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The authors present a data assimilation (DA) test bed based on a 1-dimensional physical-biogeochemical 

water column model. The manuscript contains 3 example applications for the DA framework, which 

highlights its versatility regarding different model configurations and DA techniques. It could be a useful 

tool for beginners to learn about DA, or for practitioners to test modifications to existing DA systems. The 

manuscript is well written and easy to follow. I tested one of the example applications on a computer, and 

it ran with just a few small issues. In the manuscript I would like to see a bit more accompanying 

information about the test cases, in particular, related to how easy it would be to modify some of the 

implementation aspects. 

We would like to thank the referee for their careful review and constructive comments. Our point-by-

point replies are provided hereafter in green. 

General comments 

Overall, the three test cases that are presented in the manuscript, and also included as example 

applications in the downloadable software, are very instructive and helpful to a potential user of EAT. Each 

of the test cases appears to highlight an issue or weakness of the chosen modelling/DA approach and 

made me think of possible extensions of the test cases to further investigate or mitigate those issues. Here, 

it would be useful to include more information in the manuscript to describe how much user input or work 

would be required to extend the test cases. 

We are very grateful to the referee for having run the test cases. Moreover, we appreciate the 

opportunity to describe some of the advanced functionality that EAT has to offer. As suggested, we now 

include with each test case a section that describes possible extensions. Further details are given below. 

Case in point, in test case 1 (Section 3.1) it would be interesting to examine the inclusion of more sources 

of uncertainty, beside the 3 or 5 parameters that are included in the ensemble generation. I am not 

suggesting the authors make any changes to the test case, but it would be helpful to describe the amount 

of change required to include other parameters here (Fig 2 appears to suggest it requires just a small 

change in one of the python files) or introduce changes to the initial conditions. This additional information 

could be included in a final paragraph of the section. 

We fully agree and have added the following paragraphs to the first application (note that this new 

paragraph also includes information about subsurface chlorophyll, depth-dependent observations, and 

custom observation operators, all referred to in later referee comments): 

“This application can be extended in several ways. For example, additional sources of uncertainty can 

be introduced when constructing the ensemble. The current setup includes a primitive parametrization 

of meteorological uncertainty through scaling of the surface wind components; more realistic 



experiments might source an ensemble of different meteorological model realizations (i.e., separate 

meteorological forcing files) and distribute those over the EAT ensemble members. EAT facilitates this 

by allowing its ensemble generators to set YAML parameters (e.g., the location of meteorological forcing 

in gotm.yaml) to member-specific file paths, similar to how the biogeochemical configuration 

(fabm/yaml_file) is treated in Fig. 2. Another option is to introduce uncertainty in biogeochemical 

parameters other than phytoplankton maximum growth rate. This is easy to realize: all biogeochemical 

parameters are set in fabm.yaml and any of these can be varied across the ensemble by adding a single 

line in the ensemble generation script as in Fig. 2. Finally, it is possible to vary physical and 

biogeochemical initial conditions across the ensemble, as shown in the last section of Fig. 2. 

Another possible extension is to assimilate observations that describe not just the water surface, but 

also deeper layers. Notably, the inclusion of depth-explicit biogeochemical observations, e.g., from ship-

based casts, automatic profilers or Argo floats, might help determine whether the decrease in 

subsurface chlorophyll in Fig. 7 is realistic or an artifact of surface-only chlorophyll assimilation. 

Inclusion of depth-explicit observations in EAT is straightforward, as it merely requires adding a column 

with depth information to the observation file and dropping the depth index (-1) in the linked model 

variable (Fig. 3). Another option would be to account for the fact that remotely sensed chlorophyll 

observations may be representative for a greater depth range than just the very first model layer, which 

here is just 10 cm thick (Gordon and McCluney, 1975). For instance, Fig. 5 demonstrates how EAT’s plugin 

architecture can be used to define a custom observation operator that calculates the average 

chlorophyll concentration over the first optical depth in the model, which varies both over time and 

between ensemble members (as these differ in chlorophyll-derived light attenuation). By linking 

remotely sensed chlorophyll to this custom chlorophyll metric, biogeochemistry at depth will be better 

constrained.” 



Figure 2 was updated to illustrate the described functionality: 

 



Fig 5 mentioned above was newly added: 

 

Similarly, in test case 2, the biogeochemical covariance is limited to the phytoplankton variables. Mention 

how easy it would be to expand it, for example, to include nitrate. 

We have added the following paragraph at the end of the variational application: 

“This application can be easily extended. To better constrain the behavior of the model at depth, it 

would be possible to include chlorophyll profiles as part of the assimilation, or to use a custom 

observation operator that considers a greater depth range when calculating the model equivalent of 

remotely sensed chlorophyll. Both options are described in more detail for the previous application. 

Further, the background error covariances used in the variational approach can be reformulated to 

extend the assimilation to variables other than chlorophyll (e.g., profiles of nitrate or oxygen). This is 

straightforward to implement, as the background error covariances in EAT are already controlled by a 

user-defined plugin when using variational assimilation. A combination of plugins can be used to fully 

specify how biogeochemical variables are affected by the assimilation: to control which model variables 

are of interest for assimilation (the Select plugin in Fig 3), to read and apply predefined vertical error 



covariances, and potentially to implement custom schemes that adjust filter-proposed updates or 

extend them to others variables, e.g., by applying preservation rules that force ratios between selected 

model variables to remain the same before and after DA.” 

Then there is a (perhaps worrying) decline in subsurface chlorophyll brought by the assimilation of surface 

chlorophyll. Here, EAT could be a nice test bed to evaluate modified observation operators, would this be 

an easy thing to implement? For example, could a chlorophyll observation be considered the sum of the 

top 4 grid cells? Or -- more difficult -- could the observation operator be dynamically determined based 

on optical depth? Again, a small paragraph suggesting changes to the test case, and a description of the 

effort that would be involved, would be of use for many future users of EAT. 

We expect that the referee refers to the decline in subsurface chlorophyll in Fig. 6 [now Fig. 7], that is, 

in the first test case (North Sea + PISCES). We agree that it would be worthwhile to evaluate whether 

this pattern is robust if chlorophyll observations are taken to be representative for a deeper part of the 

water column, in particular as the top layer in the model is thin (10 cm). EAT lends itself well for such 

experiments, as new observation operators are easy to implement through plugins. To demonstrate 

this, we have added a code snippet (new Fig. 5 shown above) that implements exactly the type of 

observation operator that the referee proposes: it dynamically determines the first optical depth from 

the daily mean shortwave radiation, and then averages chlorophyll over all layers above this depth.  

In test case 3, finally, the authors suggest that perhaps more than one parameter should be included in 

the estimation. How difficult would it be to include more? Beginners like me do not know, but would be 

interested in learning more, especially if the change required is small (modification of a YAML file perhaps). 

We have added the following at the end of the parameter estimation application: 

“This application could be extended to estimate biogeochemical parameters beyond the maximum 

growth rate of diatoms. From a technical point of view, this is straightforward: the list of biogeochemical 

parameters that are to be estimated is configured in the run script through argument 

fabm_parameters_in_state provided to eatpy.models.GOTM (for the application’s original run 

script, see Data availability section). The (scientific) challenge is to decide which specific parameters to 

target, as some biogeochemical models have several hundreds of parameters. One potential strategy is 

to first perform sensitivity analysis to determine which biogeochemical parameter have the greatest 

impact on model results; tools for doing this with GOTM-FABM are readily available (Ciavatta et al., 

2022; Andersen et al., 2021). Another important consideration for selecting parameters is to assess 

which biogeochemical parameters are most likely to exhibit temporal variability. That assessment 

should highlight parameters that are constant in the original model, but clearly aggregated over multiple 

processes or functional types, and thus likely to vary temporally in reality as the relative importance of 

their constituent processes or functional types changes. Finally, it is worth noting that in EAT, 

parameters that are estimated during assimilation remain the same over the entire water column, even 

though they become variable in time. This is also common in 3D data assimilation (Doron et al., 2013). 

However, if parameter variability is assumed to stem from shifts in biological species composition, it is 

worth noting that the current approach cannot account for e.g. separate “light” and “shade” 

communities (Sournia, 1982), which would require parameter values to vary in depth. This is beyond 

the scope of EAT; the relevant parameters would need to be added to the depth-explicit model state 

within the biogeochemical model code.” 



Beyond the test cases, it might also be of interest to some to include a description of some more 

sophisticated features of EAT -- or a brief description of what can be implemented: For example, is there 

an ability to use pre-computed ensemble members for quick DA experiments without having to re-run the 

model? The authors further mention hybrid variational-ensemble schemes, are these included in EAT 

already, what kind of coding abilities are required to add a new DA technique? 

We appreciate the opportunity to further highlight the possibility to use EAT for more sophisticated DA 

experiments. We expect that the newly added discussion of possible extensions for each application 

partially addresses this. In addition, we have modified the third paragraph of the discussion (starting at 

line 500 in the submitted manuscript version) as follows (novel text in italics): 

“With respect to the data assimilation methodology, EAT provides a wide choice of methods, covering 

both variational data assimilation and sequential estimation methods that include different ensemble 

Kalman filter variants. This allows users to assess the impact of different assimilation methods under 

identical modelling conditions. Moreover, the effect of different configurations options or representations 

of the covariance matrix in parameterized variational methods can be easily examined. Furthermore, EAT 

supports hybrid approaches that combine variational and ensemble assimilation. In this case, the user 

plugin for control variable transforms (an example can be found in the variational application; see Data 

availability section) gets access to the ensemble state, which allows the user to combine the 

background-error covariance matrix with the ensemble-based one in a variety of ways (Bannister, 2017). 

Lastly, EAT allows to perform twin experiments in which synthetic observations are assimilated and the 

true state, which is to be estimated, is known. For this, a simple model run with EAT can produce the true 

state. Synthetic observations are subsequently generated by sampling this true state and adding 

perturbations. Starting from a different initial state, one can then assimilate these observations. This 

approach allows one to study what the application of data assimilation can achieve in an optimal case. 

Likewise, it can give an indication of the ability of certain observations to constrain the model state or 

parameters. In general, EAT is flexible: user plugins are given full control over observations, forecasts, 

and analyses (with the ability to override proposed state updates). Ensemble members can differ in both 

state and configuration, and ensemble states can be saved and reused through support for restart files. 

These features can be combined in any number of ways to design new data assimilation experiments. 

Thus, the applications described here are representative of EAT functionality, but not exhaustive. 

As nice as it is to have a fast DA system, it is limited to a 1D (vertical water column) model. Such a model 

is useful, but it will not be able to serve as a test bed for many operational systems which use 3D models. 

As use cases for EAT, the authors mention "practical aspects such as the spatial correlation structure and 

regionalized setting of estimated parameters" (line 54), even though I would consider these two 

applications as bad examples for the use of 1D models. Examining the effect of spatial correlations of 

satellite chlorophyll error, for example, would require a 3D DA setup; regionalized parameter estimates 

would require a number of 1D models, at least one for each region (many if the region boundaries are not 

set). Here, it would be good if the authors acknowledged some of the limitations of 1D models in the 

introduction already. 

While the paragraph in question highlights ongoing developments in DA, rather than use cases of 1D 

systems such as EAT, we appreciate that the reader may come away with the impression that EAT can 

address both aspects mentioned – spatial correlations structure and regionalization of estimated 

parameters. We agree that this is not the case when it comes to spatial correlation structure and 



therefore have dropped this phrase. As for the “regionalized setting of estimated parameters”, there is 

precedent for using EAT for this purpose using exactly the method that the referee describes (multiple 

1D setups). Therefore, we have left this part of the sentence in place. We have expanded the Discussion 

to discuss horizontal covariances and the work done with EAT on regionalized parameter estimates: 

“Nevertheless, 1D models behave differently from 3D models in some respects. Their physics tends not to 

exhibit the (bounded) chaotic behavior associated with 3D models (Carrassi et al., 2018), and therefore, 

they do not show the same sensitivity to initial conditions. For instance, a 1D water column model set up 

for shallow sites is often fully mixed in winter, with the water temperature converging to the temperature 

of the overlaying air. At that moment, any initial variations in water temperature across any ensemble 

disappear. If ensemble members differ only in water temperature, its spread then collapses entirely, 

causing ensemble methods to fail. 1D data assimilation therefore depends on additional methods for 

generating ensemble spread, e.g., by perturbing forcing or parameters of physical and biogeochemical 

processes. EAT includes flexible ensemble perturbation logic specifically for this purpose. While this is 

crucial for 1D applications, it can also be helpful to explore alternative perturbations strategies that are 

under consideration for 3D application. Another reason why 1D data assimilation systems such as EAT 

cannot be fully consistent with 3D is the additional requirement of the horizontal spatial correlation 

structure in 3D, and through that structure, the impact of geographically distant observations on the 

local model state. This is still best investigated in 3D, though we note that remote observations might 

crudely be represented in 1D by incrementing the observation uncertainty with an estimate of the 

spatial covariance, potentially derived from 3D simulation results. A related aspect that is difficult to 

represent in 1D is the regionalized setting of estimated parameters (Brankart et al., 2012), though some 

aspects of this may be investigated through the use of multiple 1D DA setups across large regions and 

subsequent analysis of spatial patterns in their results (Skákala et al., 2023). Finally, 1D models have 

limitations independent of data assimilation. As they assume horizontal gradients are negligible, they 

cannot represent conditions in areas dominated by horizontal features, e.g., high-energy horizontal 

currents (e.g., the Gulf Stream) or convection currents. Fortunately, these areas cover a minor fraction of 

the open and coastal oceans. Moreover, GOTM includes mechanisms to prescribe horizontal gradients, 

though these cannot respond to assimilation.” 

Finally, I wanted to bring up the name of the tool: It is probably too late to change EAT's name, but EAT 

expands to "Ensemble Assimilation Tool" in my mind (it is easy to miss the "and" in "Ensemble and 

Assimilation Tool") even though EAT supports variational DA as well. Furthermore, it would have been nice 

to include "Aquatic" or "Marine" in the abbreviation, but that is just a suggestion if a name change is still 

on the table. 

We appreciate that the name “Ensemble and Assimilation Tool” does suffer from the minor drawbacks 

mentioned, but we also concur with the referee’s judgment that it is too late to change this, as EAT has 

numerous users already (> 100 people have used it during workshops). They have written scripts that 

reference the “eatpy” Python package (see e.g. Fig 2 and 3), and who have “eatpy” installed as conda 

package. Changing the name would break their scripts and prevent them from updating the application 

with “conda update”. We prefer to avoid this. We have nevertheless made small changes to ensure that 

we consistently highlight EAT’s ability to do variational DA as well as ensemble-based DA. 

Testing one of the example applications 

https://zenodo.org/doi/10.5281/zenodo.10522304


I decided to run test case 2 "Biogeochemical state estimation with variational assimilation" on a Linux 

machine. Overall, it worked well and there were only a few minor hiccups. I downloaded the zip file that 

was referenced in the paper, unzipped it and followed the instructions in the `README.md` file. 

Installing EAT using conda was straightforward and worked right away. The free run worked flawlessly as 

well, just the DA experiment is missing the output directory: 

``` 

 

$ mpiexec -n 1 python runVar.py : -n 1 eat-gotm 

INFO:root:Model simulated period: 2019-01-01 00:00:00 - 2019-12-31 18:00:00 

Traceback (most recent call last): 

 

  File "/home/user/eat-applications/Variational/BFMvar/runVar.py", line 34, in <module>    

experiment.add_plugin(eatpy.plugins.output.NetCDF(outfile)) 

                          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 

  File "/home/user/.conda/envs/eat/lib/python3.12/site-packages/eatpy/plugins/output.py", line 14, in 

__init__ 

    self.nc = netCDF4.Dataset(path, "w")  

             ^^^^^^^^^^^^^^^^^^^^^^^^^^ 

  File "src/netCDF4/_netCDF4.pyx", line 2469, in netCDF4._netCDF4.Dataset.__init__ 

  File "src/netCDF4/_netCDF4.pyx", line 2028, in netCDF4._netCDF4._ensure_nc_success 

PermissionError: [Errno 13] Permission denied: 'OUTNC/DAout.nc' 

``` 

A quick `mkdir -p OUTNC` solved the issue, and I would recommend adding this directory to the zip 

(perhaps with a small placeholder file `OUTNC/README.md` which just mentions that this directory will 

be used for netCDF output). 

Finally, I ran into some issues with the figure creation, too: `launcher.sh` was not executable and after 

making it (`chmod u+x launcher.sh`), I received odd error messages because the file has dos line breaks. 

 

``` 

./launcher.sh: line 2: $'\r': command not found 

./launcher.sh: line 10: $'\r': command not found 

./launcher.sh: line 14: $'\r': command not found 

[...] 

``` 

 

This issue might not be easily reproducible, but the script even created an odd `^M^M` directory. After 

changing the file format to UNIX, it all worked and created the plots. I am not sure what to do about this 

particular issue (will UNIX line endings cause issues on Windows machines?) but including a proper 

shebang `#!/bin/bash` in `launcher.sh` at least stopped the script right away without creating directories 

etc., so I would at least recommend that. Overall, I was impressed by how well it worked, but I did not yet 

attempt to make any modifications to the experiment. 



We apologize for the inconvenience and much appreciate that the referee has taken the time to work 

around the issues encountered. 

All of the above issues have been addressed in a new release of the applications (v2.1 on Zenodo; 

https://doi.org/10.5281/zenodo.10463234). Notably, all three applications now use Jupyter Notebooks, 

which work on all supported platforms (Windows, Mac, Linux). 

Specific comments: 

L 17: It is unclear what "This" is referring to, I would suggest using "DA". 

Ok. 

L 78: Here (and maybe already in the abstract), spell out the abbreviations used or include a reference to 

section 2. 

Ok. 

L 159: While I appreciate the discussion of the different coupling schemes and implementation details, as 

a new user of EAT, I would be more interested in what I need to do to run DA for my model. Case in point: 

> "Online coupling is achieved by inserting function calls to PDAF. This can be done by augmenting the 

model source code itself, which then enables simulation of an ensemble of model states in a single 

execution of the model. Alternatively, for models already capable of ensemble simulations, it can be 

implemented in dedicated DA code after an ensemble of model results is received. The latter is the 

approach adopted by EAT. PDAF-specific additions to the code are usually four functions, all of which are 

placed outside of the actual numerical core of the model. Overall, the online coupling approach reduces 

the amount of data that needs to be written to files and allows efficient data assimilation, in particular 

when the forecast phase between two assimilation steps is short compared to the start-up time of a model, 

as is common for GOTM-FABM." 

After reading it, I have learned some fundamentals about PDAF, but I am not sure what kind of effort is 

required for a typical user. Do I need to implement four functions or is more work required, are these 

Python or Fortran functions? I would suggest rewriting this paragraph with an emphasis on the EAT 

implementation and EAT-specific instructions. For example, instead of starting "There are different 

strategies to couple a model with PDAF. The offline coupling uses ...", one could use "While PDAF supports 

both offline and online coupling, EAT uses online coupling to connect the model to the DA framework..." 

We have rephrased the final part of the PDAF section to focus more specifically on its application and 

use within EAT: 

“While PDAF supports both offline and online coupling (Nerger and Hiller, 2013; Nerger, 2020), EAT uses 

online coupling to connect the model to the DA framework: the model state is updated as part of the 

data assimilation step (analysis) while the simulation remains running. EAT stores the ensemble state 

internally in an array, which is synchronized with the active GOTM-FABM processes before and after the 

DA update. PDAF exposes numerous configuration options, which include the type of data assimilation 

filter to use as well as various filters-specific settings. EAT enables the user to set these configuration 

options in a Python run script. Internally, these options are then forwarded to PDAF functions.” 

https://doi.org/10.5281/zenodo.10463234


L 186: Is the <RUNSCRIPT> here akin to what is shown in Fig. 3? Maybe add a short explanation to the 

required input. 

Yes, Fig 3 is an example of such a run script. We now explicitly refer to Fig 3 and include an explanation 

of every input: 

“Here, <RUNSCRIPT> is the name of the Python script that defines the data assimilation experiment (Fig. 

3), <NENSEMBLE> is the number of ensemble members, and <EXTRA_ARGS> are additional arguments 

to pass to the model, e.g., --separate_gotm_yaml to indicate different ensemble members use different 

configurations, or --separate_restart_file to indicate different members use different initial states.” 

Fig 2: For readability, set the mean values explicitly, even though these are identical to the default. 

We have changed the code snippet accordingly (see updated Fig 2 above). 

Fig 3: I think it would be more useful to add some of the information from the caption to the code (in the 

form of comments). 

We have changed the code snippet in Fig 3 accordingly: 

 

Fig 2 and 3: Mention in the caption that this is Python code. 

Ok. 

L 258: Are these text files in CSV (comma-separated values) format? Why not use YAML here as well, or a 

well-structured custom format to avoid/better catch user error? 



Observations must indeed be provided in non-YAML format, specifically, as tab-separated values (TSV). 

The reason for this is that such files are more suitable for opening/reading as stream: EAT does not load 

the entire observation file in memory but read one line at a time as the simulation progresses. This 

speeds up initialization, reduces memory consumption, and potentially allows other processes to 

append to the observation file while the DA experiment is running. TSV is more convenient than YAML 

for stream reading, as Python’s most-used YAML modules (PyYAML, ruamel.yaml) do not expose stream 

reading as part of their public API.  While the benefits of stream reading are modest (in 1D, observation 

files are usually small, so file read time and memory consumption are minor issues; live addition of 

observations is uncommon), we feel they are sufficient to prefer TSV over YAML. Moreover, GOTM also 

uses TSV and TSV-like formats for forcing (e.g. meteorological time series), which means this format 

would always feature in any EAT experiment.  We now summarize this line of reasoning by the following: 

“[with each line describing observation time, observed depth (only for depth-explicit observations), 

observed value, and its standard deviation] in tab-separated value (TSV) format. This format was chosen 

over structured formats such as YAML because it enables EAT to read in new observations on-demand 

while the simulation progresses, instead of having to parse each observation file in its entirety upon 

start-up.” 

Fig 5 and following: "(a)" labels are missing from the figures. 

The missing labels have been added. As the affected figures (new Fig 6 and 7) were regenerated by 

rerunning the experiments with the latest code, slight differences between the previous and updated 

figures can be seen. These differences are part due to the stochastic nature of ensemble simulations, 

and – in the case of chlorophyll – also due to a recent update of the PISCES code and parameterization. 

Fig 5: Science question, only related to the DA result: Are the thin layers of subsurface cooling an effect of 

including only a few mixing-related sources of uncertainty in the ensemble creation? 

The subsurface cooling appears to be the result of a DA induced change in thermocline depth. As 

described, the predominant result of data assimilation is a reduction in sea surface temperature and 

deeper mixing, in particular in early summer. However, there are periods in early autumn where this 

pattern flips: the DA runs then have a higher surface temperature. This is a critical period during 

which the surface mixing layer gradually extends deeper into the water column due to surface cooling. 

In the DA run, the higher surface temperature delays this deepening of the mixing layer. As a result, 

there is a thin water mass that already lies within the surface mixing layer in the free run, but still 

below that mixing layer when DA is active. As water masses below the mixing layer [thermocline] are 

relatively cold, this gives rise to the subsurface cooling signal in autumn. 

We now summarize this as: 

“This pattern generally persists into autumn, although occasionally, warmer surface temperatures in 

the DA experiment cause a decrease in mixing, and accordingly a shoaling in thermocline depth that 

manifests as subsurface cooling.” 

L 322: Is this the result of one "4D" data assimilation cycle with "asynchronous" assimilation, or were 

multiple cycles performed? Please add this information to the manuscript. 

We now explicitly describe this with the following: 



“This application uses ensemble-based sequential data assimilation with the Error Subspace Transform 

Kalman filter (Nerger et al., 2012), using an ensemble of 20 members.” 

Additionally, we now describe assimilation methods more explicitly in table 1 by using “sequential 

ensemble-based (ESTKF)” and “variational (3D-Var)” 

L 342: Does the assimilation "see" the subsurface chlorophyll maximum, or does the observation operator 

just work on the top layer of the model? 

It operates on the top layer only. We have added the following when describing the observations that 

are assimilated: 

“Both types of observations were mapped to model equivalents in the very top layer of the modelled 

water column, which is 10 cm thick.” 

L 352: "their different components" I would not describe carbon as a "component" of phytoplankton, and 

would suggest changing it to "their elemental composition" or cell quotas if these are considered. 

We have rephrased this as: 

The BFM model describes the marine lower trophic web through the spatial and temporal evolution of 51 

state variables. BFM uses variable stoichiometry and explicitly represents cycles of carbon, nitrogen, 

phosphorus, and silicon. Accordingly, it explicitly tracks the fluxes of these elements between its 

nutrient pools (nitrate, phosphate and silicate) and living functional types (phytoplankton, zooplankton 

and bacteria) (Vichi et al., 2020). 

L 414: "we further use the “diat-MSP” abbreviation": Initially, I wasn't quite sure what was meant, I'd 

suggest being more explicit, for example by using "in the following we refer to this parameter as “diat-

MSP”". 

Ok. 

Replies to RC2: 'Comment on gmd-2023-238', Anonymous Referee #2, 31 Jan 2024 

Citation: https://doi.org/10.5194/gmd-2023-238-RC2  
The authors present a generalized DA framework for 1D ocean applications. The proposed system, EAT, 

uses GOTM as the physical model, FABM as the biogeochemistry platform and PDAF as the DA software. 

The authors examined the new system in 3 different locations assimilation various physical and 

biogeochemical data. They tested state estimation in addition to state and parameter estimation. I believe 

the system is highly beneficial for the community and quite attractive given its portability and flexibility. 

The paper is well-written and easy to read. I only have minor comments. 

We would like to thank the referee for the careful review and positive comments on our work. Our 

point-by-point replies are provided hereafter in green. 

- When generating the initial ensemble, how did the authors decide on the variable distribution (e.g., 

lognormal) and it's associated parameters? And for the perturbed parameters, I am wondering why did 

the authors choose k_min and scale_factor over other ones. 

We now include this information by adding the following (new text in bold): 



“These parameters were selected to showcase the ability to introduce uncertainty in meteorological 

forcing (u10, v10) as well as the parametrization of the physical and biogeochemical models. 

Incorporation of other sources of uncertainty in the ensemble will be discussed at the end of this section. 

All ensemble members start from the same initial conditions; spread in the ensemble state first seen by 

the DA filter is generated by simulating 12 hours to the time of the first SST observation. 

For simplicity, the same probability distribution was used to scale all five parameters: scale factors were 

drawn from a log-normal distribution with a standard deviation of 0.2 in natural log units. This was done 

independently per ensemble member, for each of the five scale factors (i.e., they are independently 

distributed). The assumption of log-normality is common in biogeochemistry (e.g., Campbell et al. 1995) 

and a reasonable choice for many turbulent quantities (H. Burchard, pers. comm., 2024). It also ensures 

that the affected variables remain positive definite; we note, however, that both the type of distribution 

and its parameters are easy to customize (Fig. 2).” 

As mentioned in the above, the application has been extended with a paragraph discussing the 

incorporation of additional uncertainty in the ensemble: 

“This application can be extended in several ways. For example, additional sources of uncertainty can 

be introduced when constructing the ensemble. The current setup includes a primitive parametrization 

of meteorological uncertainty through scaling of the surface wind components; more realistic 

experiments might source an ensemble of different meteorological model realizations (i.e., separate 

meteorological forcing files) and distribute those over the EAT ensemble members. EAT facilitates this 

by allowing its ensemble generators to set YAML parameters (e.g., the location of meteorological forcing 

in gotm.yaml) to member-specific file paths, similar to how the biogeochemical configuration 

(fabm/yaml_file) is treated in Fig. 2. Another option is to introduce uncertainty in biogeochemical 

parameters other than phytoplankton maximum growth rate. This is easy to realize: all biogeochemical 

parameters are set in fabm.yaml and any of these can be varied across the ensemble by adding a single 

line in the ensemble generation script as in Fig. 2. Finally, it is possible to vary physical and 

biogeochemical initial conditions across the ensemble, as shown in the last section of Fig. 2.” 

The updated Fig. 2 is included above as part of our reply to referee comment 1 (RC1). 

- Transforming the state and the data during the update is interesting. I do believe that having Gaussian 

distributed variables is better suited for Kalman-type correction. My only question is when you transform 

the actual data, how do you deal with the associated observation error variance. For instance, if I take the 

logarithm of the data what would be the corresponding error in transformed space? I think the manuscript 

would benefit from such information. 

We appreciate the opportunity to elaborate on this and have added the following: 

“All biogeochemical variables were log-transformed to guarantee positivity, as common in 

biogeochemical data assimilation (e.g., Santana-Falcón et al., 2020; Skákala et al., 2022; Pradhan et al., 

2020). Transformation was done with a standard plugin provided by EAT (the Log plugin in Fig. 3), which 

applies log-transformation to all model variables and by default also to any associated observations. For 

the latter, the mean and variance of each log-transformed observation is reconstructed from the 

untransformed mean and variance under the assumption that each observation is perfectly log-normally 

distributed.” 



For further reference: the transformation logic described in the final sentence is implemented by 

https://github.com/BoldingBruggeman/eat/blob/797e3f3cad76bbeb2d929fe0b67601b344e164ff/eat

py/plugins/transform.py#L42-L53  

- In section 3.1, why not add another experiment assimilating only bgc data? If physical data deteriorates 

chl then assimilating only chl and adding that to Fig. 6 should be very informative. 

We agree that such an experiment could be informative. We have added it to the application’s Jupyter 

Notebook and mention the experiment as possible extension at the end of the application section: 

“Finally, EAT lends itself well for further experiments that investigate the impact of different types of 

observations. For instance, an experiment assimilating only surface chlorophyll (included in the 

application archive; see Data Availability section) could help ascertain whether coupled physical-

biogeochemical assimilation performs better or worse than biogeochemistry-only assimilation.” 

We hope the referee will agree this is sufficient, as detailed treatment of the additional experiment and 

its results would excessively lengthen the application section (already the longest of the three) and 

complicate its figures. For example, including this additional time series in [already quite busy] Fig 6a 

[now Fig 7a] makes it difficult to distinguish the time series of the individual experiments:  

 

- It's very typical in similar 1D applications from the literature to assimilate nutrient profiles. I'm surprised 

the authors didn't consider that. Is it because the authors don't have access to such data in the tested 

locations? How about the reanalysis dataset? Addressing subsurface biogeochemical uncertainties can be 

crucial for adjusting PP across the entire water column (at least within euphotic zone). 

EAT fully supports the assimilation of profiles, but to keep our examples both simple and representative 

of what can be easily achieved at any location with real observations (time series of remotely sensed 

temperature and chlorophyll are readily available everywhere), this is not done in the three included 

applications. We now discuss the ability to add profiles in detail, as a possible extension of the first 

application: 

https://github.com/BoldingBruggeman/eat/blob/797e3f3cad76bbeb2d929fe0b67601b344e164ff/eatpy/plugins/transform.py#L42-L53
https://github.com/BoldingBruggeman/eat/blob/797e3f3cad76bbeb2d929fe0b67601b344e164ff/eatpy/plugins/transform.py#L42-L53


“Another possible extension is to assimilate observations that describe not just the water surface, but 

also deeper layers. Notably, the inclusion of depth-explicit biogeochemical observations, e.g., from ship-

based casts, automatic profilers or Argo floats, might help determine whether the decrease in 

subsurface chlorophyll in Fig. 7 is realistic or an artifact of surface-only chlorophyll assimilation. 

Inclusion of depth-explicit observations in EAT is straightforward, as it merely requires adding a column 

with depth information to the observation file and dropping the depth index (-1) in the linked model 

variable (Fig. 3).” 

In the discussion, we further note that the included applications demonstrate a subset of EAT’s 

capabilities only: 

“In general, EAT is flexible: user plugins are given full control over observations, forecasts, and analyses 

(with the ability to override proposed state updates). Ensemble members can differ in both state and 

configuration, and ensemble states can be saved and reused through support for restart files. These 

features can be combined in any number of ways to design new data assimilation experiments. Thus, 

the applications described here are representative of EAT functionality, but not exhaustive.” 

Related to my previous point, I believe assimilating data in the vertical may produce different parameter 

configurations at different levels beneath the surface. 

This is correct in principle, but vertical variation in biogeochemical parameters is not supported by EAT, 

as it cannot be implemented without changing the underlying biogeochemical model codes (which 

explicitly treat parameters as space-invariant scalars). We note this at the end of the parameter 

estimation example: 

“Finally, it is worth noting that in EAT, parameters that are estimated during assimilation remain the 

same over the entire water column, even though they become variable in time. This is also common in 

3D data assimilation (Doron et al., 2013). However, if parameter variability is assumed to stem from 

shifts in biological species composition, it is worth noting that the current approach cannot account for 

e.g. separate “light” and “shade” communities (Sournia, 1982), which would require parameter values 

to vary in depth. This is beyond the scope of EAT; the relevant parameters would need to be added to 

the depth-explicit model state within the biogeochemical model code.” 

Other comments: 

- Line 20: that *are* sufficiently 

Corrected. 

- Line 69: Water column models are *ideal testbeds* 

Corrected. 

- Line 76: performing *state-parameter* estimation 

Corrected. 

- Line 172: This allows *the* user  

This section has been rewritten in response to RC1. 



- Line 179: and that *runs* the data 

The subject of this sentence is “scripts”, therefore “run” is correct. 

- Line 264: the model *serially*, without 

We have rephrased this as: 

“Finally, it is also possible to run the model stand-alone, without MPI; in this case, it behaves exactly as 

the original GOTM-FABM model would.” 

- Line 503: different *configuration* options 

Corrected. 
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