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Reply to reviewers’ comments 

  

Dear Pr. I., Andrew Yool 

  

We would like to thank you for providing us the opportunity to revise our manuscript, and we are 

extremely grateful to Pr. Antje Voelker, Pr. Allegra N. LeGrande and the anonymous reviewer for 

their careful reading and comments that helped to improve our manuscript significantly. 

  

We have revised our manuscript and provided a detailed response to each reviewer's comment 

and request below. 

  

Color code 

Reviewer comments 

Authors response 

The modifications performed in the manuscript appear in red above and in the revised 

manuscript with Changes Marked. 

 

#1: Review by Antje Voelker: 

Ayache and co-authors present the first high-resolution modeling study for water isotopes in the 

Mediterranean Sea.  As a first attempt to relate their results to future paleoceanographic 

applications, they apply their water isotope model outcomes to calculate ∂18O in marine carbonate. 

Overall, this is an interesting and novel study and, in my opinion, fits well into GMD. As someone 

working with water isotopes in sea water, I am very happy to see such studies advancing our 

knowledge. The manuscript is well written and the figures all informative and needed. The results 

are relevant and future attempts to go towards a fully coupled ocean-atmosphere model should be 

of great interest for the scientific communities interpreting speleothem and lacustrine paleo-records 

in the Mediterranean region. 

mailto:mohamed.ayache@lsce.ipsl.fr


The science presented is sound, although I am not an expert in climate models and therefore cannot 

fully judge if the model description is sufficient and can be reproduced based on the information 

given. From my reading I would say both criteria are sufficiently fulfilled. 

I do not have major comments for the manuscript and believe minor revision will address the points 

I am making below. Some relevant changes might arise from the additional in-situ data I am 

pointing out in the specific comments, but those will not change the overall outcome of the study. 

One caveat I see in the manuscript is that Nile river run-off is never mentioned and discussed. For 

the sapropel research (mentioned in the manuscript) and tracing influences of NW African monsoon 

rainfall in paleoclimate studies, but also in the modern hydrological cycle that is an important 

process. 

We thank Pr. Antje Voelker for the summary of our paper, and the positive assessment of its 

significance. Historically, the Nile played a crucial role in freshening surface water during 

sapropel events. However, following the construction of the Aswan High Dam in 1965, its 

influence has decreased (ElElla, 1993; Nixon, 2003). As a result, the Nile is no longer a primary 

factor contributing to the present-day state of the Mediterranean Sea.  

Therefore, in the revised manuscript, we have included the following sentences to clarify this 

point.  

“The Nile played a crucial role in freshening surface water during sapropel events. However, since the 

construction of the Aswan High Dam in 1965, its influence has decreased (ElElla, 1993; Nixon, 2003). 

As a result, the Nile is no longer a major contributor to the current state of the Mediterranean Sea.” 

(see section 2.3, lines 186-189 in the track changes version). 

Moving forward, we will address each of the reviewer's comments in detail. 

 

Specific comments: 

Line 10: as a paleoceanographer I understand where you want to go with the phrase “CaCO3 shell” 

but not every reader will be aware that you referring to planktonic foraminifera shells here. So, the 

text needs to be amended here to be understandable for every reader. 

  

Thanks! Changed to “planktonic foraminifera shells (δ18Oc)”. A table containing all abbreviations 

used in this manuscript has been added to the revised manuscript (see new Table. 1). 

 

Line 83: if you just want to focus on paleoceanography, you need to add Sea after Mediterranean. 

However, I believe you can go further and say Mediterranean (region) paleoclimate as the modeling 

results should also be relevant for studies of speleothems and lacustrine sediments, besides 

paleoceanographic studies (that would also go beyond foraminiferal calcite shells). You actually 

hint to the broader potential impact in line 319! 

 

Thank you for this synthesis and we fully agree. We are currently working with other teams on 

the IPSL coupled climate model, including the land surface model 'ORCHIDEEiso' and the 

atmospheric model 'LMDZiso', to implement water isotopes. This will enable further 

paleoclimate applications in the future across the entire Mediterranean region. 

 



Line 121: verify bouquin AIEA; this reads like a placeholder text for a missing reference. It might 

also be IAEA. 

Corrected (it was the French abbreviation). 

 

Line 141: please provide reference for the standard isotopic values.  

 

In models, the standard isotopic value is set arbitrarily, usually motivated by practical or computational 

constraints. Previous model-intercomparison projects of isotope-enabled models have shown that 

standard isotopic values could widely vary across models (Risi et al 2012). 

"In reality, this value isn't standard; rather, it represents an average for the Mediterranean basin. We've 

set the simulations with these values to expedite computation time on the machine, as opposed to using 

the VSMOW value (i.e. The Mediterranean basin is largely more enriched as compared to the global 

scale)."  

Changed in the revised ms (see section 2.2, lines 147-149 in the track changes version): “The ocean 

isotopic ratios are initially set to an average value for the Mediterranean basin of δ18Ow = 1.5 ‰, 

δDw =8 ‰, and the pseudo-salinity tracer is set to 37 (we have initialized the simulations with these 

values to save a little computing time on the machine)”. 

 

 

Line 199: there exist additional/newer in-situ observations in the buffer zone west of the Strait of 

Gibraltar and one additional station in the Alboran Sea: 

• Voelker, A.H.L., Colman, A., Olack, G., Waniek, J.J., Hodell, D., 2015. Oxygen and 

hydrogen isotope signatures of Northeast Atlantic water masses. Deep Sea Research Part 

II: Topical Studies in Oceanography 116, 89-106, doi: 1016/j.dsr2.2014.11.006.  

• With the raw data available in Pangaea, e.g. Voelker, Antje H L; Colman, Albert Smith; 

Olack, Gerard; Waniek, Joanna J; Hodell, David A (2015): Oxygen  and hydrogen isotopes 

measured on water bottle samples during EUROFLEETS cruise Iberia-Forams. 

PANGAEA, https://doi.org/10.1594/PANGAEA.831462 

• Benetti, M., Reverdin, G., Aloisi, G., Sveinbjörnsdóttir, Á., 2017. Stable isotopes in surface 

waters of the Atlantic Ocean: Indicators of ocean-atmosphere water fluxes and oceanic 

mixing processes. Journal of Geophysical Research: Oceans 122, 4723-4742, doi: 

1002/2017JC012712.              

• With the data included in Reverdin, G., Waelbroeck, C., Pierre, C., et al., 2022. The CISE-

LOCEAN seawater isotopic database (1998–2021). Earth Syst. Sci. Data 14, 2721-2735, 

doi:  10.5194/essd-14-2721-2022. https://www.seanoe.org/data/00600/71186/ 

• Voelker, A.H., 2023. Seawater oxygen and hydrogen stable isotope data from the upper 

water column in the North Atlantic Ocean (unpublished data). Interdisciplinary Earth Data 

Alliance (IEDA), doi: https://doi.org/10.26022/IEDA/112743 

• and in the Alboran Sea itself: Voelker, Antje H L (2017): Seawater oxygen isotopes for 

Station POS334-73, Alboran Sea. Instituto Portugues do Mar e da Atmosfera: Lisboa, 

Portugal, PANGAEA, https://doi.org/10.1594/PANGAEA.878063 

We appreciate the references and new data. The data from the Mediterranean Sea has been 

added to the model evaluation figures and will aid in future analysis. The data from the Strait 

https://doi.org/10.1594/PANGAEA.878063


of Gibraltar (i.e. in Voelker., et al 2015, 2023) will be valuable for setting boundary conditions 

in upcoming simulations. 

We have incorporated all the data from Benetti et al. (2017) and Reverdin et al. (2022) database, 

primarily situated in the Western Mediterranean (refer to new Fig 2a, below new data are shown 

in green in Fig. 2d), as well as the data from Voelker et al. (2017) localized in the Alboran basin 

(in bleu). 

 
Figure 1 The model outputs against in-situ data for the present-day situation. a) δ18Ow (in ‰) distribution in the surface water 

(50 m depth). b) E-W vertical section of δ18Ow (in ‰) in the western Mediterranean basin d) Zonal mean comparison of δ18Ow 

(in ‰) average vertical profiles in the western basin presenting model results against in-situ data. c) and e) the same as b) and 

d) but for the eastern basin. Colour-filled dots represent in-situ observations from (Epstein and Mayeda, 1953; Stahl and 

Rinow, 1973; Pierre et al., 1986; Gat et al., 1996; Pierre, 1999, Voelker et al. 2017, Reverdin et al. 2022). Both model and in-

situ data use the same colour scale. 

 

Line 251: Voelker et al. (2015, DSR II) obtained a lower slope of 0.32 for surface waters in the NE 

Atlantic with a strong bias towards subtropical waters (see their figure 11a). Craig and Gordon 

(1965) also observed a slope of 0.22 for the Atlantic’s subtropical to tropical waters. So, your 

MedSea slopes fit well to those observations. 

 

Thank you for alerting us to this. Indeed, Voelker et al. (2015) provided a thorough analysis of the δ18O-

Salinity relationship. We have integrated the slope value calculated by Voelker et al. (2015) into our 

discussion and have included extra sentences in the revised manuscript's discussion section. 

 See section 3.2, lines 269-273 in the track changes version.  

“The lower slopes reflect the impact of the evaporation surplus in the EMed (Voelker et al., 2015). 

High values of the slope are simulated in the western basin (> 0.5, Fig. 5a), especially in the Alboran 

basin which is influenced by Atlantic water characterized by a δ18Ow-S slope of 0.48 (Laube-



Lenfant, 1996; Pierre, 1999), and 0.32 obtained by Voelker et al. (2015) in the North East Atlantic 

with a strong bias towards subtropical waters.” 

 

Line 275: you could check the model’s performance in the buffer zone west of the Strait of Gibraltar 

as much of the new data listed above include dD measurements.  

 

The NEMO-MED12 grid covers the entire Mediterranean Sea and a small portion of the Atlantic 

Ocean to the west of Gibraltar, serving as a buffer zone for open boundary conditions. In this zone, 

3D δ18Ow and ∂Dw are relaxed towards in-situ data fields (from Pierre, 1999; Craig and Cordon 

1965), meaning that the tracer values are imposed as boundary conditions rather than being 

predicted by the model. 

The comparison between the new ∂Dw measurements and our imposed boundary conditions in the 

buffer zone demonstrates good consistency, as shown in the figure below. 

 

 

 

Figure 2 Comparison between simulated and observed dD in the Buffer zone (west of Gibraltar strait) 

Line 284: in a general sense, you could compare d-excess trends with Benetti, M., Reverdin, G., 

Pierre, C., Merlivat, L., Risi, C., Steen-Larsen, H.C., Vimeux, F., 2014. Deuteriu »m excess in 

marine water vapor: Dependency on relative humidity and surface wind speed during evaporation. 

Journal of Geophysical Research: Atmospheres 119, 2013JD020535,doi: 10.1002/2013JD020535. 

That reference might also fit in the discussion in line 377. 

 



We appreciate your suggestion. We've now included a comparison between the simulated trends 

and the data published by Benetti et al. (2015). The following text has been incorporated into 

the revised manuscript: 

"In a more recent study, Benetti et al. (2015) observed a d-excess ranging from -1.56 to -1.72 

‰ in the surface waters of the eastern subtropical Atlantic. Their findings reveal a contrasting 

trend between increasing δ18Ow, δDw, and decreasing d-excess, which corresponds closely with 

our simulated values. The authors suggest that d-excess variations are predominantly 

influenced by humidity and wind speed rather than mixing effects”. 

See changes at the end of section 3.3, lines 314-317, and in the discussion section (lines 416-421). 

 

Technical corrections: 

Line 5: define what sw in ∂18Osw stands for: sea water or surface water? If sea water, the more 

common practice is to just use “w” for water. 

∂18Osw stands for seawater. We agree with this suggestion and we change this abbreviation to ∂18Ow
. 

 

Line 14: O is missing 

Corrected 

 

Line 19: correct spelling to “include” 

Corrected 

 

Line 48: replace input with inflow 

Replaced 

 

Line 49: replace into with in. Later in the sentence, correct the word order to Levantine Intermediate 

Water. 

Done 

 

Line 142: salinity is nowadays only given as a number (as correctly, done, for example in line 234); 

so, PSU should be deleted here. 

Corrected 

 

Line 201: I assume you mean eastern and not western basin as all the Gat et al. (1996) data are from 

the eastern basin. 

Corrected. Thank you for pointing this out. 

 

Line 207: EMed and WMed as acronyms should be defined. 

Done, already defined in the introduction section (and in the new table 1) 

 

Line 209: if you write western Mediterranean instead of WMed, Sea should be added behind 

Mediterranean. 

Done 

 

Lines 228-229: check the longitudes given for the eastern and western Med, respectively. If 

referring to the WMed, there should also not be a negative sign before the 6°E. 

Corrected (section 3.1, lines 248-249).  



 

Lines 365-366: add the article the before EMed/WMed, respectively. 

Added 

 

Figures: chosen color scheme: many of the figures include a red to green color range with symbols 

overlain in such colors. So, for color blind people it will be impossible to correctly read some of the 

figures. The author might want to check, if plotting in a different color range would be possible. 

The second reviewer also highlighted this concern. In the updated version of the paper, we have 

modified the color palettes accordingly (see the new version of our ms). 
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