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Abstract. Databases of 3D paleoclimate model simulations are increasingly used within global biogeochemical models for the 

Phanerozoic Eon. This improves the accuracy of the surface processes within the biogeochemical models, but the approach is 

limited by the availability of large numbers of paleoclimate simulations at different pCO2 levels and for different continental 15 

configurations. In this paper we apply the Frame Interpolation for Large Motion (FILM) Deep Learning method to a set of 

Phanerozoic paleoclimate model simulations to upscale their time resolution from one model run every ~25 million years to 

one model run every 1 million year (Myr). 

Testing the method on a 5 Myr time-resolution set of continental configurations and paleoclimates confirms the accuracy of 

our approach when reconstructing intermediate frames from configurations separated by up to 40 Myrs. We then apply the 20 

method to upscale the paleoclimate data structure in the SCION climate-biogeochemical model. The interpolated surface 

temperature and runoff are reasonable and present a logical progression between the original keyframes. 

When updated to use the high-time-resolution climate datastructure, the SCION model predicts climate shifts that were not 

present in the original model outputs due to its previous use of wide-spaced datasets and simple linear interpolation. We 

conclude that a time resolution of ~10 Myr in Phanerozoic paleoclimate simulations is likely sufficient for investigating the 25 

long-term carbon cycle, and that Deep Learning methods may be critical in attaining this time-resolution at a reasonable 

computational expense, as well as for developing new fully-continuous methods in which 3D continental processes are able to 

translate over a moving continental surface in deep time. However, the efficacy of Deep Learning methods in interpolating 

runoff data, compared to that of paleogeography and temperature, is diminished by the heterogeneous distribution of runoff. 

Consequently, interpolated climates must be confirmed by running a paleoclimate model if scientific conclusions are to be 30 

based directly on them. 
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1 Introduction 

To simulate global environmental change over Phanerozoic time it is important to understand how continental surface 

processes operate. For example, the weathering of silicate minerals controls the removal of atmospheric CO2, and phosphorus 

input from weathering plays a major role in the long-term oxygenation of the Earth (Walker et al., 1981; Lenton and Watson, 35 

2004). Weathering rates are largely controlled by local erosion rates, temperature and hydrology (West 2012; Maher and 

Chamberlain, 2014), and the latest generation of Phanerozoic global biogeochemical models aim to represent these factors at 

the local scale using data from 3D General Circulation Model (GCM) simulations (Godderis et al., 2023). Due to the long 

computational timescales of GCMs (typically weeks to months per ~5000-year simulation for a fully coupled ocean-

atmosphere model), they cannot be run interactively with long-term biogeochemical cycles over millions of years. Therefore, 40 

the ‘spatialized’ deep-time biogeochemical models such as GEOCLIM (Donnadieu et al., 2006; Godderis et al., 2014) and 

SCION (Mills et al., 2021; Longman et al., 2022) rely on either discrete time intervals, or linear interpolation between times 

set by previously-computed climate model simulations. 

Currently both the GEOCLIM and SCION models use a set of 22 continental configurations (including the present day) whose 

climate has been simulated by the Fast Ocean and Atmosphere Model (FOAM) at a range of different CO2 levels. This equates 45 

to one set of model runs every ~25 million years on average, although some gaps are up to 55 million years. This coarse time 

resolution has likely impacted the accuracy of the biogeochemical model results. For example, through plate tectonic motion, 

a mountain range may pass through the tropics, an event expected to cause a spike in continental weathering due to high 

rainfall, but this may be undetected by SCION or GEOCLIM if the timespan at which the mountain range crossed the equator 

was not represented in the time points chosen for the paleoclimate simulations. A further issue is that when these models are 50 

focused on single events, such as mass extinctions, they may not be able to incorporate the relevant continental configurations 

and climate fields for that time in Earth history, instead using boundary conditions for up to 20 million years before or after 

the event.  

Deep learning has received significant attention in the field of geosciences due to its impressive capabilities in handling tasks 

such as regression, classification, time-series analysis, and image processing (Reichstein et al., 2019; Chen et al., 2022; Zheng 55 

et al., 2022). One notable application of deep learning is in video frame interpolation, where it synthesizes intermediate frames 

between two input frames (Niklaus et al., 2017; Shi et al., 2022). Such a process can be highly beneficial in creating higher-

time-resolution input variables for biogeochemical models by interpolating from the original climate model runs.  

In this paper, we first performed a numerical and visual validation of the Deep Learning interpolation of a PaleoDEM 

topographic elevation dataset (Scotese and Wright, 2018), as well as surface air temperature generated from these maps using 60 

the HadCM3L GCM (Scotese et al., 2021; Valdes et al., 2021). The validation results suggest that the Deep Learning method 

is capable of adequately detecting plate motions and changes to surface air temperature. We then use Deep Learning to fill the 

gaps between the paleoclimate simulation set used in the SCION model, increasing the time-resolution around 25-fold to 1 

million years. We focus on the SCION model because it runs continuously over the Phanerozoic and has previously published 
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outputs for long-term atmospheric CO2, O2 and global average temperature, but our results could also be used to produce new 65 

runs of the GEOCLIM model, as well as other Phanerozoic models that require spatial surface process information. 

2 Data and methodology 

2.1 Model forcings at 22 distinct time intervals 

The SCION model employs a series of 2D model forcing fields taken from annual means of the FOAM climate model, which 

were initially developed for the GEOCLIM model (Godderis et al., 2014). These fields are paleogeography (a composite of 70 

works by Blakey, Besse and Fluteau, and Sewall – see Godderis et al., 2014 for details), surface air temperature, continental 

runoff and topographic slope (Fig. 1). These 2D fields are 40×48 cells (4.5° latitude ×7.5° longitude) and are available for 22 

distinct time points (time intervals shown in Fig. 6) roughly evenly-spaced between the Cambrian and present day. These 22 

time points represent the grid-data stack times in the context of climate modelling. They are also run for a large range of 

different CO2 levels, and extrapolated beyond these for a total of 26 different levels by applying a linear interpolation; the 75 

FOAM surface air temperature and continental runoff are adjusted according to a linear change in the logarithm of CO2 

concentrations. During the SCION model run, 2D linear interpolation is used to estimate these fields for the current model 

CO2 level, and a weighted mean is used to produce a final estimate of bulk weathering fluxes by using the distance between 

the current model timestep and the available climate model runs. Wide spacing in time between some of these climate model 

datasets means that this weighted mean technique will likely miss many important features of Phanerozoic climate change. To 80 

improve on this, we adopt a frame interpolation technique (Reda et al., 2022), widely utilized to synthesize intermediate frames 

between two input frames in video sources, which increases the time-resolution (e.g. increases frames per second). This 

technique typically finds applications in amplifying refresh rates or generating slow-motion videos (Wu et al., 2023). 

2.2 The deep learning interpolation algorithm 

Deep Learning models are complex neural networks with typically >106 parameters. The model emulates the learning process 85 

of humans by updating the parameters in the neural networks to produce optimal results. The principal idea of using deep 

learning in frame (e.g., image) interpolation is to estimate the optical flow, which symbolizes the changes between two 

consecutive frames, followed by a pixel synthesis process that restores the intermediate images based on the estimated optical 

flows. The deep learning model aims to minimize the differences between model-predicted intermediate frames and the actual 

intermediate frames in a training dataset. This approach enables the model to accurately extrapolate the visual transformation 90 

from one frame to the next and synthesize a plausible intermediate frame that maintains temporal consistency with the 

surrounding frames. The inputs of the deep learning model are two end-point image frames, with the target being the 

intermediate frames. By understanding how intermediate frames evolve from previous and future frames across a broad 

spectrum of video datasets, the deep learning model can discern rotation, scaling, colour changes, and more intricate 

deformations, making it fit for creating interpolation images for new tasks. 95 
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In our study, we employ a complex Convolution Neural Network (CNN), called Frame Interpolation for Large Motion (FILM, 

Reda et al., 2022), to generate image interpolations for the FOAM dataset. FILM, when contrasted with traditional interpolation 

algorithms and other deep learning techniques, exhibits superior proficiency in dealing with abrupt changes in brightness and 

substantial motion. Such sudden shifts are frequent in the FOAM dataset due to the significant reorganizations that the 

paleogeographic and paleoclimatic conditions underwent throughout the Phanerozoic Eon (Royer et al., 2004; Godderis et al., 100 

2014; Scotese, 2021). We represent the FOAM dataset directly from the native R15 climate grid as a set of 40×48-sized images, 

each depicting the entire Earth surface. The FILM technique is then deployed to generate intermediate images between two 

consecutive model forcing frames from a specific dataset. This method enables the creation of an atlas of one-million-year 

model forcing frames through several iterations of interpolation (See Fig. 1). By converting these interpolated frames back to 

numerical values, this atlas can be used to generate million-year-resolution ‘DeepFOAM’ dataset, which can then be used in 105 

the place of the original SCION model forcing set to run the SCION model. Nothing is altered at the SCION model runtime—

it still uses weighted averages to interpolate bulk continental fluxes in time—however now it will interpolate between a 

maximum gap of 1 million years, where variations in the continental configurations are very small. 

 

 110 
Figure 1. Deep learning interpolation workflow for FOAM dataset and simplified overview of FILM. Numerical annotations represent 
the dataset dimensions, e.g., for original air temperature, 40 and 48 refer to the horizontal and vertical geographic spans, 22 represents the 
time intervals, 26 represents the different CO2 concentration levels. I(t-1) and I(t+1) represent the two input frames; It is the intermediate frame. 
The convolution step is the matrix operation to obtain high-level feature representations; motion estimation is the change estimation achieved 
by the convolution operation; concatenation means the unification of two matrices of the same dimension to amalgamate features from 115 
different levels in the input pyramids; bi-linear up sampling is the technique used to reconstruct a frame from the high-level feature 
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representation. The FILM overview is simplified based on Fig. 2 in Reda et al. (2022); we refer the reader to Reda et al. (2022) and 
Goodfellow et al. (2016) for further details of these techniques. 

 

FILM is a U-shaped CNN encompassing both encoders and decoders (Fig. 1). Convolution, the fundamental operation in any 120 

CNN, involves multiplication between the image matrix and the filters, which are typically smaller matrices. This 

convolutional operation yields a summarized representation of the original images. Deep CNNs employ hundreds or thousands 

of such filters to discern features in images such as shape, brightness and patterns (Hinton et al., 2006; Goodfellow et al., 

2016). The encoder module in FILM serves to extract high-level feature representations from input images. This is 

accomplished via its specialized pyramidal architecture that encompasses seven levels of feature extractors. These range from 125 

fine-level (high-resolution) to coarse-level (low-resolution), effectively allowing FILM to detect both fine and coarse changes 

in the images, with each successive extractor operating on an input frame with half the resolution of the previous level's inputs. 

These input frames then undergo several layers of convolution blocks to extract high-level feature representations and bi-

directional motion between the input and interpolated frames. The feature representations, coupled with the bi-directional 

motion, synthesize the high-level representations of the intermediate frame. The decoder module of FILM then uses these 130 

high-level representations to reconstruct the intermediate images. During the training process, the weights in the convolution 

blocks within both the encoder and decoder are continually adjusted to minimize the differences between the model-predicted 

images and the training images. Having undergone training with over 100,000 unique videos, the pre-trained FILM model 

exhibits the capability to discern rotation, scaling, colour changes, movements, and more intricate deformations, making it 

ideally suited for creating interpolation images for novel tasks. 135 

We use the pre-trained FILM model to create interpolated images without conducting additional training. By running the FILM 

model with our image dataset (comprising 22 images for a given CO2 concentration at each time-interval, n, it yields 21, n-1, 

interpolation images. During the second round of prediction, both the original and interpolated images are used to generate 

further interpolation images between the original images and the first-round interpolation images. By iterating this operation 

k times, (2k-1)×(n-1) interpolation images are generated in total, and 2k-1 images are formed between each of the two original 140 

images. Given that the maximum age gap between the original model forcing is 55 Ma, we executed 6 iterations of prediction 

to produce 63 interpolation images between each pair of original images and selected at most 54 out of the 63 images to 

represent the dataset for each million year time point. These selections were made evenly across the 63 images to ensure a 

uniform and representative sampling for each million year in the dataset. 

3 Validating the method and interpolated datasets 145 

3.1 Validation of interpolation using a PaleoDEM dataset  

While the FILM model has demonstrated a robust ability to interpolate complex changes between input and intermediate 

frames, largely due to extensive training on over 100,000 videos, its performance has not yet been scrutinized in the context 
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of paleogeographic and paleoclimate datasets. To test this application, we first apply the FILM model to a high-time-resolution 

paleo-digital elevation dataset (PaleoDEM, Scotese and Wright, 2018) that delineates the evolving distributions of land and 150 

oceans over the past 540 million years in five million-year intervals. By partitioning the PaleoDEM dataset into input and 

intermediate frames, we could contrast the FILM-predicted frames with the actual intermediate frames, quantifying their 

disparities. The similarity between the predicted and actual frames serves as a testament to FILM's efficacy in capturing plate 

movements and transformations.  

The PaleoDEM dataset comprises 109 files, each file includes estimations of land surface elevation and ocean depth, measured 155 

in meters, at a resolution of 1×1 degrees. Hence, the PaleoDEM is a 361× 181 dimensional dataset where 361 represents 

longitude (ranging from -180 to 180) and 181 denotes latitude (ranging from -90 to 90). To make the PaleoDEM comparable 

with our 48×40 dimensional dataset, we applied nearest-neighbour interpolation, a downsampling algorithm, to downscale the 

PaleoDEM resolution to 48×40 by assigning the values of the closest pixel to the new pixel locations. Moreover, any location 

with elevation values greater than zero was characterized as land (denoted by 255 in pixel values), with the remainder classified 160 

as oceans (denoted by 0 in pixel values). 

The PaleoDEM was partitioned into distinct input and output datasets using temporal intervals of 10 million years (Myrs), 20 

Myrs, and 40 Myrs. This strategy facilitated three separate validation procedures. In the first validation approach, we use a 10 

Myr interval. The PaleoDEM sequences from 540 million years ago (Ma), 530 Ma, etc., up to 0 Ma, were designated as the 

input dataset. Correspondingly, the sequences from 535 Ma, 525 Ma, and so forth, until 5 Ma, were selected as the output 165 

dataset which the FILM model outputs will be compared against. For the second validation process, we adopted a 20 Myr 

interval. This time, the input dataset comprised PaleoDEM sequences from 540 Ma, 520 Ma, etc., down to 0 Ma. The sequences 

from 535 Ma, 530 Ma, 525 Ma, etc., to 5 Ma served as the output dataset. An identical procedure was executed for the third 

validation scheme, but with a 40 Myr interval. In each case we use the input dataset to make interpolation frames using FILM, 

and by comparing the predicted frames with the real frames in the output dataset, the model’s predictive accuracy can be 170 

assessed.  

For a systematic and comprehensive investigation of the FILM model performance, we calculate the Structural Similarity 

Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), two-dimensional correlation and Normalized Root Square of the Mean 

Square Error (NRMSE), which are the most widely utilized performance measurements for frame interpolation (Wang et al., 

2004; Dong et al., 2023). These widely accepted metrics can help us gauge differences between the actual intermediate frames 175 

and the predicted frames. SSIM is a metric to detect perceived changes that takes into account luminance, contrast, and 

structural information of the image. Given the real intermediate frame 𝐼𝐼𝑅𝑅(𝑥𝑥, 𝑦𝑦) and the FILM-predicted frame 𝐼𝐼(𝑥𝑥,𝑦𝑦), the 

SSIM is defined as: 

SSIM =  
�2𝜇𝜇𝐼𝐼�𝜇𝜇𝐼𝐼𝑅𝑅+𝑐𝑐1� × �2𝜎𝜎𝐼𝐼�𝐼𝐼𝑅𝑅+𝑐𝑐2�

�𝜇𝜇𝐼𝐼�
2+ 𝜇𝜇𝐼𝐼𝑅𝑅

2 + 𝑐𝑐1� × �𝜎𝜎𝐼𝐼�
2+𝜎𝜎𝐼𝐼𝑅𝑅

2 +𝑐𝑐2�
,          (1) 
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where 𝜇𝜇𝐼𝐼 and 𝜇𝜇𝐼𝐼𝑅𝑅 are the mean of 𝐼𝐼 and 𝐼𝐼𝑅𝑅, 𝜎𝜎𝐼𝐼
2 and 𝜎𝜎𝐼𝐼𝑅𝑅

2  are the variance of the 𝐼𝐼 and 𝐼𝐼𝑅𝑅, 𝜎𝜎𝐼𝐼𝐼𝐼𝑅𝑅 is the covariance between 𝐼𝐼 and 180 

𝐼𝐼𝑅𝑅, 𝑐𝑐1 and 𝑐𝑐2 are constants to avoid instability when the denominator is close to zero. Values of SSIM ranges from -1 to 1, 

representing inversely identical and identical images, respectively.   

 The PSNR is a ratio between the maximum possible power of the image and the power of corrupting noise that affects 

the fidelity of the image’s representation, it is defined as: 

PSNR = 10 ×  𝑙𝑙𝑙𝑙𝑙𝑙10  × � 𝐿𝐿2

1
𝑁𝑁  ∑ �𝐼𝐼𝑅𝑅(𝑥𝑥,𝑦𝑦) − 𝐼𝐼(𝑥𝑥,𝑦𝑦)�

2𝑁𝑁
𝑥𝑥,𝑦𝑦

�,         (2) 185 

where 𝐿𝐿 is the maximum pixel values (255 for our images), 𝑁𝑁 is the number of pixels in the image. The greater the value of 

PSNR, the better the performance of the frame interpolation.  

The two-dimension correlation is defined as the Pearson correlation coefficient calculated over the two dimensions of 𝐼𝐼𝑅𝑅(𝑥𝑥, 𝑦𝑦) 

and 𝐼𝐼(𝑥𝑥,𝑦𝑦). Values of two-dimension correlation are between -1 and 1, where 1 indicates the two images are identical, 0 means 

the images are uncorrelated, and -1 means the images are inversely identical. The NRMSE measures the differences in pixel 190 

values between the 𝐼𝐼𝑅𝑅(𝑥𝑥, 𝑦𝑦) and the 𝐼𝐼(𝑥𝑥, 𝑦𝑦). In contrast to the other metrics, lower NRMSE values indicates better performance 

(range between 0 and 1). 

NRMSE =  
�1
𝑁𝑁  ∑ �𝐼𝐼𝑅𝑅(𝑥𝑥,𝑦𝑦) − 𝐼𝐼(𝑥𝑥,𝑦𝑦)�

2𝑁𝑁
𝑥𝑥,𝑦𝑦

𝐼𝐼𝑅𝑅(𝑥𝑥,𝑦𝑦)𝑚𝑚𝑚𝑚𝑥𝑥− 𝐼𝐼𝑅𝑅(𝑥𝑥,𝑦𝑦)𝑚𝑚𝑚𝑚𝑚𝑚
,           (3) 

Figure 2 and Table 1 detail the quantitative assessments derived from our implemented numerical metrics, indicating the 

performance of the FILM technique when applied to the PaleoDEM dataset. During the validation phase, using a 10 Myr 195 

interval, the frames predicted by FILM demonstrated remarkable congruity with the actual frames. This is evidenced by the 

high values of SSIM, PSNR, and two-dimensional correlation, and a low value of NRMSE. The SSIM and 2D-correlation 

maintain consistently high values throughout the entire time span from 540 Ma to 0 Ma. This highlights the consistent 

performance of FILM, and its capacity to capture the paleogeographic reorganization in the PaleoDEM dataset across 

Phanerozoic timescales.  200 

Despite good performance in general, the PSNR and NRMSE depict a trend over time, with PSNR values decreasing and 

NRMSE values increasing over time – both suggesting a poorer fit to the real intermediate frames at time points closer to the 

present day. The observed trend is somewhat expected as the maps closer to the present day – which can draw on larger 

geological evidence bases – tend to exhibit more fine scale features, such as land patches depicted as only one or a few pixels 

in the frames (Fig. 3). During frame interpolation, fine scale features such as minor land patches are more easily overlooked. 205 

Consequently, metrics like PSNR and NRMSE, which quantify the pixel discrepancies between the predicted and actual 

frames, underscore this pattern of detail loss. 
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Figure 2. Comparative Evaluation of Performance Utilizing (a) 10 Ma, (b) 20 Ma, and (c) 40 Ma Intervals within the PaleoDEM 
Dataset. The blue line represents the LOWESS (Locally Weighted Scatterplot Smoothing) fitting curve with a fraction of 0.4, serving as an 210 
indicator of the central trend. The light blue shaded bands illustrate the confidence interval, derived from a 1000-resampling bootstrap 
method, providing a measure of the precision and uncertainty of the estimated fit. The NRMSE is represented in red colour because it 
signifies error, thus its trend is converse to the other three metrics. The green arrows indicate the direction of better performance. See text 
for detailed discussions. 
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 215 
Table 1. Numerical evaluation on the PaleoDEM dataset 

 10 Myr 20 Myr 40 Myr 

 Mean Median SD Mean Median SD Mean Median SD 

SSIM 0.96  0.97  0.03  0.91  0.94  0.06  0.80  0.81  0.11  

PSNR 35.12  35.25  1.50  34.17  34.50  1.47  33.46  33.49  1.38  

2D correlation 0.98  0.99  0.01  0.96  0.97  0.03  0.90  0.93  0.07  

NRMSE 0.02  0.02  0.00  0.02  0.02  0.00  0.02  0.02  0.00  

SD, standard deviation. See section 3.1 for other abbreviations. 

 

 
Figure 3. Temporal evolution of land patch density using PaleoDEM from 540 Ma to present. This figure indicates an overall increase 
of land patch density in the PaleoDEM dataset, attributed to the inclusions of more details in the more recent frames. This increasing trend 
may account for the patterns observed in PSNR and NRMSE. A land patch is defined as a contiguous grouping of land pixels. The density 220 
is calculated by dividing the number of land patches by the total frame size (40×48). The dark blue cross indicating the twenty-two time 
intervals used in the FOAM dataset. 

 

For the comparison at 10 Myr and 20 Myr intervals, a high degree of similarity between the predicted and actual frames was 

discernible, as evidenced by the mean values of SSIM exceeding 0.8, 2D-correlation over 0.9, PSNR above 32, and NRMSE 225 

less than 0.025. For the 40 Myr interval validation, the mean values of SSIM were greater than 0.7, the mean values of 2D-

correlation was above 0.80, the mean value of PSNR was over 31, and the mean values of NRMSE remained below 0.03. As 

anticipated, the performance deteriorates when the time interval is increased (Argaw and Kweon, 2022), which can be 
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attributed to the more significant changes between the two input frames. Interestingly, the SSIM and 2D-correlaiton show a 

particular decrease in performance around 220 Ma and 420 Ma. This may be due to more complex plate movements around 230 

these times which the algorithm finds more difficult to predict. 

In addition to the numerical evaluation, we also performed visual inspections to detect obvious discrepancies between the 

original frames and the predicted frames. Across different time periods, predicted frames were generally visually comparable 

to original ones (see Fig. 2 for numerical estimations). The major deviations between the predicted and original frames were 

attributable to missing pixels or mismatched pixel values, and there were no changes in the placements of major land masses 235 

(Fig. 4). Given that the mean temporal interval for SCION model forcings is approximately 25 Ma, our numerical assessments 

and visual evaluations in comparing the FILM-predicted frames with the actual frames from the PaleoDEM dataset suggest 

that FILM possesses the capability to discern plate movements and transformations on a time scale appropriate to building 

interpolation frames for the SCION model forcings. Nevertheless, the FILM method creates a significant number of unmatched 

pixels compared to the original frames, which would alter climatic outputs of GCMs and linked biogeochemical calculations, 240 

especially as small introduced islands would be expected to have high runoff and chemical weathering rates (Park et al., 2020). 

 

 
Figure 4. Comparative visualization of actual PaleoDEM and model-predicted frames at selected time intervals. This figure illustrates 
the comparative visualizations at (a) 535 Ma, (b) 315 Ma, (c) 105 Ma, and (d) 25 Ma. The grey pixels represent areas impacted by nearest-245 
neighbour downsampling in the paleogeographic maps. The missing pixels indicate areas present in the original frames but absent in the 
model-predicted frames; the fabricated pixels show areas absent in the original frames but present in the model-predicted frames. 
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3.2 Validation of interpolation using a GCM dataset 

We now apply the FILM model to a high-time-resolution dataset of Phanerozoic surface air temperature (SAT; Scotese et al., 250 

2021). This dataset is based on GCM simulations (HadCM3L; Valdes et al., 2021), with the CO2 level in the simulation inferred 

from global temperature proxies such as biogenic calcite and apatite δ18O and lithological climate indicators. The Phanerozoic 

SAT dataset shares the same spatial resolution as the PaleoDEM dataset, with a resolution of 1×1 degrees, and comprises a 

361×181 data array. The SAT dataset features a 10-Myr temporal resolution from 540-450 Ma and a 5-Myr resolution from 

450 Ma to the present. We selected the SAT dataset from 450 Ma onward to ensure a consistent validation. 255 

During validation, we used the SAT dataset without downscaling and conducted the same numerical validation considering 

temporal intervals of 10 Myrs, 20 Myrs, and 40 Myrs. Similar to the results for the PaleoDEM dataset, interpolations using a 

10-Myr interval demonstrated close congruence with the actual frames, as evidenced by high values of SSIM, 2D-correlation, 

and PSNR, along with low values of NRMSE from 450 Ma to present (see Fig. 5; Table 2). Moreover, compared to the 

PaleoDEM dataset, the interpolation performance of GMST across different time intervals exhibited more consistent results, 260 

as indicated by closer evaluation metrics (Table 2). This is likely because the temperature fields did not contain such sharp 

transitions between land and ocean. 
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Figure 5. Comparative evaluation of performance utilizing (a) 10 Myr, (b) 20 Myr, and (c) 40 Myr intervals within the SAT Dataset. 265 
See Figure 2 for detailed explanations of the image symbols.  
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Table 2. Numerical evaluation on the Phanerozoic SAT dataset 
 10 Ma 20 Ma 40 Ma 
 Mean Median SD Mean Median SD Mean Median SD 

SSIM 0.95  0.95  0.02  0.93  0.93  0.03  0.89  0.89  0.04  
PSNR 32.66  32.82  2.53  31.14  30.80  2.40  29.72  29.16  2.19  

2D correlation 0.99  0.95  0.02  0.99  0.99  0.01  0.98  0.99  0.02  
NRMSE 0.02  0.02  0.00  0.03  0.03  0.00  0.03  0.03  0.00  

 

3.3 Output and validation of intermediate FOAM temperature and runoff datasets 

We now focus on the temperature and runoff data in our interpolated DeepFOAM dataset. Given the established correlation 270 

between increased CO2 levels and a rise in global average temperature and total runoff, we anticipated that our interpolated 

data should mirror this trend if FILM is effectively applied to our dataset. Consequently, we test the alignment of interpolated 

temperature and runoff trends with those of the original model forcings. The SCION model forcing dataset is constructed with 

26 distinct CO2 levels, encompassing an extensive range of CO2 concentrations, from 10 ppm to 112,000 ppm (Mills et al., 

2021). This dataset has been extrapolated and in-filled from an average of 5 runs of FOAM per continental configuration, 275 

which was made possible because of a predictable logarithmic response of temperature and runoff to CO2 change in the model. 

Such a wide range of CO2 levels is required to aid in model spinup where the model conditions can be far from equilibrium. 

Typically, Phanerozoic runs of the SCION model do not stray beyond the range of the initial dataset from FOAM. Figure 6 

plots the global average temperature and runoff over these 26 CO2 levels, with each of the 22 lines representing a unique time 

interval (i.e., continental configuration) in FOAM. It exhibits an overall upward trend in temperature and runoff as CO2 280 

concentrations ascend, and the relationship between CO2 and climate is dependent on the continental configuration (e.g. Wong 

Hearing et al. 2021) and solar constant. It should be briefly noted that the 0 Ma climate ensemble is computed from only one 

run of FOAM at preindustrial CO2, adding a generalized trend for higher and lower CO2 levels. This is because the SCION 

model is not designed to perform variable-CO2 simulations at present day conditions, and only uses this state for spin up and 

parameter tuning. 285 
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Figure 6. Global average surface air temperature and average continental runoff over CO2 levels in the FOAM dataset. The 
representation is color-coded with a descending blue gradient, where light blue represents more ancient conditions, and dark blue denotes 
more recent scenarios. Note that the 0 Ma curve is built from only one CO2 level (preindustrial), with an arbitrary increase in temperature 290 
and runoff applied when CO2 levels change.  

 

Given the known behaviour of the FOAM climate model, our FILM-interpolated temperature and runoff grids should exhibit 

similar patterns, and serve as a method to evaluate the effectiveness of the FILM interpolation technique for this purpose. 

Figure 7 plots global average temperature changes in response to varying CO2 levels for each of the intermediate frames 295 

produced by FILM. The FOAM dataset contains values across 22 time intervals, leading to the 21 subplots (full subplots in 

Appendix) that show the average temperature changes for all intermediate frames between these 22 time intervals. The 

interpolated temperature values are well-aligned with the original dataset, displaying a consistent trend for escalating CO2 

concentrations. Figure 8 shows the runoff trends in response to varying CO2 levels. Similar to the temperature trends, they 

exhibit patterns with respect to CO2 that are analogous to those of the original runoff data. Given the more scattered 300 

distributions and more substantial changes in runoff between continental configurations, the interpolated average runoff 

exhibits a more varied pattern between the keyframe images, with interpolated intermediate runoff averages that can be both 

higher and lower than the end-members form which they are derived. Capturing runoff changes on small land patches remains 

a particularly challenging task for the deep learning methods, unlike the case with homogeneous variables like temperature, 

where FILM is more adept.  305 
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Figure 7. Trends in global temperature changes corresponding to varying CO2 levels. Each subplot features one of the 21 distinct time 
intervals between members of the FOAM dataset. Within each subplot, the red lines delineate the keyframe average temperature variations 
and the blue lines show the Deep Learning-interpolated average temperature at each 1 Myr. See Fig. A1 for the full 21 subplots.  310 
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Figure 8. Trends in runoff changes corresponding to varying CO2 levels. As with Fig. 7, the subplots represent the runoff changes 
between the original runoff outputs from the FOAM dataset. The red lines are original average runoff in the FOAM dataset, and blue lines 
are Deep Learning interpolated data. See Fig. A2 for the full 21 subplots.  315 

4 One-million-year-forcing outputs of the SCION model and comparisons to original model. 

We now run the SCION model (version 1.1.6; github.com/bjwmills/SCION) subject to the new ‘DeepFOAM’ dataset, which 

directly replaces the FOAM dataset used in the standard model. This update requires no additional modification of the SCION 

model. The key model predictions for atmospheric CO2, atmospheric O2 and global average surface temperature are shown in 

Fig. 9. These new model predictions follow the original model closely at the defined time points for the FOAM dataset, but 320 

they have a more detailed structure between these points and show several interesting deviations from the previous model, 

which are due to the new FILM-interpolated climate fields which have replaced linear interpolation between the widely-spaced 

previous fields. 

Most notably, the SCION-DeepFOAM output for atmospheric CO2 shows a warming spike around the Permian-Triassic 

boundary and a cooling spike in the Early Jurassic. These results are in line with geological evidence for extreme warmth at 325 

the Permian-Triassic extinction (Berner, 2002; Fielding et al., 2019; Yang et al., 2021; Wu et al., 2024) and a cool early Jurassic 

(Scotese et al., 2021). To investigate these outputs, Figure 10 plots variations in runoff and chemical weathering rates spanning 

260-245Ma. The original FOAM dataset contains runoff values at 260 Ma and 245 Ma, both of which indicate high runoff in 
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the low latitudes (marked by grey arrows in Fig. 10) surrounding the Paleo-Tethys Ocean. As a consequence, chemical 

weathering rates in these zones are comparably high, being influenced by both runoff and temperature (Maffre et al., 2018; 330 

Mills et al., 2021). Contrastingly, for the 253 Ma interval, predicted via Deep Learning, the South China plate exhibits 

diminished runoff values and correspondingly lower chemical weathering rates (marked by red arrows in Fig. 10). The 

observed decrease in weathering aligns with geological records which highlight significant aridity in China during the Permian-

Triassic Boundary (Cui and Cao, 2021; Xu et al., 2023), and it is this reduced chemical weathering that leads to elevated 

atmospheric CO2 predictions for this time in the SCION model. However, this result requires further scrutiny, as while the 335 

Deep Learning approach affords a continuous dataset, there is no specific physical mechanisms underpinning the results. In 

reality, aridity here may have been due to extreme warming following the emplacement of the Siberian Traps, which is not 

included in our model. Moreover, variations in different paleogeographic map version (e.g., South China is smaller in Marcilly 

et al. 2021 than in Scotese and Wright, 2018), image processing techniques such as downscaling or upscaling, as well as the 

large time intervals (>10 Myrs) between the original frames, may further complicate the results. Testing this hypothesis still 340 

requires a climate model run for the period of interest. Notably, the Deep Learning interpolation can produce intervals of 

climatic changes in climate-biogeochemical model, but it does not allow it to resolve climate events that were previously 

undetectable. For example, the Hirnantian Ice age cannot be represented in the SCION model using the DeepFOAM dataset, 

because various suggested mechanism for Hirnantian cooling, such as rapid weathering and a decrease in degassing dur to arc-

continent collision (Macdonald et al., 2019) and weathering amplification due to land plant evolution (Lenton et al., 2012), are 345 

not incorporated in the current SCION model used in this study (Mills et al., 2021).  
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Figure 9. Phanerozoic output comparisons between the SCION-FOAM and SCION-DeepFOAM. (a) atmospheric CO2 concentration 
(proxy data represented by scatter symbols; sources: Foster et al., 2017; Witkowski et al., 2018), (b) atmospheric O2 concentration (proxy 
data represented by vertical lines; sources: Glasspool and Scott, 2010; Lenton et al., 2016), and (c) global average surface temperature (proxy 350 
data represented in gray; source: Scotese et al., 2021). The red stars on the diagram represent the time intervals of 20 Myrs or less in the 
FOAM dataset. The dashed box in Fig. 9a marks the significant CO2 increase at 253Ma.  
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Figure 10. Runoff (a) and chemical weathering rates (b) for 260 Ma, 253 Ma, and 249 Ma. During the 260-245 Ma period, the low-355 
latitude regions surrounding the Paleo-Tethys Ocean exhibit high runoff and corresponding high weathering (highlighted by grey arrows). 
These characteristics are derived from the FOAM dataset. However, during the 253 Ma interval, the Deep Learning method predicts reduced 
runoff and corresponding decreased weathering. This reduction is primarily attributed to the lowered runoff in eastern low-latitude plates, 
such as North and/or South China (marked by the red arrow). 

5 Conclusions and future work 360 

We show that deep learning can produce realistic continuous plate geographical motions, and associated paleoclimates, from 

snapshots up to 40 Myrs apart. The FILM Deep Learning technique can be applied to the forcing set for the SCION climate-

biogeochemical model, which reduces the need for the model to interpolate linearly between time points, and thus allows a 

greater degree of climate variability, as well as making the model easier to use for testing specific events at known times that 

are not within its original forcing set. This alteration produces new intervals of climatic change in the climate-biogeochemical 365 

model, but it does not allow it to resolve any climate events that it previously could not, such as the Hirnantian ice age. It 

should also be noted that variations in different paleogeographic map versions, image processing techniques, and the large 

time intervals (>10 Myrs) and relatively coarse resolution of original frames can affect the accuracy of the interpolation. 

Particularly, the efficacy of interpolating runoff data, compared to that of paleogeography and temperature, is diminished by 
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its heterogeneous distribution. The new forcing set creates important differences in the model output, demonstrating the utility 370 

of Deep Learning for rapid preliminary analysis, but further conclusions on these differences rely on performing new climate 

model runs at these specific times. It is intuitively understood that these interpolation results can be enhanced with a higher-

resolution original dataset, a presumption corroborated by the PaleoDEM and the SAT validation. In the PaleoDEM and the 

SAT validation process, interpolation results derived from a 10 Myr interval exhibited superior accuracy compared to those 

from 20 Myr and 40 Myr intervals. Thus, future work to link paleoclimate and biogeochemistry should aim to run climate 375 

models at least every 10 Myrs. By combing the Deep Learning interpolation to upscale this to 1 Myr or finer time resolutions, 

it would allow more precise investigation of the paleoclimate and fossil record for specific events, and may also permit new 

approaches where modelled surface processes (e.g. vegetation) are able to distribute in space from one timestep to the next. 
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Appendix A: Additional figures 

 380 
Figure A1. The full subplots of the trends in global temperature changes corresponding to varying CO2 levels. Each 

subplot features one of the 21 distinct time intervals between members of the FOAM dataset. Within each subplot, the red 

lines delineate the keyframe average temperature variations and the blue lines show the Deep Learning-interpolated average 

temperature at each 1 Myr.  

 385 
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Figure A2. The full subplots of the trends in global runoff changes corresponding to varying CO2 levels. Each subplot 

features one of the 21 distinct time intervals between members of the FOAM dataset. Within each subplot, the red lines 

delineate the keyframe average runoff variations and the blue lines show the Deep Learning-interpolated average runoff at 

each 1 Myr.  390 
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