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Abstract. This article describes a modular ensemble-based data assimilation (DA) system, which is developed for an 

integrated surface-subsurface hydrological model. The software environment for DA is the Parallel Data Assimilation 

Framework (PDAF), which provides various assimilation algorithms like the ensemble Kalman filters, nonlinear filters, 3D-

Var, and combinations among them. The integrated surface-subsurface hydrological model is HydroGeoSphere (HGS), a 15 

physically based modelling software for the simulation of surface and variably saturated subsurface flow, as well as, heat and 

mass transport. The coupling and capabilities of the modular DA system are described and demonstrated using an idealized 

model of a geologically heterogeneous alluvial river-aquifer system with drinking water production via riverbank filtration. 

To demonstrate its modularity and adaptability, both single- and multivariate assimilation of hydraulic head and soil 

moisture observations are demonstrated in combination with individual and joint updating of multiple simulated states (i.e., 20 

hydraulic heads and water saturation) and model parameters (i.e., hydraulic conductivity). The new DA system marks an 

important step towards achieving operational real-time management of coupled surface water-groundwater systems such as 

riverbank filtration wellfields based on integrated surface-subsurface hydrological models and data assimilation. 

1 Introduction 

Numerical hydrological models are appropriate decision support tools for water resources management, as they can be used 25 

to better understand and predict complex hydrological systems that are dynamically evolving as a result of natural and 

anthropogenic stresses. When it comes to managing shallow groundwater systems, integrated surface-subsurface 

hydrological models (ISSHMs) (Sebben et al., 2013) are essential as they simulate all the components of the hydrological 

cycle and their feedback mechanisms within a single framework (Doherty and Moore, 2020; Islam, 2011; Paniconi and Putti, 

2015). ISSHMs provide a physically based and hydrologically consistent simulation of water fluxes across the entire 30 

hydrological system (Simmons et al., 2020). This makes ISSHMs robust tools for the simulation of water quantity and 
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quality, and thus for supporting the prospective management of water resources (Belleflamme et al., 2023; Burek et al., 

2020; Du et al., 2012; Paudel and Benjankar, 2022; Yang et al., 2021). Furthermore, ISSHMs also allow the potential 

impacts of climate change and human activity on the natural water system to be studied (Wada et al., 2017). Examples of 

such ISSHMs include MIKE-SHE (Refsgaard et al., 1995), InHM (VanderKwaak and Loague, 2001), IHM (Ross et al., 35 

2005), ParFlow (Kollet and Maxwell, 2006), CATHY (Camporese et al., 2010), and HydroGeoSphere (Aquanty, 2020; 

Brunner and Simmons, 2012). 

As with any modelling approach, complex ISSHMs necessitate the minimisation of uncertainty in both model parameters 

and predictions. This is ideally achieved through inverse estimation of model parameters using available direct and indirect 

observations, facilitated by some form of data assimilation. Model parameters in ISSHMs generally represent the many 40 

different physically and sometimes also the biogeochemically relevant hydraulic and hydrological properties of the surface 

and subsurface, and these parameters are typically spatially and sometimes also temporally highly heterogeneous. Moreover, 

the true values of these parameters are usually not precisely measurable, and any hydrological modelling effort, be it based 

on an elaborate ISSHM or even a simple bucket-type model, inevitably starts off with considerable prior uncertainty (Moges 

et al., 2020). In addition, model forcing data and model structure are associated with uncertainty, and, unless they are 45 

reduced and/or appropriately accounted for, all these uncertainties have the potential to significantly limit the reliability of 

(integrated) numerical models. Thus, quantification and reduction of model uncertainty is a critical step for any decision-

based hydrological model (Anderson et al., 2015) and important for both research and for operational modelling efforts (Liu 

and Gupta, 2007). While different methods exist, one of the most robust approaches to quantify and reduce model 

uncertainties is through data assimilation (DA) (Fan et al., 2022). DA is used widely in oceanography and meteorology (see 50 

Ghil and Malanotte-Rizzoli, 1991; Hoteit et al., 2018), particularly for global reanalysis (Baatz et al., 2021) and operational 

weather forecasting (Hu et al., 2023; Navon, 2009), where DA frameworks integrate measurements in near real-time into 

models and continuously correct for model deviations from the "true" system states. In recent years, DA has also been 

applied more frequently to continental hydrological systems, especially for experimental studies with physically based 

models and operational flood forecasting (Camporese and Girotto, 2022). By continuously incorporating real-time 55 

information from ground sensors and remote sensing, as well as weather forecasts, into hydrological models via DA, the 

uncertainties of hydrological model predictions could be significantly reduced and operational short-term forecasts improved 

(Di Marco et al., 2021). 

So far, studies on the implementation and development of DA for coupled surface-subsurface hydrological systems 

modelling, particularly via ISSHMs, are very limited. A successful implementation was demonstrated for the first time by 60 

Paniconi et al. (2003), who applied the simple DA method of nudging to the simplified version of the physically based 

surface-subsurface model CATHY (Camporese et al., 2010). It was shown that through the assimilation of soil moisture 

observations, the hydrological simulations improved significantly and for little additional computational cost. After more 

experimental DA examples have been developed with CATHY (e.g., Camporese et al., 2009a; Camporese et al., 2009b), DA 

started to be explored also for the use with other ISSHMs. Kurtz et al. (2016) developed a data assimilation framework for 65 
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the Terrestrial System Modelling Platform (TerrSysMP) (Shrestha et al., 2014) using the DA software Parallel Data 

Assimilation Framework (PDAF) (Nerger et al., 2005). TerrSysMP itself is a modular Earth system model consisting of the 

atmospheric model COSMO (Baldauf et al., 2011), the land surface model CLM (Oleson et al., 2004) and the ISSHM 

ParFlow (Kollet and Maxwell, 2006), all coupled via OASIS-MCT (Valcke, 2013). The data assimilation framework 

TerrSysMP-PDAF allows the assimilation of pressure heads and soil moisture measurements into the ISSHM ParFlow and 70 

the land surface model CLM via different assimilation algorithms as provided by PDAF. Similarly, an ensemble Kalman 

filter (EnKF) based data assimilation system for the physically based ISSHM HydroGeoSphere, EnKF-HGS, was developed 

by Kurtz et al. (2017), which allowed the assimilation of hydraulic heads with joint updating of both hydraulic heads and 

hydraulic conductivities. Based on EnKF-HGS, Tang et al. (2017) and Tang et al. (2018) assimilated hydraulic head 

observations for the joint estimation of states (hydraulic heads and surface water discharge) and parameters (hydraulic 75 

conductivities of an alluvial aquifer and a riverbed). Compared to ParFlow, which is the ISSHM in TerrSysMP-PDAF, and 

which is best suited for the simulation of larger scale interactions between the subsurface, the land surface and the 

atmosphere (Condon and Maxwell, 2019), HGS is more suited for local scale surface-subsurface interactions and the explicit 

and efficient simulation of abstraction schemes in riverbank filtration contexts, reactive transport processes, managed aquifer 

recharge systems, geothermal systems, or agricultural drainage (e.g., tile drain) and irrigation infrastructure (Alvarado et al., 80 

2022; Boico et al., 2022; Delottier et al., 2022a; Schilling et al., 2022). 

Up to now, only the EnKF was implemented as a data assimilation algorithm for HGS (via EnKF-HGS), and the coupling 

was neither modular nor user-friendly for, thus not suited for operational implementations. A better solution than coupling a 

single DA algorithm to an ISSHM is the coupling of an existing DA software that offers a suite of different assimilation 

algorithms to choose from and is modular with respect to the choice of states, parameters and observations that should be 85 

updated or considered for DA. As a toolbox tailored towards numerical modelling, PDAF offers such a modular choice of 

widely used DA algorithms and supports both single and multivariate assimilation of different types of observations as well 

as single or joint state and parameter updating. PDAF also facilitates the addition of novel assimilation algorithms which are 

not yet included. Owing to its modular design, PDAF makes it very easy to switch between different assimilation methods 

without the need for additional coding. Last but not least, the different algorithms are not only fully implemented and 90 

optimized but also parallelized, which is a key aspect for the continental-scale hydrological modelling conducted with the 

TerrSysMP-PDAF platform. 

With the aim to provide a DA framework for operational real-time simulations of water quality and quantity in complex 

systems for which ISSHMs are typically the ideal decision-based modelling tools (e.g., riverbank filtration wellfields, 

managed aquifer recharge schemes or agricultural systems), we have developed a highly modular DA framework for ISSHM 95 

based on PDAF and HGS. The coupled framework, called HGS-PDAF, is designed to allow updating of integrated flow and 

transport simulations, and includes the following key features: 
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1) the most up-to-date and continuously maintained collection of data assimilation algorithms, including the ensemble 

Kalman filter and its established variants, the ensemble smoother, the 3-D variational method, and the hybrid 

ensemble-variational method. 100 

2) a modular tool to handle different observation data, in HGS-PDAF currently allowing either single or multivariate 

assimilation of hydraulic head, soil moisture, and solute concentration measurements. 

3) a modular tool to handle different model states and parameters in HGS-PDAF allowing individual or joint updates 

of one or multiple states (currently: hydraulic heads, soil water saturation and solute concentration) and parameter 

types (currently: hydraulic conductivity). 105 

4) an open-source code repository, which includes the source code, an example test case and documentation on the use 

of the code and the execution of the example. 

Here, the structure and modules of HGS-PDAF are presented, alongside its capabilities and its performance on a multi-

variate, joint state-parameter DA example based on a synthetic alluvial riverbank filtration wellfield model. The structure of 

this paper is as follows: Section 2 describes the structure of the ISSHM HGS, the DA software PDAF, and the specific DA 110 

algorithm used in the illustrative example. Section 3 presents the coupled DA framework HGS-PDAF. Section 4 illustrates 

the implementation and performance of HGS-PDAF on the synthetic test case. The potential for HGS-PDAF to serve as a 

DA framework for different scientific and management applications in the water sector as well as avenues for further 

developments and improvements to HGS-PDAF are discussed in Sect. 5. The source code of HGS-PDAF, a manual as well 

as the presented example test case are available freely via https://zenodo.org/doi/10.5281/zenodo.10000886 (Tang et al., 115 

2023). 

2 Hydrological model and data assimilation method 

2.1 General overview of the ISSHM HydroGeoSphere 

HGS (Aquanty, Inc.) is an integrated surface-subsurface hydrological model (ISSHM) that was originally developed by 

Therrien and Sudicky (1996) and can be used to simulate fully coupled surface water and variably saturated subsurface flow, 120 

as well as, heat and mass transport (Aquanty, 2020; Brunner and Simmons, 2012). In HGS, surface water flow is simulated 

using the two-dimensional Saint-Venant equation and (variably saturated) subsurface flow using the three-dimensional 

Richards equation. The surface and subsurface domains are fully coupled in a physically consistent manner, enabling 

dynamic, two-way feedbacks between these two domains. This is achieved by simultaneously solving the surface and 

subsurface flow and transport equations in one single system of equations. Owing to its versatility, HGS has been used to 125 

study surface-subsurface flow and transport in complex, heterogeneous hydro(geo)logical systems (e.g., Ala-aho et al., 2017; 

Schilling et al., 2014; Schilling et al., 2017; Thornton et al., 2022). It has also been used to assess the potential impacts of, 

and responses to, climate change on hydrological processes at regional scales (Cochand et al., 2019; Delottier et al., 2022b; 

Erler et al., 2019; Nagare et al., 2023), to explore the dynamics of coastal groundwater flooding under a dual dual-aquifer 
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configuration (Tajima et al., 2023), in geophysics to inversely estimate the hydraulic conductivity (Sun et al., 2023) and in 130 

the context of supporting hydraulic tomography (Wang and Illman, 2023), and to extract and estimate groundwater recharge 

(Gong et al., 2023). Importantly, a recent study by Delottier et al. (2022a) has enhanced HGS such that it can now explicitly 

handle reactive (gas) tracers in transient solute transport simulations under variably saturated conditions. 

HGS has three key executables: grok, phgs and hsplot. grok is the pre-processing executable which compiles the prefix.grok 

file containing the model definition and setup information. It prepares all the information needed for HGS to run simulations. 135 

phgs is the main executable for running a serial or parallel forward numerical simulation with HGS. hsplot is the post-

processing executable that converts the model output files into a readable format that can be later visualised, for example, by 

Tecplot (Tecplot, Inc.) or the open-source tool ParaView (Kitware, Inc.). Thus, grok must be run before phgs is run, and 

hsplot can then be run once the simulations executed by phgs have been completed. 

Before grok is run, as with many numerical models, a number of input files, need to be prepared. These files include a 140 

control file, a file containing the model mesh, different parameter definition files, and files containing definitions of 

boundary and initial conditions. The control file is named prefix.grok, where prefix is the user-defined file name. All aspects 

of the HGS model setup are defined in this file containing the main sections: model grid generation, definition of simulation 

parameters and material properties, definition of initial and boundary conditions, configuration of (adaptive) time stepping 

controls and output controls. The control file also contains the instructions used to build the model files. A detailed 145 

description of the available input commands can be found in the HGS reference manual available on the Aquanty, Inc., 

website (https://www.aquanty.com/). When all input files are prepared, grok can be executed, which prepares all input files 

required for the execution of phgs. The number of processors to be used during the execution of phgs is defined in a default 

file produced by grok and can be manually adapted before executing phgs. When running phgs, the simulations of the flow 

and transport phenomena in the surface and subsurface domains are performed. The output files of phgs contain the results 150 

for the steady state or transient flow solutions in a set of binary and text-based files. To fully access the simulation outputs, 

the binary output files must be aggregated and converted by hsplot into a composite and readable format. 

2.2 Data assimilation method and PDAF software 

2.2.1 Data assimilation and the ensemble Kalman filter 

The primary purpose of DA is to sequentially update a model's state by merging it in a statistically optimal manner with the 155 

information available from observations or other models, to achieve a physically consistent and optimal representation of the 

true system state. A state vector in the context of DA refers to the mathematical representation of one or multiple states of a 

numerical model. In the case of hydrological models, typical states that are considered for updating are hydraulic heads, 

surface water discharge, soil moisture, evapotranspiration or solute concentrations. In addition to states, model parameters 

such as hydraulic conductivity, porosity or soil parameters may also be included in the state vector and thus for updating via 160 
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DA. A widely used DA algorithm, the ensemble Kalman filter (EnKF, Evensen, 2003), is briefly described below to 

illustrate the fundamental procedures of (ensemble) DA. 

In ensemble-based data assimilation methods such as the EnKF, the state vector is formulated as an ensemble of the states of 

multiple different realisations of the same model, each of them representing a plausible state of the system. The state vectors 

are evolved by running a numerical model forward in time. The resulting spread among the state vectors is used to estimate 165 

the probability distribution of the true state of the system. In mathematical terms, consider that a state vector X can be 

written as Eq. (1): 

𝐗𝒊 = (
𝐗s

𝐗p
)
𝑖

                                                                                        (1) 

where Xs is the state vector with model state variables and Xp is the state vector with model parameters. The subscript i 

refers to the realisation. Considering a forward transient model M, the model state at the current time step t can be simulated 170 

from the previous time step t-1: 

𝐗𝑡,𝑖 = 𝑀(𝐗𝑡−1,𝑖)                                                                                    (2) 

When observations are available at time step t, denoted as 𝐲𝑡, they are assimilated. For statistical consistency of the EnKF, 

the observations are perturbed by a reasonably chosen representative observation error 𝛆. The perturbed observation vector 

𝐲𝑡,𝑖 is obtained by adding one individual perturbation per realisation i as: 175 

𝐲𝑡,𝑖 = 𝐲𝑡 + 𝛆𝑡,𝑖                                                                                     (3) 

In the EnKF, the state vector is then updated by combining the observations with the model forecast according to Eq. (4): 

𝐗𝑡,𝑖
𝑎 = 𝐗𝑡,𝑖

𝑓 + 𝜶𝐆(𝐲𝑡,𝑖 − 𝐇𝐗𝑡,𝑖
𝑓 )                                                                       (4) 

where 𝐇 is the mapping operator matrix (denoted observation operator) between the state vector and the observations, the 

superscripts a and f refer to analysis (i.e., the updated states) and forecast (i.e., the simulated states), respectively, and 𝜶 is 180 

the damping factor that is used to avoid filter divergence when updating the parameters (Hendricks Franssen and Kinzelbach, 

2008), the value varying between 0 and 1. 𝐆 is the Kalman gain, which weights the relative importance of the model 

forecasts and the observations in a Bayesian sense, taking the respective uncertainties into account. The Kalman gain is 

calculated based on the covariance matrices of the model forecast and the observational error: 

𝐆 = 𝐂𝐇T(𝐇𝐂𝐇T +𝐑)−1                                                                         (5) 185 

where C is the covariance matrix of the forecast model states and parameters, and R is a diagonal covariance matrix that 

represents the observation errors at individual observation locations. For more details on the EnKF, R, and C, consult 

Evensen et al. (2022). 

2.2.2 PDAF features and structures 

PDAF (https://zenodo.org/doi/10.5281/zenodo.7861812) (Nerger, 2023) is a software for data assimilation, designed to be 190 

used with numerical models. It offers a comprehensive suite of data assimilation algorithms, including ensemble-based 
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Kalman filters (e.g. the classical EnKF (Burgers et al., 1998; Evensen, 1994), SEIK (Pham et al., 1998), LETKF (Hunt et al., 

2007), LESTKF (Nerger et al., 2012)) as well as variational approaches (Bannister, 2017). A comprehensive description of 

DA methods and variants of the classical EnKF has recently been provided by Vetra-Carvalho et al. (2018). The source code 

for PDAF is primarily written in Fortran90, with some features derived from Fortran 2003. Notably, PDAF can be linked to 195 

numerical models written in other languages like C, C++, and Python. PDAF's parallelisation features rely on MPI (Gropp et 

al., 1994) for the software itself, while localised filters additionally support OpenMP parallelisation. Importantly, the core 

routines are entirely independent of the numerical models, allowing them to be compiled separately and utilized as a library. 

To enable a numerical model to perform DA using PDAF, several 'links' must be established between the numerical model 

and PDAF. Firstly, in order to effectively combine model simulations and observations, it is necessary to inform PDAF of 200 

their relationship in space and time. For example, the observations may not be at the exact location but in the vicinity of 

where the model grid points are located. Interpolation is required in this case. In addition, it is important to specify how the 

state vector used in the filter algorithms corresponds to the model variable. For example, to ensure that hydraulic 

conductivity (K) is always positive during the assimilation process, the log-transformed K is considered in the state vector, 

but the HGS model uses the K itself. These relationships are outlined in separate subroutines that are provided to the 205 

assimilation system by the user. Further details about these subroutines, known as parts of the model bindings, are given in 

Sect. 3. 

When integrating a numerical model with PDAF, there are two different coupling approaches: online and offline coupling. In 

online coupling, PDAF is integrated directly into a model's source code with the help of the PDAF model bindings. 

Conversely, in offline coupling, the PDAF model bindings are compiled independently from the model's source code. 210 

Consequently, the numerical model run and the assimilation step are executed as separate processes. The output files 

generated by the numerical model run serve as inputs to the assimilation step, which produces the updated state vectors (i.e.  

the analysis a) and generates new input files for the next time step to be run by the numerical model. 

As an open-source software, PDAF has been coupled with many numerical models. One successful example is its coupling 

with the climate model AWI-CM-1.1 (Sidorenko et al., 2015) by Nerger et al. (2020). Using this coupled system, Tang et al. 215 

(2020) investigated the role of assimilating oceanic observations on the influence of both the ocean and the atmosphere. This 

was further extended to carry out strongly coupled DA (Tang et al., 2021) which allows to directly update atmospheric 

variables through assimilation. PDAF has also been applied to explore DA for the terrestrial system (Kurtz et al., 2016), sea-

ice forecasting (Mu et al., 2022; Mu et al., 2020) and climate modelling (Brune et al., 2015). 

3 HGS-PDAF description 220 

The implementation of HGS-PDAF uses the offline coupling approach. Accordingly, the HGS model has to be restarted after 

each assimilation step. As this is the case, an otherwise longer transient HGS model must be modified for DA, i.e., reduced 

to run only the short period between two times with available observations of defined length (e.g., 1 day) at a time, with the 
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transient forcings split into equally sized intervals that are sequentially applied to this short period model. The length of this 

interval is determined by the desired assimilation frequency. The respective procedure is described in detail in Sect. 3.1. The 225 

complete data assimilation workflow as applied to HGS through PDAF is described in Sect. 3.2. In HGS-PDAF, HGS, 

PDAF and model bindings are compiled as separate libraries and stored in separate folders, with detailed descriptions of the 

respective libraries provided in Sect. 3.3. 

3.1 Adaptation of the HGS forward model runs for the assimilation run 

DA sequentially updates the model states (and if desired model parameters) during the transient model run, with the transient 230 

model being 'interrupted' for updating by DA at specified intervals. This means that for each new forecast step, the model 

must be restarted with the parameter fields and state variables that have been updated by the DA as the new initial conditions 

for the next time step. Modifications to the HGS model configuration are therefore required. The sequential model is thus 

split into a short period model with the transient boundary conditions applied sequentially to this short period model. The 

numerical model here always uses the same mesh and the same model structure, but the boundary conditions, parameter files 235 

and initial conditions are replaced after each of the intervals. 

3.2 Workflow of HGS-PDAF 

 

Figure 1: Flowchart of the overall HGS-PDAF workflow. The green blocks are the parts associated with the HGS model, the 

yellow blocks are the model bindings that couple HGS to PDAF, and the blue block is the PDAF software itself. 240 

The overall workflow of HGS-PDAF is illustrated in Fig. 1. First of all, to run HGS-PDAF, a shell execution script called 

the 'driver', which is currently implemented for Linux, needs to be prepared. This driver manages the loop in which the HGS 

and data assimilation executables are called sequentially throughout the entire run period. At each time step, the driver first 

calls the two HGS executables grok and phgs. After that, hgs-pdaf, which is the executable containing the model bindings 
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that make the connection between HGS and the PDAF (see Sect. 3.3 for details), is called. hgs-pdaf checks if observations 245 

are available for the current time step t and, if there are, calls PDAF to perform DA according to the chosen DA algorithm. 

As hgs-pdaf reads model outputs directly from the hgs binary output files, there is no need to call hsplot. After computing 

the DA analysis update, hgs-pdaf writes the updated state vector (containing only states or both states and parameters) as 

new HGS input files for the next time step. In the following, a generic run is described in detail. 

Consider a DA run with HGS-PDAF for an ensemble of m state realisations and a transient model with a total runtime that 250 

splits into n timesteps of equal interval tint. Before starting the run, an initial ensemble of m different model realisations needs 

to be created. The initial ensemble should account for the uncertainty inherent to the natural hydrological system to be 

simulated. These realisations can be generated in a number of different ways and take into account several different sources 

of uncertainty, for example, uncertainty in initial conditions, model parameters, boundary conditions and external forcings. 

Subsequently, the run can be started. At the first time step t=t0: 255 

1. The ensemble of HGS models is initialized/pre-processed in parallel by grok. The model mesh, boundary 

conditions, parameters, and initial conditions are checked and read. 

2. The ensemble of HGS models is run in parallel for tint by phgs. This is the most computationally demanding step, as 

it requires running all HGS model realisations forward in time. In the current version of hgs-pdaf, no model run 

failure management option is implemented, which requires that all model realisations need to successfully complete 260 

for continuation of the run. 

3. Now hgs-pdaf is executed. Fig. 2 shows the call sequence within hgs-pdaf. The steps are as follows: 

3.1 The parallelisation for PDAF is initialized. The MPI commands are defined for the filter, respectively. 

3.2 The data assimilation is initialized. The parameter values for PDAF in the configuration files in the Fortran 

‘namelist’ format are read. See Sect. 3.3.2 for a detailed description of these configuration files. Next, the 265 

dimension of the state vector is determined. The state variables and parameters from step (2) are read from 

the output files of HGS. Their values, called ‘forecast’, are entered into the state vector. This is done for 

each ensemble state. 

3.3 The ensemble mean and standard deviation of the ensemble of state vectors are written to a netCDF file 

Output.nc. In addition, if required, the results for each realisation are written to m netCDF files 270 

Output_ens_i.nc, where i represents the realisation. 

3.4 The observations are mapped into the state space by the observation operator. PDAF then performs the 

analysis step of the data assimilation by integrating the observations with the model forecast according to 

the chosen DA algorithm, e.g., using the EnKF. The ensemble of state vectors is then updated now holding 

the ‘analysis’. 275 

3.5 The ‘analysis’ state information is written into the file Output.nc analogous to Step 3.3. The ensemble of 

‘analysis’ state vectors is written into HGS format in parallel for each ensemble member. These files will 

be used as the initial condition for computing the next time step with HGS. 
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3.6 PDAF is finalized which completes the execution of hgs-pdaf for this analysis time step. 

Steps (1) - (3) are repeated until t= tint·n. In the current implementation, DA results at every analysis time step are stored in 280 

netCDF format while the original output files of the HGS model at the final step are also retained. 

 

Figure 2: Call sequence of different subroutines within hgs-pdaf. 

3.3 Model bindings: hgs-pdaf 

To couple HGS with PDAF, a number of routines - known as model bindings - provide PDAF with the information from 285 

HGS and subsequently pass information from PDAF back to HGS after DA. Since these model bindings are written in 

Fortran, the following text uses terminology as it is called in Fortran. The main program is responsible for calling various 

HGS and DA subroutines sequentially. The subroutines/modules developed are grouped and described in as follows. 

3.3.1 Data assimilation and the ensemble Kalman filter 

These subroutines are designed to initialize the parallelisation, parameterisation, and state vector for DA. The MPI execution 290 

environment is initialized in init_parallel_pdaf at the very beginning. Initialisation of PDAF is done by init_pdaf. This 

includes the following parts as shown in Fig. 3: 

(1) Parameters such as the filter type, localisation and inflation are predefined in init_pdaf. Parameters specified in 

namelist files are read by read_config_pdaf; 

(2) The information about the model mesh, such as the total number of nodes and elements in the model, is read in by 295 

the HGS_init function; 

(3) The setup and dimension of the state vector is defined in initialize. It is calculated by the details given in (1) and (2). 

For example, if the state vector, as per the definition in (1), contains the hydraulic heads (i.e., a hydrological system 
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state, defined for each model node) and K (i.e., a hydraulic parameter, defined for each model element), then the 

number of nodes for the hydraulic heads is nnodes, and the number of elements for K is nelements, which is defined in 300 

(2). In this case the dimension of the state vector as calculated by initialize would be nstate = nnodes + nelements; 

(4) Information about the configuration of the DA, as defined by the initialisation subroutines, can be printed out by 

init_pdaf_info; 

(5) The values for the elements that have been set to define the state vector are also read at this point from the ensemble 

of HGS runs that were run forward in time, i.e., the ‘forecast’. This is done directly in init_pdaf. Variables included 305 

in the state vector can be hydraulic heads, soil water saturation, and solute concentrations (modelled system states) 

and K (model parameter); 

(6) Initialize the DA output netCDF files Output.nc by init_output_pdaf. 

 

Figure 3: Flowchart of the initialisation of data assimilation. 310 

3.3.2 Parameterisation modules 

The parameters for HGS and DA are predefined in the initialisation phase. However, for each DA application, users should 

define them according to their system knowledge and needs. These parameter values are defined in the two namelist files, 

namelist.pdaf and namelist.hgs, that are provided by the user. The available parameters that can be defined in the namelist 

files are described in the Appendix. These two namelist files are read by the subroutine read_config_pdaf in the initialisation 315 

phase. The parameters used in DA and HGS will then be replaced with the values specified in these namelist files instead of 

the default values defined in init_pdaf by read_config_pdaf. 
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3.3.3 Observation modules 

For each observation type, a different observation module obs_VAR_pdafomi exists. Here, VAR refers to the name of each 

type of observation, for now hydraulic heads (HEAD), soil moisture (SAT), solute concentrations (CONC), but more can be 320 

added swiftly. These different observation modules are independent of each other, allowing for several different types of 

observations to be modularly combined and either assimilated separately or in a chosen combination. Below, the functioning 

of the observation modules is described with the example of hydraulic heads. 

Like every observation module, the obs_HEAD_pdafomi module contains subroutines that initialize the information about 

the observations (init_dim_obs_HEAD) and to apply the observation operator (obs_op_HEAD). Hydraulic head observations 325 

are read from the observation input file by init_dim_obs_HEAD. The number of observations at the current time step is then 

counted, which define the dimension of the observation vector for the observation type, in this case hydraulic head. The 

observations are checked by excluding the unreasonable values (e.g. by defining a threshold value) and the indices of the 

observations deemed usable during the current time step are stored. The coordinates, the values, and the errors of the 

respective observations are also stored. 330 

Obs_op_HEAD is the implementation of the observation operator. Thus, it is responsible for the mapping between the state 

and the observation domains. Various observation operators from PDAF can be selected here by calling the corresponding 

subroutine PDAFomi_obs_op_X. It is also possible for the user to add his own observation operator here. Figure 4 gives an 

overview of how the observation module works. 

 335 

Figure 4: Illustration of the observation module. 
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The subroutine init_dim_obs_pdafomi is used to combine the different observations. This subroutine provides an interface 

between PDAF and the different observation modules. init_dim_obs_pdafomi calculates the full dimension of the 

observation vector by combining all the chosen observation types. 

3.3.4 Assimilation subroutine 340 

The subroutine assimilation_pdaf handles the DA analysis step. The DA algorithm is called according to the filter type 

defined in the namelist.pdaf file. The corresponding filter then updates the variables stored in the state vectors. 

3.3.5 Pre- and post-processing subroutines 

At each time step, the ensemble mean and standard deviations of the state vector at the prediction and analysis stages are 

computed by the prepoststep_ens_offline subroutine. By default, all these values are written to the output netCDF file 345 

Output.nc. This is done by the subroutine write_netcdf_pdaf in the output_netcdf module which contains various subroutines 

to write the results of the DA into files. In addition, if the user requires the output of all the individual ensemble members, 

the subroutine write_netcdf_pdaf_ens can write the results of each ensemble member to separate netCDF files 

Output_ens_i.nc. Note that these DA output files are different from the output files of the HGS model, which are stored 

separately in the original format. 350 

When data assimilation is complete for a time step, an important step is to write the updated states (and parameters) back to  

the original HGS model format, so that they can subsequently be used as new initial conditions and parameters for the next 

simulation time step. This is done by calling output subroutines to write files that are compatible with HGS at the end of the 

main HGS-PDAF program. The development of these output subroutines is beyond the scope of this paper. 

3.4 Scalability of HGS-PDAF 355 

 

Figure 5: Computing time of HGS-PDAF on JURECA-DC for different ensemble sizes between 2 and 100 normalised by the time 

for ensemble size 2. 
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The HGS-PDAF code is parallelized with MPI and uses only CPUs. For the scalability test, we used the illustrative example 

described in Sect. 4. Different ensemble sizes varying from 2 to 100 members/realisations were tested. Each model was run 360 

on one individual core, thus peaking at 100 cores for the case of 100 ensemble members. All the test runs were carried out on 

JURECA-DC CPUs from Jülich Supercomputing Centre in Germany. Figure 5 shows the scaling behaviour of HGS-PDAF 

on the JURECA-DC CPUs. The execution time is normalized with the time for an ensemble size of 2 members. When the 

ensemble is increased from 2 to 100, the execution time increases by about 50%. 

4 Illustrative examples of the capabilities of HGS-PDAF 365 

Here, the capabilities of HGS-PDAF are illustrated using a quasi-hypothetical numerical river-aquifer model designed after a 

real-world riverbank filtration site in the Swiss pre-Alps which has already served for several studies as a model system for 

tracer and DA methods development (see Popp et al., 2021; Schilling et al., 2022; Tang et al., 2018). The model was thus 

designed to be representative of an alluvial river-aquifer system where groundwater is pumped for drinking water supply 

from wells located in the direct vicinity of a river, inducing so called bank filtration. Such systems are highly suitable for 370 

drinking water production owing to the high K and natural filtration capacity of the alluvial sand and gravel materials which 

make up the riverbed and the aquifer. However, in such systems, the interactions between rivers and the underlying aquifers 

can be highly dynamic, changing from losing to gaining conditions, and back, within just a few tens of meters, and the 

heterogeneity of the alluvial sand and gravel material can be very complex, with irregular paleochannels potentially leading 

to strong preferential flow. Without suitable observations and integrated numerical flow and transport models, understanding 375 

and managing such systems becomes a major challenge. Therefore, DA and integrated surface-subsurface hydrological 

modelling tools, in particular our HGS-PDAF, are of high interest to continuously update and correct model predictions for 

optimal decision support. This quasi-hypothetical model was chosen to demonstrate the capability of HGS-PDAF to 

consistently reproduce both system states and parameters even in a highly dynamic and complex hydrological system. 

4.1 Basic model setup 380 

The real-world alluvial sand and gravel aquifer system, according to which the illustrative model was designed, is 

characterized by a distinct paleochannel of well-sorted gravel that exhibits substantially higher hydraulic conductivities 

compared to the surrounding, unsorted alluvial sand and gravel sediments (Schilling et al., 2022). The slightly abstracted, 

generalized synthetic version of the real-world site model has been introduced by Delottier et al. (2022a) for the 

development of environmental gas tracer transport simulations with an ISSHM and efficient data space inversion techniques 385 

for complex heterogeneous aquifer systems (Delottier et al., 2023). 

Geometrically, the model represents a 3-D rectangular domain with dimensions 500m x 300m x 30m (Fig. 6). A river of 20m 

width and 2m depth is explicitly represented in the model at X = 0 m. The horizontal resolution of the finite elements mesh 

varies between 4m along the river and riverbanks, and 7m on the alluvial plain. Vertically, the model consists of 14 layers, 
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with thicknesses ranging from 0.5 to 4m on the alluvial plain, and slightly smaller thicknesses underneath the river and 390 

riverbanks. In total, the model consists of 112,240 nodes and 204,000 elements. Two riverbank filtration wells, spaced at 

100m and located at a distance of approximately 90m parallel to the river, extract groundwater from a depth of 14m. The 

heterogeneity in K as typically found in such alluvial river-aquifer systems is implemented via a highly conductive 

paleochannel. 

 395 

Figure 6: 3-D view of the model domain and model boundary conditions. Contours represent the groundwater table depth below 

the surface. Locations of eight virtual observation wells are marked as stars. The location of the highly conductive paleochannel is 

indicated by a 500 m/d iso-surface for K. 

In the surface domain, constant boundaries are set for the upstream with an inflow rate of 1.71 m3/s. A critical depth 

boundary is set as a boundary condition for the outflow of the stream. In the subsurface domain, a head-dependent Cauchy-400 

type boundary condition was applied to the groundwater flow. At the upstream, a constant hydraulic head of 99.5m was 

assumed, while at the downstream, a constant hydraulic head of 93.2m was considered. The conductance for these 

boundaries was set to 5.8 m²/s. The model was forced with transient boundary conditions to reproduce a controlled pumping 

experiment in which pumps are first running at a constant rate of 400 m3/h for 15 days and are subsequently turned off for 50 

days, after which they are again turned back on to a constant rate of 400 m3/h for the remaining 30 days of the experiment 405 

(Fig. 7). A coupling length of 0.001 m is used to account for the exchange fluxes between the surface and the subsurface 
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domains. Figure 6 shows a 3-D view of the model domain, boundary conditions and paleochannel location, while Fig. 7 

shows a schematic of the transient pumping rates employed for the experiment. 

 

Figure 7: Transient pumping rates during the simulation period. 410 

In HGS, time steps are adaptive so that no specific restrictions were applied to maximum time step sizes, with the limitation 

that the maximum time step size could not be larger than the assimilation time step tint as defined for PDAF. The initial 

conditions were obtained for each model realisation individually via a 1-year spin up run with constant boundary conditions 

corresponding to the conditions at the beginning of the 95-days pumping experiment (i.e., with maximum pumping regime). 

4.2 Prior ensemble and synthetic observations 415 

In this study, the prior uncertainty of the system is characterized by the observed variance of the initially generated ensemble 

of hydraulic properties, i.e., the K. A comprehensive description of the generation of the ensemble is described in Delottier et 

al. (2023). Briefly, the prior ensemble was developed by using a stochastic alluvial feature generator ALLUVSIM (Pyrcz et 

al., 2009), geared towards the generation of an alluvial sand and gravel aquifer with distinct paleochannel features. To 

represent the well-sorted paleochannel and the unsorted surrounding sediments, two categorical parameter fields were 420 

created and each of these two categories was populated with a spatially uniform K (i.e., producing two types of sediments 

with homogeneous properties each). In this way, hydraulic conductivities were parameterized on a model element basis, 

producing what is known as heterogeneous fields. During DA, the K value of each of these numerical model elements was 

adjusted. In addition to these heterogeneous K- fields, an ensemble of 100 realisations with different homogeneous K values 

was also considered for the experiments for comparison purpose. These 100 homogeneous K values were defined as the 425 

arithmetic averages of the 100 heterogeneous K fields. 
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To generate synthetic observations against which the performance of DA could be evaluated, one of the stochastic 

realisations of the ALLUVSIM simulations was defined as a reference heterogeneous K-field or synthetic 'truth'. This 

reference heterogeneous K-field is illustrated in Fig. 6. To generate observations for the assimilation experiment, 8 locations 

within the model domain were chosen and daily time series of hydraulic heads and soil water saturation at a depth of 1.5m 430 

were extracted from this reference simulation. These observation time series were subsequently stochastically perturbed by a 

normally distributed error with a standard deviation of 5cm for hydraulic heads and 1% for soil water saturation. 

4.3 Data assimilation scenarios 

Table 1: Overview of illustrative DA scenarios. The open loop scenarios, that is, the scenarios without updating, are labelled 'ol'. 

For all scenarios with updating, the following naming convention applies: The first part of the name identifies the variables that 435 
were included in the state vector (i.e., the variables that were updated), while the second part identifies the observations that were 

assimilated. h, k and s stand for hydraulic head, K, and soil water saturation respectively. Individual damping factors and the 

conceptualisation of the prior K values are also indicated for each scenario. 

Simulation scenario Damping factor Prior K values 

ol - 

homogeneous 

h_h 1 

hk_h 1 

hs_h 1 

hs_s 1 

hs_hs 1 

hsk_h 1 

hsk_s 1 

hsk_hs 1 

ol - 

heterogeneous 

h_h 1 

hk_h 0.1 

hs_h 1 

hs_s 1 

hs_hs 1 

hsk_h 0.02 

hsk_s 0.02 

hsk_hs 0.02 

 

To demonstrate the modularity and capability of HGS-PDAF, 20 different DA scenarios that cover combinations between: 440 
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• single- and multivariate assimilation of hydraulic heads and/or soil moisture observations, 

• updating of either one or a combination of states (i.e., hydraulic heads and/or soil water saturation),  

• joint update of a one or a combination of states alongside the parameter K, and 

• one of two scenarios of prior uncertainty in K (i.e., heterogeneous or homogeneous properties), 

were run. As a DA algorithm, the EnKF was chosen. In addition, runs without DA (so called 'open loop' runs) were carried 445 

out for both the heterogeneous as well as the fully homogeneous K scenarios. 

Owing to the relatively small size of the simulated system, no localisation was applied. For the heterogeneous K scenarios, 

when K was updated with DA, a damping factor of less than 1 was applied. For the homogeneous K scenarios, as the 

assumption of homogeneity already acted as a regularisation for the parameterisation of K, the enforced homogeneity in K 

during the update always produced in a large enough ensemble spread, i.e. the damping factor is equal to 1. Table 1 gives the 450 

values of the damping factor used for all DA scenarios. 

For all the scenarios, hgs-pdaf was run on a highly parallelized Linux cluster so that all individual ensembles in the priors 

were executed in parallel. It took approximately 11 hours for hgs-pdaf to complete one single scenario. 

4.4 Results and discussion of the illustrative DA experiment 

The performance of DA with HGS-PDAF is evaluated by comparing the simulated hydraulic heads and soil water saturation 455 

to the synthetically observed hydraulic heads and soil water saturation, respectively. The average relative difference (over 

the 8 observation wells) between the simulated (represented by the ensemble mean) and synthetically observed states are 

illustrated in Fig. 8. Results are presented for all the scenarios and for the two different prior ensembles (i.e., homogeneous 

and heterogeneous K fields). 

It is remarkably clear from Fig. 8 how DA applied to an ISSHM of a riverbank filtration site (by using HGS-PDAF) is able 460 

to reduce the misfit for almost all scenarios and for the two prior ensembles. Overall, the model performance (with respect to 

both employed observation types) is significantly better when starting from and allowing heterogeneous K-fields to arise, 

compared to when employing the assumption of homogeneity. 

For hydraulic heads, the best performance in reducing the model misfit was obtained when assimilating hydraulic heads and 

updating both hydraulic heads and K (DA_hk_h). Little to no improvements were gained by assimilating also soil water 465 

saturation alongside hydraulic heads. In the heterogeneous case, scenario DA_hk_h performed so well that the averaged 

ensemble mean model error was reduced to reflect the measurement error (5cm). On the other hand, scenario DA_hsk_hs, in 

which hydraulic heads, soil water saturation and K were all updated together based on observations of hydraulic heads and 

soil water saturation, performed the worst. Even when a low damping factor was used, K values did not improve and turned 

out highly unrealistic (results not shown). On the other hand, spurious updates of K were not observed in the DA_hsk_hs 470 

scenario when run with the homogeneity assumption, as the homogeneity assumption helps to regularize the problem and 

ensures consistent estimates of homogeneous K fields. The poor performance for updating K in the heterogeneous scenario 

can likely be attributed to the fact that updating categorical prior parameter fields violates the multiGaussian assumption 
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inherent to the ensemble Kalman filter (Evensen et al. (2022)). In such cases, other methods such as Data Space Inversion 

(DSI) or multiple point geostatistics (MPS) should produce better results (Delottier et al., 2023; Remy et al., 2009). 475 

 

Figure 8: Ensemble mean of the relative differences (averaged for all observation wells) between simulated and observed states 

(hydraulic heads and soil water saturation) for (left) the homogeneous scenarios and (right) the heterogeneous scenarios. For the 

soil water saturation, only scenarios where soil water saturation was updated are shown. 

For soil water saturation, the overall model performance was less improved by DA compared to the improvement for the 480 

reproduction of hydraulic heads. The largest improvement was achieved when hydraulic heads, saturation and K were 

updated jointly using both observations of hydraulic heads and soil water saturation (scenario DA_hsk_hs). On the other 

hand, very little improvement on model performance could be achieved when only observations of soil water saturation were 

assimilated, irrespective of the combination of states (and parameters) chosen to be updated. This poor performance of using 

soil water saturation observations for DA of an ISSHM is likely explained by the fact that soil water saturation observations 485 

stem from locations relatively far away from the stream and which therefore did not show a strong variation throughout the 

pumping experiment. In this specific configuration, the information contained in observations of saturation was thus limited 

and could not match up against the information contained in hydraulic heads, which varied strongly throughout the pumping 

experiment. 

Concerning reproducing the true K field, as long as the K fields were updated from heterogeneous priors and heterogeneous 490 

structures were allowed to arise during updating, a reasonably good overall agreement could already be achieved by only 

using hydraulic heads (Fig. 8 and Fig. 9). This is certainly partly owed to the fact that the initially chosen heterogeneous 

prior was a priori a good approximation of the synthetic truth, as can be directly seen in the two examples illustrated in Fig. 

9 as well as in the relatively good performance of the heterogeneous open loop run. As such, this illustrative case highlights 
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the importance of choosing as good a prior as possible in such heterogeneous K systems, particularly because paleochannel 495 

facies are, as outlined previously, difficult to identify from hydraulic head observations alone. Nevertheless, even though the 

performance of DA was generally good even for K, the non-multiGaussian connectivity of the structures could not be 

preserved perfectly during DA with HGS-PDAF, as can be seen in Fig. 9. As outlined previously, however, this is an 

expected outcome of DA with a multiGaussian method such as EnKF. 

 500 

Figure 9: Posterior estimates of K fields with heterogeneous priors for three different scenarios and two individual realisations. 

The bottom row indicates the probability of occurrence of a paleochannel, calculated by considering a given threshold (i.e., 600 

m/d) above which a buried paleochannel facies is potentially identified. 

5 Conclusions 

We have here introduced a new data assimilation framework for fully integrated surface-subsurface hydrological models by 505 

providing a coupling between the ISSHM HGS and the DA software PDAF. This highly modular DA framework allows for 

the single and multivariate assimilation of several types of observational data, including hydraulic heads, soil water 

truth
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saturations and solute concentrations, and individual or joint update of several model states and parameters, including 

hydraulic heads, soil water saturation, solute concentrations, and hydraulic conductivities. The scalability of HGS-PDAF was 

evaluated on the Jülich Supercomputing Centre in Germany and the usability and modularity of HGS-PDAF was illustrated 510 

with a synthetic river-aquifer and bank filtration model and the standard ensemble Kalman filter method (one of several DA 

algorithms provided by PDAF). 

Compared to existing hydrological data assimilation systems, the advantage of the newly developed HGS-PDAF lies in its 

consideration of ISSHM, its large selection of different assimilation algorithms as provided by PDAF, its modularity with 

respect to combining observations, states, and parameters to be considered for DA, and the flexibility and ease at which new 515 

observations, states and parameters may be added to the already implemented ones. While in the current version of HGS-

PDAF only global filters are implemented, the implementation of localized filters is planned for the next iteration. 

Appendix: namelist files 

The parameters that need to be defined in the namelist.hgs file are listed in Table A1. These parameters are used for the HGS 

model. 520 

Table A1: Parameters defined in namelist.hgs. 

Parameter name Description 

prefix String, file name of the HGS model 

insuffix String, the suffix of the files storing the initial conditions 

outsuffix  String, the suffix of the output files 

isolf ‘True’ if overland flow is also simulated, and ‘false’ if only groundwater flow. 

isconc ‘True’ if mass transport is simulated, and ‘false’ if not. 

hgs_version ‘1’ for HGS versions before 2013, and ‘2’ for HGS 2013 and newer versions 

The parameters that can be defined in the namelist.pdaf file are listed in Table A2. These parameters are used for data 

assimilation. If the values of these parameters are not specified in namelist.pdaf, default values are used. A detailed 

description of these parameters can be found from the PDAF website (http://pdaf.awi.de). 

Table A2: Parameters defined in namelist.pdaf. 525 

Parameter name Description 

n_modeltasks Number of parallel model tasks, default is 1 

dim_ens Ensemble size 

dim_lag  Number of time instances for smoother 

type_forget 
Type of forgetting factor. ‘0’ for fixed, ‘1’ global adaptive, and ‘2’ for local adaptive 

for LSEIK/LETKF/LESTKF 
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forget Values of Forgetting factor 

type_trans 
Type of ensemble transformation. Values differ for local filters. Detail information 

on these values can be found in the code. 

type_sqrt 
Type of transform matrix square-root. ‘0’ for symmetric square root, ‘1’ for Cholesky 

decomposition 

incremental ‘1’ if incremental updating is performed. Only used in SEIK/LSEIK. 

step_null Initial time step of assimilation 

write_da Whether to write the output file for DA* 

write_ens Whether to write the output files for each realisation* 

str_daspec String to identify assimilation experiment 

printconfig Whether to print information on all configuration parameters* 

istep Real time step for HGS and PDAF 

screen Write screen output. ‘1’ for output, and ‘2’ for adding timing information 

assim_o_head Whether to assimilation the hydraulic head observations* 

path_obs_head Path to the file storing the head observations 

file_head_prefix Prefix of the file name for the head observations 

file_head_suffix Suffix of the file name for the head observations 

state_type Define variables included in the state vector 

rms_obs_head Observation error value used for the head 

head_fixed_rmse 
Whether to use a fixed value or the error values provided from the head observation 

file* 

ResultPath Path to the DA output file(s) 

assim_o_sat Whether to assimilation the soil water saturation observations* 

path_obs_sat Path to the file storing the soil water saturation observations 

file_sat_prefix Prefix of the file name for the soil water saturation observations 

file_sat_suffix Suffix of the file name for the soil water saturation observations 

rms_obs_sat Standard deviation value used for the soil water saturation observations 

sat_fixed_rmse 
Whether to use a fixed value or the error values provided from the soil water 

saturation observation file* 

damp_k Damping factor for hydraulic conductivity 

Sr Maximum saturation degree 

* ‘True’ if yes, and ‘false’ if no.  
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Code and data availability 

The current version of HGS-PDAF is available from GitHub https://github.com/qiqi1023t/HGS-PDAF_v1.0_GMD under 

the GNU General Public License v3.0. The exact version of the model used to produce the results used in this paper is 

archived on Zenodo (https://zenodo.org/doi/10.5281/zenodo.10000886) (Tang et al., 2023), as are input data and scripts to 530 

run the model and produce the plots for all the simulations presented in this paper. 

Author contributions 

The project was conceptualised by QT, PB and OS. Data curation was performed by QT and OS. Code development of the 

HGS-PDAF was carried out by QT, OS and WK. The HGS model used as an illustrative example was built by HD. 

Numerical experiments based on this HGS model and HGS-PDAF code on the supercomputer were performed by QT. 535 

Formal analysis and figure visualisation were performed by QT and HD. The original draft was written by QT, HD and OS. 

The manuscript was revised and edited by OS, HD, QT, LN, WK and PB. Funding acquisition was carried out by PB and 

OS. Supervision was carried out by PB. 

Competing interests 

Acknowledgement 

Q. Tang gratefully acknowledges the funding from the European Union’s Horizon 2020 project WATERAGRI 

(https://wateragri.eu, grant No. 858375). The authors acknowledge PRACE for awarding access to the Fenix Infrastructure 
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