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Abstract. Ground-level ozone (O3) pollution is a persistent environmental concern, even in 

regions that have made efforts to reduce emissions. This study focuses on the state of Arizona, 

which has experienced elevated O3 concentrations over past decades containing two non-

attainment areas designated by the U.S. Environmental Protection Agency. Using the Weather 15 

Research and Forecasting with Chemistry (WRF-Chem) model, we examine O3 levels in the semi-

arid and arid regions of Arizona. Our analysis focuses on the month of June between 2017 and 

2021, a period characterized by high O3 levels before the onset of the North American Monsoon 

(NAM). Our evaluation of the WRF-Chem model against surface Air Quality System (AQS) 

observations reveals that the model adeptly captures the diurnal variation of hourly O3 levels and 20 

the episodes of O3 exceedance through the maximum daily 8-hour average (MDA8) O3 

concentrations. However, the model tends to overestimate surface NO2 concentrations, particularly 

during nighttime hours. Among the three cities studied, Phoenix (PHX) and Tucson (TUS) exhibit 

a negative bias in both hourly and MDA8 O3 levels, while Yuma demonstrates a relatively larger 

positive bias. The simulated mean hourly and MDA8 O3 concentrations in Phoenix are 44.6 and 25 

64.7 parts per billion (ppb), respectively, compared to observed values of 47.5 and 65.7 ppb, 

resulting in mean negative biases of -2.9 ppb and -1.0 ppb, respectively. 
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Furthermore, the analysis of the simulated ratio of formaldehyde (HCHO) to NO2 (HCHO/NO2; 

FNR), reveals interesting insights of the sensitivity of O3 to its precursors. In Phoenix, the FNR 

varies from a VOC (volatile organic compound)-limited regime in the most populated areas to a 30 

transition between VOC-limited and NOx-limited regimes throughout the metro area with an 

average FNR of 1.15. In conclusion, this study sheds light on the persistent challenge of ground-

level O3 pollution in semi-arid and arid regions, using the state of Arizona as a case study.  

1. Introduction 

Ground-level ozone (O3), or tropospheric O3, is a harmful air pollutant that affects human health 35 

and plants (Anderson, 2009; Reich, 1987; Iriti and Faoro, 2009; Wang et al., 2017; Lippmann, 

1989; Manisalidis et al., 2020). O3 concentrations are affected by meteorological conditions as 

well as the concentrations of precursors (Vingarzan, 2004; Wang et al., 2017; Fiore et al., 2002; 

Jacob, 2000; Monks et al., 2015). Meteorological factors include intensity of solar radiation, 

temperature (T), relative humidity (RH), winds, pressure, and boundary layer height (Trainer et 40 

al., 2000). The precursors of O3 include nitrogen oxides (NOx) and volatile organic compounds 

(VOCs). Besides its significant role in forming O3, NOx, particularly NO2, is also an important 

pollutant mainly emitted by human activities.  

With projections indicating the expansion of aridity zones due to climate change in the future 

(Asadi Zarch et al., 2017; Achakulwisut et al., 2019; Straffelini and Tarolli, 2023; Huang et al., 45 

2017), there is an anticipated rise in O3 levels under more drought and elevated temperature 

conditions (Achakulwisut et al., 2019), thereby posing potential challenges to overall air quality, 

vegetation, and public health. In the face with these projections, there is an undeniable sense of 

urgency in advancing our comprehension of O3 production mechanisms and refining forecasting 

model skills, especially within urban arid regions. This imperative arises from the 50 

acknowledgement that urban areas in arid climates face a distinctive set of challenges marked by 

exceptionally low precipitation, elevated temperatures, and unique vegetation. Gaining such 

insights is crucial for generating effective strategies to mitigate the negative impacts on air quality, 

vegetation, and the health of urban populations in response to shifting climatic conditions. 

Because of the Clean Air Act, average NO2 concentrations have decreased substantially in the U.S. 55 

since the 1990s (U.S. Environmental Protection Agency [EPA], National Emissions Inventory 
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(NEI) air pollutant emissions trends data, http://www.epa.gov/ttnchie1/trends/, 2012, hereinafter 

referred to as EPA, online report, 2012). For example, the annual 98th percentile of daily maximum 

1-hour average NO2 was reduced from 42 ppb to 33 ppb with a 21% decrease in the national 

average from 2010 to 2022 (Epa, 2023). VOCs in the atmosphere are generally emitted from two 60 

major sources: human activity and biogenic volatile organic compounds (BVOCs) produced by 

plants. In the U.S., VOC emissions data are tracked by the NEI. According to NEI data, in 

Maricopa County, where the city of Phoenix resides, total estimated VOC emissions from 

anthropogenic sources, excluding forest wildfires and prescribed burns, decreased by 35% between 

2008 and 2020 (from 0.19 million tons to 0.13 million tons). Most anthropogenic emissions 65 

reductions were observed among on-road mobile sources and other industrial processes. As a 

result, O3 levels have substantially decreased across much of the U.S. (Cooper et al., 2012; Parrish 

et al., 2022). In 2015, the U.S. EPA lowered the O3 National Ambient Air Quality Standard 

(NAAQS) to 70 parts per billion (ppb). The design value is defined as the annual fourth-highest 

maximum daily 8-h average (MDA8) O3 concentration, averaged over three years. Any area that 70 

does not meet this standard is designated as a nonattainment area (NAA). Despite the nationwide 

decrease of O3 precursors and O3 concentrations, there are still areas where O3 levels exceeded the 

2015 NAAQS standard of 70 ppb in 2017 (U.S. EPA Green Book 8-h Ozone 2015). Therefore, for 

these areas, it is critical to have a detailed understanding of the chemical and meteorological 

processes influencing O3 formation so that better pollution control can be put in place to reduce 75 

O3 levels.  

Identifying and quantifying the various sources that contribute to the formation of O3 is 

challenging due to the complicated nature of atmospheric chemistry and variability of O3  

precursors (Duan et al., 2008; Fang et al., 2021; He et al., 2019; Odman et al., 2009; Yang et al., 

2021; Zare et al., 2014; Zhan et al., 2023; Trainer et al., 2000). First, O3 formation is a complex 80 

process that involves the interaction of multiple precursor pollutants, such as NOx and VOCs, 

under the influence of sunlight. The chemistry behind these reactions can be highly nonlinear and 

dependent on numerous variables (e.g., temperature, moisture, cloud cover, and solar radiation) 

(Trainer et al., 2000). This nonlinearity makes it challenging to predict how changes in emissions 

will impact O3 concentrations. In addition, O3 is not limited to areas where its precursors are 85 

emitted as it can be transported over long distances. This makes it difficult to attribute O3 levels 
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solely to local sources, as regional and even global factors can influence local concentrations 

(Vingarzan, 2004; Monks et al., 2015).  

In Arizona, the Phoenix-Mesa metropolitan area is currently designated as a moderate NAA for 

O3 and has ranked among the top five of most polluted cities for O3 in the recent 5 years (source: 90 

https://www.lung.org/research/sota/city-rankings/most-polluted-cities). Another NAA is Yuma 

County. Unlike Maricopa County, Yuma is a rural region that has a much lower population and 

emissions. With Yuma being located on the border of Mexico on the south/southwest and 

California on the west, its O3 levels thus are significantly impacted by both international and inter-

state transport. Qu et al. (2021) investigated the sources of O3 pollution in Yuma, Arizona, and 95 

found strong international influences from Northern Mexico on 12 out of 16 O3 exceedance days. 

They also performed a sensitivity study with the GEOS-Chem model and found that reducing 

emissions in Arizona alone would have a minimal impact on mitigating O3 exceedances in Yuma, 

with only a 0.7% reduction in MDA8 O3. In contrast, reducing emissions in Mexico is estimated 

to contribute to an 11% reduction in O3 during these exceedances, bringing MDA8 O3 in Yuma 100 

below the standard. Li et al. (2015) applied WRF-Chem with sensitivity experiments and showed 

that Arizona emissions have a dominant impact on MDA8 O3 concentrations in Phoenix, while 

southern California’s contributions range from a few ppb to over 30 ppb.  

While long-range transport of precursors and O3 into Arizona does occur, the primary contributor 

to O3 levels remains the in-situ production resulting from local emissions. Because most of Arizona 105 

is a semi-arid and arid region with a unique southwest natural environment including weather, 

climate, and desert plants, it is important to understand how the extreme heat, low moisture, and 

year-around desert shrubs contribute to O3 production in order to minimize O3 exceedances and 

improve air quality forecasting (Sorooshian et al., 2024). Additionally, even though Arizona is a 

typical desert weather region with high temperatures and low moisture year-round, during the 110 

North American Monsoon (NAM) the primary wind flow in Arizona shifts from 

westerly/southwesterly to southerly/southeasterly, resulting in elevated moisture from the Pacific 

Ocean and the Gulf of California. Furthermore, unlike the other O3 polluted regions in the Eastern 

US, which are mainly forest ecosystems, most of Arizona experiences little precipitation—less 

than 25 centimeters or 25 to 50 centimeters of rain per year (Paul et al., 2002). The BVOCs are 115 

also quite unique in the arid climate region. Geron et al. (2006) found out that in the Mojave and 
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Sonoran Desert regions of the western US where Arizona is, of all the 13 common desert plant 

species, only two of the species emitted isoprene (most abundant BVOC) indicating that this type 

of ecosystem is not likely a strong source of isoprene, compared to forest ecosystems.  

In section 2 we first discuss the climatology of Phoenix, as a representation of southwest Arizona, 120 

and then describe the datasets employed and the setup of the WRF-Chem model. In section 3 we 

present analyses of model evaluation with observations including meteorological fields, O3, and 

precursors. The analyses of O3 exceedance and VOC-NOx sensitivity are also included. Section 4 

summarizes the main conclusions of this study. 

2. Data and Method 125 

This research focuses on the study of O3 in the state of Arizona in the U.S. In this section, we begin 

with introducing the available datasets applied to evaluate the WRF-Chem model including 

observational datasets from EPA AQS and PAMS network, reanalysis using CMAQ modeling, 

radiosonde measurements, and regional forecasts. Then a description of the study region is given 

following by the model description and configurations.   130 

2.1 EPA AQS surface observations 

We use the hourly and daily surface in situ observations of O3, CO, NO2, and meteorological fields 

such as T, RH, and winds from the EPA AQS monitoring network (Demerjian, 2000). Sites within 

each city were selected based on their availability during the study periods for each parameter. For 

instance, for O3 measurements, 10 sites were selected in Phoenix, 7 in Tucson, and 2 in Yuma. 135 

The information for each is listed in Table S2. For evaluation purposes, we applied quality control 

to the raw data to exclude any values that were zero or negative before doing further analysis. To 

calculate the MDA8 O3, any days with more than 8 continuous hourly data points missing were 

excluded from the analysis. Zero and negative values were treated as missing while values below 

the method detection limit (MDL) were replaced with 0.5×MDL (Zhang et al., 2012). 140 

2.2 EPA PAMS VOC measurements 

The network of Photochemical Assessment Monitoring Stations (PAMS) established by the U.S. 

EPA plays a crucial role in monitoring and understanding ground-level O3 pollution in affected 

areas providing measurements of various O3 precursors, including VOCs. The list of 

measurements includes 63 different compounds with some of the most common VOC species like 145 
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formaldehyde (HCHO), acetaldehyde, acetone, ethanol, and two monoterpenes (α-pinene and β-

pinene; C10H16). The primary objective of these PAMS sites is to create a comprehensive database 

of O3 precursors and meteorological conditions to better understand local O3 formation, support 

the development of O3 models, and allow for the tracking of important trends in O3 precursor 

concentrations over time. The two PAMS monitor sites in Arizona are located in Phoenix (JLG 150 

Supersite: 04-013-9997) and Tucson (22nd & Craycroft: 04-019-1011). The sampling frequency 

for most VOCs is hourly averaged. For formaldehyde, JLG supersite uses the EPA's 3-day 

schedule with three 8-hour averaged carbonyl samples per day on every third day.  

2.3 Radiosonde data 

High vertical resolution temperature profiles from radiosondes are applied to determine the 155 

planetary layer boundary height (PBLH) for WRF-Chem evaluations. Data from radiosondes 

launched at three different locations (Phoenix, Tucson, and Yuma) were downloaded. The 

radiosonde launches in Phoenix are active during the monsoon season, starting in mid-June and 

ending in late September while Tucson and Yuma conduct regular daily balloon launches. The 

launch times for Phoenix and Tucson are set at 0000 UT and 1200 UT, while Yuma operates two 160 

launch sites with schedules at 1200 UT, 1800 UT, and 2100 UT. To estimate the PBLH, we use 

the Bulk Richardson Number Method. Richardson number is a dimensionless number used to 

assess atmospheric stability. The top of planetary layer boundary is marked by when the 

Richardson number exceeds a threshold of 0.25. 

2.4 CMAQ reanalysis 165 

A high-resolution (12 x 12 km2) air quality reanalysis over the contiguous U.S. (CONUS) is 

available from 2005-2018 (https://www.gcseglobal.org/development-air-quality-products). This 

reanalysis is generated using a newly developed chemical data assimilation system that 

simultaneously assimilates aerosol optical depth (AOD) retrievals from the Moderate Resolution 

Imaging Spectroradiometer (MODIS) and carbon monoxide (CO) retrievals from the 170 

Measurement of Pollution in the Troposphere (MOPITT) in the Community Multiscale Air Quality 

(CMAQ) model. The WRF model provides meteorological input for CMAQ simulations over the 

CONUS. This dataset offers a suite of air quality products, e.g. PM2.5, PM10, O3, NO2. In this study, 

beyond the ground-based EPA observations we expand our analysis by incorporating this 

reanalysis dataset to enhance the evaluation of O3 levels across Arizona. 175 
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2.5 ADEQ forecasts 

The Arizona Department of Environmental Quality (ADEQ) produces five-day hourly air quality 

forecasts for locations across Arizona (https://www.azdeq.gov/forecast). Specifically for our study 

region, forecasts are released Monday through Friday and include O3, PM10, and PM2.5. The 

forecast values are for the monitor with the highest MDA8 O3 concentration for a given day within 180 

the Phoenix-Mesa NAA and the Tucson area, whereas for Yuma it is a single monitor (Yuma 

Supersite).  

2.6 Description of study region and time period 

The climate of the south and southwest parts of Arizona (Sonoran Desert) is dry and hot, with 

much of the region characterized as arid. Our primary interest is in three major cities: Phoenix, 185 

Tucson, and Yuma. Phoenix, the most populated city, is designated as an O3 NAA by EPA along 

with the entire metro area; Tucson, which is the second largest city in the state, experiences mild 

O3 pollution but gets stronger influence from the monsoon and Mexico; Yuma, situated near both 

California and Mexico, is a representation of an arid section of the Sonoran Desert and also 

designated as a NAA with clean data determination by EPA.  190 

Shown in Figure 1 are the monthly mean surface air values of MDA8 O3, CO, NO2, and 

meteorological fields of RH, T, wind speed, and wind direction in the city of Phoenix. These 

monthly values were derived from averaging the daily EPA AQS data collected over a 5-year 

period from 2017 to 2022 at the Phoenix JLG Supersite. The MDA8 (Figure 1a) exhibits peaks 

during the summer months, spanning from April to September, except for the year 2020 when the 195 

COVID-19 pandemic began. On the other hand, the monthly CO, NO2, and RH show an opposite 

trend, with their lowest values observed during the summer months. RH is the lowest in June and 

then increases as the monsoon arrives in July, followed by decreases in September after the 

monsoon ends. Besides the COVID-19 factor, 2020 is ranked as the second driest year in Arizona's 

history, with a statewide precipitation level of only 6.63 inches (Nws Phoenix, 2020). Figure 1(d) 200 

shows that the RH levels during late 2020 (red line) and early 2021 (purple line) were the lowest 

across the five-year period. Additionally, the temperature during the summer of 2020 (Figure 1e) 

was also the highest. For winds, the windiest seasons are spring and summer, and the wind 

direction varies throughout the year. The wind direction is determined by taking the inverse tangent 

of the total zonal and meridional wind components, which are derived from the daily maximum 205 



 8 

wind speed and its corresponding direction. Summer months exhibit mostly westerly winds and 

winter months consist of more easterly winds (Figure 1f-1g). Shown in Figure 1h is the distribution 

of monthly O3 exceedance days at the JLG supersite in Phoenix (site number: 04-013-9997). An 

O3 exceedance day occurs when the MDA8 O3 is greater than 70 ppb on that day. The exceedance 

days are mostly recorded from April to September, referred to here as the "ozone season". In the 210 

months of June and July in the year 2020, the MDA8 O3 (Figure 1a) and exceedance days (Figure 

1h) were substantially lower than in other years and the reason could be related to the COVID-19 

pandemic. The pandemic's stay-at-home period resulted in much lower traffic levels and hence 

reduced anthropogenic emissions.  

 215 

Based on these monthly results, we choose the month of June (dry summer), when O3 levels, 

temperature, and winds are high, and the moisture level is still low. It is also intended to mitigate 

the impact of the heavy precipitation that typically accompanies the monsoon. Additionally, since 

we focus on the desert area, dust storm events can significantly impact the O3 photolysis, hence 

the concentrations. According to Lader (2016), the highest frequency of dust storm events happens 220 

 

Figure 1. Monthly mean of Phoenix surface (a) MDA8 O3, (b) CO, (c) NO2, (d) relative humidity (RH), (e) 

temperature (T), (f) wind speed, (g) wind direction, and (h) number of exceedance days for years between 

2017 and 2021, derived from EPA criteria gases and meteorological daily summary data of a single site 

(Phoenix JLG supersite). 

 



 9 

during the active Monsoon season (in July and August). Therefore, we have chosen June as our main 

study period to reduce the impacts of dust. We apply the WRF-Chem model (v4.4) with state-of-art 

configurations to simulate the O3 concentrations over Arizona. Numerical simulations were 

conducted during June between 2017 and 2021 for a total of five years. Furthermore, the ozone 

season in 2017 was also simulated as our base year. The following sections describe the datasets 225 

analyzed herein and the configuration used for the WRF-Chem simulations. 

2.7 WRF-Chem setup 

The Weather Research Forecasting coupled with Chemistry (WRF-Chem) (Grell et al., 2005) 

model is a fully coupled meteorology-chemistry transport model developed by the National Center 

for Atmospheric Research (NCAR). This study uses WRF-Chem v4.4 to simulate O3 in Arizona. 230 

With our ultimate goal of establishing an operational forecasting and analysis system for Arizona 

in the future, we have configured the model using the NCAR WRF-Chem forecasting system as a 

reference (https://www.acom.ucar.edu/firex-aq/forecast.shtml). The comprehensive 

parametrization schemes are provided in the following list. The Model for Ozone and Related 

Chemical Tracers (MOZART-4, (Emmons et al., 2010)) is selected for the gas-phase chemistry, 235 

coupled with the Goddard Chemistry Aerosol Radiation and Transport (GOCART, (Chin et al., 

2002)) for aerosol chemistry with wet scavenging enabled. The standard MOZART-4 mechanism 

includes 85 gas-phase species, 12 bulk aerosol compounds, in addition to 39 photolysis and 157 

gas-phase reactions. It also includes an updated isoprene oxidation scheme and a better treatment 

of volatile organic compounds, with three lumped species to represent alkanes and alkenes with 240 

four or more carbon atoms and aromatic compounds (called BIGALK, BIGENE and TOLUENE) 

(Emmons et al., 2010). The new updated TUV photolysis option, based on standalone TUV version 

5.3, is employed to calculate the photolysis rates. This new TUV option uses O3 climatology 

distributed from the model top (~20km) to 50 km. Initial and lateral boundary conditions are 

supplied every six hours from both the Global Forecast System (GFS) with a horizontal grid 245 

spacing of 1° for meteorology and the Community Atmosphere Model with Chemistry (CAM-

Chem) (Lamarque et al., 2012; Tilmes et al., 2015) for chemistry. Biogenic emissions are 

calculated online with the Model of Emissions of Gases and Aerosols from Nature (MEGAN, 

v2.1) using the simulated meteorological conditions while running WRF-Chem (Guenther, 2007; 

Guenther et al., 2006). Note that MEGAN v2.1 currently is only compatible with the CLM4 250 

(Community Land Model Version 4, Oleson et al. 2010) land surface model. The anthropogenic 
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emissions used in this study are obtained from 2017 National Emissions Inventories (NEI2017) 

data provided by the US EPA (https://www.epa.gov/air-emissions-inventories/2017-national-

emissions-inventory-nei-data) with a 4 km grid resolution covering the US and surrounding land 

areas. NEI emissions are then interpolated and regridded to model domain grids. Biomass burning 255 

emissions are calculated using the Fire Inventory from NCAR (FINNv2.5) (Wiedinmyer et al., 

2023) and the online plume-rise model (Freitas et al., 2007). FINNv2.5 is based on fire counts 

derived from both satellite MODIS and VIIRS (Visible Infrared Imaging Radiometer Suite) active 

fire detection (Wiedinmyer et al., 2023). We employed the GOCART dust option in accordance 

with the GOCART aerosol scheme. The following key physics settings are also employed: 260 

Morrison double–moment microphysics (Morrison et al., 2009), RRTMG for long and short-wave 

radiation (Iacono et al., 2008), Eta Similarity for surface layer physics (Monin and Obukhov, 

1954), the Unified Noah Land Surface Model (Tewari et al., 2004), the Yonsei University (YSU) 

planetary boundary layer (PBL) scheme (Hong, 2010), and the Grell–Freitas cumulus 

parameterization scheme (Grell and Freitas, 2014).  265 

The model is configured with two nested grid domains consisting of 9 km and 3 km horizontal 

grid spacing along with 34 vertical levels. Shown in Figure 3 is the WRF-Chem domain setup. The 

parent domain (D01) covers the entire western U.S. with expansion to northern Mexico to better 

understand the wind shift from Mexico during NAM, while the nested domain (D02, Fig. 2b) 

focuses on Arizona. Both domains are centered in the Phoenix metropolitan area. D01 features 271 270 

and 394 horizontal grids, while D02 is characterized by 349 and 313 horizontal grids. The 

topography in Figure 2b (color contours) shows that Phoenix is located in about the center of a 

valley, called Salt River Valley.  The WRF-Chem run periods are specifically designed to be the 

month of June between 2017 and 2021, with each run consisting of a total of 33 simulation days, 

including a three-day spin-up in late May and 30 days in June.  275 

https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-data
https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-data
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3. Results and Discussion 

3.1 Model evaluations 

We begin by evaluating the simulated diurnal and monthly variations of meteorological fields and 

major air pollutants using the AQS monitor site and PAMS observations. Shown in Figure 3 is the 280 

time series of Phoenix hourly surface O3 concentrations in June for the year 2017 and 2018. CMAQ 

air quality reanalysis datasets are also included for evaluation. The AQS observations for a 

particular city are calculated as the average of hourly or maximum daily 8-hour average (MDA8) 

O3 levels obtained from all selected sites. These observations are subsequently compared with the 

mean simulated O3 concentration within the corresponding area. The diurnal pattern of O3 285 

concentrations is clearly discernible, with peak levels occurring during the afternoon and reaching 

their lowest points at night. In general, the WRF-Chem model effectively captures these daily O3 

concentration patterns. Conversely, the reanalysis dataset notably underestimates O3 levels during 

the nighttime. Notably, in June 2017, an extreme O3 event occurred, characterized by O3 levels 

exceeding 80 ppb and lasting for 9 days, starting on 14 June 2017. On 20 June, O3 levels even 290 

 

Figure 2. (a) WRF-Chem domain setup for outer domain D01 and inner domain D02, (b) geographic 

location of three Arizona cities: Phoenix, Tucson, and Yuma. Black dash lines in (b) represent the county 

borders. Contours denote the elevation in meters over the continent. 
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reached 100 ppb. The model effectively simulates this exceptional event, while the reanalysis 

dataset tends to overestimate this peak.  

Listed in Table 1 are the statistical metrics comparing hourly concentrations from the WRF-Chem 

to the AQS monitoring sites at three different locations: Phoenix (PHX), Tucson (TUS), and Yuma 

(YUMA). The statistics include Pearson correlation coefficient (R); mean bias (MB); mean error 295 

(ME); root mean square error (RMSE); normalized mean bias (NMB); normalized mean error 

(NME); mean normalized bias (MNB); mean normalized error (MNE); fractional bias (MFB); 

fractional error (MFE). For hourly O3, the correlation (R) indicates that all locations show a 

positive correlation, with PHX having the highest at 0.81, followed by TUS at 0.73, and YUMA 

at 0.69. The negative MB suggests that in PHX (-2.9 ppb) and TUS (-1.7 ppb) WRF-Chem 300 

underestimates the O3 concentration, while YUMA (5.2 ppb) suggests an overestimate. PHX and 

TUS generally exhibit smaller biases and errors compared to YUMA. Additionally, YUMA has 

the highest variability in errors and the highest NME and RMSE values, indicating less agreement 

with AQS data compared to PHX and TUS.  

 305 

 
Figure 3. WRF-Chem simulated (red), EPA AQS (blue), and CMAQ reanalysis (black) hourly surface O3 

concentrations in June of 2017 (top) and 2018 (bottom) in Phoenix. Results are at Universal Time. 
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In addition to the hourly O3 evaluation, we have also examined the MDA8 (Maximum Daily 8-

Hour Average) O3.  MDA8 O3 is a crucial metric used in air quality management and assessment, 

as well as a good indicator of air pollution. Shown in Figure 4 are the MDA8 O3 concentrations 

for June 2017-2021 in the cities of PHX, TUS, and YUMA. Similar to hourly O3 in Figure 3, for 310 

the MDA8 O3, we employed the CMAQ reanalysis data and AQS observations for our evaluation. 

Additionally, since the CMAQ reanalysis data is available only up to the year 2018, we 

incorporated ADEQ forecasts for the years 2019 through 2021. The statistical results of the MDA8 

O3 evaluation against AQS observations can be found in Table 2. Statistics of CMAQ reanalysis 

and ADEQ forecasts in each individual year are included in Supplement Table S3.  315 

Overall, WRF-Chem MDA8 O3 exhibits a smaller mean bias compared to hourly O3, except Yuma, 

where the mean bias slightly increases from 5.2 ppb to 6.3 ppb. However, it is worth noting that 

the correlation coefficients show a slight decrease from 0.81 and 0.73 to 0.66 and 0.62 for PHX 

and TUS, respectively, compared to hourly O3. This reduction in correlation could be attributed to 

fewer data points available for linear fitting in the case of MDA8 O3. Additionally, the RMSE at 320 

PHX is reduced from 10.6 ppb for hourly O3 to 8.6 ppb for MDA8 O3. Considering statistics in 

both Tables 1 and 2, we conclude that WRF-Chem exhibits better performance in capturing the 

variations of MDA8 O3 concentrations than hourly O3. 

Furthermore, when we compare WRF-Chem with CMAQ reanalysis, our findings indicate that 

WRF-Chem demonstrates smaller biases and higher correlations. For instance, the reanalysis 325 

Table 1. Mean statistics of WRF-Chem hourly O3 and evaluation with respect to EPA AQS observations in 
June for years 2017 to 2021. R: Pearson correlation coefficient; MB: mean bias; ME: mean error; RMSE: 
root mean square error; NMB: normalized mean bias; NME: normalized mean error; MNB: mean 
normalized bias; MNE: mean normalized error; MFB: fractional bias; MFE: fractional error. 

Hourly 

O3  

WRF,  
AQS 

R MB ME RMSE NMB 
(100%) 

NME 
(100%) 

MNB MNE MFB MFE 

PHX 44.6,  

47.5 

0.81 -2.9 8.3 10.6 -6.1 17.6 -0.03 0.19 -0.07 0.20 

TUS 46.2, 
47.9 

0.73 -1.7 6.4 8.1 -3.5 13.4 -0.02 0.14 -0.04 -0.37 

YUMA 46.3, 
41.1 

0.69 5.2 9.1 12.6 12.9 22.4 0.26 0.34 0.13 0.61 
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consistently underestimates the MDA8 O3 at PHX but overestimates them at Yuma during the 4-

9 June and 20-28 June periods, as illustrated in Figure 4.  

  

 

Besides O3 evaluations, we examined other air pollutants and essential meteorological parameters. 330 

We present in Figure 5 the daily surface concentrations of CO, NO2, isoprene, and formaldehyde 

(HCHO), along with surface T and RH for June 2021. CO and NO2 are two prominent 

anthropogenic pollutants and serve as O3 precursors. Isoprene (the simplest 5-carbon isoprenoid, 

C5H8) and monoterpene is the dominant BVOC emitted to the atmosphere and accounts for over 

 
Figure 4. WRF-Chem simulated (red), EPA AQS (blue), and CMAQ reanalysis (black triangle), ADEQ 

forecasts (black circles) MDA8 O3 concentrations in June 2017-2021 for three major Arizona cities: 

Phoenix, Tucson, and Yuma.  

Table 2. Same as Table 1, but for MDA8 ozone evaluation.  

MDA8 

O3  

WRF, 
AQS 

R MB ME RMSE NMB 
(100%) 

NME 
(100%) 

MNB MNE MFB MFE 

PHX 64.7,  

65.7 

0.66 -1.0 6.9 8.6 -5.6 10.5 -0.05 0.11 -0.06 0.11 

TUS 55.9, 
56.3 

0.62 -0.4 5.1 6.3 -0.8 9.1 -0.00 0.09 -0.01 0.09 

YUMA 59.9, 
52.9 

0.7 6.3 8.7 11.3 12.2 16.5 0.14 0.18 0.11 0.15 
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50% of the total BVOC emissions (Guenther et al., 2012). Their concentrations are significantly 335 

influenced by factors such as temperature, vegetation, and light conditions (Morrison et al., 2016; 

Kalogridis et al., 2014). It is important to note that observations of VOCs using the PAMS system, 

in comparison to the well-established AQS monitoring system, remain relatively limited. 

Currently, the PAMS monitoring network in Arizona only operates during summer months from 

June to August and only started in recent years. For instance, of the two PAMS sites within 340 

Arizona, only two daily measurements of formaldehyde were recorded in June 2019 in Phoenix, 

and the observation schedule changed from 1 in 6 days to 1 in 3 days since 2018. In Tucson, 

formaldehyde observations only became available starting in 2021 with a 1 in 3 days schedule. 

Daily measurements of isoprene became available in both Phoenix and Tucson starting in 2021.  

In comparison with the observations, the model appropriately replicated the daily variations of 345 

surface T and RH with minimal biases. However, for CO, WRF-Chem failed to capture the 

elevated episode over PHX during 11-15 June 2021. It is worth noting that during this period there 

was an active wildfire (Telegraph Fire, situated southeast of Phoenix, https://wfca.com/wildfire-

articles/arizona-fire-season/) that lasted one month and became one of the largest wildfires in the 

U.S. throughout the 2021 wildfire season. Because of this, the CO levels in both Phoenix and 350 

Tucson were significantly impacted by the fire plumes with smoke moving right over Phoenix. 

The model may not be able to simulate the smoke plumes well.  Despite the limited PAMS data, 

we were able to compare the daily isoprene concentrations with observations in both cities. On 

average, daily mean isoprene is around 5 ppb in PHX and 1 ppb in TUS. Furthermore, for HCHO 

concentrations, the model is comparable to the observations, not only in terms of the values, but 355 

also in capturing their variations. In conclusion, the online biogenic emission model employed in 

the WRF-Chem model, MEGAN 2.1, effectively simulates the BVOC levels.  
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Figure 6a-6c presents the spatial plots of monthly mean surface concentrations of MDA8 O3, CO, 

and NO2 for June. The contour plots are based on hourly model output between year 2017 and 360 

2021. The colored circles represent the AQS surface observations for three cities: Phoenix (PHX), 

Tucson (TUS), and Yuma (YUMA).  Both the WRF-Chem model and the observations indicate 

that MDA8 O3 in the Phoenix metro area reaches up to 65 ppb (Figure 6a). The northeast of PHX, 

which is a downwind region, experiences significant O3 pollution as the prevailing winds in June 

are predominantly southwest winds (Figure 6f). The background O3 level in most of Arizona is 365 

around 50 ppb, while west/southwest Arizona, including Yuma, is substantially influenced by O3 

from California. 

For CO concentrations, the highest simulated surface levels in PHX reach 224.2 ppb, closely 

matching the corresponding AQS measurement of 221.9 ppb (Figure 6b). Downwind of Phoenix, 

CO concentrations range between 100 to 120 ppb. Hotspots in the southeast direction of both PHX 370 

 
Figure 5. WRF-Chem simulated (red) and EPA observed (blue) surface concentrations of CO and NO2, 

surface temperature (T), 2-meter relative humidity (RH), surface concentrations of isoprene and 

formaldehyde (HCHO) for June 2021. CO, NO2, T, and RH measurements are obtained through the EPA 

AQS network. Isoprene and HCHO measurements are acquired from the EPA PAMS networks in PHX 

and TUS. The mean bias (MB) for isoprene and HCHO are also included.  
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and TUS are associated with wildfire burning events, such as the 2017 Frye Fire (southeast hotspot 

of TUS) and the 2021 Telegraph Fire. The observed mean NO2 level in PHX is approximately 5 

ppb and is mostly distributed in populated areas as the main source of NO2 is anthropogenic 

emissions. An additional figure in the supplement (Figure S1) provides monthly mean O3, CO, and 

NO2 concentrations for individual years.  375 

The aridity of southwest Arizona is characterized by high temperatures and low RH. Shown in 

Figures 6d-6f are the mean surface temperature, 2-meter RH, and surface winds. Notably, the 

temperature in PHX is slightly higher than that in TUS as PHX is located in the valley and TUS 

has a higher elevation (see Figure 2b). The RH overall is under 20% in southwest Arizona, where 

the Sonoran Desert is located. The climate of the west/southwest and other parts of Arizona is 380 

distinctive. The monthly mean wind predominantly comes from the southwest direction, with an 

average speed of 10 miles per hour (mph). 
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Table 3 presents the statistics of CO, NO2, T, and RH between simulations and observations for 

PHX and TUS. In general, the simulated values of O3, CO, and T (temperature) align well with 385 

the observations. Temperature shows a small, normalized bias of 2% and -1.3% for PHX and TUS, 

respectively. The model overestimates CO both in PHX and Tucson by 7.1% and 5.75%, 

respectively. Additionally, the model overestimates the NO2 levels in both PHX and TUS. Figure 

6g-6i also demonstrates three dominant VOC concentrations: isoprene, formaldehyde (HCHO), 

and monoterpene (C10H16). Overall, the BVOCs are rather small over the desert region, except 390 

Yuma, where it is largely impacted by agricultural vegetation.  

 

 

Figure 6. WRF-Chem simulated monthly mean concentrations of main pollutions (O3, CO, NO2), 

meteorological fields (temperature, relative humidity, wind), and major VOCs (isoprene, formaldehyde, 

and monoterpene). Colored circles represent the EPA AQS site observations for comparison. 
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To further investigate the bias between simulations and observations, in Figure 7, we present the 

frequency distributions of hourly O3, the corresponding O3 bias with respect to the AQS 395 

observations, and MDA8 O3 for June in the five-year period for Phoenix (top), Tucson (middle), 

and Yuma (bottom). For O3 levels higher than 50 ppb (background O3 level in Arizona), WRF-

Chem demonstrates good performance in estimating the distributions in Phoenix and Yuma but 

tends to overestimate in Tucson, particularly between 50 to 60 ppb. Furthermore, WRF-Chem fails 

to capture the extremely high O3 observational days exceeding 70 ppb for all three cities. 400 

Conversely, for low O3 levels below 50 ppb, which are more associated with nighttime O3, WRF-

Chem substantially underestimates the values. Therefore, for bias analysis, we divide the 

assessment into daytime and nighttime periods to account for the diurnal variability of O3 

formation. The middle panel in Figure 7 presents the fractional bias of hourly O3 between WRF-

Chem and AQS observations. In general, during the daytime the mean bias is positive (Figure 7b, 405 

7e, 7h) suggesting an overestimation by WRF-Chem, while a negative mean bias during the night 

indicates that WRF-Chem underestimates the hourly O3 values in PHX. The MDA8 O3 distribution 

demonstrates better overall agreement between the model and observations than hourly O3, 

consistent with the statistics in Tables 1 and 2.  

Table 3. Statistics of WRF-Chem evaluation with respect to EPA AQS 
monitors. Results represents the average of June across five years between 
2017 and 2021.   

City Method CO (ppb) NO2 (ppb) T (°C) RH (%) 

Phoenix AQS 221.8 9.0 24.8 18.4 

WRF 238.0 9.5 25.3 15.6 

Bias (%) 16.2 (7.1%) 0.5 (5.3%) 0.5 (2%) -2.8 (-15.2%) 

Tucson AQS 142.1 3.9 24.0 16.3 

WRF 150.2 4.4 23.7 17.1 

Bias (%) 8.1 (5.7%) 0.5 (12.8%) -0.3 (-1.3%) 0.8 (4.9%) 
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 410 

 

To gain deeper insights into the factors contributing to O3 bias between daytime and nighttime, the 

distribution of surface NO2 concentration is presented in Figure 8. For data quality purposes, 

surface NO2 concentrations that are less than 0.5 ppb are discarded for both simulations and 

observations. Similar to O3, the model misrepresents large NO2 episodes in PHX and TUS when 415 

NO2 is greater than 40 ppb and 15 ppb, respectively. There is a larger diurnal variability in the 

observations than in simulations. The simulated NO2 distribution during daytime and night are 

comparable while observed distributions are significantly different with distinct slopes (Figure 8a, 

8d). In PHX, the model overestimates the high NO2 levels (>10 ppb) during the night while in 

TUS, the model underestimates the NO2 during the daytime. The mean bias for day and night in 420 

PHX are 0.2 ppb and 1.9 ppb, respectively.  The mean bias for day and night in TUS is -2.4 ppb 

 

Figure 7. Model evaluation for cities of Phoenix (top row), Tucson (middle row), and Yuma (bottom row). 

The first panel in each row shows observed (red) and WRF-Chem simulated (blue) surface O3 frequency 

distribution; the second panel is the frequency distribution of model bias for both daytime (black) and 

nighttime(brown); the third panel presents the frequency distribution of MDA8 O3.  
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and 0.5 ppb, respectively. The bias over Tucson suggests that WRF-Chem overestimates the NO2 

during the night.  

 

 425 

 

To address the biases depicted in Figure 8 during daytime and nighttime, the PBLH is investigated. 

A higher PBLH allows pollutants and aerosols to disperse and mix with cleaner air over a larger 

vertical extent, resulting in a reduction of air pollutant concentrations. Consequently, an 

overestimation of PBLH leads to an underestimation of O3 and NO2, and conversely, an 430 

underestimation of PBLH may contribute to overestimations of these pollutant levels. Using the 

radiosonde data, we estimated the PBLH at three cities and compared with model simulations. The 

launching times of radiosondes at Arizona sites are at Universal Time (UT) hours of 12:00, 21:00, 

and 00:00, which correspond to Local Time (LT) hours of 05:00, 14:00, and 17:00, respectively.  

 

Figure 8. Same as Figure 7, but for surface NO2 concentrations at two cities: PHX (top) and TUS (bottom). 

From left to right panels: hourly surface NO2 distributions, NO2 fractional bias, daily mean NO2 

distributions. Hourly NO2 distributions on the left panel are divided into day and night times.  
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Presented in Figure 9 are the PBLH for three cities, PHX, TUS, and YUMA, during June 2018 435 

(additional years' data are available in the supplement). The nighttime soundings launched at LT 

05:00 are highlighted with red stars, and their corresponding WRF-Chem simulated PBLH values 

are represented as red dots. Conversely, daytime soundings are indicated by blue markers. 

Simulated PBLH at all other times without sounding data are labeled with grey dots. It is worth 

noting that the WRF-Chem model consistently demonstrates an underestimate of PBLH during 440 

nighttime (as denoted by the red markers) and an overestimate during daytime (as shown by the 

blue markers). The mean daytime bias of PBLH between model and observations at Phoenix (LT 

17:00), Tucson (LT 14:00), and Yuma (LT 14:00) are 322.0 m, 18.1 m, and 602.5 m, respectively. 

These biases are closely related to the MDA8 O3 bias listed in Table 2 where bias in Phoenix is 

larger than Tucson. The nighttime biases are all negative with values of -509.7 m, -435.4 m, -55.8 445 

m, indicating an overall underestimate. The underestimate of PBLH during the night will cause 

the shallower vertical mixing of daytime accumulated O3 leading to the positive bias of nighttime 

O3 observed in Figure 7.  
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 450 

3.2 O3 Exceedance 

According to the EPA, an exceedance day occurs on each calendar day when the MDA8 O3 

concentration is greater than 70 ppb, where 70 ppb is the ground-level O3 standard from the 2015 

National Ambient Air Quality Standards (NAAQS). A design value, on the other hand, is a statistic 

that describes the air quality status of a given location relative to the NAAQS level. The O3 design 455 

value of the Phoenix-Mesa metropolitan area has increased from 76 ppb in 2017 to 81 ppb in 2022 

(refer to Table S1 in the Supplements). The rising and persisting O3 levels led to the reclassification 

of Phoenix-Mesa metropolitan area from a marginal to a moderate non-attainment status for O3 

limits by the EPA. In the previous section, we demonstrated that WRF-Chem exhibits good 

performance in simulating the mean O3 and other precursor parameters. Moreover, the model 460 

performs better with the MDA8 O3. To further investigate the issue of O3 pollution in Phoenix, 

 

Figure 9. Planetary boundary layer height (PBLH) in June 2018 for three cities: (a) Phoenix, (b) Tucson, 

and (c) Yuma. Dots and stars represent simulation from WRF-Chem and observation from radiosondes, 

respectively. Nighttime PBLH estimated from radiosonde data at 05:00 local time are denoted as red stars, 

with their corresponding simulated PBLH values indicated as red dots. Blue markers represent radiosondes 

launched during daytime with corresponding WRF-Chem simulations denoted by blue dots.  
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this section focuses on O3 exceedances. As depicted in Figure 1, O3 exceedances typically first 

start in April and last occur in September, with the exception of the year 2019 when exceedances 

extended into October, and the year 2021 when no exceedance was observed in April. Over the 

five-year period from 2017 to 2021, in the greater Phoenix area, the average annual count of O3 465 

exceedance days was 43. Even in 2020, amidst the onset of the COVID-19 pandemic and the 

enforcement of stay-at-home measures, which resulted in reduced concentrations of NOx, O3 

exceedances in Phoenix did not exhibit significant reduction. Figure 10(c) illustrates the boundary 

of the designated Maricopa County non-attainment area (NAA, depicted by polygons outlined in 

black), along with the locations of AQS sites equipped for O3 monitoring. In total, there are 29 470 

monitoring sites, with 27 of them situated within the NAA boundary.  

Presented in Figure 10 are the spatial variations of the mean O3, MDA8 O3, and count of O3 

exceedance days for June 2017 within the Maricopa County NAA. In the top panel (Figures 10a-

c), we depict the monthly mean surface hourly O3 concentrations as derived from WRF-Chem, 

CMAQ reanalysis, and data from AQS monitor sites. These 27 AQS sites, encompassing a range 475 

of urbanization levels, population densities, and downwind/upwind positions, exhibit considerable 

variability even within the NAA. Figures 10(d-f) show the monthly mean MDA8 O3 

concentrations, with higher levels observed in the northeastern part of the NAA, a pattern 

accurately captured by both WRF-Chem and the reanalysis. Better agreement among model and 

observations is evident considering both hourly and MDA8 O3. The reanalysis data substantially 480 

underestimates the mean hourly O3 levels by 10 ppb but captures the MDA8 O3 spatial distribution 

pattern. Lastly, the count of O3 exceedance days is shown in Figure 10(g-i). The exceedance days 

vary from 2 to 10 days within the area. The regions with the highest population density, particularly 

the central Phoenix-Mesa region, exhibit the highest counts of exceedance days. Additionally, 

since the prevailing wind in June is westerly (Figures 1 and 6), the east side of the valley is 485 

observed with higher O3 levels. In general, the model exhibits strong agreement with the 

observational data regarding factors such as location, number of days, spatial extent, and spatial 

variability. 
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3.3 O3 source attribution 490 

Source attribution of O3 is challenging due to the complex processes that control O3 formation. 

Tropospheric O3 levels are influenced by a multitude of factors including 1) meteorological 

factors, such as T, RH, cloud cover, radiation, wind speed and direction, precipitation, and 

boundary layer height; 2) O3 precursors, such as NOx, VOCs, and CO, which can originate from 

biomass burning (wildfire, prescribed fire), biogenic emissions,  and anthropogenic emissions; and 495 

3) O3 transport, such as long-range transport and stratospheric O3 intrusions. Understanding the 

relationships between these factors and O3 levels is essential for discerning their respective impacts 

on ambient O3 concentrations. Several analytical methods are available for investigating O3 source 

attributions, e.g., backward trajectory analysis (Xiong and Du, 2020; Dimitriou and Kassomenos, 

2015; Betito et al., 2023; Betito et al., 2024), machine learning algorithm (Cheng et al., 2023; 500 

Mishra et al., 2023; Weng et al., 2022), and chemistry models (Butler et al., 2020; Lupaşcu and 

Butler, 2019; Sudo and Akimoto, 2007). In this paper, we employ scatter plots that utilize both 

 
Figure 10. Comparison of WRF-Chem simulation (left column), CMAQ reanalysis (middle column), and 

EPA AQS observations (colored circles) overlaid with WRF-Chem results (right column) depicting 

monthly mean surface hourly and MDA8 O3 concentrations (top and middle), and exceedance days 

(bottom) in June 2017. O3 exceedance is defined as a day when the MDA8 concentration exceeds 70 ppb. 

The Phoenix-Mesa non-attainment area is bounded by black curves. 
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model outputs and ground observations. These scatter plots serve as a practical means to delve 

deeper into the intricate connections between O3 and its major influencing factors, aiding in the 

identification and quantification of their contributions to O3 concentrations in the atmosphere.  505 

Figure 11 presents a series of scatter plots that illustrate the relationships between O3 

concentrations and other key variables, including CO, NO2, surface T, and RH during daylight 

hours at the Phoenix JLG Supersite. The data points are color-coded, with green denoting 

simulations and orange representing observations. Each column panel within the figure 

corresponds to the respective month of June for individual years spanning from 2017 to 2021. The 510 

displacement between the orange and green dots on the first row suggests that WRF-Chem 

overestimates the CO concentrations in all the years except 2018. In the years 2017 and 2021, 

more extreme O3 concentrations were present with levels exceeding 100 ppb.  

The negative correlation between NO2 and O3 (depicted in Figure 11f-j) reveals that in Phoenix, 

surface O3 levels tend to be higher when NO2 concentrations are lower. When hourly NO2 levels 515 

exceed 25 ppb, O3 concentrations generally remain below 60 ppb. Furthermore, the positive 

correlation between temperature and O3 suggests that in general elevated temperatures are 

associated with higher O3 levels. It is worth noting that on some extreme hot days, O3 levels can 

also be low. Conversely, the negative correlation between RH and O3 indicates that increased RH 

tends to be linked with lower O3 concentrations. These intricate relationships offer valuable 520 

insights into the complex interplay between O3 and its influencing factors within the Phoenix JLG 

Supersite region. 
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As previously discussed in earlier sections, the O3 exceedance in Arizona can be originated from 

a combination of various contributing factors, which can be classified into two main categories: 525 

local production and transport. Notably, on 13 June 2017, the observed surface O3 levels in both 

Phoenix and Yuma experienced a substantial increase, with a MDA8 concentration of 

approximately 90 ppb in Phoenix. This particular event has been successfully captured by both the 

WRF-Chem model and CMAQ reanalysis, as illustrated in Figure 4. Shown in Figure 12 are the 

simulated vertical profiles of O3, CO, NO2, and HCHO, as well as the surface meteorological 530 

parameters including PBLH, temperature (T), 500 mb height, and RH during this extreme event. 

The simulated and AQS observed MDA8 O3 are also included for reference. During the event, 

both the surface and columnar concentrations of CO, NO2, and HCHO were all elevated, 

particularly in the boundary layer. In the meantime, PBLH and RH decreased, while temperature  

and 500 mb height increased, consistent with the correlation relationships observed in Figure 11. 535 

Furthermore, we employed the Hybrid Single-Particle Lagrangian Integrated Trajectory model 

(HYSPLIT) (Rolph et al., 2017; Stein et al., 2015) to calculate 48-hour back-trajectories for the 13 

June exceedance event, as illustrated in supplementary Figure S5. As depicted in Figure 12, at the 

onset of the extreme events on June 13, 2017, temperatures were lower compared to previous days. 

 
Figure 11. WRF-Chem simulated (green) and EPA AQS (orange) hourly CO, NO2, surface temperature 

(T), and relative humidity (RH) versus hourly O3 concentration during the daytime.  
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However, as the event progressed, a heat episode emerged over Phoenix following a decrease in 540 

PBLH. The 48-hour back trajectories suggest a potential influence of airmasses (O3 or its 

precursors) originating from California or Asia contributing to the elevated O3 levels observed in 

Phoenix on June 13, 2017. Subsequently, in the following days, the high O3 concentrations are 

more associated with local production. 

 545 

3.4 O3-NOX-VOC sensitivity 

The O3-NOx-VOC sensitivity is a crucial concept in the fields of atmospheric chemistry and air 

quality management (Duncan et al., 2010; Sillman, 1995; Sillman and He, 2002; Sillman et al., 

2003; Liu and Shi, 2021; Carrillo-Torres et al., 2017; Zaveri et al., 2003). It refers to how the 

concentration of O3 in the atmosphere responds to changes in the levels of NOx and VOCs. 550 

Understanding this sensitivity is essential for assessing and managing air quality, particularly in 

regions where O3 pollution is a concern. The sensitivity is often quantified as the ratio of VOC to 

NOx, an important parameter for characterizing the efficiency of O3 formation in the environment. 

When this ratio is high, O3 formation is constrained primarily by the availability of NOx, leading 

 
Figure 12. Vertical profiles of simulated O3, CO, NO2, and HCHO at three cities (contour plots) along with 

the surface MDA8 O3 (top panel), PBLH, surface temperature (T), 500 mb height, and surface relative 

humidity (RH) in June 2017. An O3 exceedance event on 13 June was observed in all three cities.  
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to what is defined as NOx-limited or NOx-sensitive chemistry. Consequently, taking measures to 555 

reduce NOx emissions directly correlates with O3 reduction. Conversely, under lower ratios, it is 

referred to as a VOC-limited or VOC-sensitive regime. In these scenarios, O3 levels are notably 

more responsive to reductions in VOCs, and solely decreasing NOx may not effectively lower O3 

concentrations and even worse may increase O3 levels. Ratios between the two regimes are 

considered transitional, and both NOx and VOC controls may be effective.  560 

However, it is important to acknowledge that the specific range of ratios used to define VOC and 

NOx limitations can vary among researchers and depend on the specific dataset and variables under 

consideration. Different studies and regulatory assessments may employ distinct criteria for 

categorizing O3 sensitivity to VOCs and NOx, making it imperative to consider these variations 

when interpreting and applying sensitivity analyses in different contexts. From an observational 565 

perspective, the HCHO concentration has been widely used as a proxy for VOC reactivity as it is 

a short-lived oxidation product of many VOCs and positively correlated with peroxyl radicals 

(Sillman, 1995), and it is also available in many observational datasets. The concentration of 

HCHO serves as an indicator for volatile organic compound (VOC) reactivity as it exhibits a 

positive correlation with proxy radicals (Sillman, 1995). Sillman (1995) identified that elevated 570 

HCHO/NOy ratios typically indicate NOx-limited regimes, whereas reduced HCHO/NOy ratios 

are indicative of VOC-limited regimes. Satellite data, like TROPOMI (The Tropospheric 

Monitoring Instrument), provides daily columnar HCHO and NO2 spatial distributions at a certain 

time of the day. Thus, satellite data have been widely used in determining the VOC-NOx sensitivity 

regimes (Duncan et al., 2010; Souri et al., 2020; Jin et al., 2017; Martin et al., 2004). In this study, 575 

we also employ the HCHO-to-NO2 ratio (FNR) as a proxy for assessing VOC-NOx sensitivity. 

Surface FNRs are usually lower by considering surface or planetary boundary layer number 

concentrations since the vertical distribution of HCHO and NO2 varies as shown in Figure 12. HCHO 

is distributed up to 5 km, whereas NO2 predominantly remains within 0.5 km. Various studies have 

investigated the FNR threshold for regime determination. Schroeder et al. (2017) defined the 580 

transitional regime with FNR values ranging from 0.7 to 2.3, while Duncan et al. (2010) reported a 

range of 1.0 to 2.0, and Jin et al. (2020) found values of 3.2 to 4.1 using satellite column retrievals. 

Additionally, Acdan et al. (2022) utilized ground-based PAMS measurements and proposed an FNR 

range of 0.3 to 1.0 for the transition over the Lake Michigan region. In our study, we are following 

Duncan et al. (2010) which linked FNR with surface O3 sensitivity in model simulation and used 585 
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in several studies (Tang et al., 2012; Jin and Holloway, 2015; Souri et al., 2017) by Duncan et al. 

(2010). When FNR is less than 1, it is classified as VOC-limited; when it falls between 1 and 2, it 

is considered a transitional regime; and when FNR exceeds 2, it is defined as NOx-limited.  

In the previous section, we demonstrated a negative correlation between NO2 and O3 indicating 

that Phoenix falls within the VOC-limited/VOC-sensitive regime. To gain a more comprehensive 590 

understanding of NOx-VOC sensitivity in the greater Phoenix metropolitan area, we calculated 

monthly FNR values for each year and their respective means.  Figure 13 displays spatial maps of 

FNR across Phoenix and Tucson, highlighting grids with FNR values less than or equal to 4. The 

Maricopa County Non-Attainment Area (NAA) is outlined in red. Overall, central Phoenix is 

predominantly characterized as VOC-limited or transitional, with FNR values consistently below 595 

2 with an average FNR of 1.15 across the metropolitan area. The FNR tends to be lower within the 

more densely populated urban areas. As one moves towards the suburban areas, there is an increase 

in FNR, marking a transition from the VOC-limited regime to the boundary between VOC-limited 

and NOx-limited conditions. Additionally, Phoenix exhibits lower FNR values compared to 

Tucson. Notably, hotspots related to fire activities are evident in different years, such as the eastern 600 

region of Phoenix in 2019, the northeastern areas of Phoenix and Tucson in 2020, and the eastern 

part of Phoenix in 2021. Fire and biomass burning activities typically result in significant 

emissions of CO, CO2, NOx, VOCs, particulate matter, methane, and more. Consequently, when 

these fire events occur, they can alter the NOx-VOC sensitivity of the affected areas. The “pop-

up” local FNR minima in  Figure 13 (labeled as WF) suggests that wildfire events lead to a 605 

reduction in the FNR  and a shift in the sensitivity regime towards VOC-limited. Similar results 

have been reported using satellite observations (Jin et al., 2017) and ground-based surface 

measurements (Miech et al., 2023) where they found that during the fire event, the NOx values are 

high near the fire leading to lower FNRs. The varying contours from year to year indicate slight 

differences in sensitivities between those years, with 2019 and 2020 showing lower mean FNR 610 

values over the NAA compared to other years.  
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In Figure 14, we present scatter plots illustrating the relationship between hourly surface 

concentrations of NO2 and HCHO in three cities: Phoenix, Tucson, and Yuma, as simulated by 

WRF-Chem. The color gradients in these scatter plots correspond to the respective O3 615 

concentrations (panels a-c) and FNR values (panels d-f). 

When we compare  Figure 14(a) with 14(d), we observe that in Phoenix, elevated O3 

concentrations are linked to lower NO2 levels (as also seen in Figure 11) and high HCHO 

concentrations, falling within the range of 0.5 to 1.2 in terms of FNR. Conversely, the lowest O3 

levels occur when NO2 levels are relatively high. In Tucson, NO2 levels are approximately half of 620 

those observed in Phoenix, and O3 occurrences are less frequent. Higher O3 concentrations in 

Tucson are primarily associated with FNR values greater than 1. Yuma, on the other hand, exhibits 

the lowest levels of NO2, but it has the highest HCHO concentrations, also accompanied by high 

O3 levels. Notably, the mean FNR in Yuma is also the highest among the three cities, as indicated 

by the prominent red color in Figure 14(f). 625 

Understanding these correlations between HCHO, NO2, and O3 levels is crucial for formulating 

effective regulatory strategies aimed at mitigating O3 pollution in urban settings resulting from 

 
 Figure 13. WRF-Chem simulated monthly mean ratio of surface HCHO/NO2 over Phoenix and 

Tucson. Red lines represent the nonattainment area designated by the EPA. “WF” denotes instances 

of "pop-up" low FNRs resulting from wildfire events. 
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localized O3 production. The transitional regime observed in the Phoenix metropolitan area 

suggests that while additional reductions in NO2 levels could potentially decrease O3 design values, 

there exists the possibility of concurrent increases in daily mean O3 levels due to the intricate 630 

interplay of diurnal complex O3 production. In Yuma, where higher HCHO levels prevail, reducing 

VOC emissions may serve as a viable approach to lowering O3 concentrations. 

    

4. Conclusion 

In this study, our primary objective was to gain a comprehensive understanding of surface O3 635 

pollution in an arid/semi-arid climate region, with a specific focus on the state of Arizona as a 

representative case study. To achieve this, we employed WRF-Chem simulations to simulate O3 

and various other gases, examining the month of June within a five-year period spanning from 

2017 to 2021. Our model's performance was assessed by comparison with surface observations 

from the EPA AQS and PAMS monitoring networks, as well as a CMAQ reanalysis product. Our 640 

analysis primarily focused on three major cities within Arizona: Phoenix, Tucson, and Yuma. We 

 
 Figure 14. Scatter plots of WRF-Chem simulated hourly surface NO2 versus HCHO concentrations at 

three cities: Phoenix, Tucson, Yuma. The colors represent the corresponding O3 concentrations (top) and 

ratio of HCHO/NO2 (FNR; bottom) for years from 2017 to 2021. Black and brown dash lines represent the 

FNR values of 1 and 2, respectively. 
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calculated statistics for both hourly and MDA8 O3 concentrations. We also examined additional 

monthly mean fields, including key meteorological parameters (T, RH, wind), and air pollutants 

(NO2, CO, VOCs). Results show that WRF-Chem demonstrated better performance in simulating 

MDA8 O3 compared to hourly O3. The model exhibited a tendency to overestimate nighttime NO2 645 

levels, resulting in larger biases during the night; the model also shows an overestimate of surface 

NO2 in Phoenix and an underestimate of NO2 in Tucson. Among the cities examined, Yuma 

displayed the highest mean error and a positive bias, whereas Phoenix and Tucson showed closer 

agreement with observations, featuring smaller errors and negative biases. Furthermore, our 

evaluation indicated minimal biases in the representation of meteorological parameters. However, 650 

for VOCs, the model underestimated their surface concentrations.  

O3 exceedances were also investigated and evaluated at all available AQS monitoring sites in 

Maricopa County. Our model exhibited strong agreement with site measurements regarding both 

the magnitude and the number of days on which an O3 exceedance occurred considering factors 

such as location, number of days, spatial extent, and spatial variability. The analysis of an O3 655 

exceedance case beginning on 13 June 2017, along with the back trajectories, suggests that Arizona 

can also be affected by long-range transport from interstate or continental sources.  

To better understand the O3 formation in this arid/semi-arid region, we examined the correlation 

between O3 and other factors influencing O3 production. In Phoenix, the scatter plots exhibited 

overall negative correlations between O3 and CO, NO2, and RH, while positive correlations were 660 

strongly observed with T and HCHO. These correlations suggest that O3 levels are higher when 

NO2 concentrations are generally lower and HCHO concentrations are higher, indicating that the 

central Phoenix falls within the VOC-limited regime. Additionally, our spatial maps of the FNR 

confirm that in the most densely populated urban areas, the region predominantly falls within the 

VOC-limited regime, with FNR less than 1. Moving outward the area FNR values increase, 665 

indicating a shift to a transitional and NOx-limited regime. This analysis significantly contributes 

to our understanding of O3 dynamics in arid and semi-arid regions and has implications for air 

quality management and policy in such environments.  

In terms of the uncertainties associated with the approached in this study, they are largely 

dependent on the bias and uncertainty inherent in the emissions data used for our model 670 

simulations. In the case of anthropogenic emissions, our utilization of NEI2017 data for years other 
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than the reference year introduces potential errors due to variations in emissions over time. This 

particularly affects the representation of precursor pollutants, notably NOx. Moreover, the 

underestimation of HCHO and other biogenic emissions simulated from MEGAN 2.1 may also 

contribute to a negative bias in the FNR, leading to the bias in regime determination. Additionally, 675 

Dust events are particularly common in Arizona, especially in the southwest region where the 

Sonora Desert is situated. The presence of dust can significantly impact ozone photolysis dynamics 

by interacting with sunlight. Dust particles can scatter and absorb solar radiation, thereby altering 

the photolysis rates of ozone molecules in the atmosphere. Consequently, these events may 

introduce bias to our findings. However, according to Lader et al. (2016) and Ardon-Dryer et al. 680 

(2023), dust storm events are most frequent during the Monsoon season (in July and August), 

typically peaking around 6-7 pm when photolysis rates are at their lowest. Focusing on the dry 

summer month of June in this study helps alleviate the bias caused by these dust events. 

However, a better performance of the model can be pursued through various strategies. While 

achieving a higher spatial resolution, such as 1 km, is desirable, it remains constrained by the 685 

available computational resources and the resolution of input datasets, for instance, the NEI 

currently operating at 4 km resolution. A potential remedy involves employing a finer-resolution 

emission dataset, such as the Neighborhood Emission Mapping Operation (NEMO) proposed by 

Ma and Tong (2022). Additionally, refining simulations of nighttime chemistry, crucial for 

accurate predictions, necessitates a more precise estimation of the PBLH, which, if improved, can 690 

contribute to reducing the O3 bias during nocturnal hours. This improvement can be achieved by 

assimilating PBLH estimates obtained from radiosonde and ceilometer data. 

For future work, we aim to continue investigating the contributions of individual sources of O3 to 

total O3 levels. We will adopt a tagging technique developed by Emmons et al. (2012) and Butler 

et al. (2018). This tagging technique uses the WRF-Chem model with the MOZART gas chemistry 695 

mechanism to attribute the sources contributing to tropospheric O3. We will focus on the 

contributions from anthropogenic, fire, and biogenic emissions, and also use the model to trace the 

transport of O3 and its precursors (NOx, VOC) from their source.  

 

 700 

Code and Data Availability Statement. 



 35 

The WRF-Chem model is version 4.4 is available for download from ZENODO (doi: 

10.5281/zenodo.10479471) and publicly available at NCAR 

https://www2.mmm.ucar.edu/wrf/users/download/get_source.html (last access: 25 June 2022). 

The model outputs, ADEQ forecast, and CMAQ reanalysis datasets can be provided upon request 705 

to the corresponding author. EPA AQS and PAMS hourly and daily datasets are available at 

https://aqs.epa.gov/aqsweb/airdata/download_files.html.  
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