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Abstract. This article describes a modular ensemble-based data assimilation (DA) system, which is developed for an integrated 

surface-subsurface hydrological model. The software environment for DA is the Parallel Data Assimilation Framework 

(PDAF), which provides various assimilation algorithms like the ensemble Kalman filters, nonlinear filters, 3D-Var, and 

combinations among them. The integrated surface-subsurface hydrological model is HydroGeoSphere (HGS), a physically 15 

based modelling software for the simulation of surface and variably saturated subsurface flow, as well as, heat and mass 

transport. The coupling and capabilities of the modular DA system are described and demonstrated using an idealized model 

of a geologically heterogeneous alluvial river-aquifer system with drinking water production via riverbank filtration. To 

demonstrate its modularity and adaptability, both single- and multivariate assimilation of hydraulic head and soil moisture 

observations are demonstrated in combination with individual and joint updating of multiple simulated states (i.e., hydraulic 20 

heads and water saturation) and model parameters (i.e., hydraulic conductivity). With the integrated model and this modular 

DA framework, we have essentially developed the hydrologically and DA wise robust toolbox for developing the basic model 

for operational management of coupled surface water-groundwater resources. 

1 Introduction 

Numerical hydrological models are appropriate decision support tools for water resources management, as they can be used to 25 

better understand and predict complex hydrological systems that are dynamically evolving as a result of natural and 

anthropogenic stresses. When it comes to managing shallow groundwater systems, integrated surface-subsurface hydrological 

models (ISSHMs) (Sebben et al., 2013) are essential as they simulate all the components of the hydrological cycle and their 

feedback mechanisms within a single framework (Doherty and Moore, 2020; Islam, 2011; Paniconi and Putti, 2015). ISSHMs 

provide a physically based and hydrologically consistent simulation of water fluxes across the entire hydrological system 30 

(Simmons et al., 2020). This makes ISSHMs robust tools for the simulation of water quantity and quality, and thus for 
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supporting the prospective management of water resources (Belleflamme et al., 2023; Burek et al., 2020; Du et al., 2012; 

Paudel and Benjankar, 2022; Yang et al., 2021). Furthermore, ISSHMs also allow the potential impacts of climate change and 

human activity on the natural water system to be studied (Wada et al., 2017). Examples of such ISSHMs include MIKE-SHE 

(Refsgaard et al., 1995), InHM (VanderKwaak and Loague, 2001), IHM (Ross et al., 2005), ParFlow (Kollet and Maxwell, 35 

2006), CATHY (Camporese et al., 2010), and HydroGeoSphere (Aquanty, 2020; Brunner and Simmons, 2012). 

As with any modelling approach, complex ISSHMs necessitate the minimisation of uncertainty in both model parameters and 

predictions. This is ideally achieved through inverse estimation of model parameters using available direct and indirect 

observations, facilitated by some form of data assimilation. Model parameters in ISSHMs generally represent the many 

different physically and sometimes also the biogeochemically relevant hydraulic and hydrological properties of the surface 40 

and subsurface, and these parameters are typically spatially and sometimes also temporally highly heterogeneous. Moreover, 

the true values of these parameters are usually not precisely measurable, and any hydrological modelling effort, be it based on 

an elaborate ISSHM or even a simple bucket-type model, inevitably starts off with considerable prior uncertainty (Moges et 

al., 2020). In addition, model forcing data and model structure are associated with uncertainty, and, unless they are reduced 

and/or appropriately accounted for, all these uncertainties have the potential to significantly limit the reliability of (integrated) 45 

numerical models. Thus, quantification and reduction of model uncertainty is a critical step for any decision-based hydrological 

model (Anderson et al., 2015) and important for both research and for operational modelling efforts (Liu and Gupta, 2007). 

While different methods exist, one of the most robust approaches to quantify and reduce model uncertainties is through data 

assimilation (DA) (Fan et al., 2022). DA is used widely in oceanography and meteorology (see Ghil and Malanotte-Rizzoli, 

1991; Hoteit et al., 2018), particularly for global reanalysis (Baatz et al., 2021) and operational weather forecasting (Hu et al., 50 

2023; Navon, 2009), where DA frameworks integrate measurements in near real-time into models and continuously correct 

for model deviations from the "true" system states. In recent years, DA has also been applied more frequently to continental 

hydrological systems, especially for experimental studies with physically based models and operational flood forecasting 

(Camporese and Girotto, 2022). By continuously incorporating real-time information from ground sensors and remote sensing, 

as well as weather forecasts, into hydrological models via DA, the uncertainties of hydrological model predictions could be 55 

significantly reduced and operational short-term forecasts improved (Di Marco et al., 2021). 

So far, studies on the implementation and development of DA for coupled surface-subsurface hydrological systems modelling, 

particularly via ISSHMs, are very limited. A successful implementation was demonstrated for the first time by Paniconi et al. 

(2003), who applied the simple DA method of nudging to the simplified version of the physically based surface-subsurface 

model CATHY (Camporese et al., 2010). It was shown that through the assimilation of soil moisture observations, the 60 

hydrological simulations improved significantly and for little additional computational cost. After more experimental DA 

examples have been developed with CATHY (e.g., Camporese et al., 2009a; Camporese et al., 2009b), DA started to be 

explored also for the use with other ISSHMs. Kurtz et al. (2016) developed a data assimilation framework for the Terrestrial 

System Modelling Platform (TerrSysMP) (Shrestha et al., 2014) using the DA software Parallel Data Assimilation Framework 

(PDAF) (Nerger et al., 2005). TerrSysMP itself is a modular Earth system model consisting of the atmospheric model COSMO 65 
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(Baldauf et al., 2011), the land surface model CLM (Oleson et al., 2004) and the ISSHM ParFlow (Kollet and Maxwell, 2006), 

all coupled via OASIS-MCT (Valcke, 2013). The data assimilation framework TerrSysMP-PDAF allows the assimilation of 

pressure heads and soil moisture measurements into the ISSHM ParFlow and the land surface model CLM via different 

assimilation algorithms as provided by PDAF. Similarly, an ensemble Kalman filter (EnKF) based data assimilation system 

for the physically based ISSHM HydroGeoSphere, EnKF-HGS, was developed by Kurtz et al. (2017), which allowed the 70 

assimilation of hydraulic heads with joint updating of both hydraulic heads and hydraulic conductivities. Based on EnKF-

HGS, Tang et al. (2017) and Tang et al. (2018) assimilated hydraulic head observations for the joint estimation of states 

(hydraulic heads and surface water discharge) and parameters (hydraulic conductivities of an alluvial aquifer and a riverbed). 

Compared to ParFlow, which is the ISSHM in TerrSysMP-PDAF, and which is best suited for the simulation of larger scale 

interactions between the subsurface, the land surface and the atmosphere (Condon and Maxwell, 2019), HGS is more suited 75 

for local scale surface-subsurface interactions and the explicit and efficient simulation of abstraction schemes in riverbank 

filtration contexts, reactive transport processes, managed aquifer recharge systems, geothermal systems, or agricultural 

drainage (e.g., tile drain) and irrigation infrastructure (Alvarado et al., 2022; Boico et al., 2022; Delottier et al., 2022a; Schilling 

et al., 2022). 

Up to now, only the EnKF was implemented as a data assimilation algorithm for HGS (via EnKF-HGS), and the coupling was 80 

neither modular nor user-friendly, thus not suited for operational implementations. A better solution than coupling a single DA 

algorithm to an ISSHM is the coupling of an existing DA software that offers a suite of different assimilation algorithms to 

choose from and is modular with respect to the choice of states, parameters and observations that should be updated or 

considered for DA. As a toolbox tailored towards numerical modelling, PDAF offers such a modular choice of widely used 

DA algorithms and supports both single and multivariate assimilation of different types of observations as well as single or 85 

joint state and parameter updating. PDAF also facilitates the addition of novel assimilation algorithms which are not yet 

included. Owing to its modular design, PDAF makes it very easy to switch between different assimilation methods without 

the need for additional coding. Last but not least, the different algorithms are not only fully implemented and optimized but 

also parallelized, which is a key aspect for the continental-scale hydrological modelling conducted with the TerrSysMP-PDAF 

platform. 90 

With the aim to provide a DA framework for operational real-time simulations of water quality and quantity in complex 

systems for which ISSHMs are typically the ideal decision-based modelling tools (e.g., riverbank filtration wellfields, managed 

aquifer recharge schemes or agricultural systems), we have developed a highly modular DA framework for ISSHM based on 

PDAF and HGS. The coupled framework, called HGS-PDAF, is designed to allow updating of integrated flow and transport 

simulations, and includes the following key features: 95 

1) the most up-to-date and continuously maintained collection of data assimilation algorithms, including the ensemble 

Kalman filter and its established variants, the ensemble smoother, the 3-D variational method, and the hybrid 

ensemble-variational method. 
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2) a modular tool to handle different types of observation data, which enables to assimilate one or multiple types of 

observations simultaneously, currently programmed for hydraulic heads, soil moisture and solute concentration 100 

measurements. 

3) a modular tool to handle different model states and parameters in HGS-PDAF allowing individual or joint updates of 

one or multiple states (currently: hydraulic heads, soil water saturation and solute concentration) and parameter types 

(currently: hydraulic conductivity). 

4) an open-source code repository, which includes the source code, an example test case and documentation on the use 105 

of the code and the execution of the example. 

Here, the structure and modules of HGS-PDAF are presented, alongside its capabilities and its performance on a multi-variate, 

joint state-parameter DA example based on a synthetic alluvial riverbank filtration wellfield model. The structure of this paper 

is as follows: Section 2 describes the structure of the ISSHM HGS, the DA software PDAF, and the specific DA algorithm 

used in the illustrative example. Section 3 presents the coupled DA framework HGS-PDAF. Section 4 illustrates the 110 

implementation and performance of HGS-PDAF on the synthetic test case. The potential for HGS-PDAF to serve as a DA 

framework for different scientific and management applications in the water sector as well as avenues for further developments 

and improvements to HGS-PDAF are discussed in Sect. 5. The source code of HGS-PDAF, a manual as well as the presented 

example test case are available freely via https://zenodo.org/doi/10.5281/zenodo.10000886 (Tang et al., 2023). 

2 Hydrological model and data assimilation method 115 

2.1 General overview of the ISSHM HydroGeoSphere 

HGS (Aquanty, Inc.) is an integrated surface-subsurface hydrological model (ISSHM) that was originally developed by 

Therrien and Sudicky (1996) and can be used to simulate fully coupled surface water and variably saturated subsurface flow, 

as well as, heat and mass transport (Aquanty, 2020; Brunner and Simmons, 2012). In HGS, surface water flow is simulated 

using the two-dimensional diffusion wave equation and (variably saturated) subsurface flow using the three-dimensional 120 

Richards equation. The surface and subsurface domains are fully coupled in a physically consistent manner, enabling dynamic, 

two-way feedbacks between these two domains. This is achieved by simultaneously solving the surface and subsurface flow 

and transport equations in one single system of equations. Owing to its versatility, HGS has been used to study surface-

subsurface flow and transport in complex, heterogeneous hydro(geo)logical systems (e.g., Ala-aho et al., 2017; Schilling et 

al., 2014; Schilling et al., 2017; Thornton et al., 2022). It has also been used to assess the potential impacts of, and responses 125 

to, climate change on hydrological processes at regional scales (Cochand et al., 2019; Delottier et al., 2022b; Erler et al., 2019; 

Nagare et al., 2023), to explore the dynamics of coastal groundwater flooding under a dual-aquifer configuration (Tajima et 

al., 2023), in geophysics to inversely estimate the hydraulic conductivity (Sun et al., 2023) and in the context of supporting 

hydraulic tomography (Wang and Illman, 2023), and to extract and estimate groundwater recharge (Gong et al., 2023). 

https://zenodo.org/doi/10.5281/zenodo.10000886
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Importantly, a recent study by Delottier et al. (2022a) has enhanced HGS such that it can now explicitly handle reactive (gas) 130 

tracers in transient solute transport simulations under variably saturated conditions. 

HGS has three key executables: grok, phgs and hsplot. grok is the pre-processing executable which compiles the prefix.grok 

file containing the model definition and setup information. It prepares all the information needed for HGS to run simulations. 

phgs is the main executable for running a serial or parallel forward numerical simulation with HGS. hsplot is the post-

processing executable that converts the model output files into a readable format that can be later visualised, for example, by 135 

Tecplot (Tecplot, Inc.) or the open-source tool ParaView (Kitware, Inc.). Thus, grok must be run before phgs is run, and hsplot 

can then be run once the simulations executed by phgs have been completed. The workflow of HGS is illustrated in Fig. 1. 

 

Figure 1: Flowchart of the pure HGS mode run.  

Before grok is run, as with many numerical models, a number of input files need to be prepared. These files include a control 140 

file, a file containing the model mesh, different parameter definition files, and files containing definitions of boundary and 

initial conditions. The control file is named prefix.grok, where prefix is the user-defined file name. All aspects of the HGS 

model setup are defined in this file containing the main sections: model grid generation, definition of simulation parameters 

and material properties, definition of initial and boundary conditions, configuration of (adaptive) time stepping controls and 

output controls. The control file also contains the instructions used to build the model files. A detailed description of the 145 

available input commands can be found in the HGS reference manual available on the Aquanty, Inc., website 

(https://www.aquanty.com/). When all input files are prepared, grok can be executed, which prepares all input files required 

for the execution of phgs. The number of processors to be used during the execution of phgs is defined in a default file produced 

by grok and can be manually adapted before executing phgs. When running phgs, the simulations of the flow and transport 

phenomena in the surface and subsurface domains are performed. The output files of phgs contain the results for the steady 150 

state or transient flow solutions in a set of binary and text-based files. To fully access the simulation outputs, the binary output 

files must be aggregated and converted by hsplot into a composite and readable format. 

https://www.aquanty.com/
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2.2 Data assimilation method and PDAF software 

2.2.1 Data assimilation and the ensemble Kalman filter 

The primary purpose of DA is to sequentially update a model's state by merging it in a statistically optimal manner with the 155 

information available from observations or other models, to achieve a physically consistent and optimal representation of the 

true system state. A state vector in the context of DA refers to the mathematical representation of one or multiple states of a 

numerical model. In the case of hydrological models, typical variables that are considered for updating are hydraulic heads, 

surface water discharge, soil moisture, evapotranspiration or solute concentrations. In addition to states, model parameters 

such as hydraulic conductivity, porosity or soil parameters may also be included in the state vector and thus for updating via 160 

DA. A widely used DA algorithm, the ensemble Kalman filter (EnKF, Evensen, 2003), is briefly described below to illustrate 

the fundamental procedures of (ensemble) DA. 

In ensemble-based data assimilation methods such as the EnKF, the state vector is formulated as an ensemble of the states of 

multiple different realisations of the same model, each of them representing a plausible state of the system. The state vectors 

are evolved by running multiple realisations of a numerical model forward in time. The resulting spread among the state vectors 165 

is used to estimate the probability distribution of the true state of the system. In mathematical terms, consider that a state vector 

X can be written as Eq. (1): 

                                                                                         

𝐗𝒊 = (𝐗s)𝒊            (1) 

 170 

where Xs is the state vector with model state variables. When parameters are updated together with the state variables, the 

augmented state vector can be written as  

𝐗𝒊 = (
𝐗s

𝐗p
)
𝑖

                                                                                        (2) 

 

 where Xp is the state vector with model parameters. The subscript i refers to the realisation. Considering a forward transient 175 

model M, the model state at the current time step t can be simulated from the previous time step t-1: 

𝐗𝑡,𝑖 = 𝑀(𝐗𝑡−1,𝑖)                                                                                    (3) 

When observations are available at time step t, denoted as 𝐲𝑡, they are assimilated. For statistical consistency of the EnKF, the 

observations are perturbed by a reasonably chosen representative observation error 𝛆 (Burgers et al., 1998). The perturbed 

observation vector 𝐲𝑡,𝑖 is obtained by adding one individual perturbation per realisation i as: 180 

𝐲𝑡,𝑖 = 𝐲𝑡 + 𝛆𝑡,𝑖                                                                                     (4) 

In the EnKF, the state vector is then updated by combining the observations with the model forecast according to Eq. (4): 

𝐗𝑡,𝑖
𝑎 = 𝐗𝑡,𝑖

𝑓 + 𝜶𝐆(𝐲𝑡,𝑖 − 𝐇𝐗𝑡,𝑖
𝑓 )                                                                       (5) 
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where 𝐇 is the mapping operator matrix (denoted observation operator) between the state vector and the observations, the 

superscripts a and f refer to analysis (i.e., the updated states) and forecast (i.e., the simulated states), respectively, and 𝜶 is the 185 

damping factor that is used to avoid filter divergence when updating the parameters (Hendricks Franssen and Kinzelbach, 

2008), the value varying between 0 and 1. Filter divergence refers to the situation where the estimated state of the system 

becomes increasingly inaccurate or divergent from the true state over time. This divergence occurs when the filtering algorithm 

fails to effectively incorporate new observations or when the model's dynamics do not properly represent the underlying 

system. 𝐆 is the Kalman gain, which weights the relative importance of the model forecasts and the observations in a Bayesian 190 

sense, taking the respective uncertainties into account. The Kalman gain is calculated based on the covariance matrices of the 

model forecast and the observational error: 

𝐆 = 𝐂𝐇T(𝐇𝐂𝐇T +𝐑)−1                                                                         (6) 

where C is the covariance matrix of the forecast model states and parameters, and R is a diagonal covariance matrix that 

represents the observation errors at individual observation locations. For more details on the EnKF, R, and C, consult Evensen 195 

et al. (2022). 

2.2.2 PDAF features and structures 

PDAF (https://zenodo.org/doi/10.5281/zenodo.7861812) (Nerger, 2023) is a software for data assimilation, designed to be 

used with numerical models. It offers a comprehensive suite of data assimilation algorithms, including ensemble-based Kalman 

filters (e.g. the classical EnKF (Burgers et al., 1998; Evensen, 1994), SEIK (Pham et al., 1998), LETKF (Hunt et al., 2007), 200 

LESTKF (Nerger et al., 2012)) as well as variational approaches (Bannister, 2017). The available DA approaches and their 

application fields as well as several example references are listed in Appendix 1. A comprehensive description of DA methods 

and variants of the classical EnKF has recently been provided by Vetra-Carvalho et al. (2018). The source code for PDAF is 

primarily written in Fortran90, with some features derived from Fortran 2003. Notably, PDAF can be linked to numerical 

models written in other languages like C, C++, and Python. PDAF's parallelisation features rely on MPI (Gropp et al., 1994) 205 

for the software itself, while localised filters additionally support OpenMP parallelisation. Importantly, the core routines are 

entirely independent of the numerical models, allowing them to be compiled separately and utilized as a library. 

To enable a numerical model to perform DA using PDAF, several 'links' must be established between the numerical model 

and PDAF. Firstly, in order to effectively combine model simulations and observations, it is necessary to inform PDAF of 

their relationship in space and time. For example, the observations may not be at the exact location but in the vicinity of where 210 

the model grid points are located. Interpolation is required in this case. In addition, it is important to specify how the state 

vector used in the filter algorithms corresponds to the model variable. For example, whether the model parameters are included 

in the state vector for updating along with the state variables. If yes, and if the parameters to be included is the hydraulic 

conductivity (K), to ensure that K is always positive during the assimilation process, the log-transformed K is considered in 

the state vector, but the HGS model uses the K itself. These relationships are outlined in separate subroutines that are provided 215 

https://zenodo.org/doi/10.5281/zenodo.7861812
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to the assimilation system by the user. Further details about these subroutines, known as parts of the model bindings, are given 

in Sect. 3. 

When integrating a numerical model with PDAF, there are two different coupling approaches: online and offline coupling. In 

online coupling, PDAF is integrated directly into a model's source code with the help of the PDAF model bindings. Conversely, 

in offline coupling, the PDAF model bindings are compiled independently from the model's source code. Consequently, the 220 

numerical model run and the assimilation step are executed as separate processes. The output files generated by the numerical 

model run serve as inputs to the assimilation step, which produces the updated state vectors (i.e. the analysis a) and generates 

new input files for the next time step to be run by the numerical model. 

As an open-source software, PDAF has been coupled with many numerical models. One successful example is its coupling 

with the climate model AWI-CM-1.1 (Sidorenko et al., 2015) by Nerger et al. (2020). Using this coupled system, Tang et al. 225 

(2020) investigated the role of assimilating oceanic observations on the influence of both the ocean and the atmosphere. This 

was further extended to carry out strongly coupled DA (Tang et al., 2021) which allows to directly update atmospheric variables 

through assimilation. PDAF has also been applied to explore DA for the terrestrial system (Kurtz et al., 2016), sea-ice 

forecasting (Mu et al., 2022; Mu et al., 2020) and climate modelling (Brune et al., 2015). 

3 HGS-PDAF description 230 

The implementation of HGS-PDAF uses the offline coupling approach. Accordingly, the HGS model has to be restarted after 

each assimilation step. As this is the case, an otherwise longer transient HGS model must be modified for DA, i.e., reduced to 

run only the short period between two times with available observations of defined length (e.g., 1 day) at a time, with the 

transient forcings split into equally sized intervals that are sequentially applied to this short period model. The length of this 

interval is determined by the desired assimilation frequency. The respective procedure is described in detail in Sect. 3.1. The 235 

complete data assimilation workflow as applied to HGS through PDAF is described in Sect. 3.2. In HGS-PDAF, HGS, PDAF 

and model bindings are compiled as separate libraries and stored in separate folders, with detailed descriptions of the respective 

libraries provided in Sect. 3.3. 

3.1 Adaptation of the HGS forward model runs for the assimilation run 

DA sequentially updates the model states (and if desired model parameters) during the transient model run, with the transient 240 

model being 'interrupted' for updating by DA at specified intervals. This means that for each new forecast step, the model must 

be restarted with the parameter fields and state variables that have been updated by the DA as the new initial conditions for 

the next time step. Modifications to the HGS model configuration are therefore required. The sequential model is thus split 

into a short period model with the transient boundary conditions applied sequentially to this short period model. The numerical 

model here always uses the same mesh and the same model structure, but the boundary conditions, parameter files and initial 245 

conditions are replaced after each of the intervals. 
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3.2 Workflow of HGS-PDAF 

 

Figure 2: Flowchart of the overall HGS-PDAF workflow. The green blocks are the parts associated with the HGS model, the yellow 

blocks are the model bindings that couple HGS to PDAF, and the blue block is the PDAF software itself. 250 

The overall workflow of HGS-PDAF is illustrated in Fig. 2. First of all, to run HGS-PDAF, a shell execution script called the 

'driver', which is currently implemented for Linux, needs to be prepared. This driver manages the loop in which the HGS and 

data assimilation executables are called sequentially throughout the entire run period. At each time step, the driver first calls 

the two HGS executables grok and phgs. After that, hgs-pdaf, which is the executable containing the model bindings that make 

the connection between HGS and the PDAF (see Sect. 3.3 for details), is called. hgs-pdaf checks if observations are available 255 

for the current time step t and, if there are, calls PDAF to perform DA according to the chosen DA algorithm. As hgs-pdaf 

reads model outputs directly from the hgs binary output files, there is no need to call hsplot. After computing the DA analysis 

update, hgs-pdaf writes the updated state vector (containing only states or both states and parameters) as new HGS input files 

for the next time step. In the following, a generic run is described in detail. 

Consider a DA run with HGS-PDAF for an ensemble of m state realisations and a transient model with a total runtime that 260 

splits into n timesteps of equal interval tint. Before starting the run, an initial ensemble of m different model realisations needs 

to be created. The initial ensemble should account for the uncertainty inherent to the natural hydrological system to be 

simulated. These realisations can be generated in a number of different ways and take into account several different sources of 

uncertainty, for example, uncertainty in initial conditions, model parameters, boundary conditions and external forcings. 

Subsequently, the run can be started. At the first time step t=t0: 265 

1. The ensemble of HGS models is initialized/pre-processed in parallel by grok. The model mesh, boundary conditions, 

parameters, and initial conditions are checked and read. 
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2. The ensemble of HGS models is run in parallel for tint by phgs. This is the most computationally demanding step, as 

it requires running all HGS model realisations forward in time. In the current version of hgs-pdaf, no model run failure 

management option is implemented, which requires that all model realisations need to successfully complete for 270 

continuation of the run. 

3. Now hgs-pdaf is executed. Fig. 3 shows the call sequence within hgs-pdaf. The steps are as follows: 

3.1 The parallelisation for PDAF is initialized. The MPI commands are defined for the filter, respectively. 

3.2 The data assimilation is initialized. The parameter values for PDAF in the configuration files in the Fortran 

‘namelist’ format are read. See Sect. 3.3.2 for a detailed description of these configuration files. Next, the 275 

dimension of the state vector is determined. The state variables and parameters from step (2) are read from 

the output files of HGS. Their values, called ‘forecast’, are entered into the state vector. This is done for each 

ensemble state. 

3.3 The ensemble mean and standard deviation of the ensemble of state vectors are written to a netCDF file 

Output.nc. In addition, if required, the results for each realisation are written to m netCDF files 280 

Output_ens_i.nc, where i represents the realisation. 

3.4 The observations are mapped into the state space by the observation operator. PDAF then performs the 

analysis step of the data assimilation by integrating the observations with the model forecast according to 

the chosen DA algorithm, e.g., using the EnKF. The ensemble of state vectors is then updated now holding 

the ‘analysis’. 285 

3.5 The ‘analysis’ state information is written into the file Output.nc analogous to Step 3.3. The ensemble of 

‘analysis’ state vectors is written into HGS format in parallel for each ensemble member. These files will be 

used as the initial condition for computing the next time step with HGS. 

3.6 PDAF is finalized which completes the execution of hgs-pdaf for this analysis time step. 

Steps (1) - (3) are repeated until t= tint·n. In the current implementation, DA results at every analysis time step are stored in 290 

netCDF format while the original output files of the HGS model at the final step are also retained. 
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Figure 3: Call sequence of different subroutines within hgs-pdaf. 

3.3 Model bindings: hgs-pdaf 

To couple HGS with PDAF, a number of routines - known as model bindings - provide PDAF with the information from HGS 295 

and subsequently pass information from PDAF back to HGS after DA. Since these model bindings are written in Fortran, the 

following text uses terminology as it is called in Fortran. The main program is responsible for calling various HGS and DA 

subroutines sequentially. The subroutines/modules developed are grouped and described in as follows. 

3.3.1 Initialization subroutines 

These subroutines are designed to initialize the parallelisation, parameterisation, and state vector for DA. The MPI execution 300 

environment is initialized in init_parallel_pdaf at the very beginning. Initialisation of PDAF is done by init_pdaf. This includes 

the following parts as shown in Fig. 4: 

(1) Parameters such as the filter type, localisation and inflation are predefined in init_pdaf. Parameters specified in 

namelist files are read by read_config_pdaf; 

(2) The information about the model mesh, such as the total number of nodes and elements in the model, is read in by 305 

the HGS_init function; 

(3) The setup and dimension of the state vector is defined in initialize. It is calculated by the details given in (1) and (2). 

For example, if the state vector, as per the definition in (1), contains the hydraulic heads (i.e., a hydrological system 

state, defined for each model node) and K (i.e., a hydraulic parameter, defined for each model element), then the 

number of nodes for the hydraulic heads is nnodes, and the number of elements for K is nelements, which is defined in (2). 310 

In this case the dimension of the state vector as calculated by initialize would be nstate = nnodes + nelements; 
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(4) Information about the configuration of the DA, as defined by the initialisation subroutines, can be printed out by 

init_pdaf_info; 

(5) The values for the nodes that have been set to define the state vector are also read at this point from the ensemble of 

HGS runs that were run forward in time, i.e., the ‘forecast’. This is done directly in init_pdaf. Variables included in 315 

the state vector can be hydraulic heads, soil water saturation, and solute concentrations (modelled system states) and 

K (model parameter). Notice that we may need transferring the original values of the model state or parameters, e.g. 

for K, the log-transformed K is considered in the state vector rather than the K itself used in the HGS model to ensure 

that K is always positive during the assimilation process; 

(6) Initialize the DA output netCDF files Output.nc by init_output_pdaf. 320 

 

Figure 4: Flowchart of the initialisation of data assimilation. 

3.3.2 Parameterisation modules 

The parameters for HGS and DA are predefined in the initialisation phase. However, for each DA application, users should 

define them according to their system knowledge and needs. These parameter values are defined in the two namelist files, 325 

namelist.pdaf and namelist.hgs, that are provided by the user. The available parameters that can be defined in the namelist files 

are described in the Appendix 2. These two namelist files are read by the subroutine read_config_pdaf in the initialisation 

phase. The parameters used in DA and HGS will then be replaced with the values specified in these namelist files instead of 

the default values defined in init_pdaf by read_config_pdaf. 
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3.3.3 Observation modules 330 

For each observation type, a different observation module obs_VAR_pdafomi exists. Here, VAR refers to the name of each type 

of observation, for now hydraulic heads (HEAD), soil moisture (SAT), solute concentrations (CONC), but more can be added 

swiftly. These different observation modules are independent of each other, allowing for several different types of observations 

to be modularly combined and either assimilated separately or in a chosen combination. Below, the functioning of the 

observation modules is described with the example of hydraulic heads. 335 

Like every observation module, the obs_HEAD_pdafomi module contains subroutines that initialize the information about the 

observations (init_dim_obs_HEAD) and to apply the observation operator (obs_op_HEAD). Hydraulic head observations are 

read from the observation input file by init_dim_obs_HEAD. The number of observations at the current time step is then 

counted, which define the dimension of the observation vector for the observation type, in this case hydraulic head. The 

observations are checked by excluding the unreasonable values (e.g. by defining a threshold value) and the indices of the 340 

observations deemed usable during the current time step are stored. The coordinates, the values, and the errors of the respective 

observations are also stored. 

Obs_op_HEAD is the implementation of the observation operator. Thus, it is responsible for the mapping between the state 

and the observation domains. Various observation operators from PDAF can be selected here by calling the corresponding 

subroutine PDAFomi_obs_op_X. It is also possible for the user to add his own observation operator here. Figure 5 gives an 345 

overview of how the observation module works. 

 

Figure 5: Illustration of the observation module. 
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The subroutine init_dim_obs_pdafomi is used to combine the different observations. This subroutine provides an interface 

between PDAF and the different observation modules. init_dim_obs_pdafomi calculates the full dimension of the observation 350 

vector by combining all the chosen observation types. 

3.3.4 Assimilation subroutine 

The subroutine assimilation_pdaf handles the DA analysis step. The DA algorithm is called according to the filter type defined 

in the namelist.pdaf file. The corresponding filter then updates the variables stored in the state vectors. 

3.3.5 Pre- and post-processing subroutines 355 

At each time step, the ensemble mean and standard deviations of the state vector at the prediction and analysis stages are 

computed by the prepoststep_ens_offline subroutine. By default, all these values are written to the output netCDF file 

Output.nc. This is done by the subroutine write_netcdf_pdaf in the output_netcdf module which contains various subroutines 

to write the results of the DA into files. In addition, if the user requires the output of all the individual ensemble members, the 

subroutine write_netcdf_pdaf_ens can write the results of each ensemble member to separate netCDF files Output_ens_i.nc. 360 

Note that these DA output files are different from the output files of the HGS model, which are stored separately in the original 

format. 

When data assimilation is complete for a time step, an important step is to write the updated states (and parameters) back to  

the original HGS model format, so that they can subsequently be used as new initial conditions and parameters for the next 

simulation time step. This is done by calling output subroutines to write files that are compatible with HGS at the end of the 365 

main HGS-PDAF program. The development of these output subroutines is beyond the scope of this paper. 

3.4 Scalability of HGS-PDAF 

 

Figure 6: Computing time of HGS-PDAF on JURECA-DC for different ensemble sizes between 2 and 100 normalised by the time 

for ensemble size 2. 370 
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The HGS-PDAF code is parallelized with MPI and uses only CPUs. For the scalability test, we used the illustrative example 

described in Sect. 4. Different ensemble sizes varying from 2 to 100 members/realisations were tested. Each model was run 

on one individual core, thus peaking at 100 cores for the case of 100 ensemble members. All the test runs were carried out on 

JURECA-DC CPUs from Jülich Supercomputing Centre in Germany. The clock speed per computing node is 2.25 GHz. The 

individual HGS simulation is not parallelized, i.e. each HGS model is run on 1 core. Figure 6 shows the scaling behaviour of 375 

HGS-PDAF on the JURECA-DC CPUs. The execution time is normalized with the time for an ensemble size of 2 members. 

When the ensemble is increased from 2 to 100, the execution time increases by about 50%. 

4 Illustrative examples of the capabilities of HGS-PDAF 

Here, the capabilities of HGS-PDAF are illustrated using a quasi-hypothetical numerical river-aquifer model designed after a 

real-world riverbank filtration site in the Swiss pre-Alps which has already served for several studies as a model system for 380 

tracer and DA methods development (see Popp et al., 2021; Schilling et al., 2022; Tang et al., 2018). The model was thus 

designed to be representative of an alluvial river-aquifer system where groundwater is pumped for drinking water supply from 

wells located in the direct vicinity of a river, inducing so called bank filtration. Such systems are highly suitable for drinking 

water production owing to the high K and natural filtration capacity of the alluvial sand and gravel materials which make up 

the riverbed and the aquifer. However, in such systems, the interactions between rivers and the underlying aquifers can be 385 

highly dynamic, changing from losing to gaining conditions, and back, within just a few tens of meters, and the heterogeneity 

of the alluvial sand and gravel material can be very complex, with irregular paleochannels potentially leading to strong 

preferential flow. Without suitable observations and integrated numerical flow and transport models, understanding and 

managing such systems becomes a major challenge. Therefore, DA and integrated surface-subsurface hydrological modelling 

tools, in particular our HGS-PDAF, are of high interest to continuously update and correct model predictions for optimal 390 

decision support. This quasi-hypothetical model was chosen to demonstrate the capability of HGS-PDAF to consistently 

reproduce both system states and parameters even in a highly dynamic and complex hydrological system. 

4.1 Basic model setup 

The real-world alluvial sand and gravel aquifer system, according to which the illustrative model was designed, is characterized 

by a distinct paleochannel of well-sorted gravel that exhibits substantially higher hydraulic conductivities compared to the 395 

surrounding, unsorted alluvial sand and gravel sediments (Schilling et al., 2022). The slightly abstracted, generalized synthetic 

version of the real-world site model has been introduced by Delottier et al. (2022a) for the development of environmental gas 

tracer transport simulations with an ISSHM and efficient data space inversion techniques for complex heterogeneous aquifer 

systems (Delottier et al., 2023). 

Geometrically, the model represents a 3-D rectangular domain with dimensions 500m x 300m x 30m (Fig. 7). A river of 20m 400 

width and 2m depth is explicitly represented in the model at X = 0 m. The horizontal resolution of the finite elements mesh 
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varies between 4m along the river and riverbanks, and 7m on the alluvial plain. Vertically, the model consists of 14 layers, 

with thicknesses ranging from 0.5 to 4m on the alluvial plain, and slightly smaller thicknesses underneath the river and 

riverbanks. In total, the model consists of 112,240 nodes and 204,000 elements. Two riverbank filtration pumping wells, spaced 

at 100m and located at a distance of approximately 90m parallel to the river, extract groundwater from a depth of 14m. The 405 

heterogeneity in K as typically found in such alluvial river-aquifer systems is implemented via a highly conductive 

paleochannel. 

 

Figure 7: 3-D view of the model domain and model boundary conditions. Contours represent the groundwater table depth below the 

surface. Locations of eight virtual observation wells are marked as stars. The location of the highly conductive paleochannel is 410 
indicated by a 500 m/d iso-surface for K. 

In the surface domain, constant boundaries are set for the upstream with an inflow rate of 1.71 m3/s. A critical depth boundary 

is set as a boundary condition for the outflow of the stream. In the subsurface domain, a head-dependent Cauchy-type boundary 

condition was applied to the groundwater flow. At the upstream, a constant hydraulic head of 99.5m was assumed, while at 

the downstream, a constant hydraulic head of 93.2m was considered. The conductance for these boundaries was set to 5.8 m²/s. 415 

The model was forced with transient boundary conditions to reproduce a controlled pumping experiment in which pumps are 

first running at a constant rate of 400 m3/h for 15 days and are subsequently turned off for 50 days, after which they are again 

turned back on to a constant rate of 400 m3/h for the remaining 30 days of the experiment (Fig. 8). A coupling length of 0.001 

m is used to account for the exchange fluxes between the surface and the subsurface domains. Figure 7 shows a 3-D view of 
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the model domain, boundary conditions and paleochannel location, while Fig. 8 shows a schematic of the transient pumping 420 

rates employed for the experiment. 

 

Figure 8: Transient pumping rates during the simulation period. 

In HGS, time steps are adaptive so that no specific restrictions were applied to maximum time step sizes, with the limitation 

that the maximum time step size could not be larger than the assimilation time step as defined for PDAF. The initial conditions 425 

were obtained for each model realisation individually via a 1-year spin up run with constant boundary conditions corresponding 

to the conditions at the beginning of the 95-days pumping experiment. 

4.2 Prior ensemble and synthetic observations 

In this study, the prior uncertainty of the system is characterized by the observed variance of the initially generated ensemble 

of hydraulic properties (i.e., the K). A comprehensive description of the generation of the ensemble is described in Delottier 430 

et al. (2023). Briefly, the prior ensemble was developed by using a stochastic alluvial feature generator ALLUVSIM (Pyrcz et 

al., 2009), geared towards the generation of an alluvial sand and gravel aquifer with distinct paleochannel features. To represent 

the well-sorted paleochannel and the unsorted surrounding sediments, two categorical parameter fields were created and each 

of these two categories was populated with a spatially uniform K (i.e., producing two types of sediments with homogeneous 

properties each). In this way, hydraulic conductivities were parameterized on a model element basis, producing a 435 

heterogeneous parameter field. During DA, the K value of each of these numerical model elements was adjusted. In addition 

to these heterogeneous K fields, an ensemble of 100 realisations with different homogeneous K values was also considered for 

the experiments for comparison purpose. These 100 homogeneous K values were defined as the arithmetic averages of the 100 

heterogeneous K fields. 
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To generate synthetic observations against which the performance of DA could be evaluated, one of the stochastic realisations 440 

of the ALLUVSIM simulations was defined as a reference heterogeneous K field or synthetic 'truth'. This reference 

heterogeneous K field is illustrated in Fig. 7. To generate observations for the assimilation experiment, 8 locations within the 

model domain were chosen and daily time series of hydraulic heads and soil water saturation at a depth of 1.5m were extracted 

from this reference simulation. These observation time series were subsequently stochastically perturbed by a normally 

distributed error with a standard deviation of 5cm for hydraulic heads and 1% for soil water saturation. The values of the 445 

observation errors are determined by our prior knowledge and tuning experiments. Different percentages such as 5% and 10% 

were tested and subsequently defined to provide a most illustrative use case. 

4.3 Data assimilation scenarios 

Table 1: Overview of illustrative DA scenarios. The open loop scenarios, that is, the scenarios without updating, are labelled 'ol'. For 

all scenarios with updating, the following naming convention applies: The first part of the name identifies the variables that were 450 
included in the state vector (i.e., the variables that were updated), while the second part identifies the observations that were 

assimilated. h, k and s stand for hydraulic head, K, and soil water saturation respectively. Individual damping factors and the 

conceptualisation of the prior K values are also indicated for each scenario. 

Simulation scenario Damping factor Prior K values 

ol - 

homogeneous 

h_h 1 

hk_h 1 

hs_h 1 

hs_s 1 

hs_hs 1 

hsk_h 1 

hsk_s 1 

hsk_hs 1 

ol - 

heterogeneous 

h_h 1 

hk_h 0.1 

hs_h 1 

hs_s 1 

hs_hs 1 

hsk_h 0.02 

hsk_s 0.02 

hsk_hs 0.02 
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To demonstrate the modularity and capability of HGS-PDAF, 20 different DA scenarios that cover combinations between: 455 

• single- and multivariate assimilation of hydraulic heads and/or soil moisture observations, 

• updating of either one or a combination of states (i.e., hydraulic heads and/or soil water saturation),  

• joint update of a one or a combination of states alongside the parameter K, and 

• one of two scenarios of prior uncertainty in K (i.e., heterogeneous or homogeneous properties), 

were run. As a DA algorithm, the EnKF was chosen. The assimilation interval is one day. When hydraulic heads and soil water 460 

saturation are updated together, the initial condition for the next prediction cycle is only hydraulic head. In addition, runs 

without DA (so called 'open loop' runs) were carried out for both the heterogeneous as well as the fully homogeneous K 

scenarios. 

Owing to the relatively small size of the simulated system, no localisation was applied. For the heterogeneous K scenarios, 

when K was updated with DA, a damping factor of less than 1 was applied. For the homogeneous K scenarios, as the assumption 465 

of homogeneity already acted as a regularisation for the parameterisation of K, the enforced homogeneity in K during the 

update always produced in a large enough ensemble spread, i.e. the damping factor is equal to 1. Table 1 gives the values of 

the damping factor used for all DA scenarios. 

For all the scenarios, hgs-pdaf was run on a highly parallelized Linux cluster so that all individual ensembles in the priors were 

executed in parallel. It took approximately 11 hours for hgs-pdaf to complete one single scenario. 470 

4.4 Results and discussion of the illustrative DA experiment 

The performance of DA with HGS-PDAF is evaluated by comparing the simulated hydraulic heads and soil water saturation 

to the synthetically observed hydraulic heads and soil water saturation, respectively. The average relative difference (over the 

8 observation wells) between the simulated (represented by the ensemble mean) and synthetically observed states are illustrated 

in Fig. 9. Results are presented for all the scenarios and for the two different prior ensembles (i.e., homogeneous and 475 

heterogeneous K fields). 

It is remarkably clear from Fig. 9 how DA applied to an ISSHM of a riverbank filtration site (by using HGS-PDAF) is able to 

reduce the misfit for almost all scenarios and for the two prior ensembles. Overall, the model performance (with respect to 

both employed observation types) is significantly better when starting from and allowing heterogeneous K-fields to arise, 

compared to when employing the assumption of homogeneity. 480 

For hydraulic heads, the best performance in reducing the model misfit was obtained when assimilating hydraulic heads and 

updating both hydraulic heads and K (DA_hk_h). Little to no improvements were gained by assimilating also soil water 

saturation alongside hydraulic heads. In the heterogeneous case, scenario DA_hk_h performed so well that the averaged 

ensemble mean model error was reduced to reflect the measurement error (5cm). On the other hand, scenario DA_hsk_hs, in 

which hydraulic heads, soil water saturation and K were all updated together based on observations of hydraulic heads and soil 485 

water saturation, performed the worst. Even when a low damping factor was used, K values did not improve and turned out 
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highly unrealistic (results not shown). On the other hand, spurious updates of K were not observed in the DA_hsk_hs scenario 

when run with the homogeneity assumption, as the homogeneity assumption helps to regularize the problem and ensures 

consistent estimates of homogeneous K fields. The poor performance for updating K in the heterogeneous scenario can likely 

be attributed to the fact that updating categorical prior parameter fields violates the multiGaussian assumption inherent to the 490 

ensemble Kalman filter (Evensen et al. (2022)). In such cases, other methods such as Data Space Inversion (DSI) or multiple 

point geostatistics (MPS) should produce better results (Delottier et al., 2023; Remy et al., 2009). 

 

Figure 9: Ensemble mean of the relative differences (averaged for all observation wells) between simulated and observed states 

(hydraulic heads and soil water saturation) for (left) the homogeneous scenarios and (right) the heterogeneous scenarios. For the 495 
soil water saturation, only scenarios where soil water saturation was updated are shown. 

For soil water saturation, the overall model performance was less improved by DA compared to the improvement for the 

reproduction of hydraulic heads. The largest improvement was achieved when hydraulic heads, saturation and K were updated 

jointly using both observations of hydraulic heads and soil water saturation (scenario DA_hsk_hs). On the other hand, very 

little improvement on model performance could be achieved when only observations of soil water saturation were assimilated, 500 

irrespective of the combination of states (and parameters) chosen to be updated. This poor performance of using soil water 

saturation observations for DA of an ISSHM is likely explained by the fact that soil water saturation observations stem from 

locations relatively far away from the stream and which therefore did not show a strong variation throughout the pumping 

experiment. In this specific configuration, the information contained in observations of saturation was thus limited and could 

not match up against the information contained in hydraulic heads, which varied strongly throughout the pumping experiment. 505 

Concerning reproducing the true K field, as long as the K fields were updated from heterogeneous priors and heterogeneous 

structures were allowed to arise during updating, a reasonably good overall agreement could already be achieved by only using 
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hydraulic heads (Fig. 9 and Fig. 10). This is certainly partly owed to the fact that the initially chosen heterogeneous prior was 

a priori a good approximation of the synthetic truth, as can be directly seen in the two examples illustrated in Fig. 10 as well 

as in the relatively good performance of the heterogeneous open loop run. As such, this illustrative case highlights the 510 

importance of choosing as good a prior as possible in such heterogeneous K systems, particularly because paleochannel facies 

are, as outlined previously, difficult to identify from hydraulic head observations alone. Nevertheless, even though the 

performance of DA was generally good even for K, the non-multiGaussian connectivity of the structures could not be preserved 

perfectly during DA with HGS-PDAF, as can be seen in Fig. 10. As outlined previously, however, this is an expected outcome 

of DA with a multiGaussian method such as EnKF. 515 

 

Figure 10: Posterior estimates of K fields with heterogeneous priors for three different scenarios and two individual realisations. The 

bottom row indicates the probability of occurrence of a paleochannel, calculated by considering a given threshold (i.e., 600 m/d) 

above which a buried paleochannel facies is potentially identified. 
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5 Conclusions 520 

We have here introduced a new data assimilation framework for fully integrated surface-subsurface hydrological models by 

providing a coupling between the ISSHM HGS and the DA software PDAF. This highly modular DA framework allows for 

the single and multivariate assimilation of several types of observational data, including hydraulic heads, soil water saturations 

and solute concentrations, and individual or joint update of several model states and parameters, including hydraulic heads, 

soil water saturation, solute concentrations, and hydraulic conductivities. The scalability of HGS-PDAF was evaluated on the 525 

Jülich Supercomputing Centre in Germany and the usability and modularity of HGS-PDAF was illustrated with a synthetic 

river-aquifer and bank filtration model and the standard ensemble Kalman filter method (one of several DA algorithms 

provided by PDAF). 

Compared to existing hydrological data assimilation systems, the advantage of the newly developed HGS-PDAF lies in its 

consideration of ISSHM, its large selection of different assimilation algorithms as provided by PDAF, its modularity with 530 

respect to combining observations, states, and parameters to be considered for DA, and the flexibility and ease at which new 

observations, states and parameters may be added to the already implemented ones. While in the current version of HGS-

PDAF only global filters are implemented, the implementation of localized filters is planned for the next iteration. 

Appendix 1: Data assimilation approaches in PDAF and their known application fields 

Data assimilation approaches Fields of application 

Examples in hydrogeology (if 

not applicable, we give 

references in other fields and 

marked with *) 

Ensemble 

based 
Global 

EnKF 

Meteorology, oceanography, 

hydrology, hydrogeology, land 

surface 

Tang et al. (2017); Tang et al. 

(2018) 

ETKF 

Meteorology, oceanography, 

hydrology, hydrogeology, land 

surface 

Rasmussen et al. (2016); Zhang 

et al. (2016) 

SEIK 
Meteorology, oceanography, 

hydrology, hydrogeology 
Schumacher (2016) 

ESTKF 
Meteorology, oceanography, 

hydrology, hydrogeology 
Li et al. (2023b) 

NETF Meteorology, oceanography 
Nerger (2022); Tödter et al. 

(2016)* 
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PF 

Meteorology, oceanography, 

hydrology, hydrogeology, land 

surface 

Abbaszadeh et al. (2018); Berg 

et al. (2019) 

SEEK Meteorology, oceanography 

Brasseur and Verron (2006); 

Butenschön and Zavatarelli 

(2012)* 

Local 

LEnKF 

Meteorology, oceanography, 

hydrology, hydrogeology, land 

surface 

Hung et al. (2022); Li et al. 

(2023a) 

LETKF 

Meteorology, oceanography, 

hydrology, hydrogeology, land 

surface 

Sawada (2020) 

LSEIK Meteorology, oceanography 
Liang et al. (2017); Liu and Fu 

(2018)* 

LESTKF Meteorology, oceanography Zheng et al. (2020)* 

LNETF Meteorology, oceanography Feng et al. (2020)* 

LKNETF Meteorology, oceanography Shao and Nerger (2024)* 

Variational  3DVAR 
Meteorology, oceanography, 

hydrology 

Cummings and Smedstad 

(2013); Li et al. (2008)* 

 535 

Appendix 2: namelist files 

The parameters that need to be defined in the namelist.hgs file are listed in Table A1. These parameters are used for the HGS 

model. 

Table A1: Parameters defined in namelist.hgs. 

Parameter name Description 

prefix String, file name of the HGS model 

insuffix String, the suffix of the files storing the initial conditions 

outsuffix  String, the suffix of the output files 

isolf ‘True’ if overland flow is also simulated, and ‘false’ if only groundwater flow. 

isconc ‘True’ if mass transport is simulated, and ‘false’ if not. 

hgs_version ‘1’ for HGS versions before 2013, and ‘2’ for HGS 2013 and newer versions 
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The parameters that can be defined in the namelist.pdaf file are listed in Table A2. These parameters are used for data 540 

assimilation. If the values of these parameters are not specified in namelist.pdaf, default values are used. A detailed description 

of these parameters can be found from the PDAF website (http://pdaf.awi.de). 

Table A2: Parameters defined in namelist.pdaf. 

Parameter name Description 

n_modeltasks Number of parallel model tasks, default is 1 

dim_ens Ensemble size 

dim_lag  Number of time instances for smoother 

type_forget 
Type of forgetting factor. ‘0’ for fixed, ‘1’ global adaptive, and ‘2’ for local adaptive 

for LSEIK/LETKF/LESTKF 

forget Values of Forgetting factor 

type_trans 
Type of ensemble transformation. Values differ for local filters. Detail information on 

these values can be found in the code. 

type_sqrt 
Type of transform matrix square-root. ‘0’ for symmetric square root, ‘1’ for Cholesky 

decomposition 

incremental ‘1’ if incremental updating is performed. Only used in SEIK/LSEIK. 

step_null Initial time step of assimilation 

write_da Whether to write the output file for DA* 

write_ens Whether to write the output files for each realisation* 

str_daspec String to identify assimilation experiment 

printconfig Whether to print information on all configuration parameters* 

istep Real time step for HGS and PDAF 

screen Write screen output. ‘1’ for output, and ‘2’ for adding timing information 

assim_o_head Whether to assimilation the hydraulic head observations* 

path_obs_head Path to the file storing the head observations 

file_head_prefix Prefix of the file name for the head observations 

file_head_suffix Suffix of the file name for the head observations 

state_type Define variables included in the state vector 

rms_obs_head Observation error value used for the head 

head_fixed_rmse 
Whether to use a fixed value or the error values provided from the head observation 

file* 

ResultPath Path to the DA output file(s) 

assim_o_sat Whether to assimilation the soil water saturation observations* 

http://pdaf.awi.de/
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path_obs_sat Path to the file storing the soil water saturation observations 

file_sat_prefix Prefix of the file name for the soil water saturation observations 

file_sat_suffix Suffix of the file name for the soil water saturation observations 

rms_obs_sat Standard deviation value used for the soil water saturation observations 

sat_fixed_rmse 
Whether to use a fixed value or the error values provided from the soil water saturation 

observation file* 

damp_k Damping factor for hydraulic conductivity 

Sr Maximum saturation degree 

* ‘True’ if yes, and ‘false’ if no.  

Code and data availability 545 

The current version of HGS-PDAF is available from GitHub https://github.com/qiqi1023t/HGS-PDAF_v1.0_GMD under the 

GNU General Public License v3.0. The exact version of the model used to produce the results used in this paper is archived 

on Zenodo (https://zenodo.org/doi/10.5281/zenodo.10000886) (Tang et al., 2023), as are input data and scripts to run the model 

and produce the plots for all the simulations presented in this paper. 
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