-biogeochemical model, GOTM-FABM. Assimilation 
happens online: each of the model instances is preserved in between assimilation cycles, with information 265 
passed via MPI rather than via restart files. Information that is passed includes the time till which to simulate 
and the model state before and after analysis. This model state includes all prognostic fields associated with 
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physics (e.g., temperature, salinity, horizontal velocities, turbulent quantities), pelagic biogeochemistry (e.g., 
nutrients, plankton), and biogeochemical variables at the surface and bottom interfaces (e.g., variables 
associated with benthos/sediments). Furthermore, at the direction of the user (in the run script), this state can be 270 
augmented with any physical and biogeochemical diagnostic field available within GOTM-FABM (e.g., total 
chlorophyll, primary production) and any biogeochemical parameter. The latter enables parameter-state 
estimation, in which the selected parameter(s) become time-varying and are estimated along with the model 
state.  

 275 

A complete data assimilation experiment requires files with observations: one text file per observed variable, 
with each line describing observation time, observed depth (only for depth-explicit observations), observed 
value, and its standard deviation in tab-separated value (TSV) format. This format was chosen over structured 
formats such as YAML because it enables EAT to read in new observations on-demand while the simulation 
progresses, instead of having to parse each observation file in its entirety upon start-up. These oObservations are 280 
linked to model variables (state variables and diagnostics) in the user’s run script. It is also possible to perform 
ensemble-only simulations in which no observations are assimilated; such experiments are often used as control 
in DA studies. They are performed simply by executing the model (eat-gotm) only: mpiexec -n 
<NENSEMBLE> eat-gotm <EXTRA_ARGS>. Finally, it is also possible to run the model in serialstand-alone, 
without MPI; in this case, it behaves exactly as the stand-aloneoriginal GOTM-FABM model would. 285 

 

Figure 5. Example of an EAT plug-in, written in Python, that implements an observation operator that calculates the 
mean chlorophyll concentration over the first optical depth in the model. The plugin augments the model state with 
the custom chlorophyll diagnostic. This diagnostic can subsequently be linked to observations (e.g., Fig 3) 
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Most real-world data assimilation experiments require user-specified logic as part of the data assimilation 290 
update, e.g., to implement custom operators that reconstruct observation equivalents from the model state, to 
limit the data assimilation update to a subset of the model state, to apply anamorphosis functions that transform 
variables into a “Gaussian” space, to apply additional constraints to state variable values (e.g., to ensure values 
remain physically meaningful, or to ensure mass conservation), or to specify the background error covariance 
matrix in variational schemes. EAT makes this possible through plugins: snippets of Python code that execute 295 
during initialization, just before the assimilation update, and just after the assimilation update. These plugins 
have read/write access to the model state variables and all assimilated observations, which allows them to a 
variety of things: during initialization, they can add/remove variables to the state seen by the DA filter, at 
runtime they can transform state variables and/or observations, check and log variable ranges and clip values, or 
save any element of the assimilation update (forecast, analysis, observations) to file. EAT includes example 300 
plugins that perform each of these functions; users can also implement their own, typically directly within the 
run script. An example of a user plugin implementing a custom observation operator is shown in Fig. 5. EAT’s 
plugin infrastructure is additionally used with variational data assimilation schemes (parameterized and hybrid 
3D-Var) to allow the user to provide custom routines for covariance transformation; these are then called during 
the iterative state update. Any number of plugins can be active during an EAT experiment; they will be called 305 
sequentially. EAT’s flexibility extends beyond plugins: users can also implement custom data assimilation 
filters and use these instead of the provided PDAF options; this requires just one Python function that takes in 
the forecast state and observations and returns the analysis state. 

3. Applications 
The EAT package has been applied at different locations in the European seas in three different configurations 310 
(table 1): coupled physical-biogeochemical state estimation by ensemble-based assimilation, biogeochemical 
state estimation by variational assimilation, and joint state-parameter estimation by ensemble-based assimilation 
assimilation. All three setups used meteorological forcings extracted from ERA5 (Hersbach et al., 2023). The 
model setups and EAT scripts are publicly available (see data availability section). 

Table 1. Summary of the EAT applications at three locations with different assimilation setups. 315 

Assimilation 
method 

Location Model Assimilated 
observations 

State estimation Parameter 
estimation 

sequential 
ensemble-
based 
(ESTKF) 

North Sea PISCES satellite sea 
surface 
temperature and 
chlorophyll 

temperature, 
salinity, all 
biogeochemical 
variables 

- 

variational 
(3D-Var) 

Mediterranean 
Sea 

BFM satellite 
chlorophyll 

17 
phytoplankton 
variables 

- 

sequential 
ensemble-
based 
(ESTKF) 

English Channel ERSEM North West 
European Shelf-
sea reanalysis 
assimilating OC 
PFT chlorophyll  

5 diatom 
variables 

maximum 
specific 
productivity at 
reference 
temperature for 
diatoms 

 

3.1. Physical-biogeochemical state estimation with ensemble-based assimilation 
Different types of coupled physical-biogeochemical data assimilation were tested for a 110 m deep site in the 
Northern North Sea (59.33° N, 1.28° E) using the FABM implementation of the PISCES biogeochemical model 
(Aumont et al., 2015). The model is set up to cover the period 2020-2022. Initial conditions were taken from the 320 
World Ocean Atlas 2018 (temperature, salinity, nitrate, phosphate, silicate, oxygen) and GLODAP v2 (total 
dissolved inorganic carbon, alkalinity). Meteorological forcing was taken from the ERA5 reanalysis. Tidal 
forcing was implemented by prescribing horizontal gradients in surface elevation, taken from TPXO9 (Egbert 
and Erofeeva, 2002). 

Two data assimilation experiments were performed: the first assimilated only daily sea surface temperature 325 
observations from the level 4 SST-CCI product, the second additionally assimilated surface chlorophyll 
observations from the level 3 OceanColour CCI product. Both types of observations were mapped to model 
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equivalents in the very top layer of the modelled water column, which is 10 cm thick. In the first experiment, the 
assimilation scheme operates on temperature and salinity only (weak coupling: biogeochemical fields are 
affected through simulation with the coupled model system). In the second experiment, the assimilation scheme 330 
operates on temperature, salinity, all biogeochemical state variables defined by the PISCES model, and the 
diagnostic total chlorophyll concentration, obtained by summing chlorophyll in PISCES’ two phytoplankton 
function types (PFTs). All biogeochemical variables were log-transformed to guarantee positivity, as common in 
biogeochemical data assimilation (e.g., Santana-Falcón et al., 2020; Skákala et al., 2022; Pradhan et al., 2020). 
.Transformation was done with a standard plugin provided by EAT (the Log plugin in Fig. 3), which applies 335 
log-transformation to all model variables and by default also to any associated observations. For the latter, the 
mean and variance of the log-transformed observation is reconstructed from the untransformed mean and 
variance under the assumption that each observation is perfectly log-normally distributed. 

This application uses ensemble-based sequential data assimilation Data assimilation usedwith the Error 
Subspace Transform Kalman filter (Nerger et al., 2012), using   with an ensemble of 20 members. The initial 340 
ensemble was generated by applying log-normally distributed scale factors to: 

 the x- and y-components of the surface wind (u10, v10) 
 the minimum turbulent kinetic energy (kmin), which in GOTM is typically used to parameterise 

unresolved processes that contribute to vertical mixing (e.g., internal waves) 
 the maximum growth rate of nanophytoplankton and diatoms 345 

These parameters were selected to showcase the ability to introduce uncertainty in meteorological forcing (u10, 
v10) as well as the parametrization of the physical and biogeochemical models. Incorporation of other sources 
of uncertainty in the ensemble will be discussed at the end of this section. All ensemble members start from the 
same initial conditions; spread in the ensemble state first seen by the DA filter is generated byand simulating 12 
hours to the time of the first SST observation. 350 

For simplicity, the same probability distribution was used to scale all five parameters: All scale factors were 
drawn from a log-normal distribution with a standard deviation of 0.2 in natural log units. This was done 
independently per ensemble member, for each of the five scale factors (i.e., they are independently distributed). 
The assumption of log-normality is common in biogeochemistry (e.g., Campbell, 1995) and a reasonable choice 
for many turbulent quantities (H. Burchard, pers. comm., 2024). It also ensures that the affected variables 355 
remain positive definite; we note, however, that both the type of distribution and its parameters are easy to 
customize (Fig. 2). 
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Figure 56. Modelled and observed temperature in a free model run (“no DA”) and in the experiment where remotely 360 
sensed sea surface temperatures were assimilated (“DA”). The top panel (a) shows surface temperatures (modelled 
and observed), the middle panel (b) shows the temperature throughout the water column in the free run, and the 
bottom panel (c) shows the difference in temperature between the assimilation experiment and the free run. 

Figure 56a shows the impact of data assimilation on sea surface temperature (SST). The free-running model can 
be seen to have a cold bias in autumn and winter, which is eliminated when SST is assimilated. Figure 5c 6c 365 
shows the impact of assimilation on temperature throughout the water column, compared to the free-running 
reference of Figure 5b6b. It can be seen that data assimilation already has a pronounced impact in summer, 
causing slightly colder surface temperature and considerably warmer (>1°C) temperatures below the original 
thermocline, suggesting enhanced vertical mixing. This pattern generally persists into autumn., although 
occasionally, warmer surface temperatures in the DA experiment cause a decrease in mixing, and accordingly a 370 
shoaling in thermocline depth that manifest as subsurface cooling. 
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Figure 67. Modelled and observed total chlorophyll in a free model run (“no DA”), the experiment where remotely 
sensed sea surface temperatures were assimilated (“phys DA”), and the experiment where remotely sensed 375 
temperature and chlorophyll were assimilated (“phys+bgc DA”). The top panel (a) shows surface chlorophyll 
(modelled and observed), the middle panel (b) shows chlorophyll throughout the water column in the free run, and 
the bottom panel (c) shows chlorophyll throughout the water column for the experiment where both SST and 
chlorophyll were assimilated. 

Figure 6 7 shows the impact of assimilation on surface chlorophyll, both through SST-only assimilation in the 380 
first experiment (weak coupling between physics and biogeochemistry, “phys DA”), and through SST and 
chlorophyll assimilation in the second experiment (“phys + bgc DA”). It can be seen that SST assimilation alone 
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does not necessarily improvehas limited impact on chlorophyll: its main effect is a slight  tends to increase in 
chlorophyll in summer (likely though the enhanced mixing caused by SST assimilation), which deteriorates 
results in 2021 when surface chlorophyll is already overestimated by the model, but improves results in 2022, 385 
when chlorophyll is underestimatedwhich is beneficial but not sufficient to raise chlorophyll to observed values. 
Unsurprisingly, the combined assimilation of SST and surface chlorophyll results in the model closely tracking 
observations throughout the simulation. The impact of assimilation is felt more strongly at depth, however: the 
subsurface chlorophyll maximum is much less pronounced, with concentrations dropping at least twofold. 

This application can be extended in several ways. For example, additional sources of uncertainty can be 390 
introduced when constructing the ensemble. The current setup includes a primitive parametrization of 
meteorological uncertainty through scaling of the surface wind components; more realistic experiments might 
source an ensemble of different meteorological model realizations (i.e., separate meteorological forcing files) 
and distribute those over the EAT ensemble members. EAT facilitates this by allowing its ensemble generators 
to set YAML parameters (e.g., the location of meteorological forcing in gotm.yaml) to member-specific file 395 
paths, similar to how the biogeochemical configuration (fabm/yaml_file) is treated in Fig. 2. Another option 
is to introduce uncertainty in biogeochemical parameters other than phytoplankton maximum growth rate. This 
is easy to realize: all biogeochemical parameters are set in fabm.yaml and any of these can be varied across the 
ensemble by adding a single line in the ensemble generation script as in Fig. 2. Finally, it is possible to vary 
physical and biogeochemical initial conditions across the ensemble, as shown in the last section of Fig. 2. 400 

Another possible extension is to assimilate observations that describe not just the water surface, but also deeper 
layers. Notably, the inclusion of depth-explicit biogeochemical observations, e.g., from ship-based casts, 
automatic profilers or Argo floats, might help determine whether the decrease in subsurface chlorophyll in Fig. 
7 is realistic or an artifact of surface-only chlorophyll assimilation. Inclusion of depth-explicit observations in 
EAT is straightforward, as it merely requires adding a column with depth information to the observation file and 405 
dropping the depth index (-1) in the linked model variable (Fig. 3). Another option would be to account for the 
fact that remotely sensed chlorophyll observations may be representative for a greater depth range than just the 
very first model layer, which here is just 10 cm thick (Gordon and McCluney, 1975). For instance, Fig. 5 
demonstrates how EAT’s plugin architecture can be used to define a custom observation operator that calculates 
the average chlorophyll concentration over the first optical depth in the model, which varies both over time and 410 
between ensemble members (as these differ in chlorophyll-derived light attenuation). By linking remotely 
sensed chlorophyll to this custom chlorophyll metric, biogeochemistry at depth will be better constrained. 

3.2. Finally, EAT lends itself well for further experiments that investigate the impact of assimilation 
of different observations. For instance, an experiment assimilating only sea surface chlorophyll (included 
in the application notebook; see Data Availability section) could help ascertain whether coupled physical-415 
biogeochemical assimilation performs better or worse than biogeochemistry-only assimilation. 
 

3.3.3.2. Biogeochemical state estimation with variational assimilation 
The variational assimilation implemented in EAT has been tested in the Mediterranean Sea using the BFM 
biogeochemical model. For this purpose, GOTM-FABM has been set up for a location the Tyrrhenian Sea 420 
(12.36° E, 39.36° N). The atmospheric forcings and profiles of temperature and salinity used for nudging have 
been obtained using the iGOTM tool (https://igotm.bolding-bruggeman.com/). A relatively weak nudging to the 
temperature and salinity profiles has been imposed applying a one-year relaxation time.  

The BFM model describes the marine lower trophic web through the spatial and temporal evolution of 51 state 
variables. BFM uses variable stoichiometry and represents cycles of carbon, nitrogen, phosphorus, silicon. 425 
Accordingly,In BFM the it explicitly tracks fluxes of these elements between  among theits nutrient pools 
(nitrate, phosphate and silicate) and the living functional types (phytoplankton, zooplankton and bacteria) are 
represented considering their different components (carbon, nitrogen, phosphorous, silicon and chlorophyll) 
(Vichi et al., 2020). 

Here a test with variational assimilation of satellite chlorophyll observations is presented. The variational 430 
assimilation is performed using an opportunely developed EAT plug-in that reflects the 3D variational scheme 
that is operationally implemented to provide the Mediterranean Sea biogeochemical products in the Copernicus 
Marine Service. In the present 1D application, the background error covariance matrix (that propagates the 
assimilation increments across space and variables) is composed by two elements: the vertical covariance 
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operator and the biogeochemical one. As in the 3D application (Teruzzi et al., 2021a), the vertical covariance is 435 
described by a set of precomputed covariances (empirical orthogonal functions of a multiannual simulation), 
while the biogeochemical covariance is limited to the phytoplankton variables and aims at preserving the 
phytoplankton physiological state by keeping constant the ratio among the phytoplankton components. 

In the EAT framework, we performed two simulations for 2019 using BFM to evaluate the variational 
assimilation and its impacts: a run with weekly assimilation of satellite chlorophyll concentration and a free run 440 
without assimilation. The simulations started from vertically varying conditions extracted from Copernicus 
Marine Service reanalysis (Teruzzi et al., 2021b). The assimilation is performed once a week in 2019 using 
weekly averaged observations at a location in the proximity of a BGC-Argo float location (12.36 °E, 39.35° W). 
Chlorophyll satellite observations are extracted from the near real time ocean colour (OC TAC) daily product in 
the Copernicus Marine Service catalogue. The comparison of the two simulations shows the assimilation effects 445 
on chlorophyll (Fig. 78) and primary production (Fig. 89). As expected, at surface the assimilation brings 
chlorophyll concentrations closer to satellite observations (Fig. 78a). Considering chlorophyll concentration in 
the water column, greater assimilation impacts occur during late winter and spring (Fig. 78c), with assimilation 
increasing chlorophyll concentration nearly uniformly in the 0-100 m layer in the late winter mixed bloom (from 
mid-January to mid-February) while decreasing it through March. At the beginning of the stratification phase 450 
(since April) effects of data assimilation are no more uniform along the water column with impacts on the 
localization of the subsurface chlorophyll maximum (that is visible in Fig. 78b). Most relevant effects on 
primary production also occur during late winter and spring (Fig. 89b), impacting the productivity of the surface 
winter bloom time window (Fig. 89a). Even if limited to a shallower layer (0-40 m), variational assimilation 
impacts on primary production are similar to those on chlorophyll in the same season, with increase of primary 455 
production between half of January and half of February and strong decrease in March. Slighter effects on 
primary production occur in summer and in the autumn transition phase. 
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Figure 78.  Modelled and observed chlorophyll in a free model run (“no DA”) and in the experiment where remotely 
sensed surface chlorophyll were assimilated (“DA (3DVar)”). The top panel (a) shows surface chlorophyll (modelled 
and observed), the middle panel (b) shows the chlorophyll throughout the water column in the free run, and the 
bottom panel (c) shows the difference in chlorophyll between the variational assimilation experiment and the free 465 
run.   
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Figure 89.  Modelled primary production in a free model run (“no DA”) and in the experiment where remotely 
sensed surface chlorophyll were assimilated (“DA (3DVar)”). The top panel (a) shows the chlorophyll throughout the 470 
water column in the free run, and the bottom panel (b) shows the difference in chlorophyll between the variational 
assimilation experiment and the free run. 

This application can be easily extended. To better constrain the behavior of the model at depth, it would be 
possible to include chlorophyll profiles as part of the assimilation, or to use a custom observation operator that 
considers a greater depth range when calculating the model equivalent of remotely sensed chlorophyll. Both 475 
options are described in more detail for the previous application. Further, the background error covariances used 
in the variational approach can be reformulated to extend the assimilation to variables other than chlorophyll 
(e.g., profiles of nitrate or oxygen). This is straightforward to implement, as the background error covariances in 
EAT are already controlled by a user-defined plugin when using variational assimilation. A combination of 
plugins can be used to fully specify how biogeochemical variables are affected by the assimilation: to control 480 
which model variables are of interest for assimilation (the Select plugin in Fig 3), to read and apply predefined 
vertical error covariances, and potentially to implement custom schemes that adjust filter-proposed updates or 
extend them to others variables, e.g., by applying preservation rules that force ratios between selected model 
variables to remain the same before and after DA. 

3.4.3.3. Parameter estimation 485 
We demonstrate the use of EAT software in an experiment where uncertain biogeochemical parameters are 
estimated in time-dependent way with the use of ensemble data assimilation techniques established in PDAF. 
The EAT system was run at the L4 location, which is an observing station in the western English Channel (part 
of Western English Channel Observatory, https://www.westernchannelobservatory.org.uk/), within the near-
coastal zone, around 15 km from the Plymouth Sound (50° 15.00' N, 4° 13.02' W). The location is 50 m deep 490 
and is characterized by seasonally stratified dynamics (Pingree and Griffiths, 1978), with significant input from 
nearby river mouths (e.g., Tamar, Plym rivers). The observing station at L4 provides data for essential physical 
variables (e.g., temperature, salinity) and one of the longest continuous time-series (since 1988, Harris, 2010) 
for a number of biogeochemical variables, such as total phytoplankton chlorophyll and carbon biomass, 
nutrients (nitrate, phosphate, silicate, ammonium) and oxygen.  495 

We have focused on the European Regional Seas Ecosystem Model (ERSEM), a highly complex 
biogeochemistry model with > 50 pelagic state variables and > 400 model parameters (Butenschön et al., 2016), 
most of which are highly uncertain. ERSEM uses variable stoichiometry, representing cycles of multiple 
chemical elements (carbon, nitrogen, phosphorus, silicon), with four functional types of phytoplankton 
(picophytoplankton, nanophytoplankton, microphytoplankton, diatoms) and three functional types of 500 
zooplankton. From the many (mostly poorly constrained) ERSEM parameters we selected in this experiment the 
maximum specific productivity at reference temperature of diatoms (Butenschön et al., 2016) (we further use the 
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“diat-MSP” abbreviation), which has been identified as one of the 5 most sensitive ERSEM parameters from the 
point of simulating a selected class of ecosystem target indicators (Ciavatta et al., 2022). In the following, we 
will refer to this parameter as “diat-MSP”. The GOTM-FABM-ERSEM 1D configuration was run for the 3-year 505 
period between November 2014 and October 2017, using initial conditions from a 7-year spin-up run. 

In our experiment we used a 50-member ensemble originating purely from the estimated diat-MSP parameter 
perturbations, where the initial prior perturbations were drawn from a uniform distribution with ±30% interval 
around the currently used parameter value (diat-MSP=1.375 d-1). Although by limiting ensembles only to 
perturbations of the diat-MSP parameter we lack realistic representation of the background uncertainty, it is still 510 
the most pragmatic choice given the constrained size of the ensemble, since introducing additional perturbations 
would introduce significant noise into the parameter-state cross-covariances.  On the other hand, using only diat-
MSP parameter perturbations for the ensemble, introduces perfect correlation between the parameter and the 
assimilated variable, potentially introducing spurious short-term fluctuations into the diat-MSP values. To 
remove this effect, we have low-pass filtered the diat-MSP time-series on a scale of a month.  515 

The EAT assimilation method chosen for our experiment was ensemble-3DVAR relying on ESTKF for 
ensemble transformation. The optimal data for assimilation are diatom chlorophyll, which were not available 
among the L4 data for the relevant period. We thus decided to use the data from the North-West European Shelf 
bi-decadal reanalysis (https://doi.org/10.48670/moi-00059, Skákala et al., 2023) produced by the UK met 
Office, assimilating chlorophyll derived from the ocean color satellite measurements, and partitioned into 520 
phytoplankton functional types (including diatoms) (Brewin et al., 2017). The reanalysis validates nicely against 
many observed L4 variables (Skákala et al., 2023), with the comparison of total chlorophyll being slightly 
worse, probably due to representativity issues and noise in L4 observations (see some discussion in Skákala et 
al., 2023). The reanalysis data were assimilated into the model every 5 days, updating all the ERSEM diatom 
biomass components and the estimated diat-MSP parameter. 525 

Figure 9 10 shows the time-series for diat-MSP, demonstrating that the parameter is highly time-variable. This 
suggests that, as far as model performance is concerned, it is better to change the model structure by accounting 
for diat-MSP time-variability, rather than fitting time-constant parameters as it is done in the present ERSEM. 
Such temporal (as well as spatial) variability in diatom parameters could account for changes in the internal 
diatom species composition, which remains unresolved by the ERSEM model, suggesting that ERSEM needs 530 
improving in its capability to capture biodiversity. However, we need to keep in mind that Fig. 9 10 is only a 
temporally varying parameter fit, and as such should not be over-interpreted, e.g., the varying parameter values 
could be just a simple bias-compensation for various other model deficiencies, which could be also potentially 
related to the large numbers of other poorly constrained ERSEM parameters. 

 535 

Figure 910. The November 2014 – October 2017 time series for the diat-MSP parameter, showing the median value, 
the ensemble spread and the region between the two quartiles around the median.  The figure also shows the 
(constant) parameter value in the non-assimilated case (blue line). 
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 540 

Figure 1011. The time-series for surface diatom chlorophyll-a concentrations comparing the median of the model free 
run ensemble, the assimilated observations from reanalysis, and the median of the ensemble with data assimilation 
active. 

Figure 9 10 also shows that the time-variability of diat-MSP is dominated by the strong seasonal harmonics, 
with high parameter values during Winter and low parameter values during Summer. It is then understandable 545 
that the diat-MSP parameter shows correlation with temperature (R=-0.55) and also with chlorophyll (R=0.48). 
The diat-MSP parameter seasonal variations can be understood from the Fig. 1011, showing that the diat-MSP 
values compensate for the model seasonal biases in the diatom concentrations, i.e. both for the model diatom 
underestimates in the Winter and their overestimates during the Spring bloom. Fig. 10 11 also indicates that the 
Summer low diat-MSP values from Fig. 9 10 might be for a large part a relic of low ensemble spread, leading to 550 
the lack of assimilation impact in the Summer (no assimilation means that the parameters will retain their last 
acquired values). 

This application could be extended to estimate biogeochemical parameters beyond the maximum growth rate of 
diatoms. From a technical point of view, this is straightforward: the list of biogeochemical parameters that are to 
be estimated is configured in the run script through argument fabm_parameters_in_state provided to 555 
eatpy.models.GOTM (for the application’s original run script, see Data availability section). The (scientific) 
challenge is to decide which specific parameters to target, as some biogeochemical models have several 
hundreds of parameters. One potential strategy is to first perform sensitivity analysis to determine which 
biogeochemical parameter have the greatest impact on model results; tools for doing this with GOTM-FABM 
are readily available  (Ciavatta et al., 2022; Andersen et al., 2021). Another important consideration for selecting 560 
parameters is to assess which biogeochemical parameters are most likely to exhibit temporal variability. That 
assessment should highlight parameters that are constant in the original model, but clearly aggregated over 
multiple processes or functional types, and thus likely to vary temporally in reality as the relative importance of 
their constituent processes or functional types changes. Finally, it is worth noting that in EAT, parameters that 
are estimated during assimilation remain the same over the entire water column, even though they become 565 
variable in time. This is also common in 3D data assimilation (Doron et al., 2013). However, if parameter 
variability is assumed to stem from shifts in biological species composition, it is worth noting that the current 
approach cannot account for e.g. separate “light” and “shade” communities (Sournia, 1982), which would 
require parameter values to vary in depth. This is beyond the scope of EAT; the relevant parameters would need 
to be added to the depth-explicit model state within the biogeochemical model code. 570 

4. Discussion 
The EAT software package has several features that make it well suited for exploring the latest developments in 
marine data assimilation. First, its core 1D model, GOTM-FABM, is an online coupled hydrodynamic-
biogeochemical model: it simultaneously simulates the physical and biogeochemical state of the water column. 
This combined state is available to the data assimilation filter, which means that (1) observations of any physical 575 
or biogeochemical variable can be assimilated, and (2) during an assimilation update, observational information 
can propagate to any part of the physical-biogeochemical state via emergent or prescribed cross-covariances. 
This enables coupled data assimilation, for instance, experiments that assess how assimilation of physical 
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observations affects modelled biogeochemistry, or vice versa. Such coupling can either be “weak” (assimilated 
observational information propagates to other variables during simulation with the coupled model system) or 580 
“strong” (observational information additionally propagates to multiple variables during assimilation updates via 
cross-covariances) (Penny et al., 2017) (see the “Coupled physical-biogeochemical data assimilation” 
application). The propagation of information from biogeochemistry to physics placed further demands on the 
model system: first, it requires online physics as in GOTM-FABM, as opposed to parametrized physics (Pelc et 
al., 2012; Eknes and Evensen, 2002; Simon and Bertino, 2012; Bertino et al., 2003) or offline physics (Lenartz 585 
et al., 2007). Second, it benefits from a model system such as GOTM-FABM that explicitly represents 
feedbacks from biogeochemistry to physics, for instance, light absorption by BGC variables that heats the water, 
thereby changing density stratification and (turbulent) mixing (Skákala et al., 2020). These feedbacks modulate 
the link between BGC and physics; in weakly coupled DA experiments, they are the only mechanism through 
which biogeochemistry can influence physics.  590 

A second key feature of EAT is that the biogeochemical state available to the assimilation system is readily 
extensible. Unlike other studies (Torres et al., 2006), it already includes benthic state variables, which permits 
benthic observations to be assimilated and to study the coupling between pelagic and benthic systems in data 
assimilation. In addition, the model state can be augmented with biogeochemical diagnostics, for instance, 
process rates such as net primary production (Mamnun et al., 2022). Any diagnostic already exposed by the 595 
biogeochemical model is available for this purpose; there is no need to reimplement it as part of an observation 
operator within EAT. Even simple expressions dependent on model state, such as the sum of chlorophyll over 
multiple plankton functional types, are typically already available as BGC diagnostics and therefore do not 
require custom user code in order to be assimilated. Finally, the model state can be augmented with any 
biogeochemical parameter to perform parameter-state estimation (see the “Parameter estimation” example). The 600 
value of such parameters then changes over time in response to observations being assimilated (Gharamti et al., 
2017b, a; Simon et al., 2015). At present, temporal but not vertical variation in these parameters is considered: at 
any given time, the parameter value is the same across the water column. This, however, is already sufficient to 
mimic experiments that consider temporal and horizontal variation in parameters, as for instance in Doron et al. 
(2013). 605 

With respect to the data assimilation methodology, EAT provides a wide choice of methods, covering both 
variational data assimilation and sequential estimation methods that include different ensemble Kalman filter 
variants. This allows users to assess the impact of different assimilation methods under identical modelling 
conditions. Moreover, the effect of different configurations options or representations of the covariance matrix 
in parameterized variational methods can be easily examined. Furthermore, EAT supports hybrid approaches 610 
that combine variational and ensemble assimilation. In this case, the user plugin for control variable transforms 
(an example can be found in the variational application; see Data availability section) gets access to the 
ensemble state, which allows the user to combine the background-error covariance matrix with the ensemble-
based one in a variety of ways (Bannister, 2017). Lastly, EAT allows to perform twin experiments in which 
synthetic observations are assimilated and the true state, which is to be estimated, is known. For this, a simple 615 
model run with EAT can produce the true state. Synthetic observations are subsequently generated by sampling 
this true state and adding perturbations. Starting from a different initial state, one can then assimilate these 
observations. This approach allows one to study what the application of data assimilation can achieve in an 
optimal case. Likewise, it can give an indication of the ability of certain observations to constrain the model 
state or parameters. In general, EAT is flexible: user plugins are given full control over observations, forecasts, 620 
and analyses (with the ability to override proposed state updates). Ensemble members can differ in both state 
and configuration, and ensemble states can be saved and reused through support for restart files. These features 
can be combined in any number of ways to design new data assimilation experiments. Thus, the applications 
described here are representative of EAT functionality, but not exhaustive. 

Finally, by building on established frameworks, EAT can offer the same state-of-the-art process descriptions 625 
and data assimilation algorithms that are used in operational data assimilation systems. Through GOTM, it 
supports a comprehensive library of turbulence closure schemes, as well as empirical vertical mixing schemes 
such as KPP (Li et al., 2021). Through FABM, EAT has access to a large and rapidly growing collection of 
biogeochemical models, including many used in reanalysis, forecasting and climate studies (e.g., ERSEM, 
BFM, PISCES, MEDUSA, ECOSMO, ERGOM). Through PDAF, it has access to the latest data assimilation 630 
algorithms, including ensemble-based, variational (3D-Var), and hybrid methods. 
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1D data assimilation systems such as EAT are valuable on their own for research and operational use (Thomas 
et al., 2020), but they also often serve as stepping stone to incorporating new DA theory and methods in 3D 
operational systems. EAT facilitates this by building on GOTM, FABM and PDAF. These frameworks and their 
underlying models and algorithms are widely used in existing 3D data assimilation systems. Therefore, 635 
knowledge gleaned through EAT about optimal strategies for coupled data assimilation, parameter evolution, 
and data assimilation methods can transfer readily to 3D. 

Nevertheless, 1D models behave differently from 3D models in some respects. Their physics tend not to exhibit 
the (bounded) chaotic behaviour associated with 3D models (Carrassi et al., 2018), and therefore, they do not 
show the same sensitivity to initial conditions. For instance, a 1D water column model set up for shallow sites is 640 
often fully mixed in winter, with the water temperature converging to the temperature of the overlaying air. At 
that moment, any initial variations in water temperature across any ensemble disappear. If ensemble members 
differ only in water temperature, its spread then collapses entirely, causing ensemble methods to fail. 1D data 
assimilation therefore depends on additional methods for generating ensemble spread, e.g., by perturbing forcing 
or parameters of physical and biogeochemical processes. EAT includes flexible ensemble perturbation logic 645 
specifically for this purpose. While this is crucial for 1D applications, it can also be helpful to explore 
alternative perturbations strategies that are under consideration for 3D application. Another reason why 1D data 
assimilation systems such as EAT cannot be fully consistent with 3D is the additional requirement of the 
horizontal spatial correlation structure in 3D, and through that structure, the impact of geographically distant 
observations on the local model state. This is still best investigated in 3D, though we note that remote 650 
observations might crudely be represented in 1D by incrementing the observation uncertainty with an estimate 
of the spatial covariance, potentially derived from 3D simulation results. A related aspect that is difficult to 
represent in 1D is the regionalized setting of estimated parameters (Brankart et al., 2012), though some aspects 
of this may be investigated through the use of multiple 1D DA setups across large regions and subsequent 
analysis of spatial patterns in their results (Skákala et al., 2023). Finally, 1D models have limitations 655 
independent of data assimilation. As they assume horizontal gradients are negligible, they cannot represent 
conditions in areas dominated by horizontal features, e.g., high-energy horizontal currents (e.g., the Gulf 
Stream) or convection currents. Fortunately, these areas cover a minor fraction of the open and coastal oceans. 
Moreover, GOTM includes mechanisms to prescribe horizontal gradients, though these cannot respond to 
assimilation. 660 

5. Conclusions 
EAT is a 1D framework for marine data assimilation with numerous advantages. It is accessible: it can be 
installed on any computer workstation (Windows, Linux, Mac) with 2-5 commands, and is therefore readily 
usable by students as well as established scientists. It is flexible: through FABM, it can integrate a wide range of 
third-party biogeochemical models, including ones that are not distributed with EAT/GOTM/FABM. Moreover, 665 
through EAT’s plugin architecture, users can readily add custom logic for ensemble generation, variable 
transformation and anamorphosis, covariance transformation for variational DA, ensemble diagnostics, and 
bespoke output in any format. Finally, EAT includes the functionality needed to replicate and develop state-of-
the-art research in marine DA: it supports fully coupled physical-biogeochemical simulation and assimilation, 
and, through state augmentation, it supports assimilation of observed diagnostics and estimation of 670 
biogeochemical parameters. We believe this feature set makes it ideally suitable for a wide range of 
applications. 

6. Code availability 
All source code is publicly available, though for most applications it suffices to install a pre-compiled EAT 
package from Anaconda (https://anaconda.org/bolding-bruggeman/eatpyhttps://anaconda.org/conda-675 
forge/eatpy). 

The EAT source code is available from https://github.com/BoldingBruggeman/eat. It includes compatible 
versions of GOTM, FABM and PDAF as submodules. These individual components are also available stand-
alone from https://github.com/gotm-model/code (GOTM), https://github.com/fabm-model/fabm (FABM) and 
https://github.com/pdaf/PDAF (PDAF). 680 

The example applications use FABM-based biogeochemical models that are hosted externally: 

 PISCES: https://github.com/BoldingBruggeman/fabm-pisces  
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 BFM: https://github.com/inogs/bfmforfabm 
 ERSEM: https://github.com/pmlmodelling/ersem  

The exact version of the combined codes that were used is available at 685 
https://doi.org/10.5281/zenodo.10306436https://doi.org/10.5281/zenodo.10934071. 

EAT documentation is available at https://github.com/BoldingBruggeman/eat/wiki. 

7. Data availability 
The three example applications are available from 
https://doi.org/10.5281/zenodo.10307316https://doi.org/10.5281/zenodo.10934097. This archive includes model 690 
configurations, observations, forcing data, run script and pre/post processing scripts.  
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