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Abstract. We have implemented the Brittle Bingham-Maxwell sea-ice rheology (BBM) into SI3, the sea-ice component of

NEMO. We describe how we achieved this numerical implementation. Specifically, we detail how we introduced a new spa-

tial discretization framework, well adapted to solve the equations of sea-ice dynamics, in order to overcome the numerical

issues posed by the use of the staggered C-grid. As a validation step, a twin hindcast experiment performed with the coupled

ocean/sea-ice setup of the NEMO system, run at a 1/4○spatial resolution, serves as a basis to evaluate the simulated sea-ice5

deformation rates against satellite observations; when using the newly-implemented BBM rheology and when using the de-

fault viscous-plastic rheology of SI3. The results show the added value of using a brittle-type of rheology, such as BBM, to

accurately simulate the highly-localized deformation patterns of sea-ice. Thus, our results highlight the relevance of the use

of this newly-implemented rheology for future modeling studies that utilize a classical Eulerian sea-ice modeling framework,

i.e. based on the finite-difference discretization method over a quadrilateral, staggered, computational grid. This includes, in10

particular, coupled climate simulations performed with CMIP-class Earth System Models at coarse to moderate spatial resolu-

tion.

1 Introduction

Sea-ice is one of the most important physical interfaces in the climate system, as it directly impacts the ocean and the atmo-

sphere, at both local and global scales (Vihma, 2014; IPCC, 2022). In polar regions, the sea-ice cover indeed modulates all the15

radiative and turbulent exchanges of heat, freshwater, gas, and momentum, between the ocean and the atmosphere (e.g. Taylor

et al., 2018, for a review). At the local scale, these fluxes strongly depend on the heterogeneity of the sea-ice thickness, which

itself is controlled by the sea-ice dynamics and the associated formation of leads and ridges. This makes the representation of

sea-ice dynamics key when seeking to simulate the coupled, multi-component earth system, both in the context of regional or

global climate simulations, or in the context of short-term sea-ice predictions.20

The dynamical behavior of sea-ice is controlled by processes interacting and evolving over a wide range of spatial and

temporal scales. This multi-scale nature of sea-ice physics is fascinating and has triggered the curiosity of geophysicists since
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the early 70’s (Coon et al., 1974). More recently, scientific interest in sea-ice dynamics has grown significantly due to the

dramatic retreat and thinning of the Arctic sea-ice cover. In addition, the abundance of new observations of sea-ice kinematics,

recorded by both in-situ instruments and satellites, greatly enhances the potential for further development in sea-ice modeling.25

The dynamics of sea-ice is undoubtedly complex. As one highlight of this complexity, Rampal et al. (2008); Weiss et al.

(2009) showed that the statistical properties of sea-ice deformation are characterized by a coupled space-time multifractal

scaling invariance, similar to what is observed for the deformation of the Earth’s crust (Kagan and Jackson, 1991; Marsan and

Weiss, 2010). The spatial and temporal scaling properties of sea-ice deformation and their coupling provide evidence for the

strong heterogeneity and intermittency that characterizes sea-ice dynamics (Rampal et al., 2008).30

Attempting to reproduce the discontinuous nature of sea-ice – related to the presence of fractures and leads – in continuous

sea-ice models, as well as the complexity of the spatial patterns and temporal evolution of these features, poses a fundamental

and major challenge (e.g. Bouchat et al., 2022; Hutter et al., 2022).

Following the work of Girard et al. (2011), who pioneered the use of an elasto-brittle rheology based on the concept of

material damage in the context of sea-ice modeling, the Maxwell-Elasto-Brittle rheology (hereafter MEB) was developed to35

tackle this challenge (Dansereau et al., 2016). It was implemented into neXtSIM – a large-scale dynamical-thermodynamical

Lagrangian finite element sea-ice model (Rampal et al., 2016) – to evaluate the performance of this new rheology in a realistic

simulation of the Pan-Arctic region. The sea-ice deformations simulated by neXtSIM over a winter season have been first

evaluated statistically against satellite observations, in terms of PDFs and scaling invariance properties, in Rampal et al. (2016)

and Rampal et al. (2019), and later in the two companion papers of Bouchat et al. (2022) and Hutter et al. (2022), showing40

satisfying results.

Recently, the Brittle Bingham Maxwell rheology (hereafter BBM), has been proposed by Ólason et al. (2022) as an upgrade of

MEB. One of the main motive behind the development of BBM was to make realistic multidecadal sea-ice simulations possible,

while preserving (i) the scaling properties of sea-ice deformation from the model grid cell up to the scale of the Arctic basin,

and (ii) the thickness pattern of the sea-ice cover consistent with observations (Ólason et al., 2022; Boutin et al., 2023). These45

two constraints have proved to be impossible to respect with MEB because of an incomplete treatment of the convergence of

highly damaged sea-ice, which results in unrealistic sea-ice thicknesses after a couple of years of model integration.

MEB and BBM have been successfully implemented and tested in neXtSIM. Yet, using neXtSIM in the context of coupled

simulations (such as ocean/sea-ice) is challenging because: (i) the pure Lagrangian advection scheme on which neXtSIM is

built implies that a Lagrangian-Eulerian coupler has to be used, and (ii) its weak scalability capabilities when run in parallel50

on more than a few processors makes it a bottleneck for the coupled setup.

The implementation of BBM into an existing and widely-used state-of-the-art sea-ice model, such as SI3, has the potential to

significantly benefit the sea-ice, ocean, and climate modeling communities. First, this allows to compare the brittle and non-

brittle rheologies in a modeling framework that these communities are familiar with. Second, it makes the assessment of the

impact of these rheology-driven differences in coupled modeling systems easily achievable, and simulations at the kilometer-55

scale possible thanks to the excellent scalability capabilities of SI3 (parallel computing). And third, it facilitates the adoption

of this type of brittle sea-ice rheology, making it accessible to a broader community of modelers.
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As far as we know, a few attempts have been made to implement MEB in Eulerian sea-ice models that utilize the finite-

difference discretization method on staggered grids, such as the MIT general circulation model, or LIM, the former sea-ice

component of the NEMO modeling system (Rousset et al., 2015)). Recently, Plante et al. (2020) presented an implementation60

of MEB in the McGill sea-ice model (Tremblay and Mysak, 1997; Lemieux et al., 2008, 2014). In their study, the simulations

use an idealized configuration (ice flowing through a narrowing channel) over a short period of time (10 hours), and the contri-

bution of terms related to the horizontal advection is not considered. The idealized nature of these simulations prevented their

results from being assessed against observations of sea-ice drift and deformation.

Overall, the efforts of these modeling groups have demonstrated the challenge inherent to the implementation of brittle rhe-65

ologies in realistic Eulerian models that use the finite-difference method on staggered grids. Indeed, as pointed out by Plante

et al. (2020), one major problem linked to the use of the C-grid is the fact that the discretized components of the strain-rate

and internal stress tensors are staggered in space; with the trace (normal) components being defined at the center of the cell,

and the shearing components at the corners. As it is going to be extensively discussed in the present study, the resort to spa-

tial interpolation to overcome this problem, as currently done in VP implementations, is not well-suited for brittle rheologies.70

Therefore, this problem needs to be addressed in order for these Eulerian finite-difference/C-grid-based sea-ice models to be

able to simulate the deformation of sea-ice with a level or realism similar to that obtained with e.g. neXtSIM (Rampal et al.,

2019; Ólason et al., 2022; Boutin et al., 2023).

In this paper, we propose a solution to this problem and provide a detailed description of the implementation of BBM into

an Eulerian, finite-difference, staggered-grid modeling framework; namely that of SI3, the sea-ice component of the NEMO75

modeling system. As a validation procedure, we then compare the simulated sea-ice deformations obtained with our BBM SI3

implementation against those constructed from satellite observations. These deformations are also compared to those obtained

with the default viscous-plastic rheology of SI3 (i.e. the aEVP rheology of Kimmritz et al., 2016).

This paper is organized as follows. In section 2, we summarize the equations of the sea-ice dynamics model, discuss the

aspects in which the numerical implementation of a brittle rheology may differ from that of a viscous-plastic one, and detail the80

numerical aspects of our implementation of BBM into SI3. In section 3, we describe the NEMO ocean/sea-ice coupled setup

used to perform our simulations with both the newly-implemented BBM and the default viscous-plastic rheology, and how

these simulations are designed, before focusing on the evaluation the simulated sea-ice deformations. In section 4, we discuss

some important aspects of our study, linked to both the numerical implementation and the simulated sea-ice deformations. Our

conclusions are summarized in section 5.85

A detailed nomenclature relating the acronyms and symbols used throughout the paper is outlined in Appendix A.

3

https://doi.org/10.5194/gmd-2023-231
Preprint. Discussion started: 10 January 2024
c© Author(s) 2024. CC BY 4.0 License.



2 Model and implementation

2.1 Governing equations and constitutive law

The two-dimensional, vertically-integrated, momentum equation for sea-ice reads

m ∂tu⃗ = ∇⃗ ⋅ (hσσσ)+A (τ⃗a + τ⃗)+mf k⃗× u⃗−mg∇⃗H, (1)90

where the variables and symbols are all defined in Appendix A1. In the two-dimensional (plane stresses) case, the stress tensor

writes

σσσ = ⎛⎜⎝
σ11 σ12

σ12 σ22

⎞⎟⎠ . (2)

In general, a constitutive law relates σσσ to the strain-rate tensor ε̇̇ε̇ε, defined as follows:

ε̇̇ε̇ε = ⎛⎜⎝
ε̇11 ε̇12

ε̇12 ε̇22

⎞⎟⎠ ≡ ⎛⎜⎝
∂xu

1
2
(∂yu+∂xv)

1
2
(∂yu+∂xv) ∂yv

⎞⎟⎠ . (3)95

As derived by Ólason et al. (2022) (their Eq. 20), the BBM constitutive equation reads

∂tσ¯
σ
¯
σ
¯
=E KKK ⋅ ε̇

¯
ε̇
¯
ε̇
¯
−σ

¯
σ
¯
σ
¯

1
λ
(1+ P̃ + λ

1−d ∂td), (4)

where the underbar notation indicates that the tensors are expressed in their pseudovector form, and KKK is the elastic stiffness

tensor:

KKK = 1
1−ν2

⎛⎜⎜⎜⎝
1 ν 0

ν 1 0

0 0 1−ν
⎞⎟⎟⎟⎠ . (5)100

In equation 4, d is the damage scalar: a variable that represents the density of fractures in the ice at the subgrid-scale. In a way

similar to that of the sea-ice concentration, A, the damage modulates the elastic modulus and apparent viscous relaxation time

of the ice as

E =E0(1−d)e−C(1−A), (6)

λ =λ0[(1−d)e−C(1−A)]α−1

, (7)105

where C is the compaction parameter constant and α is a constant exponent greater than 1. α fulfills the physical constraint that

the relaxation time for the stress also decreases as damage increases, and re-increases as the ice heals (i.e. damage decreases);

because the material respectively loses and recovers the memory of reversible deformations (Dansereau et al., 2016). On the

right-hand-side of 4, the term P̃ , which is specific to the BBM rheology, and happens to differentiate BBM from MEB, prevents
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the excessive convergence of ice when damaged:110

P̃ =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if σI > 0

−1 if −Pmax < σI < 0
Pmax

σI
if σI < −Pmax

, (8)

where σI is the (isotropic) normal stress while Pmax is the ridging threshold defined as

Pmax = P0( h
h0

)3/2
e−C(1−A). (9)

Ólason et al. (2022) follow Dansereau et al. (2016) in using a two-step approach to solve equation 4 together with equation 1.

First, an initial estimate of σ
¯
σ
¯
σ
¯
, noted σ

¯
σ
¯
σ
¯

(i), is calculated assuming no change in damage:115

∂tσ¯
σ
¯
σ
¯

(i) =E KKK ⋅ ε̇
¯
ε̇
¯
ε̇
¯
−σ

¯
σ
¯
σ
¯

1
λ
(1+ P̃). (10)

Then, as the second step, the following test and adjustment are performed on the state of stress : if σ
¯
σ
¯
σ
¯

(i) is locally overcritical,

i.e. located outside of the Mohr-Coulomb damage criterion (Fig. 1), an increment in ice damage, dcrit, is applied such that

σ
¯
σ
¯
σ
¯
= dcrit σ¯σ¯σ¯ (i), (11)

where σ
¯
σ
¯
σ
¯

(i) is the local value of the overcritical stress, and σ
¯
σ
¯
σ
¯

is the corresponding post-failure (i.e. post-damage) stress. As120

discussed in Dansereau et al. (2016), this increment in damage is calculated to allow overcritical stresses to decrease directly

back to their corresponding sub-critical value, prescribed by the damage criterion, assuming viscous relaxation to be negligible

during the (comparatively very fast) damage process. The associated temporal evolution of the damage and adjustment of the

stress state is given by

∂td = 1−dcrit
td

(1−d), (12)125

∂tσ¯
σ
¯
σ
¯
= −1−dcrit

td
σ
¯
σ
¯
σ
¯

(i), (13)

where td is a characteristic time scale for damage propagation. In the case of the BBM framework, Ólason et al. (2022) and

the damage criterion shown in Fig. 1 and dcrit expresses as follows:

dcrit =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

c

σ(i)
II +µσ(i)

I

if σ(i)
I >= −N

−N
σ(i)
I

otherwise
. (14)

where c is the cohesion, and µ is the friction coefficient. The threshold N is used to prevent any numerical instability at very130

high normal stresses and is set large enough not to impact the solution noticeably.

Finally, a slow restoring process is applied to account for the healing the ice which is associated with refreezing within open

leads and which is therefore based on a rate of decrease of the damage that depends on the temperature of the ice. This process
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takes the form of an extra term in equation (12), which is decoupled from the damage term thanks to the large separation of

time scales between the healing and damaging processes:135

∂td = −∆Th
kth

(15)

where ∆Th is the temperature difference between basal and surface ice and kth is a healing constant.

2.2 Numerical implementation: brittle versus viscous-plastic rheologies

To understand the extent to which the numerical implementation of a brittle rheology differs from that of a viscous-plastic

one such as VP, let us first review the main differences between these rheologies and their respective classical numerical140

implementation.

First, the elasto-visco-brittle family of rheologies (MEB, BBM, Dansereau et al., 2016; Ólason et al., 2022) considers

unfragmented sea-ice as an elastic and damageable solid. Fragmented sea-ice is a viscoelastic material in which irreversible

deformations dissipate the stresses. As opposed to the VP frameworks, elasticity is therefore a physical and non-negligible

component of the model, which is modulated by the level of damage, d, which keeps the memory of the state of fragmentation145

of the sea-ice cover. In non-regularized frameworks such as MEB and BBM, the combination of elasticity and damage, even

if treated in an anisotropic manner, naturally simulates a strong anisotropy and localization of the deformation, down to the

nominal spatial and temporal scale (i.e. the grid resolution and time-step of the model, respectively, Dansereau et al., 2016;

Weiss and Dansereau, 2017; Rampal et al., 2019; Ólason et al., 2022). Therefore, all the mechanically-related fields, such as

damage, concentration, thickness and velocity, tend to exhibit very sharp gradients, or "near-discontinuities". This is one of the150

reasons why, when using a staggered grid, the spatial averaging method used to relocate a field from a given type of grid point

to another, becomes problematic (see section 2.3).

Second, in the BBM (as in the MEB) framework, a two-fold approach is used to linearize the system of equations and solve

the coupled constitutive and damage evolution equations: (i) an initial estimate, in which stress components are updated based

on the constitutive law (Eq. 10), (ii) a damage step in which the Mohr-Coulomb test is performed, resulting in a potential adjust-155

ment of local overcritical stresses and associated increase in local damage (Fig. 1, Eq. 12 & 13). In viscous-plastic rheologies,

which do not incorporate damage, no such two-fold approach is necessary to solve the system of dynamical equations.

A third and major difference between the two types of rheology is the numerical scheme. In the VP family of rheologies,

the dynamics are solved by means of an iterative approach that has to converge towards the exact solution. In BBM, however,

the dynamics are solved explicitly using a time-step sufficiently small to account for the propagation of damage in the ice in a160

physically realistic manner. Typically, this implies using a time-step a few hundred times smaller (hereafter referred to as small

time-step) than that used for the thermodynamics and the advection (hereafter referred to as the big time-step). This can be

implemented by means of a time-splitting approach as in Ólason et al. (2022).

The fourth and last major difference between the two types of model is that in brittle models, the sea-ice internal stress tensor

σσσ is a prognostic variable, while in VP, it is a diagnostic variable. This implies that the implementation of BBM in an Eulerian165
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framework, as opposed to that of a VP rheology, requires σσσ to be advected, along with other – typically scalar – tracers (see

section 2.4).

2.3 Numerical implementation of the BBM rheology

SI3 is built upon the utilization of the finite-difference method (hereafter FD) on a staggered Arakawa C-grid (Arakawa and

Lamb, 1977). As shown in Fig. 2.a, on the C-grid, tracers are defined at the point located at the center of each cell, hereafter170

referred to as the T-point. The x and y components of vectors are not defined at the same point, but at the center of the right-

hand and upper edges of each cell, respectively (hereafter U-point and V-point). The point located at the upper-right corner of

each cell, known as the vorticity point, is referred to as the F-point. In the literature, this vorticity point is sometimes located

at the bottom-left corner of the cell, and is sometimes referred to as the Z-point (Losch et al., 2010; Plante et al., 2020). The

U- and V-points may also be located at the left-hand and lower edges of the cell, in which case the F-point is located at the175

bottom-left corner of the cell (e.g. Losch et al., 2010).

In SI3, the use of the C-grid is justified based on numerical and practical grounds. It ensures the exact collocation of

ocean and sea-ice horizontal velocity components, thereby simplifying the coupling with the ocean component of NEMO

and preventing interpolation-related errors as well as extra computational load. Yet, when it comes to implementing sea-ice

dynamics, using the C-grid is not the most appropriate choice because the discretized FD expressions of the elements of the180

strain-rate tensor ε̇̇ε̇ε (Eq. 3) are staggered in space. More specifically, the trace elements, ε̇11 and ε̇22 are naturally defined at the

T-point, whereas the shearing rate ε̇12 is naturally defined at the F-point.

The spatial staggering between the point definition of the normal (diagonal) and shear (off-diagonal) elements of these tensors

becomes an issue whenever the parameterization of the constitutive law requires ε̇12 or σ12 to be known at a T-point. This is

the case, for instance, for the expression of ∆ in VP models, or that of the second stress invariant σII in BBM, as they require a185

value for ε̇12 and σ12, respectively, at T-points. Moreover, in BBM, each component of the stress tensor is an indirect function

of the ice damage, a consequence of the dependence of E and λ on d (Eq. 6, 7) in the initial estimate σ
¯
σ
¯
σ
¯

(i) (Eq. 6). This implies

that a value of d is required not only at the T-point, but also at the F-point.

In the aEVP implementation of SI3 (Kimmritz et al., 2016), the fact that the components of the strain-rate tensor are staggered

is overcome by interpolating the square of the shear rate ε̇12 from F- to T-points (as the average of the 4 surrounding F-points).190

Later on, the term P /∆ is also interpolated from T- to F-points in order to estimate σ12. This type of spatial averaging to

interpolate a field from F- to T-points, and vice versa, is widely used when discretizing on the C-grid. It leads to a smoothing of

the relocated field, which also relates to an extra source of numerical diffusion that may or may not be acceptable depending on

the problem at hand. However, in addition to being conceptually debatable in the context of a brittle model, which is expected to

simulate very sharp spatial gradients, this interpolation approach, based on a four-point average, also proves to be numerically195

challenging. Indeed, as reported by Plante et al. (2020), and as experienced by the authors during the development of the

present BBM implementation, the use of this type of interpolation across grid-points leads to spurious numerical features, such

as chessboard instabilities, and an unrealistic solution.
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Another limitation inherent to the discretization on the C-grid, specific to brittle rheologies, is the impossibility to advect

σ12 in a way consistent with that done for σ11 and σ22. That is because the advection of a scalar defined at the F-point, using200

the same scheme as that used for the advection of scalars at T-points, requires the existence of a u and a v at V- and U-points,

respectively.

2.3.1 The E-grid approach

To avoid the problems related to the staggering of the C-grid, namely the interpolation of the stress components and the damage

between the center and the corner points of the grid cell, and allow the consistent advection of all the components of the stress205

tensor, an additional sea-ice velocity vector, noted (û, v̂), is introduced. The x-component of this additional velocity, û, is

defined at V-points, while its y-component, v̂, is defined at U-points (Fig. 2.b). Similarly, the damage tracer is also duplicated,

with an additional occurrence at the upper-right corners of the grid cell, i.e. at F-points. This grid staggering arrangement

corresponds to that of the Arakawa E-grid (Arakawa and Lamb, 1977; Janjić, 1984; Konor and Randall, 2018), in which

tracers are defined at both the center and the four corners of the grid cell, while the two components of the velocity vector are210

defined at the center of the four edges of the grid cell (Fig. 2.b).

As suggested by Fig. 3.b, the E-grid can be seen as a superposition of two C-grids, in which the cell center of the additional

C-grid coincides with the upper right corner of the original C-grid. For convenience, we will refer to these two grids as F-centric

(additional) and T-centric (original), respectively.

In order to minimize the number of modifications and rewriting in the SI3 code, the idea was to restrict the use of this E-215

augmented C-grid to the rheology/dynamics module only. The rest of the code, which includes the thermodynamics, remains

unmodified and relies entirely on the standard C-grid. As such, only rheology-specific tracers are defined in the E-grid fashion,

i.e. at both T- and F-points. In our case, this applies only to the ice damage d and components of the internal stress tensor

(even though components of a tensor cannot be considered exactly as tracers when it comes to the advection, see section 2.4).

However, global tracers, such as ice concentration and thickness, which are updated within the thermodynamics module, remain220

defined at the T-point only. Consequently, these tracers are interpolated at the F-point within the rheology module whenever

needed.

To summarize, in the proposed rheology-specific E-augmented C-grid approach, as shown in figure 3, the conventional C-

grid model variables are augmented with: (i) the u-velocity component at V-points and v-velocity component at U-points, (ii)

the ice damage, σ11 and σ22 at F-points, and (iii) σ12 at T-points. This approach implies that most of the equations related to225

the dynamics, including constitutive and momentum equations, as well as the advection, have to be solved on both the T- and

F-centric grids. As detailed in Appendix B, the exact same discretization and numerical schemes can be used on both grids,

with only the indices of the velocity components on the F-centric grid requiring particular attention: ûi+1,j and v̂i,j+1 have to

be used as the counterparts of ui,j and vi,j on the T-centric grid (Fig.3.b). This is true for the computation of the strain-rate

tensors (B2.1), constitutive equation (B2.2), momentum equation (B3), divergence of the stress tensor (B3.1), advection, etc.230

At this stage it is important to note that the doubling of the number of computational points implied by the transition to the

E-grid, in no way relates to an increase of the spatial resolution of the original C-grid. Because the FD discretization of spatial
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derivatives on the E-grid (see Appendix B) still relies on the same local spatial increment, i.e. ∆x, as that of the original C-grid,

regardless of the sub-grid considered (T- or F-centric).

2.3.2 The separation of solutions and how it is restrained235

Thanks to the E-augmented C-grid approach, all rheology-specific prognostic variables are defined at the points where their

value is required, and no interpolation is needed to solve the equations. It does, however, result in an apparent over-determination,

which allows the T- and F-centric solutions to evolve somewhat independently from one another. This separation of solutions

rapidly degenerates into unrealistically noisy solutions as the spatial consistency of the fields between the two grids deteriorates.

This problem of grid separation has been known since the early adoption of the E-grid by the community (Arakawa, 1972;240

Mesinger, 1973; Janjić, 1974; Janjić and Mesinger, 1983; Mesinger and Popovic, 2010), in particular, in the context of the

shallow-water equations. Various treatments and methods have been proposed, from filtering approaches to more advanced

ones such as the introduction of auxiliary velocity points, midway between the neighboring tracer points (Mesinger, 1973;

Janjić, 1974). Recently, Konor and Randall (2018) have mentioned the need to introduce a “horizontal mixing process” to

avoid the “separation of solutions” when using the E-grid.245

The cause of the separation of the two solutions resides in the weak coupling between the two grids, as they only exchange

very little information. Specifically, in our case, the only exchange of information between the T- and F-centric grids occurs

via the ice velocity vector: in the Coriolis term of the momentum equation (Eq. 1), and in the upper-convected time derivative

(i.e. advection) of the stress tensors (see section 2.4). Due to the relatively small contribution of these two terms, this exchange

of information cannot prevent the decoupling of the solutions between the two grids. Hence, a numerical treatment is required250

to constrain the T- and F-centric solutions to remain spatially consistent with one another.

During the early phase of our development, we considered, implemented, and tested a variety of such treatments. So far, only

one has proven able to prevent the grid separation issue without leading to noisy and/or unrealistic solutions. This treatment,

which operates on the T- and F-centric stress tensors at the small time-step level, will hereafter be referred to as the cross-

nudging. It consists in nudging each component of the T-centric stress tensor σσσ towards its F-centric counterpart (in tensor255

σ̂σσ) interpolated at the relevant point under even time-step integrations, and conversely under odd time-step integrations. This

nudging is achieved by means of the two following equations:

⎛⎜⎜⎜⎝
σ11

σ22

σ12

⎞⎟⎟⎟⎠ = γC ∆t
∆T

⎛⎜⎜⎜⎝
σ11 −interpF@T(σ̂11)
σ22 −interpF@T(σ̂22)
σ12 −interpT@F(σ̂12)

⎞⎟⎟⎟⎠ (even time-step )

⎛⎜⎜⎜⎝
σ̂11

σ̂22

σ̂12

⎞⎟⎟⎟⎠ = γC ∆t
∆T

⎛⎜⎜⎜⎝
σ̂11 −interpT@F(σ11)
σ̂22 −interpT@F(σ22)
σ̂12 −interpF@T(σ12)

⎞⎟⎟⎟⎠ (odd time-step )

(16)

in which γC is the cross-nudging coefficient. As the interpolation methods, denoted by interpF@T and interpT@F, the

usual average of the value at the four nearest surrounding cell corners (F- and T- points, respectively) is used (see Eq. A1260
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in Appendix A4), which inevitably leads to a smoothing of the solution in space. As such, γC , is chosen to achieve the

best compromise between smoothing and coupling of the T- and F-centric solutions. Here too, sensitivity tests have been

performed, and we conclude that the right compromise is achieved when γC typically lies between 1 and 3, with 2 being the

value used in our experiments. As illustrated in figure 5, with a value below 1, the solutions becomes increasingly noisy as γC

approaches zero. In particular, the damage field tends to exhibit strongly unrealistic straight-line features of high damage that265

are horizontally and vertically aligned with the grid cells. Values of γC beyond 3 lead to excessive smoothing of the solutions,

without the benefit of better coupling between the the T- and F-centric solutions; because the spatial consistency between these

solutions typically starts to plateau from about γC =2.

2.4 Horizontal advection

In neXtSIM, the Lagrangian finite-element model used by Ólason et al. (2022), the advection occurs implicitly at each model270

time-step (also corresponding to the thermodynamics time-step) through the ice-velocity-driven displacement of the mesh

elements. As such, the rate of change of a prognostic scalar φ is φ̇ ≡ ∂tφ. In the present Eulerian context, however, the term

relative to the horizontal advection has to be considered so that the rate of change of φ is now ∂tφ+U ∂xφ+V ∂yφ. In our

implementation, as pointed out by Ólason et al. (2022), this advection term is computed and added to the trend of the prognostic

scalar considered every big time-step. Thus, the sea-ice velocity vector U,V we consider for the advection, at the big time-step275

level, is the mean of theNs successive velocity vectors (u,v) calculated under one time-splitting instance. U,V can also be seen

as the sum of the Ns successive displacement vectors, hence the total displacement vector during one big time-step, divided by

the big time-step.

We use the second-order-moments-conserving advection scheme of Prather (1986) available in SI3 to advect the damage and

the components of the stress tensors (considered as scalar for now, see section 2.4.1). Technically, the damage and stress tensor280

components defined at the T-point (d, σ11, σ22 and σ̂12) are advected using U and V defined at U- and V-points, respectively.

Their F-point counterparts (d̂F, σ̂11, σ̂22 and σ12) are advected using Û and V̂ defined at V- and U-points, respectively. In

practice, the exact same implementation of the advection scheme can be used to perform the advection at T- and F-points; the

only difference being that for the advection of F-point scalars, the spatial indexing of the velocity components is staggered by

1 cell. Namely, Ûi+1,j and V̂i,j+1 have to be used in place of Ui,j and Vi,j (Fig. 3.b).285

As it is commonly done in sea-ice models, and justified by a scale analysis of the momentum equation, the term for the

advection of momentum is neglected.

2.4.1 Advection of the sea-ice internal stress tensor

With respect to that of a scalar, the rate of change of a tensor in the Eulerian framework, known as the upper-convected time

derivative, includes additional terms to account for the deformation of the medium, here in the form of a symmetric tensor LLL:290

▿
σσσ ≡ ∂tσσσ + (U⃗.∇⃗)σσσ −LLL (17)
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with

LLL = (∇⃗U⃗) ⋅σσσ +σσσ ⋅ (∇⃗U⃗)T , (18)

which, in component form, reads

L11 = 2[ε̇11 σ11 +∂yU σ12]295

L22 = 2[ε̇22 σ22 +∂xV σ12] (19)

L12 = (ε̇11 + ε̇22) σ12 +∂xV σ11 +∂yU σ22

In our implementation, as mentioned earlier, each component of the stress tensors is first advected like a scalar, providing

the first contribution of the advection term (U⃗.∇⃗)σσσ in Eq. 17. Then, the tensor-specific contribution −LLL is added.

3 Model Evaluation300

3.1 Model setup

We use the version 4.2.1 of the NEMO modeling system (Madec et al., 2022) as the basis for the development of the BBM

rheology code extension, and for carrying out the coupled ocean/sea-ice hindcast simulations to be assessed. These coupled

simulations involve the 3D-ocean and sea-ice components of NEMO: namely OCE and SI3. SI3 is the default sea-ice compo-

nent of NEMO since version 4 (Vancoppenolle et al., 2023). It largely inherits from LIM3 Rousset et al. (2015), to which it305

succeeds, with some significant inclusions from CICE (Hunke et al., 2017) and GELATO (Mélia, 2002).

Our simulations are performed on the so-called NANUK4 regional configuration, which is an Arctic extraction of the stan-

dard global 1/4○resolution NEMO gridded horizontal domain known as ORCA025 (Barnier et al., 2006). As such, and as

shown in Figure 4, the actual grid resolution of NANUK4 typically spans 10 up to 14 kilometers in the central Arctic region.

NANUK4 features two open lateral boundaries; the southernmost boundary is located at about 39○N in the Atlantic ocean,310

while the second boundary is located south of the Bering Strait, at about 62○N in the Pacific ocean. The vertical z-coordinate

grid used for the ocean features 31 levels with a ∆z of 10 m at the surface up to about 500 m at the deepest level, at a depth of

5250 m.

Hindcast simulations are achieved through the use of interannual surface (atmospheric) and lateral (3D ocean) forcings.

For the atmospheric forcing, both the ocean and the sea-ice components receive, as surface boundary conditions, fluxes of315

momentum, heat and freshwater at the air-sea and air-ice interface, respectively. These fluxes are computed every hour by

means of bulk formulae using the hourly near-surface atmospheric state from the ERA5 reanalysis of the ECMWF (Hersbach

et al., 2020) and the prognostic surface temperature of the relevant component (SST or ice surface temperature).

For the lateral boundary conditions of OCE, the 3D ocean is relaxed towards the monthly-averaged 3D horizontal velocities,

temperature, salinity and SSH (2D) of the GLORYS2 1 ocean reanalysis version 4 (Ferry et al., 2012).320

1https://data.marine.copernicus.eu/product/GLOBAL_REANALYSIS_PHY_001_031/description
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Both OCE and SI3 use a time-step of ∆T =720 s, the big time-step. The coupling between these two components is also

done at each big time-step.

3.2 Experimental design

We carried out a twin coupled ocean/sea-ice hindcast, with one experiment using the aEVP rheology of Kimmritz et al. (2016)

(corresponding to the default option in SI3), and the second experiment using our current implementation of the BBM rheology325

(hereafter referred to as SI3-aEVP and SI3-BBM, respectively). These two experiments were spun-up following a two-segment

spin-up strategy. In the first segment, each experiment has been run for 10 months, spanning January 1st to October 31st 1996.

As initial conditions for January 1st 1996, OCE was initialized at rest (no current) with the 3D temperature/salinity state taken

from the GLORYS2v4 reanalysis, while SI3 was initialized with a constant ice thickness of 1.5 m and a sea-ice concentration

of 100 % over regions with a SST below or equal to -2○C.330

For the second spin-up segment, spanning November 1st to December 15th 1996, OCE was restarted using the ocean restart

spawned October 31st 1996. SI3, instead, underwent a fresh initialization, in which the sea-ice concentration, thickness, and

damage (only for SI3-BBM) were extracted from a coupled OCE-neXtSIM simulation performed at the same spatial resolution

and using the same BBM rheology to solve sea-ice dynamics (Boutin et al., 2023). This November-to-mid-December 1996

simulation segment is thereby regarded as the second and final spin-up segment, with a duration sufficiently long for the335

coupled system to recover from the ad-hoc reinitialization.

Finally, the actual production segment, spanning December 15th 1996 to April 20th 1997, was initialized using the restarts

obtained at the end of the second spin-up segment.

For these experiments, the tuning of SI3 is kept as close as possible to the default namelist of version 4.2.1. As such,

thermodynamics features 5 ice-categories. Yet, a few modifications are done (summarized in table 1). The ice-atmosphere drag340

coefficient, CDa, has been adjusted so that the mean deformation rate at the 10 km scale simulated in each experiment is in

agreement with that derived from the satellite observations against which we evaluate the model in section 3.3. The value of

the parameters specific to the BBM rheology that we use in SI3-BBM are given in Table A1 in appendix C. As mentioned in

section 2.2 the BBM rheology relies on a time-splitting approach for solving the momentum equation. We use a small time-step

of 4 s in SI3-BBM, which relates to a time-splitting by a factor Ns =180. For SI3-aEVP, the number of iterations is increased345

from the default value of 100 to 180 in order to slightly improve the numerical convergence of the solution, as well as to allow

a fairer comparison between the two experiments in terms of computational cost (discussed in section 4).

3.3 Construction of observation-based and simulated Lagrangian sea-ice deformations

Our assessment of the numerical implementation of the BBM rheology into SI3 relies on a multiscale statistical analysis.

This analysis, which focuses on winter 1996-1997, compares the sea-ice deformation rates constructed from the RADARSAT350

Geophysical Processor System Lagrangian trajectories dataset of Kwok et al. (1998) (RGPS hereafter) to their simulated

counterparts.
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The preprocessing and computing approach we use to construct sea-ice deformations out of the raw RGPS Lagrangian

trajectories is detailed in Appendix C2. It is very similar to that used by Ólason et al. (2022), the main difference being that it

relies on the tracking of quadrangles rather than triangles.355

The simulated counterparts of the RGPS trajectories are constructed using Eulerian sea-ice velocities simulated by SI3 in the

two experiments discussed in section 3.2. To do so, we use a Lagrangian tracking software that we developed for this purpose

(see the Code and data availability section. As further detailed in Appendix C2.4, the tracking software seeds the same points

as those involved in the definition of the quadrangles selected for computing the RGPS deformation, respecting their initial

position in space and time. These points are then tracked for about three days, using the hourly-averaged Eulerian sea-ice360

velocities of SI3; the exact tracking duration used being that of the time interval between the two consecutive positions of the

corresponding RGPS point.

3.4 Results

3.4.1 Probability density function of sea-ice deformation rates

As illustrated by the maps of the 3-day total deformation rates shown in figure 6, RGPS clearly exhibits narrow and long365

features (commonly called Linear Kinematic Features or LKF in the literature) along which the deformation is concentrated.

Visually, LKF simulated by SI3-BBM are quite realistic, both in terms of length and orientation, and the magnitude of the

deformation rates along these LKF is similar to that of RGPS. SI3-aEVP, however, exhibits very smooth fields of deformation

with no such localized features; this is consistent with the findings of recent studies that evaluate VP-driven sea-ice simulations

run with a horizontal grid size larger than a few kilometers (e.g. Ólason et al., 2022; Bouchat et al., 2022).370

The probability density functions (hereafter PDFs) of the total deformation rates depicted in figure 7.d show that SI3-BBM

exhibits a power-law tail similar to that of RGPS over the values corresponding to the last two percentiles of the RGPS

distribution, although with different exponents (-2.9 and -3.3, respectively). Such an exponent over that same range of values

cannot be estimated for the SI3-aEVP distribution because of the absence of a power-law tail. A look at the other invariants

of the deformation (i.e. shear, divergence and convergence rates) in figure 7.a,b,c) shows that Si3-BBM is consistently more375

likely to simulate large deformation events than Si3-aEVP, which suggests the advantage of BBM over aEVP for capturing the

heterogeneous character of sea-ice deformation in our setup.

Indeed, the extreme values of deformation rates are, if not absent, largely underestimated in Si3-aEVP, as highlighted by

the departure between the observed and simulated PDFs shown as color bars below each panel of figure 7. We note that both

simulations are unable to reproduce the observed convergence over the full range of values present in the RGPS data (Fig. 7.c).380

Nevertheless SI3-BBM clearly demonstrates higher skills than Si3-aEVP in capturing the extreme values.

3.4.2 Time-series of sea-ice deformation rates

Following Ólason et al. (2022), we analyze the 90th percentile of total deformation (P90), as this is a metric sensitive to the high

values that shape the long tail of the PDFs of deformation. P90 is the value of deformation below which 90% of deformation
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values in the frequency distribution fall. P90 is computed from each snapshot of deformation from mid-December 1996 to late385

April 1997 to evaluate the temporal evolution of the deformation. Values of P90 from RGPS, SI3-BBM and SI3-aEVP are

plotted and inter-compared using the bias (b), root mean square error (RMSE, e), and the Pearson correlation coefficient (ρ).

In addition to the 90th percentile, we also consider the 95th and 98th percentiles.

As illustrated in figure 8, here too SI3-BBM demonstrates better skills than SI3-aEVP by being in better agreement with the

observations, both in terms of magnitude and correlation (see table 2). The biases and RMSEs are consistently lower for SI3-390

BBM than for SI3-aEVP and the correlation coefficient is higher. Also, the higher the percentile value, the better the agreement

of SI3-BBM with the observations, which indicates, again, that BBM is better than aEVP at simulating very large deformation

events.

3.4.3 Multifractal scaling analysis

The presence of heavy tails in the distributions shown in figure 7 implies that one needs to consider higher moments than the395

mean to fully describe the statistics of the sea-ice deformation process (Sornette, 2006). Following Marsan et al. (2004), the

calculation of moments should be limited to those of order q > 0, because zero values exist in the deformation field. And they

should not exceed the order q = 3 since a transition is observed between typically qc = 2.5 and qc = 3 (Schertzer and Lovejoy,

1987). The reason for this is that the tails of the distributions for RGPS and SI3-BBM follow a power-law decay with an

exponent of about -3, hence their moments of order q > qc diverge.400

We performed a multifractal spatial scaling analysis of the RGPS total deformation rates and their simulated counterparts,

considering the moments q = 1, 2 and 3 of the distributions. As shown in figure 9, both the observed and simulated statistics

(mean, variance, and skewness) are following power-laws. Interestingly, the observed mean sea-ice deformation rate ⟨ε̇⟩ is

particularly well reproduced in SI3-BBM across the full range of spatial scales considered for this analysis, and can be ap-

proximated by a power-law scaling ⟨ε̇⟩ ∼L−β , where L is the spatial scale and β an exponent of about 0.15. As previously405

mentioned in the section 3.2, we note that both SI3-BBM and SI3-aEVP have been tuned to reproduce the same mean defor-

mation rate as the observations at the nominal scale of 10 km, which led to the use of different values for the atmospheric drag

coefficients (CDa =1.65 10-3 in SI3-BBM, and CDa =1.15 10-3 in SI3-aEVP). However, the higher moments, which character-

ize the largest and most extreme values of the distributions, remain underestimated in both SI3-BBM and SI3-aEVP compared

to the observations.410

Indeed, the exponents of the power-law that fits the SI3-BBM data (β =-0.52 and -1.18, for q = 2 and 3, respectively) are

lower than those of the observations (β =-0.70 and -1.51). These same exponents however are even smaller for SI3-aEVP (β =-

0.13 and -0.35). This indicates that SI3-BBM is better than SI3-aEVP in capturing the strength of the spatial scaling of sea-ice

deformation revealed by the observations, which can also be seen as the degree of localization of the sea-ice deformation.

Finally, we note that the spatial scaling of the sea-ice deformation simulated in SI3-aEVP does not hold over the full range415

of scales we consider here, but seems to break for scales larger than about 300 km.

The simulated and observed structure functions (i.e. the dependence of the scaling exponents of the power-law to the order

of the moment) β(q) are shown in Figure 10. The spatial scaling obtained from both the observations and our simulations are
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multi-fractal, because their structure functions is well approximated (in the sense of the least square method) by a quadratic

function of the type β(q) = aq2 + bq. One should note that in the universal multi-fractal formalism, the structure functions420

are not required to be quadratic and can have a varying degree of non-linearity (Lovejoy and Schertzer, 2007). A quadratic

structure function, as obtained here, simply means that the process of sea-ice deformation can be approximated by a log-normal

multiplicative cascade model with a maximum degree of multi-fractality. However, only the structure function of SI3-BBM

shows a curvature a that has a magnitude sufficiently large and comparable to that of RGPS, i.e. 0.13 versus 0.17. These values

of curvature are in line with those obtained from Lagrangian simulations performed with neXtSIM, and reported in previous425

studies: 0.14 in Rampal et al. (2016) and 0.11 in Rampal et al. (2019).

4 Discussion

4.1 On the numerical implementation

A critical requirement for the consistent implementation of the brittle rheology when using the finite-difference discretization

method combined with the Arakawa C-grid, is the need to refrain from using spatial interpolation of prognostic fields between430

points of the grid that are staggered in space. The switch to the E-grid satisfies this requirement but introduces a new issue

inherent to this type of grid: the spatial separation of the two solutions. We have overcome this issue by introducing a nudging

on the two stress tensors. This spatial cross-nudging bears a noteworthy analogy with the Asselin filter (Asselin, 1972) used

when discretizing time derivatives of a prognostic variable by means of the Leap Frog scheme (three time-levels, centered, and

second-order), in particular in the context of shallow-water equations. The goal of this Asselin filter is to subtly average the so-435

lutions of neighboring time levels to prevent the separation of trajectories between the even and odd time-step levels (Marsaleix

et al., 2012). As such, the cross-nudging can be seen as a sort of spatial and two-dimensional analogue to the Asselin filter.

Despite the crudeness of this approach, which tends to be problematic due to the unavoidable loss of conservation properties,

the Asselin filter is still largely used in modern CMIP-class OGCMs like NEMO. Indeed, the ocean component of NEMO used

in the simulations presented in this study still relies on it. Therefore, despite the lack of physical and numerical consistency of440

our cross-nudging approach, we think that it serves a useful purpose by allowing to demonstrate that the implementation of a

brittle rheology is feasible onto an E-augmented C-grid. Nevertheless, we plan to further investigate the possibility to imple-

ment approaches that are more physically and numerically consistent. For instance, an option is to apply the cross-nudging on

the two invariants of the stress tensor (i.e. σI and σII ) and the rate of internal work of the ice. This would introduce 3 equations

for 3 invariant quantities, from which the 3 components of the stress tensor could be deduced afterward. Another option, is445

to explore the possibility of deriving a numerical formulation inspired from that of Mesinger (1973); Janjić (1974), in which

auxiliary velocity (or stress) points are introduced midway between the neighboring tracer (or velocity) points.

Another critical requirement, this time stemming from the use of the Eulerian and finite-difference framework, has to do

with the ability of the advection scheme to advect fields with as little numerical diffusion or dispersion as possible. This

is particularly critical when using a brittle rheology like BBM, as most fields exhibit sharp gradients, often associated with450

linear kinematic features. We chose to use the scheme of Prather (1986), the dispersive scheme option of SI3, to favor the
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conservation of sharp gradients at the cost of potential noise and overshoots reminiscent of the Gibbs phenomenon. One could

however consider the use of a different approach, which would optimize the advection of sharp gradients, for instance a spatial

discretization based on the discontinuous Galerkin method. This method has proven to be efficient and accurate in treating the

advection of sea-ice variables in the case of a brittle sea-ice rheology such as MEB (Dansereau et al., 2017), but has not yet455

been tested in the context of large scale, long-term sea-ice simulations. This is the scope of our present work and future papers.

As discussed in section 2.3.1, the use of the E-grid in the dynamics and advection modules of SI3 implies that equations

specific to the momentum and the constitutive law are solved twice, on the T- and F-centric grids. Moreover, with the need to

advect the stress tensor and the damage tracer, specific to brittle rheologies, 2×4 additional scalar fields need to be advected.

This inevitably leads to an increase in the computational cost of SI3. We have estimated this extra cost by comparing the wall460

time length required to complete a 4-month simulation with each rheology, using the same 29 cores in parallel, on the same

computer. Our results, that are summarized in table 3, suggest that the increase in the computational cost associated with the

use of BBM in place of aEVP is about 60% when SI3 is used in a standalone mode. When SI3 is coupled to OCE, however,

the cost increase is somehow dissolved by the overwhelming cost of OCE and falls below 30%. Note that this later figure is

expected to substantially decrease as the number of ocean levels used in OCE is increased. Our choice to use 31 levels rather465

than the 75 levels traditionally used in 1/4○NEMO configurations, has been motivated by the need to have a lighter 3D ocean

component to handle during the development phase.

Since SI3 is mainly intended to be run coupled to OCE, and given the significant improvements in the simulated sea-ice

deformation discussed in section 3.4, we think that the extra computational cost induced by the use of the BBM rheology is

justified and acceptable. Moreover, it is worth noting that despite the use of 180 iterations in the SI3-aEVP simulation (100 by470

default in SI3), we noticed recurring chessboard instabilities patches in simulated fields such as the sea-ice internal stresses.

We have verified the link between these numerical instabilities and an insufficient number of iterations, as the instabilities

vanish when a sufficiently large number of iterations is used (typically about 1000). In that regard, the computational cost of a

fully-converged aEVP would largely exceed that of our current BBM implementation.

4.2 On the simulated sea-ice deformations475

Large-scale realistic sea-ice simulations performed with a model using the BBM rheology (other than SI3) have already been

assessed against observations and have shown very promising results (Ólason et al., 2022; Boutin et al., 2023), like for instance

about the Arctic sea-ice thickness distribution. Yet, BBM does not seem to simulate the subgrid-scale process related to sea-ice

ridging well enough. This indicates that the convergent deformation at the local – model grid – scale is not represented in a

fully consistent manner. As shown on the PDF in figure 7.c, the model largely overestimates the number of converging events480

with magnitudes of about 1 to 5% per day, and slightly underestimates the most extreme events (we note that this is even more

true with aEVP). This problem was already reported in Ólason et al. (2022), and based on various sensitivity experiments, we

came to the conclusion that it cannot be solved through the tuning of model parameters. In particular, the sensitivity to the

BBM-specific ridging threshold parameter Pmax, whose only purpose is to control the basin-scale sea-ice convergence, and

thus the thickness of the sea-ice cover at large scale, has been extensively investigated.485
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In section 3.4.3, we find that the degree of multi-fractality of the deformation fields simulated by SI3-BBM is slightly

lower than that obtained from the RGPS data. The fact that the sea-ice deformation fields simulated by neXtSIM in Ólason

et al. (2022) are doing better in this particular matter suggests that this propensity of SI3-BBM to underestimate the degree

of multi-fractality is linked to some numerical aspects of our BBM implementation, and not the BBM rheology itself. The

best candidates are likely to be a combination of the additional source of numerical dispersion and diffusion, related to the490

advection and cross-nudging steps, respectively, as these steps are absent in neXtSIM. Moments of order two and three are

expected to be more affected than the mean by an unwanted source of noise and diffusion, which might explain why SI3-BBM

reproduces remarkably well the mean across all scales, and why the power-law exponents for the variance and the skewness are

underestimated. In this regard, the use of the finite-element method together with the Discontinuous Galerkin method, might

prove to be a relevant combination to simulate sea-ice deformation while remaining in the Eulerian and quadrilateral mesh495

framework.

5 Conclusions

The Brittle Bingham Maxwell rheology, known as BBM, has been successfully implemented into SI3, the CMIP-class, Eulerian

finite-difference sea-ice model of the NEMO modeling system. To our knowledge, it is the first implementation of a brittle

rheology, featuring a prognostics ice damage tracer, that is able to produce a realistic solution on a pan-Arctic scale when500

constructed upon this type of numerical framework. The use of the Arakawa C-grid, as used in SI3, has proven to be poorly

fitted for brittle rheologies. This is mainly due to (i) the staggering between the trace and shearing elements of the discretized

strain-rate and stress tensors, and (ii) the requirement for the stress tensor to be advected along with traditional prognostic

sea-ice variables. To overcome these limitations, we propose to augment the C-grid into an E-grid in the parts of the solver

dedicated to the dynamics, i.e. in the rheology and advection modules. This approach prevents the numerical schemes at play505

in the rheology and the advection to heavily rely on fields interpolated between the center and corner points of the grid meshes,

which proved to be a major obstacle during the early phase of our implementation, as they consistently lead to degraded or/and

unrealistic solutions. It also allows the thorough advection of prognostic fields defined at corner points of the mesh.

We carried out a statistical analysis of the sea-ice deformation rates obtained from a set of realistic pan-Arctic coupled

ocean/sea-ice simulations of winter 1996-1997, performed with SI3 at a horizontal resolution of about 12-km. Based on a510

comparison with satellite observations, this analysis demonstrates that the use of the newly implemented BBM rheology,

in place of the default viscous-plastic rheology of SI3, results in simulated sea-ice deformations that are consistently more

realistic. In particular, we show that with respect to the viscous-plastic rheology, the use of BBM allows to simulate highly-

localized (nearly linear) kinematic features within the sea-ice cover, along which the most substantial deformation rates are

concentrated.515

The observed non-Gaussian statistics of the sea-ice deformation process, expressed by the presence of heavy tails in the PDF

of deformation rates, are also reproduced in the simulation that uses our newly-implemented BBM rheology. Finally, we also
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show that the observed spatial scaling invariance property of sea-ice deformation, and in particular its multi-fractal nature, is

also well –although not fully– captured by the BBM-driven simulation.

Based on our results, we conclude that the ability of a continuous sea-ice model to simulate the complex sea-ice dynamics520

across scales, as observed from satellites, depends primarily on the type of rheology used rather than on the type of modeling

formalism chosen (i.e. Eulerian versus Lagrangian). As such, the newly-implemented BBM rheology allows SI3 to simulate

sea-ice dynamics with a level of realism comparable to that of the Lagrangian sea-ice model neXtSIM.

Code and data availability.

The NEMO source code used in the experiment is based on the tagged version 4.2.1, available from the official GitLab NEMO depository:525

https://forge.nemo-ocean.eu/nemo/nemo.

» git clone -b '4.2.1' git@forge.nemo-ocean.eu:nemo/nemo.git

New and modified Fortran-90 source files relative to our implementation of the BBM rheology in version 4.2.1 of NEMO/SI3 will be

made available, upon publication of the present paper, in a dedicated branch of the official GitLab NEMO depository.

The python software used to seed and build Lagrangian trajectories out of the SI3 hourly sea-ice velocities is named sitrack and is530

available in the following GitHub repository of the lead author:

https://github.com/brodeau/sitrack

The python software used to compute the RGPS and model-based sea-ice deformation rates based on quadrangles, and perform the scaling

analysis, is named mojito and is available in the following GitHub repository of the lead author:

https://github.com/brodeau/mojito535

Model data produced and analyzed in this study, namely SI3 1-hourly and 6-hourly output files for simulations SI3-BBM and SI3-aEVP,

are downloadable from the following OpenDAP server:

https://ige-meom-opendap.univ-grenoble-alpes.fr/thredds/catalog/meomopendap/extract/SASIP/model-outputs/BROD2024/catalog.html

Video supplement. Videos that illustrate the difference of behavior between SI3-aEVP and SI3-BBM will be uploaded online and freely

accessible upon publication.540
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Appendix A: Nomenclature

A1 Table of symbols used in the text

Symbol Definition Units
m mass of snow and sea-ice per unit area [kg m-2]
ρi density of sea-ice [kg m-3]
ρw density of sea-water [kg m-3]

u⃗ ≡ (u,v) sea-ice velocity [m s-1]
A sea-ice fraction [-]
h sea-ice thickness [m]
g acceleration of gravity [m s-2]
f Coriolis frequency [s-1]
H sea surface height [m]
τ⃗ ice-ocean stress [Pa]
τ⃗a wind (ice-atmosphere) stress [Pa]
σσσ internal stress tensor (2×2) [Pa]
ε̇̇ε̇ε strain-rate tensor (2×2) [s-1]
d damage of sea-ice [-]

∆x local resolution (size) of the grid mesh [m]
C compaction parameter [-]
α damage parameter (Dansereau, 2016) [-]

E0, E elasticity of undamaged and damaged sea-ice [Pa]
λ0, λ viscous relaxation time of undamaged and damaged sea-ice [s]
P̃ BBM-specific ridging term [-]

Pmax ridging threshold [Pa]
P0 scaling parameter for Pmax [Pa]
h0 reference ice thickness for Pmax [m]
c sea-ice cohesion [Pa]
ν Poisson’s ratio [-]
σI isotropic normal stress (first invariant of stress tensor) [Pa]
σII maximum shear stress (second invariant of stress tensor) [Pa]
µ internal friction coefficient [-]
N upper limit for compressive stress [Pa]
td characteristic time scale for the propagation of damage [s]
dcrit damage increment (Dansereau, 2016) [-]
kth healing constant for damage [K s]

∆Th temperature difference between bottom and surface of ice [K]

19

https://doi.org/10.5194/gmd-2023-231
Preprint. Discussion started: 10 January 2024
c© Author(s) 2024. CC BY 4.0 License.



A2 Acronyms

NEMO Nucleus for European Modeling of the Ocean

SI3 Sea-Ice modeling Integrated Initiative (sea-ice component of NEMO)

OCE 3D ocean component of NEMO

LIM Louvain-La-Neuve sea-Ice Model

BBM Brittle Bingham Maxwell (rheology)

MEB Maxwell Elasto Brittle (rheology)

VP Viscous-Plastic (rheology)

FD Finite Difference (method)

PDF Probability Density Function

LKF Linear Kinematic Features

OGCM Ocean General Circulation Model

SST Sea Surface Temperature

SSH Sea Surface Height

RGPS RADARSAT Geophysical Processor System (dataset)

545

A3 Miscellaneous notations

x
¯
x
¯
x
¯

symmetric 2×2 tensor xxx expressed in its pseudovector form, i.e. (x11,x22,x12)
x(i) initial estimate of variable x

@X on the X-points of the grid▿
xxx upper-convected time derivative of symmetric (rank 2) tensor xxx

A4 Notations related to the discretization on the E-grid

The bar notation refers to a spatial interpolation. If φ is a scalar field naturally defined on either T- or F-points of the grid

(Fig. 2.b), then φ̄ refers to the value of φ interpolated onto F- or T-points, respectively. The average of the four surrounding550

points is used:

φ̄i,j = 1/4(φi,j +φi−1,j +φi−1,j−1 +φi,j−1) if φ @F (@T)

φ̄i,j = 1/4(φi+1,j+1 +φi,j+1 +φi,j +φi+1,j) if φ @T (@F)
(A1)

Similarly, φ̄
Y

refers to the interpolated value of φ, defined on T- or F-points onto U- or V-points:

φ̄
U

i,j = 1/2(φi+1,j +φi,j) if φ @T (@U)

φ̄
V

i,j = 1/2(φi,j+1 +φi,j) if φ @T (@V)

φ̄
U

i,j = 1/2(φi,j +φi,j−1) if φ @F (@U)

φ̄
V

i,j = 1/2(φi,j +φi−1,j) if φ @F (@V)

(A2)
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The hat notation x̂ refers to the F-centric counterpart of x, x being a prognostic scalar or tensor (rank 1 or 2) defined in the555

T-centric grid (mind that if x is the element of a tensor, x̂ is not necessarily defined on F-points). Example: d̂ and σ̂11 are

prognostic fields defined on F-points (natural location for d and σ11 on the C-grid is the T-point); similarly, σ̂12 is defined on

T-points (natural location for σ12 on the C-grid is the F-point).
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A5 Table of symbols related to the numerical implementation

Symbol Definition Units

∆T big time-step for the advection and the thermodynamics [s]

∆t small time-step specific to BBM rheology (time-splitting) [s]

Ns ≡∆T /∆t, time-splitting parameter [-]

k time-level index of time splitting (1 ≤ k ≤Ns) [-]

A,h,d ice concentration, thickness and damage of ice @T [-], [m], [-]

Ā, h̄ ice concentration and thickness interpolated @F [-], [m]

d̂ damage of ice @F [-]

ε̇̇ε̇ε ≡ (ε̇11, ε̇22, ε̇12) strain-rate tensor (2×2) of the T-centric cell [s-1]
ˆ̇ε̂̇ε̂̇ε ≡ (ˆ̇ε11, ˆ̇ε22, ˆ̇ε12) strain-rate tensor (2×2) of the F-centric cell [s-1]

σσσ ≡ (σ11,σ22,σ12) internal stress tensor (2×2) of the T-centric cell [Pa]

σ̂σσ ≡ (σ̂11, σ̂22, σ̂12) internal stress tensor (2×2) of the F-centric cell [Pa]

Ā
U
, Ā

V
ice concentration interpolated @U and @V [m]

h̄
U
, h̄

V
ice thickness interpolated @U and @V [m]

u,v ice velocity at the ∆t level (@U and @V) [m s-1]

û, v̂ ice velocity at the ∆t level (@V and @U) [m s-1]

U,V ice velocity at the ∆T level (@U and @V) [m s-1]

Û, V̂ ice velocity at the ∆T level (@V and @U) [m s-1]

CDw ice-ocean drag coefficient [-]

τx,τy ice-ocean stress @U and @V [Pa]

τ̂x, τ̂y ice-ocean stress @V and @U [Pa]

uo,vo surface ocean current @U and @V [m s-1]

ūo, v̄o surface ocean current interpolated @V and @U [m s-1]

ūo, v̄o surface ocean current interpolated @V and @U [m s-1]

γC cross-nudging coefficient [-]

CDa ice-atmosphere drag coefficient [-]

e1t T-centered ∆x that connects 2 neighboring U-points [m]

e2t T-centered ∆y that connects 2 neighboring V-points [m]

e1f F-centered ∆x that connects 2 neighboring V-points [m]

e2f F-centered ∆y that connects 2 neighboring U-points [m]

e1u U-centered ∆x that connects 2 neighboring T-points [m]

e2u U-centered ∆y that connects 2 neighboring F-points [m]

e1v V-centered ∆x that connects 2 neighboring F-points [m]

e2v V-centered ∆y that connects 2 neighboring T-points [m]

560
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Appendix B: Algorithm and discretization

B1 Algorithm

Time-splitting loop (∆t) / for k = 1 to Ns:
– compute elasticity E,Ê and viscous relaxation time λ,λ̂ as a function of damage dk, d̂k and current sea-ice concentration
A,Ā (Eq. B5, B6)565

– compute the normal stress invariant of σσσk and σ̂σσk → σk
I , σ̂

k
I (Eq. B11)

– compute Pmax, P̂max as a function of current sea-ice thickness h,h̄ and concentration A,Ā (Eq. B7)

– compute P̃, ˆ̃P as a function of Pmax, P̂max and σI , σ̂I (Eq. B8)

– compute the 3 components of each strain-rate tensor ε̇̇ε̇ε, ˆ̇̇̇ε, based on sea-ice velocities at time-level k (Eq. B1, B2, B3 & B4)

– initial prognostic estimate of the stress tensors at time-level k+1 → σσσ(i)k+1 and σ̂σσ(i)k+1 (Eq. B10)570

– apply cross-nudging between σσσ(i)k+1 and σ̂σσ(i)k+1 (Eq. 16):

– Mohr-Coulomb test on σσσ(i)k+1 and σ̂σσ(i)k+1
⋆ compute the 2 invariants of σσσ(i)k+1 and σ̂σσ(i)k+1 → σ

(i)k+1
I ,σ

(i)k+1
II and σ̂(i)k+1

I , σ̂
(i)k+1
II (Eq. B11)

⋆ compute dcrit and d̂crit based on σ(i)k+1
I ,σ

(i)k+1
II and σ̂(i)k+1

I , σ̂
(i)k+1
II (Eq. B12)

– prognostic estimate of the stress tensors and damage at time-level k+1 → σσσk+1, dk+1 and σ̂σσk+1, d̂k+1575

⋆ where 0 < dcrit < 1 and/or 0 < d̂crit < 1 (overcritical stress state):
→ damage growth and stress adjustment (Eq. B13)

⋆ elsewhere:
→ no damage growth and no stress adjustment (Eq. B14)

– compute the divergence of the vertically-integrated σσσk+1 and σ̂σσk+1 (Eq. B16 & B17)580

– prognostic estimate of sea-ice velocity at time-level k+1 → uk+1,vk+1 and ûk+1, v̂k+1 (Eq. B19 & B18)

NEMO (big) time-step (∆T ):

– BBM rheology (time-splitting loop above)

– advection of generic SI3 prognostic tracers (A, h, etc) at T-points using U,V

– advection of d, σ11, σ22 and σ̂12 at T-points using U,V585

– advection of d̂, σ̂11, σ̂22 and σ12 at F-points using Û, V̂

– healing of damage (d and d̂) (Eq.15)

– thermodynamics module of SI3 (update of A, h, etc)
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B2 Update of internal stress tensor in the T- and F-centric worlds

B2.1 Divergence, shear and strain-rate tensor of ice velocity590

Following Hunke and Dukowicz (2002), here is how the components of the strain rate of the sea-ice velocity vector are

computed on the T- and F-centric grids, based on the finite-difference method.

◇ Divergence rate (∂xu+∂yv):

Di,j = [e2u u]i,j − [e2u u]i−1,j + [e1v v]i,j − [e1v v]i,j−1[e1t e2t]i,j (@T),

D̂i,j = [e2v û]i+1,j − [e2v û]i,j + [e1u v̂]i,j+1 − [e1u v̂]i,j[e1f e2f]i,j (@F).
(B1)

◇ Tension rate (∂xu−∂yv):595

Ti,j = ([u/e2u]i,j − [u/e2u]i−1,j) [e2t2]i,j − ([v/e1v]i,j − [v/e1v]i,j−1) [e1t2]i,j
[e1t e2t]i,j (@T),

T̂i,j = ([û/e2v]i+1,j − [û/e2v]i,j) [e2f2]i,j − ([v̂/e1u]i,j+1 − [v̂/e1u]i,j) [e1f2]i,j
[e1f e2f]i,j (@F).

(B2)

◇ Shearing rate (∂yu+∂xv):

Si,j = ([u/e1u]i,j+1 − [u/e1u]i,j) [e1f2]i,j + ([v/e2v]i+1,j − [v/e2v]i,j) [e2f2]i,j
[e1f e2f]i,j (@F),

Ŝi,j = ([û/e1v]i,j − [û/e1v]i,j−1) [e1t2]i,j + ([v̂/e2u]i,j − [v̂/e2u]i−1,j) [e2t2]i,j
[e1t e2t]i,j (@T).

(B3)

From which the 3 components of the 2D strain-rate tensors are obtained:

⎛⎜⎜⎜⎝
ε̇11

ε̇22

ˆ̇ε12

⎞⎟⎟⎟⎠
i,j

= 1
2

⎛⎜⎜⎜⎝
Di,j +Ti,j
Di,j −Ti,j

Ŝi,j

⎞⎟⎟⎟⎠ (@T)

⎛⎜⎜⎜⎝
ˆ̇ε11

ˆ̇ε22

ε̇12

⎞⎟⎟⎟⎠
i,j

= 1
2

⎛⎜⎜⎜⎝
D̂i,j + T̂i,j
D̂i,j − T̂i,j

Si,j

⎞⎟⎟⎟⎠ (@F)

(B4)600

B2.2 Update of the stress tensors

◇ Elasticity of damaged ice:

E =E0(1−d) eC(1−A) (@T)

Ê =E0(1− d̂) eC(1−Ā) (@F)
(B5)
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◇ Viscous relaxation time of damaged ice:

λ = λ0 [(1−d) eC(1−A)]β−1

(@T)

λ̂ = λ0 [(1− d̂) eC(1−Ā)]β−1

(@F)
(B6)605

◇ Ridging threshold:

Pmax = P0 [h/h0]3/2
eC(1−A) (@T)

P̂max = P0 [h̄/h0]3/2
eC(1−Ā) (@F)

(B7)

◇ P̃ term:

P̃ =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σI−Pmax for σI < −Pmax
−1 for −Pmax ≤ σI < 0

0 for σI > 0

(@T)

ˆ̃P =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

σ̂I−P̂max for σ̂I < −P̂max
−1 for − P̂max ≤ σ̂I < 0

0 for σ̂I > 0

(@F)

(B8)

◇ Multiplicator for stress update:610

Ω = λ

λ+ (1+ P̃ )∆t (@T)

Ω̂ = λ̂

λ̂+ (1+ ˆ̃P )∆t (@F)
(B9)

◇ Initial update of stress tensor:

σ(i)k+1
11 =Ω [E ∆t

1
1−ν2

(ε̇k11 +ν ε̇k22)+σk11]
σ(i)k+1

22 =Ω [E ∆t
1

1−ν2
(ν ε̇k11 + ε̇k22)+σk22] (@T)

σ̂(i)k+1
12 = Ω̂ [Ê ∆t

1−ν
1−ν2

ˆ̇εk12 + σ̂k12]
σ̂(i)k+1

11 = Ω̂ [Ê ∆t
1

1−ν2
(ˆ̇εk11 +ν ˆ̇εk22)+ σ̂k11]

σ̂(i)k+1
22 = Ω̂ [Ê ∆t

1
1−ν2

(ν ˆ̇εk11 + ˆ̇εk22)+ σ̂k22] (@F)

σ(i)k+1
12 =Ω [E ∆t

1−ν
1−ν2

ε̇k12 +σk12]

(B10)

◇ Invariants of stress tensor:

σI = 1
2
(σ11 +σ22), σII =

√
(σ11 −σ22

2
)2 + σ̂2

12 (@T)

σ̂I = 1
2
(σ̂11 + σ̂22), σ̂II =

√
( σ̂11 − σ̂22

2
)2 +σ2

12 (@F)

(B11)615
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◇ Damage increment:

dcrit =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c

σ(i)
II +µσ(i)

I

if σ(i)
I > −N

−N
σ(i)
I

otherwise

(@T)

d̂crit =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c

σ̂(i)
II +µσ̂(i)

I

if σ̂(i)
I > −N

−N
σ̂(i)
I

otherwise

(@F)

(B12)

◇ Update of damage and stress tensors:

⋆ in regions where 0 < dcrit < 1:

dk+1 = dk + (1−dcrit)(1−dk) ∆t/td
σ
¯
σ
¯
σ
¯
k+1 =σ

¯
σ
¯
σ
¯
(i)k+1 − (1−dcrit) σ¯σ¯σ¯ (i)k+1 ∆t/td with td =∆x

√
2(1+ν)ρi

E
(@T)

d̂k+1 = d̂k + (1− d̂crit)(1− d̂k) ∆t/t̂d
σ̂
¯
σ
¯
σ
¯
k+1 = σ̂

¯
σ
¯
σ
¯
(i)k+1 − (1− d̂crit) σ̂¯σ¯σ¯ (i)k+1 ∆t/t̂d with t̂d =∆x

√
2(1+ν)ρi

Ê
(@F)

(B13)620

⋆ elsewhere:

dk+1 = dk
σ
¯
σ
¯
σ
¯
k+1 =σ

¯
σ
¯
σ
¯
(i)k+1

(@T)

d̂k+1 = d̂k
σ̂
¯
σ
¯
σ
¯
k+1 = σ̂

¯
σ
¯
σ
¯
(i)k+1

(@F)

(B14)

B3 Update of sea-ice velocity

As opposed to aEVP for which SI3 uses the scheme of Kimmritz et al. (2016, 2017), here we chose to solve the equation for

momentum (in both the T- and F-centric worlds) using the implicit scheme approach of Bouillon et al. (2009).625

B3.1 Divergence of the vertically-integrated stress tensor

◇ Definition:

⎛⎜⎝
∆x

∆y

⎞⎟⎠ ≡ ⎛⎜⎜⎜⎝
∂(h σ11)
∂x

+ ∂(h σ12)
∂y

∂(h σ22)
∂y

+ ∂(h σ12)
∂x

⎞⎟⎟⎟⎠ (B15)
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◇ Discretized in the T-centric cell:

∆k+1
x ∣

i,j
= [σk+1

11 h e2t2]
i+1,j

− [σk+1
11 h e2t2]

i,j[e1u e2u2]
i,j

+ [σk+1
12 h̄ e1f2]

i,j
− [σk+1

12 h̄ e1f2]
i,j−1[e2u e1u2]

i,j

(@U)

∆k+1
y ∣

i,j
= [σk+1

22 h e1t2]
i,j+1 − [σk+1

22 h e1t2]
i,j[e2v e1v2]

i,j

+ [σk+1
12 ĥ e2f2]

i,j
− [σk+1

12 ĥ e2f2]
i−1,j[e1v e2v2]

i,j

(@V)

(B16)630

◇ Discretized in the F-centric cell:

∆̂k+1
x ∣

i,j
= [σ̂k+1

11 h̄ e2f2]
i,j
− [σ̂k+1

11 h̄ e2f2]
i−1,j[e1v e2v2]

i,j

+ [σ̂k+1
12 h e1t2]

i,j+1 − [σ̂k+1
12 h e1t2]

i,j[e2v e1v2]
i,j

(@V)

∆̂k+1
y ∣

i,j
= [σ̂k+1

22 h̄ e1f2]
i,j
− [σ̂k+1

22 h̄ e1f2]
i,j−1[e2u e1u2]

i,j

+ [σ̂k+1
12 h e2t2]

i+1,j
− [σ̂k+1

12 h e2t2]
i,j[e1u e2u2]

i,j

(@U)

(B17)

B3.2 Update of sea-ice velocity

For clarity, we gather the contributions of the wind stress, the Coriolis term, and the SSH tilt vectors in a single vector term

named (Rx,Ry). Because these 3 terms do not present any particular challenge to express with respect to the existing imple-635

mentation of aEVP. Note, however, that with the E-grid no spatial interpolation is needed to express the discretized Coriolis

term.

Implicitness of the scheme is introduced through the use of sea-ice velocity at level k+1 in the estimate of the basal ice-water

stress vector (τx,τy):

τx =Zkx (uko −uk+1) with: Zkx = Āu

ρw CDw

√(uko −uk)2 + (v̄uk
o − v̂k)2

(@U)

τy =Zky (vko − vk+1) with: Zky = Āv

ρw CDw

√(ūvk
o − ûk)2 + (vko − vk)2

(@V)

τ̂x = Ẑkx (ūvk
o − ûk+1) with: Ẑkx = Āv

ρw CDw

√(ūvk
o − ûk)2 + (vko − vk)2

(@V)

τ̂y = Ẑky (v̄uk
o − v̂k+1) with: Ẑky = Āu

ρw CDw

√(uko −uk)2 + (v̄uk
o − v̂k)2

(@U)

(B18)640
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Then, the discretized equation of momentum yields the expression of the 2 velocity components at time-level k+1:

uk+1 = ρih̄
u

∆t
uk +Zx uko +∆k+1

x +Rkx
ρih̄

u

∆t
+Zx (@U)

vk+1 = ρih̄
v

∆t
vk +Zy vko +∆k+1

y +Rky
ρih̄

v

∆t
+Zy (@V)

ûk+1 = ρih̄
v

∆t
ûk + Ẑx ūvk

o + ∆̂k+1
x + R̂kx

ρih̄
v

∆t
+ Ẑx (@V)

v̂k+1 = ρih̄
u

∆t
v̂k + Ẑy v̄uk

o + ∆̂k+1
y + R̂ky

ρih̄
u

∆t
+ Ẑy (@U)

(B19)

Appendix C: Model tuning & computation of sea-ice deformation rates

C1 Model tuning

The value of the BBM-specific parameters used in the SI3-BBM simulation are presented in table A1.645

C2 Construction of the RGPS deformation rates and their simulated counterparts

The period of interest, chosen to match that of the production segment of the two simulations, i.e. December 15th 1996 to April

20th 1997 is divided into 3-day long bins, which corresponds to the nominal time resolution of the RGPS dataset.

C2.1 Selection of RGPS point trajectories

As the first step of our selection process, for each 3-day bin, an initial subset of the RGPS points is selected. Each point of this650

initial subset must satisfy the following requirements:
– the point has at least one position that occurs within the time interval of the bin; this position, or the earliest-occurring

one if more than one occurrence, is selected and referred to as position #1

– position #1 is located at least 100 km away from the nearest coastline

– the point has at least one upcoming position that occurs 3 days after position #1, with a tolerated deviation of ± 6 hours,655

referred to as position #2 (in the event of more than one position satisfying this requirement, the position yielding the

time interval the closest to 3 days is selected)

C2.2 Quadrangulation of selected trajectories

As the second step, a Delaunay triangulation is performed on this initial subset of points at position #1. Neighboring pairs of

reasonably well shaped triangles are then merged into quadrangles in order to transform the triangular mesh into a quadrangular660

mesh.
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Aspiring quadrangles at position #2 are constructed by simply considering the exact same respective sets of 4 points as those

defining quadrangles at position #1.

Then, as the third and final step of the selection process, only points that define quadrangles that satisfy the following

requirements, at both position #1 and position #2, are retained:665

– the area of the quadrangle is consistent with the spatial scale of interest

– the time position of the four points defining the vertices of the quadrangle must be almost identical

– the thresholds for the minimum and maximum angles allowed are 40○and 140○, respectively

C2.3 Computation of deformation rates based on the quadrangles

For all quadrangles selected in a given 3-day bin, strain-rates are computed based on position #1 and position #2 of the670

quadrangle, using the line-integral approximations (see e.g. Lindsay and Stern, 2003, equations 10-14).

Similarly to what is used as a ∆t to estimate velocities from displacements when computing the deformation rates, the

actual time location (i.e. date) assigned to each deformation rate is not that of the center of the 3-day bin considered. Instead,

we assign the time that corresponds to the center of the time interval defined by position #1 and position #2 of each quadrangle.

Spatial location of the deformation rates corresponds to the barycenter of the 4 vertices of the quadrangle considered at the675

center of this same time interval.

C2.4 Construction of the simulated Lagrangian sea-ice trajectories

To prevent computational waste, only the points from which valid RGPS deformation estimates were computed are retained.

Each of these points is seeded using the same initialization date and location (bilinear interpolation) as its RGPS counterpart.

It is then tracked during the same time interval of about 3 days (± 6 h) that separates the two consecutive records of the RGPS680

point considered. The tracking algorithm uses a time-step of 1 h and feeds on the hourly-averaged simulated sea-ice velocities

of the SI3 experiments.

Only the conventional C-grid velocities u,v of the T-centric cell are used to track the points (û, v̂ not used), which allows for

the fair comparison between the two experiments, as no û, v̂ are available for SI3-aEVP.
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Figure 1. Mohr-Coulomb yield envelope in the internal stress invariant coordinates (blue line). Illustration of how an over-critical stress state

σσσ(i) (initial estimate) is evolving (gray arrow) towards the corrected state σσσ when using the BBM rheology.
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Figure 2. Point arrangement and staggering in a grid cell: (a) the C-grid as used in NEMO, and (b) the E-grid. The letter d indicates the

location of tracers, while letters u and v that of the i- and j-wise components of the velocity vector. Letters in brackets indicate the name of

the grid points as referred to throughout the paper.
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Figure 3. Transition from (a) the conventional C-grid staggering as used in NEMO to (b) the E-grid staggering proposed in this study.

T-centric (red) and F-centric (blue) cells. d is the damage tracer, u and v are the i- and j-wise components of the sea-ice velocity vector,

and σkl are the components of the internal stress tensor. The x̂ notation indicates that variable x is specific to the F-centric grid. Note: the

F-centric counterparts of ui,j ,vi,j of the T-centric cell are ûi+1,j , v̂i,j+1.
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Figure 4. Geographical extent, numerical grid, and actual local spatial resolution of the NANUK4 computational domain that is used in the

experiments. For ease of visual representation of the grid cells, grid points have been subsampled by a factor of 4.
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Figure 5. Effect of using different values for the cross-nudging coefficient γ on the simulated sea-ice damage. Random snapshot of damage

(at T-points) after 30 days of simulation (January 13th 1997) in a set of sensitivity experiments identical to SI3-BBM: (a) no cross-nudging ,

(b) γ = 0.1, (c) γ = 2 as in SI3-BBM, and (d) γ = 10.
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Figure 6. Maps of the sea-ice total deformation rate for the 3-day time window centered about the February 19th 1997, computed based on

(a) RGPS Lagrangian data and (b,c) their synthetic counterparts constructed using the simulated sea-ice velocities of SI3-BBM an SI3-aEVP,

respectively. Empty regions correspond to where satellite observations are not available over this particular 3-day time window.
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Figure 7. PDFs of the (a) shear, (b) divergence, (c) convergence, and (d) total deformation rates at the 10 km spatial and 3-day temporal

scale, for RGPS data and their synthetic counterparts constructed using the simulated sea-ice velocities of SI3-BBM an SI3-aEVP. The light

gray lines are for reference and correspond to a power-law with an exponent of -3. Below each panel, the departure between the logarithm of

the simulated and observed distributions is shown for each bin.
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Figure 8. Time-series of the a) 90, b) 95, and c) 98 percentiles of the sea-ice total deformation rate for winter 1996-1997, at the 10 km spatial

and 3-day temporal scale, for RGPS data and and their synthetic counterparts constructed using the simulated sea-ice velocities of SI3-BBM

an SI3-aEVP.
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Figure 9. Spatial scaling analysis of the observed and simulated total deformation rate calculated over a 3-day time scale (all based on

the motion of the same RGPS quadrangles) , based on RGPS data and their synthetic counterparts constructed using the simulated sea-

ice velocities of SI3-BBM an SI3-aEVP. Moments of order q = 1,2,3 of the distributions of the total deformation rate calculated at scales

spanning 10 up to 640 km. The solid straight lines indicate the associated power-law scaling based on the least-square fit using values from

10 km to 160 km. Values for 320 km and 640 km are excluded due to excessive uncertainty resulting from the small sample size. Note: we

used logarithmically spaced bins and applied an ordinary least square method to the binned data in log-log space to get reasonably accurate

estimate of these power-law fits (Stern et al., 2018).
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Figure 10. Structure functions β(q) for the RGPS data (black), SI3-BBM (blue), and SI3-aEVP (red), where β indicates the exponent of the

power-law fits indicated in figure 9 and q is the moment order.

44

https://doi.org/10.5194/gmd-2023-231
Preprint. Discussion started: 10 January 2024
c© Author(s) 2024. CC BY 4.0 License.



Table 1. Summary of the differences in tuning options between the two experiments and the default in SI3.

SI3-BBM SI3-aEVP Default in SI3

Rheology BBM aEVP aEVP

Ice-atm. drag coefficient CDa 1.65 10-3 1.15 10-3 1.4 10-3

Subcycles of ∆T 180 (time-splitting) 180 (iterations) 100 (iterations)

Table 2. Bias, RMSE and Pearson correlation of the deformation rates time-series of figure 8 obtained between each simulation and RGPS.

Experiment Bias Error ρ (p-value)

P90
SI3-BBM -0.002 0.01 0.82 (6.9e-11)

SI3-aEVP -0.006 0.012 0.73 (1.16e-07)

P95
SI3-BBM -0.01 0.02 0.78 ( 3.64e-09)

SI3-aEVP -0.02 0.03 0.73 (9.7e-08)

P98
SI3-BBM -0.03 0.05 0.68 (1.24e-06)

SI3-aEVP -0.06 0.07 0.73 ( 9.4e-08)

Table 3. Computational cost of 4 months of Arctic sea-ice simulation at 1/4○resolution with SI3 on the NANUK4 regional domain. BBM

versus aEVP rheology, for both coupled (SI3-OCE, as performed for this study) and standalone (SI3-only) experiments.

SI3-aEVP SI3-BBM BBM-related increase

Coupled SI3 – OCE 298 cpu h 380 cpu h +28%

Standalone SI3 139 cpu h 223 cpu h +60%
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Table A1. Value of parameters used in the BBM simulation.

Parameter Definition Value used

∆x local resolution (size) of the grid mesh (see Fig. 4) ∼ 14 km

ν Poisson’s ratio (Eq. 5) 1/3

E0 elasticity of undamaged sea-ice (Eq. 6) 5.96 108 Pa

λ0 viscous relaxation time of undamaged sea-ice (Eq. 7) 107 s

C compaction parameter (Eq. 7, 6, 9) -20

α damage parameter (Eq. 7) 5

P0 scaling parameter for ridging threshold (Eq. 9) 104 Pa

h0 reference ice thickness for ridging threshold (Eq. 9) 1 m

c sea-ice cohesion (Eq. 14) 5.8 103 Pa

µ internal friction coefficient (Eq. 14) 0.7

N upper limit for compressive stress (Eq. 14) 2.9 107 Pa

γC cross-nudging coefficient (Eq. 16) 2

∆T big time-step (advection & thermodynamics) 720 s

∆t small time-step (BBM time-splitting) 4 s

Ns ≡∆T /∆t 180

kth healing constant for damage (Eq. 15) 26 K s

CDw basal ice-water drag coefficient (Eq. B18) 5.2 10-3
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