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Abstract. High-resolution climate projections are essential for estimating future climate change impacts. Statistical and dy-

namical downscaling methods, or a hybrid of both, are commonly employed to generate input datasets for impact modelling.

In this study, we employ COSMO-CLM (CCLM) version 6.0, a regional climate model, to explore the benefits of dynamically

downscaling a general circulation model (GCM) from CMIP6, focusing on climate change projections for Central Asia (CA).

The CCLM, at 0.22° horizontal resolution, is driven by the MPI-ESM1-2-HR GCM (at 1° spatial resolution) for the historical5

period of 1985-2014 and the projection period of 2019-2100, under three shared socioeconomic pathways (SSPs): SSP1-2.6,

SSP3-7.0, and SSP5-8.5 scenarios. Using the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) grid-

ded observation dataset as a reference, we evaluate the performance of CCLM driven by ERA-Interim reanalysis over the

historical period. The added value of CCLM, compared to its driving GCM, is significant (more than 5 mm/day) over moun-

tainous areas in CA, which are at higher risk of extreme precipitation events. Additionally, we employ CCLM to refine future10

climate projections. We present high-resolution maps of heavy precipitation changes based on CCLM and compare them with

the CMIP6 GCM ensemble. Our analysis indicates a significant increase in the intensity and frequency of heavy precipitation

events over CA areas already at risk of extreme climatic events by the end of the century. Finally, we train a convolutional

neural network (CNN) to map a GCM simulation to its dynamically downscaled CCLM counterpart. The CNN successfully

emulates the GCM-CCLM model chain over large CA areas, demonstrating added value when applied to a new GCM-CCLM15
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model chain. The scientific community interested in downscaling CMIP6 models could use our downscaling data, and the CNN

architecture offers an alternative to traditional dynamical and statistical methods.

1 Introduction

The increasing global mean temperature due to anthropogenic greenhouse gas emissions presents a significant challenge for

society, requiring the assessment and prediction of future impacts on human health, natural ecosystems, and economies across20

different regions of the world (Allan et al., 2021). Researchers conducting regional studies on vulnerability, impacts, and

adaptation typically achieve reliable high-resolution climate projections through dynamical downscaling via RCMs (Rum-

mukainen, 2010; Feser et al., 2011), statistical techniques (Maraun and Widmann, 2018; Fowler et al., 2007), or a hybrid of

both approaches (Maraun et al., 2015; Meredith et al., 2018; Laflamme et al., 2016).

CA, recognised as one of the most vulnerable regions to climate change impacts, heavily depends on water resources from25

glaciers and rivers that are shrinking due to rising temperatures and decreasing precipitation (Reyer et al., 2017; Fallah et al.,

2023; Didovets et al., 2024; Fallah and Rostami, 2024). The area faces significant challenges to food security, characterised by

declining crop yields and an increased occurrence of severe and frequent extreme weather events like floods and landslides.

These conditions damage infrastructure, livelihoods, and agriculture, resulting in population displacement and migration (Allan

et al., 2021; Reyer et al., 2017).30

Significant uncertainties inherent in the existing detailed observational and reanalysis datasets impede the development of

high-resolution climate projections in CA (Fallah et al., 2016a). One option to complement these datasets is to use dynamical

downscaling with RCMs. CMIP6 provides a framework for coordinated climate model experiments, enhancing our under-

standing of past, present, and future climate changes. Dynamical downscaling of CMIP6 models for the CA region is vital for

accurately simulating extreme convective precipitation events, which are influenced by the orography of the region (Lundquist35

et al., 2019; Ban et al., 2015; Wang et al., 2013; Frei et al., 2003; Russo et al., 2019), large-scale atmospheric circulation,

and sea surface temperature anomalies in the Indian Ocean and the Pacific (Kendon et al., 2014; Demory et al., 2020; Xu

et al., 2022). This method enhances the resolution of a driving GCM and produces a physically consistent regional state of the

climate. Despite some systematic biases, dynamical downscaling consistently provides high-quality datasets that accurately

describe the climatology of all climate variables in CA (Qiu et al., 2022).40

Various international institutions have collaborated within the Coordinated Regional Climate Downscaling Experiment

(CORDEX) to address these issues and improve the inter-comparability of RCMs. CORDEX aims to create a robust framework

for producing climate projections at a regional scale that is suitable for impact evaluation and adaptation planning globally. This

effort aligns with the timeline of the Intergovernmental Panel on Climate Change’s Sixth Assessment Report (Kikstra et al.,

2022). However, most CORDEX research focuses on highly industrialised countries (Allan et al., 2021; Taylor et al., 2012).45

Developing regions, including CA, bear the brunt of global warming’s consequences, yet they have access to only a limited

number of CORDEX model simulations (Naddaf, 2022). As of the latest update, no simulation driven by CMIP6 has been
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planned for CORDEX-CA (see https://wcrp-cordex.github.io/simulation-status/CMIP6_downscaling_plans.html, last visited

on 17.04.2024).

Beyond dynamical methods, recent developments in machine learning, including CNNs, offer promising avenues for statis-50

tical downscaling (Harder et al., 2023; Rampal et al., 2024). CNNs have proven effective in numerous earth science disciplines

besides downscaling, such as classification (Gardoll and Boucher, 2022), segmentation (Galea et al., 2024), and prediction

(Watson-Parris et al., 2022) thanks to their capacity to extract features from spatial data and identify nonlinear relationships

between inputs and outputs. CNNs can recognise and encode spatial hierarchies in data (Zhu et al., 2017), making them excep-

tionally suitable for analysing geospatial data, a critical component in climate modelling. Unlike traditional statistical methods55

that often require manual selection and careful engineering of features, CNNs automatically learn the most predictive features

directly from the data (Reichstein et al., 2019). They are generally more straightforward and efficient than traditional statistical

downscaling methods for tasks aiming to predict or classify patterns distributed across spatial domains, such as temperature or

precipitation patterns in climate models (Racah et al., 2017). CNNs are adept at maintaining spatial coherence in the output,

which is critical in downscaling where preserving the geographical patterns of climate variables (like precipitation) is crucial60

(Kurth et al., 2018).

Researchers classify CNNs into two categories based on their last layer: 1) constrained and 2) unconstrained. Constrained

CNNs integrate physical laws directly into the training process, such as mass, energy, or momentum conservation. This integra-

tion is achieved by modifying the loss function or the network’s architecture to ensure compliance with these laws. In contrast,

unconstrained CNNs do not explicitly incorporate physical laws or constraints. Instead, they rely solely on learning from the65

input data, generating output predictions based on the patterns detected in the data.

This study explores unconstrained and constrained CNN approaches to understand their effectiveness in downscaling and

their performance when applied to GCMs not initially used for training.

The research questions guiding this study are:

– Research Question 1: How effectively can CMIP6 models be downscaled to enhance precipitation simulations for the70

CORDEX Central Asia region?

– Research Question 2: Can CNNs effectively downscale GCM outputs, and how do they perform when applied to GCMs

that did not initially train them?

This article focuses on two main topics: 1) the added value of CCLM for representing precipitation over Central Asia, and

2) training a CCLM emulator using a CNN. We present data and methods in Section 2. Sections 3 and 4 introduce the results75

of dynamical and hybrid downscaling, respectively. Finally, we discuss the results and conclude in Section 5.

2 Data and Methods

The methodology employed in this study is illustrated in Figure 1. The following sections provide a detailed explanation of

this methodology.
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2.1 Employed Models and Experimental Setups80

2.1.1 Regional Climate Model (RCM)

In this study, we conduct simulations using the CCLM regional climate model. Developed by the German Weather Service

(DWD) and the German Climate Computing Center (Deutsches Klimarechenzentrum, DKRZ), CCLM originates from the

COSMO numerical weather prediction model (Rockel and Geyer, 2008), which is widely utilised for short-term weather

forecasting. Explicitly designed for regional climate simulation, CCLM enables researchers to investigate various aspects85

of the climate system, including temperature, precipitation, and extreme events. It has been extensively used to assess the

impact of climate change across different regions such as Europe (Russo et al., 2021), Africa (Panitz et al., 2014; Dosio and

Panitz, 2016), and Asia (Jacob et al., 2014; Kotlarski et al., 2014; Wang et al., 2013). Additionally, CCLM has been employed

in climate projection studies to evaluate climate adaptation and mitigation strategies. The model has undergone thorough

evaluation and validation (Fallah et al., 2016b; Russo et al., 2019; Kjellström et al., 2011), and its ability to generate realistic90

simulations of present climate conditions and variability has established it as one of the most widely used regional climate

models in the scientific community (Sørland et al., 2021).

For our experiments, we utilised a model setup similar to the "optimal" configuration described by Russo et al. (2019).

In their study, Russo et al. (2019) optimised the CCLM regional climate model for CA by adjusting albedo based on forest

fraction ratios and soil conductivity to account for the soil’s liquid water and ice proportions. These modifications significantly95

improved the model’s climatological performance and the distribution of incoming radiation, leading to more accurate climate

representations for the region. According to the CORDEX protocol, simulations are divided into two primary phases. The

first phase, the evaluation run, involves a single model experiment over the period 1979-2014, using ERAInterim reanalysis

data at a spatial resolution of T255 (∼ 0.7°). The second phase, the projection run, utilises boundary conditions from GCMs

of the CMIP6 project for the period 1950-2100 under various SSPs. For this study, we selected the MPI-ESM1-2-HR GCM100

and considered SSP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios. SSPs represent baseline scenarios that describe future pathways

based on population growth, technological advancement, economic development, urbanisation, and investments in healthcare,

education, land use, and energy (Riahi et al., 2017).

Historical data for this study are based on greenhouse gas levels, land use, and other climate forcings observed from 1850 to

2014. The Shared Socioeconomic Pathway (SSP) scenarios used in the projections are as follows:105

– SSP1-2.6 represents a "green" future, characterised by global efforts to protect resources, improve human well-being, and

narrow income gaps. This scenario assumes low challenges to adaptation and low greenhouse gas emissions. Adaptation

challenges in this context refer to the difficulties societies might face in adjusting to the impacts of climate change,

including their susceptibility and the availability and effectiveness of mitigation technologies and strategies. Under SSP1-

2.6, global cooperation and sustainable practices lead to advancements in technology and governance, significantly110

reducing vulnerability to climate change impacts. Societal structures are resilient, and resources are managed to minimise

environmental stresses while maximising human well-being.
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– SSP3-7.0 depicts a future characterised by regional rivalry, where nationalism and regional conflicts dominate, global

issues are neglected, and inequality increases. This scenario involves high challenges to adaptation and high greenhouse

gas emissions.115

– SSP5-8.5 represents a future of fossil-fueled development with globally connected markets, rapid technological progress,

and weak environmental policies. This scenario has low challenges to adaptation but results in very high greenhouse gas

emissions.

For comparison and evaluation of our RCM simulations, we have selected two CORDEX-CA evaluation simulations from

other models driven by ERAInterim at a 0.22° horizontal resolution: 1) ERAInterim-RMIB-UGent-ALARO-0 (Giot et al.,120

2016) and 2) ERAInterim-GERICS-REMO2015 (Jacob and Podzun, 1997; Fotso-Nguemo et al., 2017).

2.1.2 CNNs

In this study, we develop a CNN-based emulator for the CCLM driven by the MPI-ESM1-2-HR GCM. This CNN utilises

outputs from the GCM, covering both the historical period from 1985 to 2014 and future scenarios spanning 2019 to 2100,

as inputs to model the responses of the CCLM, which serves as the target. Given the low annual precipitation and significant125

spatio-temporal variability in many regions of CA, a comprehensive dataset that includes various precipitation patterns from

both GCMs and RCMs is essential for effectively training the CNN to map from GCM to RCM outputs. To enhance model

training, we have augmented our dataset with ERA-Interim reanalysis data and corresponding CCLM simulations driven by it

(ERAInterim-CCLM) (see Fig. 1).

We train our CNN model based on the architecture proposed by Harder et al. (2023), which incorporates physical constraints130

to ensure mass conservation and energy balance. The model architecture features:

– Conv (Convolutional Layer): These layers help extract various levels of features from low-resolution images, such as

edges, textures, and other relevant image details.

– ReLU (Rectified Linear Activation Unit): This nonlinear activation function introduces non-linearity and returns the

input unchanged if it is positive; otherwise, it returns zero. This function enables the network to learn complex patterns135

efficiently.

– TransConv (Transposed Convolutional Layer): This layer is crucial for downscaling. It increases the spatial dimensions

of the feature maps, performing a sort of learned interpolation. This allows the model to add details to the downscaled

images based on the features extracted and processed in the earlier layers.

– ResBlock (Residual Block): These blocks allow the model to refine the initial lower-resolution predictions, which are140

downscaled (interpolated outputs) to a higher resolution. They enhance the model’s ability to add fine details and textures

(high-frequency information), improving the perceptual quality and sharpness of the images at the increased resolution."
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In the context of deep learning for climate modelling, the "perfect model" approach involves starting with high-resolution

data and intentionally upscaling it to a lower resolution. The machine learning model is subsequently trained to reproduce the

high-resolution data while receiving this artificial low-resolution input. The aim is to simulate a scenario where the "truth"145

(the original high-resolution data) is known and then to recover this high-resolution from the artificially upscaled data. This

approach teaches the model the desired mapping from low to high resolution, enabling the model to effectively learn how to

downscale or enhance resolution while minimising the loss of critical information. It is a controlled experiment that helps refine

the model’s capabilities.

The "imperfect model" approach, on the other hand, acknowledges that both the low-resolution (GCM output) and the high-150

resolution (RCM output) datasets have their inherent errors and limitations. In this scenario, we do not have a single source of

truth but rather two separate sets of data:

– Low-resolution data: may capture global or large-scale phenomena but miss regional details (Xu et al., 2021; Chokkavarapu

and Mandla, 2019).

– High-resolution data: provides detailed regional information but may still have errors or not perfectly reflect reality due155

to limitations in data collection, model configuration, or computational constraints (Muttaqien et al., 2021).

In this setup, CNN’s challenge is learning to map between two independently imperfect datasets. The CNN is trained to

predict high-resolution details from low-resolution inputs as accurately as possible despite the absence of perfect ground truth.

This process involves understanding and modelling the uncertainties and biases inherent in both datasets.

Prior to training, the dataset was randomly shuffled at the pair level to ensure that each GCM input and its correspond-160

ing RCM output remained together, preserving the intrinsic relationships between the coarse and fine-resolution data. This

approach prevents temporal or spatial autocorrelation from biasing the training process. It also improves the model’s generali-

sation and performance by exposing it to various conditions. For the dataset distribution, 68,141 days (60%) of RCM simulation

data were used for training, 22,714 days (20%) for validation, and 22,714 days (20%) for testing. The low-resolution (GCM)

dataset consists of 30 × 60 grid points, and the high-resolution (RCM) dataset comprises 120 × 240 grid points over latitudes165

and longitudes, respectively, resulting in a downscaling factor (N) of 4.

2.1.3 Constraint layers

We test the CNN with three different constraining methods in the last CNN layer (Harder et al., 2023): 1) soft constraining

(SCL), 2) hard constraining (HCL) and 3) without constraining (NoCL). In the following, we explain briefly the three different

constraining methodologies. The setup of constraining is as follows: consider a factor N for downscaling in all linear directions170

and let n :=N2 and yi, i= 1, ...,n be the high-resolution patch values that correspond to low-resolution pixel x. The mass

conservation law has the following form:

1

n

n∑
i=1

yi = x. (1)
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Hard constraining: uses the SoftMax, which constrains quantities like water content by enforcing the output to be non-

negative. The simplest way to ensure mass conservation would be to scale all small-scale values within a given large-scale grid175

cell with the ratio of the large-scale value and the sum of the small-scale values. However, Harder et al. (2022) demonstrated

that employing the SoftMax constraints layer gives better results. The exponential ensures positive predictions and leads to

more variance between subpixels in the super-resolved prediction. The multiplicative rescaling struggles when the sum of the

small-scale values gets close to zero. Therefore, the SoftMax operator is used on the intermediate outputs of the CNN before

the constraining layer (ỹi) and multiplies it by the corresponding input pixel value x:180

yi = exp(ỹj) ·
x

1
n

∑n
i=1 exp(ỹi)

. (2)

yi is the final output after applying the constraints. We have used the mean absolute error (MAE) as the loss function (Eq.

5).

Soft constraining: This is done by adding a regularisation term to the loss function. The MAE loss is then extended with an

additional constraint violation (CV) loss term:185

Loss = (1−α) ·MAE+α ·CV, (3)

Where CV is the mean-squared error over all constraint violations between an input pixel x and the super-pixel (high-

resolution grid-cell) yi:

CV = MSE(
1

n

n∑
i=1

yi,x) (4)

We use α= 0.99.190

Without constraining: In this setup, we remove the constraining layer after the last convolutional layer in the CNN.

We use 160 epochs, using a batch size of 64 and a learning rate of 0.001 for training with HCL and NoCL and 0.00001 for

SCL. Training takes 15 hours on an NVIDIA Corporation Graphics Ampere 104 [GeForce Ray Tracing Texel eXtreme (RTX)

3060 Ti-Lite Hash Rate] graphics processing unit (GPU). We use the same model setup as in Harder et al. (2023).

It is important to note that the MAE can serve both as a loss function and an evaluation metric. As a loss function, it is used195

during training to optimise the neural network’s parameters. Conversely, when used as an evaluation metric, it is calculated

on the validation or test data sets to assess the model’s performance using an independent dataset. Despite their different

applications, MAE is suitable for both roles.
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2.2 Evaluation and testing

According to Ciarlo et al. (2021), the choice of observational data can significantly influence the perceived added value of an200

RCM, particularly in detecting extreme events, where poor-quality data might misleadingly suggest improved model perfor-

mance. They recommend using observations with spatiotemporal resolutions comparable to the model’s for enhanced accuracy.

In line with this, we use CHIRPS as our gridded observation to assess the added value of the CCLM driven by the GCM.

CHIRPS provides a resolution of 0.05°, covers latitudes from 50°S to 50°N, and offers independent observations derived

from satellite information and station data. This contrasts with reanalysis data, which depend on climate model simulations205

(Funk et al., 2015). We allocate 20% of the CCLM simulation data as the target to evaluate our CNN emulator instead of

using CHIRPS directly. We measure the added value of the CNN by comparing the MAE of both the CNN outputs and the

interpolated GCM outputs against the target CCLM output. This comparison assesses whether the CNN outperforms simple

interpolation. The selected GCM and observational data are interpolated onto the RCM grid using the distance-weighted aver-

age method. Ciarlo et al. (2021) previously noted that such interpolation might create unrealistic values, as it does not account210

for the physical processes and could introduce artefacts depending on the interpolation method, the spatial distribution of data

points, and the resolution ratio. Therefore, we use simple interpolation as a baseline, recognising its limitations in preserving

the statistical properties of precipitation, which does not follow a normal distribution. Following (Hodson, 2022), we apply the

MAE to quantify the biases in emulated and dynamically downscaled precipitation (F ) against observations (O):

MAE =
1

T

T∑
t=1

|Ft −Ot| (5)215

Where T represents the number of time steps over 30 years of daily data. We define added value (AV) as the reduction in

MAE achieved by the downscaling relative to the driving GCM:

AV = MAEGCM −MAECCLM (6)

Where MAEGCM and MAECCLM are the differences between interpolated GCM and RCM with respect to the reference

dataset.220

As an additional metric, we also use the climatological bias, i.e., the difference between the model and observations:

BIAS = PRMODEL −PROBS (7)
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3 Results

Figure 3.a illustrates the topography of the CORDEX-CA simulation domain. Figure 1.b displays the mean daily precipitation,

averaged over the years 1985-2014 (mm/day), derived from CHIRPS data. The regions with the highest precipitation are the225

mountainous areas of CA, particularly notable in the Asian summer monsoon region north of India and along the Himalayas in

the southeastern part of the domain, where precipitation values are pronounced. Figure 3.c depicts the distribution of WorldClim

weather stations (Fick and Hijmans, 2017) across CA, serving as a proxy for the density of station data used in the CHIRPS

dataset. Observational data are sparsely distributed in East China, especially over the Tibetan Plateau. Consequently, data-

model comparisons are considered unreliable in this region (Randall et al., 2007; Cui et al., 2021; Yan et al., 2020; Russo et al.,230

2019).

3.1 Added value of CCLM driven by ERAInterim

To characterise the overall performance of the CCLM model across time and space, Figures 4 and 5 present maps displaying

annual, winter (DJF), and summer (JJA) MAE and mean biases. These biases in precipitation are calculated between the

interpolated ERAInterim data and CCLM outputs driven by ERAInterim for the period 1985-2014, in comparison to CHIRPS235

(see Eq. 5 and Eq. 6). Figures 4.a-c illustrate the MAE for ERAInterim for annual, winter, and summer averages. The added

value of the CCLM RCM compared to the interpolated ERAInterim is depicted in Figures 4.d-f. During the Asian summer

monsoon, CCLM’s MAE is high over the south and southeast of the domain (regions in magenta), whereas it is generally lower

during winter. CCLM shows an MAE reduction in the mountainous areas of Afghanistan, Kyrgyzstan, and Tajikistan, as well

as an increase near the domain’s southern boundaries throughout the year and in the south and southeast during summer.240

The AVs of GERICS-REMO2015 and RMIB-UGent-ALARO-0 driven by ERAInterim are presented in Figures 4.g-l, us-

ing CHIRPS as the observational dataset. The added value of RCM is most pronounced in areas with complex topography,

especially during summer, across all three RCMs (Figs.4.d-l). Areas where the RCM has a smaller MAE than the reanalysis in

comparison to observations are found over Tajikistan, Kyrgyzstan, northern Afghanistan, and part of the Himalayas—regions

that are crucial water sources for former Soviet Union countries. Nevertheless, precipitation during the colder seasons may be245

more critical for water availability. The annual AV patterns still show positive values in these regions (Figure 4.d,g, and j).

Across the entire domain, all three RCMs significantly reduce the large and local-scale bias of ERAInterim, especially in com-

plex topographies. The nested RCMs exhibit similar MAE values near their lateral boundaries, relative to their driving model

(Figure 4, a,b,c). Thus, negative AV quantities may result from boundary effects, particularly near the eastern and southeast-

ern boundaries where monsoonal precipitation dominates. GERICS-REMO2015 displays pronounced negative added values250

annually and during winter above Tibet.

Additionally, model climatology biases are displayed in Figures 5. Once again, these biases are noticeable in the lower right

corner of the domain during JJA and across the southern Tibetan Plateau throughout the year.
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3.1.1 Extreme precipitation patterns in CCLM and CMIP6 GCMs

Given that the CCLM simulation has demonstrated added value for precipitation over the mountainous regions of CA, we255

explore climate change signals in its high-resolution output. These high-resolution maps may inherit biases from the GCM-

RCM selection and could vary under different anthropogenic forcings. We assume that many model biases are consistent across

different time slices and, therefore, can be removed when calculating changes between the historical period (1985-2014) and

future periods (2070-2099).

We present climate change trends in CCLM and the CMIP6 GCMs ensemble statistics (ensemble mean and standard devia-260

tion). We analysed 31, 33, and 38 models for SSP126, SSP370, and SSP585 scenarios, respectively, with a total of 158, 185, and

242 simulations (see Supplementary materials for the list of models used). We calculate statistics over each model’s members

to ensure equal weighting for individual models before building the final statistics. We have selected the yearly 99th percentile

of daily precipitation (PR99), which accounts for the three days with the highest precipitation each year. Additionally, we chose

the number of very heavy precipitation days during the period (ECA-RX20mm) as another index, which is commonly used265

in climate research to assess the impacts of heavy precipitation events on water resources, agriculture, and natural ecosystems

(Klok and Klein Tank, 2008).

Figure 6 shows the changes in averaged PR99 at the end of the century (2070-2099) compared to the historical period (1985-

2014) for CCLM (a,d,g) and CMIP6 GCMs (b,e,h) under different scenarios. The large-scale patterns remain consistent across

all three scenarios, intensifying with increased anthropogenic influence. The standard deviation of the models’ ensemble is270

depicted in Figures 6.c,f, i. Our analysis indicates that the Himalayas, particularly Nepal, North India, and Bhutan, exhibit

the highest uncertainty among the GCMs in all scenarios. Except for this region and the eastern boundary of the domain, the

standard deviation remains below 3 mm/day. Under the SSP585 and SSP370 scenarios, regions including Northwest India,

North Pakistan, North and Southwest Iran, and the South and Southeast of the Black Sea are projected to experience increases

in PR99 values exceeding 9 mm/day. A reduction in PR99 is detected in the eastern Mediterranean, specifically in Jordan, Syria,275

and southern Turkey. Similar patterns are observed in the CMIP6 ensemble mean, but due to averaging, the ensemble mean

patterns are approximately ±5 mm/day over these areas. Under the SSP126 scenario, which is aligned with the 2°C warming

target, the previously observed increases in precipitation exceeding ±9 mm/day for CCLM and ±5 mm/day for GCMs are

no longer evident. In CA, areas such as Kyrgyzstan, Tajikistan, northern Pakistan, and southwestern Iran are particularly

vulnerable to rainfall-induced hazards, including landslides (Wang et al., 2021; Kirschbaum et al., 2010) and floods (e.g., the280

Pakistan floods of 2010 and 2022).

Figures 7.1, d, and g illustrate the ECA-RX20mm values for CCLM at the end of the century across three scenarios. The

observed patterns align with those in Figure 6, underscoring an increase in the frequency of very heavy precipitation days,

particularly marked over the Tibetan Plateau, as anthropogenic influences intensify. Similarly, Figures 7.b, e, and h reveal that

the CMIP6 GCM ensemble mirrors the behaviour observed in CCLM. However, the ensemble standard deviations for ECA-285

RX20mm values rise over Tajikistan and Kyrgyzstan, as shown in Figures 7.c, f, and i. The growing frequency and intensity

of extreme precipitation events over the elevated regions of Central Asia, driven by anthropogenic factors, are a cause for
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concern (Fallah et al., 2023). This CCLM simulation enhances our understanding of how dynamical downscaling’s sensitivity

to different levels of anthropogenic forcing can vary locally.

4 CCLM emulator using a CNN290

We have demonstrated that dynamical downscaling adds significant value in capturing local climate change effects, particularly

over areas influenced by complex topography. In this study, we create a CCLM emulator for precipitation over CA. As previ-

ously explained, a CNN trained on our GCM-RCM chain could serve as a fast, cost-effective downscaling method, though its

efficacy needs to be rigorously assessed.

We aim to establish that this emulator outperforms simple interpolation, particularly in areas experiencing extreme precip-295

itation. We aim to show that the CCLM emulator can replicate CCLM-like precipitation patterns when driven by the parent

GCM.

Focusing on the CA domain, which encompasses the former Soviet Union countries (Kazakhstan, Kyrgyzstan, Tajikistan,

Turkmenistan, and Uzbekistan), we exclude the broader CORDEX-CA domain shown in Figure 3. This domain is the region

of interest in the Green Central Asia project https://www.greencentralasia.org/en, which the German Foreign Office finances.300

Figure 8.a illustrates the MAE of the interpolated MPI-ESM1-2-HR, using the CCLM output as the ’true’ precipitation. CCLM

generates distinct precipitation patterns, particularly in areas with complex topography. Assuming CCLM as the ground truth,

we examine whether the CNN can replicate these outputs using the GCM as input. To assess the emulator’s effectiveness, we

present added value maps (relative to the parent GCM) in Figures 8.b-d. A comparison of MAE reduction maps reveals that the

unconstrained CNN demonstrates significant skill over elevated regions of CA, whereas constrained runs show less noticeable305

pattern changes. For instance, the HCL and SCL emulators generate closely mingled negative and positive added values across

elevated areas, while NoCL consistently exhibits positive values across the domain. Several artefacts in the MAE reduction

maps of constrained models, particularly over northern India, reflect the shape of the GCM grid. We also produce boxplots

of daily precipitation for the CA domain to explore distribution improvements (Figure 9). Correlation coefficients between

time-series averages of precipitation across the domain and CCLM are presented in Figure 9 (values in parentheses). Among310

daily averages, NoCL achieves the best performance (highest correlation coefficient), although it records fewer outliers than

CCLM and other model simulations. The distribution is concentrated around the median, exhibiting the narrowest interquartile

range. The distribution profiles of both constrained models (HCL, SCL) resemble those of the interpolated GCM, expected

since the constraints maintain mass consistency within corresponding grid boxes (Equation 1).

4.1 Applying the CNN to a different GCM315

We evaluate the emulator’s generalisation ability, i.e., its capacity to generate reliable predictions on new datasets. We conduct

a new 15-year dynamical simulation using CCLM, driven by the EC-Earth3-Veg (Döscher et al., 2022) GCM under the SSP370

scenario from 2019 to 2033. This data serves as input to our CCLM emulator, which was previously trained to emulate CCLM

outputs using MPI-ESMI-2 HR. We now use the emulator to reconstruct the local features of CCLM driven by EC-Earth3-Veg.
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Figure 10.a presents the MAE of the interpolated EC-Earth3-Veg with respect to the dynamical downscaling with CCLM.320

Remarkably, the MAE pattern of EC-Earth3-Veg closely mirrors that of MPI-ESM1-2-HR (Figure 8.a). However, the NoCL

emulator does not uniformly show positive error reduction across the domain (Figure 10.b). We chose NoCL for its superior

performance among the three CNNs. The emulator attempts to establish relationships between MPI-ESM1-2-HR and CCLM,

which may be specific to these models and might not necessarily apply to the new EC-Earth3-Veg and CCLM configuration.

As demonstrated previously, the RCM state depends on the state of its driving GCM. CCLM is driven at the lateral boundaries325

by the GCM values for state variables (temperature, pressure, wind speed, etc.) and not by precipitation, which is the CNN’s

input. The precipitation inputs from the two GCMs carry different biases, complicating the transfer of mapping from MPI-

ESM1-2-HR-driven CCLM outputs to those driven by EC-Earth3-Veg.

Despite these challenges, the CNN model demonstrates added values exceeding 1 mm/day in regions such as the Alborz

Mountains and the southern Caspian Sea in northern Iran (highlighted in black rectangles in Figures 10.a and b) and parts of330

Tajikistan and Kyrgyzstan. Exploration of the daily precipitation distribution field-mean indicates that the CNN’s median value

and outliers are lower than those of the EC-Earth3-Veg and CCLM simulations (Figure 10.c). The day-to-day correlation has

improved, although all models were trained on a shuffled dataset that ignored the memory in the time series. The trained NoCL

model was provided with unshuffled EC-EARTH3-Veg data for new predictions, increasing the correlation coefficient from

0.815 (EC-Earth3-Veg) to 0.844 (NoCL). Over the highlighted area in Figure 10.b, where the NoCL model reduces MAE, the335

distribution of precipitation converges towards that of CCLM, encompassing the region with the highest rainfall in Iran, vital

for a large portion of the population, including Tehran. Only the outliers larger than 20 mm/day are not reconstructed by NoCL.

As a further test of generalisation, we intentionally excluded the SSP370 scenario from the training process. This allowed

us to apply the model to a specific simulation and assess its ability to handle an unknown forcing. Figure 11 demonstrates the

AV of the CNN emulator for SSP370 in comparison to the dynamical downscaling with CCLM, revealing that the AV pattern340

is strikingly similar to that shown in Figure 8.d. This confirms that the CNN can learn and reproduce patterns under different

forcing scenarios it was not explicitly trained on, as demonstrated by its performance with the SSP370 scenario.

5 Discussion and conclusions

Regional climate change impact assessments require high-resolution climate projections. The main strategies to produce such

datasets are statistical and dynamical downscaling, as well as a hybrid of the two methods. Statistical downscaling often345

struggles to account for the dynamic influences of complex landscapes, including topography and varying surface parameters

such as vegetation, soil types, and water bodies like lakes, which may affect the accuracy of statistical relationships (Li et al.,

2022). For statistical downscaling methods applied to precipitation, observations need to contain detailed information about

precipitation distribution in areas with complex topography (Lundquist et al., 2019).

Conversely, dynamical downscaling requires massive computational time and data storage. For example, a 30-year CCLM350

simulation driven by ERAInterim took roughly one week to complete using 216 processors of the HLRE-4 Levante computer
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at the German Climate Computing Center (DKRZ). Additionally, the added value of RCMs is still debated, as they are highly

dependent on the driving GCMs.

In this study, we contributed to the dynamic downscaling efforts over the CORDEX-CA domain, taking a small step towards

creating an RCM ensemble for CA. A single RCM simulation helps identify model biases and uncertainties that need to be ad-355

dressed in future model improvements. It is essential to note that a single model run for CMIP6, instead of an RCM ensemble,

may not provide a comprehensive understanding of potential climate change impacts on a region. Therefore, it is recommended

that researchers conduct multiple simulations with different initial and boundary conditions and model configurations to ac-

count for the uncertainty associated with climate projections.

In the first part of the study, we demonstrated the added value of RCMs (using the CCLM model) over GCMs for CA in360

representing precipitation. Our CCLM run showed added value with respect to its driving GCM, comparable to the range of

values obtained for other RCMs applied to the CORDEX-CA domain over the evaluation period. It also reproduced extreme

precipitation patterns similar to the CMIP6 ensemble mean projections for the end of the century. Both the CCLM and CMIP6

ensembles indicated an increased risk (in terms of intensity and frequency) of heavy precipitation events in vulnerable regions

of CA due to various human activities.365

Our study evaluated the downscaling skill using high-resolution observations, a crucial step for accurately capturing lo-

calised climate phenomena. This evaluation was essential before further study steps and regional adaptation strategies could be

implemented. However, as Volosciuk et al. (2017) noted, examining downscaling outputs at coarser resolutions can be equally

informative. Their work emphasises that downscaling methods can introduce or fail to correct biases that differ significantly

across spatial scales. By evaluating on a coarser grid, it is possible to distinguish between the inherent biases of the model370

and those introduced by the downscaling process. This distinction is crucial for understanding the limitations and strengths of

downscaling methods in representing climatic variables across different scales.

We showed that a single GCM-RCM model chain could be used to train a climate emulator based on a CNN model. It

learned nonlinear and physical relationships between the coarse and fine-resolution datasets, addressing the issue of spatial

intermittency—where data points are unevenly distributed or missing across space—common in some statistical downscaling375

approaches (Harder et al., 2023). However, we also demonstrated that the CNN model had limitations when generalising,

as it did not achieve a robust error-reduction pattern when given a different GCM as input. The learning process strongly

depended on the GCM/CCLM relationships. More importantly, an RCM is usually forced to follow its driving GCM and can

only produce extra information on a local scale. The presented CNN could be applied to other experiments of the same GCM,

such as using the trained emulator for paleo-climate experiments or downscaling volcanic forcing experiments. This would aid380

the paleo-climate community in conducting proxy-model comparisons at local scales. However, previous studies have shown

that the CNN suffered from the same generalisation problem when applied to a new GCM, and such applications must be tested

(Jouvet and Cordonnier, 2023).

We deliberately excluded the SSP370 scenario from the training dataset to evaluate the model’s generalisation capabilities

for other scenarios of the same GCM. This strategy allowed us to assess whether the model could effectively infer and replicate385

patterns from untrained scenarios. Remarkably, the model’s output for the SSP370 scenario exhibited an AV pattern mirrored
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the dynamical downscaling results of the CCLM driven by the same SSP370 scenario. This alignment strongly supported the

notion that our CNN emulator could learn from its training data and generalise to new, unseen conditions. The similarity in

AV patterns between the model output and the CCLM simulation underscored the robustness and adaptability of our model,

affirming its potential for broader applications in climate modelling.390

This work was an initial step in demonstrating the potential of such a hybrid approach. We encourage the community to ex-

plore different model structures and parameter combinations for further improvement. For example, our initial setups showed

that a physically constrained CNN setup that applies a linear transformation to ensure mass or energy conservation between

the low and high-resolution images did not successfully downscale precipitation. The original dataset might not satisfy the

constraints, leading to suboptimal results. In contrast, with a higher degree of freedom, the unconstrained CNN produced pat-395

terns closer to the target RCM. Future studies could test alternative machine learning models, such as generative adversarial

networks (GANs), which can generate more high-frequency patterns and improve the downscaled output. Additionally, incor-

porating more information into the CNN by adding characteristics like surface height, vegetation, land cover, and land use as

new channels within the input layer could enhance model performance.

ERAInterim
1979-2014

CHIRPS Obs.
1985-2014

MPI-ESM1-2-HR 
1985-2014

EC-Earth3-Veg 
2019-2033

MPI-ESM1-2-HR
SSP1-2.6, SSP3-7.0 & SSP5-8.5 

2020-2100

CCLM

Evaluation 
&

Added 
value

High Resolution RCM 
Data PoolCNNHigh Resolution CNN

Data

Figure 1. Schematic of the methodology used in this study. Green arrows show the data flow used for training the CNN and magenta for
evaluation and calculation of the added values. Datasets are shown by rectangular, downscaling models by hexagonal and evaluation analysis
by circle.
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Figure 2. Schematic of the CNN architecture for 2 times upsampling with the constraints layer. The inputs are low-resolution (LR) images
of size 30×60 and the output is a super-resolution (SR) image of size 60×120. This figure is modified from (Harder et al., 2023).

Code availability. The code for "Physics-Constrained Deep Learning for Climate Downscaling" is available on Zenodo at the following400

DOI: https://zenodo.org/record/8150694. This repository includes the input and output data, trained models, a snapshot of the code used in

the deep-learning downscaling process, CCLM model setups for all Regional Climate Model (RCM) simulations conducted, and a list of

CMIP6 models used for comparative analysis. Additionally, a Jupyter notebook for executing a test case of the "Physics-Constrained Deep

Learning for Climate Downscaling" is available at Zenodo with the following DOI: https://zenodo.org/record/10417111.

Appendix A: CNN runs405

We used the following commands for training the CNN model based on the Harder et al. (2023):

# f o r t h e run wi th s o f t c o n s t r a i n i n g run , w i th a f a c t o r o f a l p h a 0 . 9 9 :

$ py thon main . py −− d a t a s e t d a t a s e t −−model cnn −− model_ id410

t w c _ c n n _ s o f t _ c o n s t r a i n t s _ e p o c h s _ 1 6 0 _ l r _ 0 .00001 _ a l p h a _ 0 . 9 9

−− c o n s t r a i n t s s o f t −− l o s s m a s s _ c o n s t r a i n t s −− a l p h a 0 . 9 9

−− epochs 160 −− b a t c h _ s i z e 64 −− l r 0 .00001

# f o r t h e run wi th so f tmax c o n s t r a i n i n g or ha rd c o n s t r a i n i n g :415

$ py thon main . py −− d a t a s e t d a t a s e t −−model cnn −− model_ id

t w c _ c n n _ s o f t m a x c o n s t r a i n t s _ e p o c h s _ 2 0 0 _ b a t c h _ s i z e _ 6 4 _ l r _ 0 . 0 0 1

−− c o n s t r a i n t s so f tmax −− l r 0 .001 −− epochs 160 −− b a t c h _ s i z e 64 −− l o s s mae
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(a)

(b)

(c)

Figure 3. a) CCLM simulation domain over Central Asia and the topography (m), (b) CHIRPS climatology for 1985-2014 (average of daily
values over all years in mm/day), and (c) WorldClim’s weather stations (red dots).
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(a) ERAInterim Annual MAE (b) ERAInterim DJF MAE (c) ERAInterim JJA MAE

(d) CCLM Annual AV (e) CCLM DJF AV (f) CCLM JJA AV

(g) GERICS-REMO2015 Annual AV (h) GERICS-REMO2015 DJF AV (i) GERICS-REMO2015 JJA AV

(j) RMIB-UGent-ALARO-0 Annual AV (k) RMIB-UGent-ALARO-0 DJF AV (l) RMIB-UGent-ALARO-0 JJA AV

Figure 4. Mean absolute error (MAE) of daily precipitation (mm/day) from ERAInterim, as well as, added value (AV) as measured by
MAE differences between ERAInterim and RCMs (MAEERAInterim −MAERCM) in mm/day for annual (a,d,j,i), December, January, February
(b,e,h,k) and June, July, August (c,f,i,l). CHIRPS is used as observation. All datasets are interpolated to the CCLM grid.
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(a) ERAInterim Annual Bias (b) ERAInterim DJF Bias (c) ERAInterim JJA Bias

(d) CCLM Annual Bias (e) CCLM DJF Bias (f) CCLM JJA Bias

(g) GERICS-REMO2015 Annual Bias (h) GERICS-REMO2015 DJF Bias (i) GERICS-REMO2015 JJA Bias

(j) RMIB-UGent-ALARO-0 Annual Bias (k) RMIB-UGent-ALARO-0 DJF Bias (l) RMIB-UGent-ALARO-0 JJA Bias

Figure 5. Bias of climatological precipitation (mm/day) from ERAInterim, as well as, ERAInterim-driven RCMs (PRERAInterim-CCLM−PROBS)
in mm/day for annual (a,d,j,i), December, January, February (b,e,h,k) and June, July, August (c,f,i,l). CHIRPS is used as observation.
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(a) SSP126-CCLM (b) SSP126-CMIP6-ensmean (c) SSP126-CMIP6-ensstd

(d) SSP370-CCLM (e) SSP370-CMIP6-ensmean (f) SSP370-CMIP6-ensstd

(g) SSP585-CCLM (h) SSP585-CMIP6-ensmean (i) SSP585-CMIP6-ensstd

Figure 6. Changes in averaged yearly 99th percentile (3 days per year) of total precipitation (mm/day) with respect to 1985-2014 references
for a,b) SSP126, d,e) SSP370 and g,h) SSP585 at the end of the century (2070-2099) from CCLM and CMIP6 GCMs’ ensemble mean. The
ensemble’s standard deviations are shown in c,f and i.

# f o r t h e s t a n d a r d CNN run w i t h o u t c o n s t r a i n i n g :420

$ py thon main . py −− d a t a s e t d a t a s e t −−model cnn −− model_ id

t w c _ c n n _ n o n e c o n s t r a i n t s _ e p o c h s _ 1 6 0 _ b a t c h _ s i z e _ 6 4 _ l r _ 0 . 0 0 1

−− c o n s t r a i n t s none −− l r 0 .001 −− epochs 160 −− b a t c h _ s i z e 64 −− l o s s mae

Note that the datasets and codes are available at Zenodo (DOI: https://zenodo.org/records/10417111) with comprehensive425

details utilized in the paper.
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(a) SSP126-CCLM (b) SSP126-CMIP6-ensmean (c) SSP126-CMIP6-ensstd

(d) SSP370-CCLM (e) SSP370-CMIP6-ensmean (f) SSP370-CMIP6-ensstd

(g) SSP585-CCLM (h) SSP585-CMIP6-ensmean (i) SSP585-CMIP6-ensstd

Figure 7. Changes in number of days with precipitation more than 20 mm in the period with respect to 1985-2014 references for a,b) SSP126,
d,e) SSP370 and g,h) SSP585 at the end of the century (2070-2099) from CCLM and CMIP6 GCMs’ ensemble mean. The ensemble’s
standard deviations are shown in c,f and i.

Author contributions. BF conducted the dynamical and statistical downscaling with assistance from ER and PH, respectively. ER provided

the setup for the CCLM simulations. PH provided the deep learning model code and setup. All authors contributed to the analysis of the

results and the writing of the manuscript.

Competing interests. The authors declare that they have no competing interests.430

Acknowledgements. BF thanks the German Climate Computing Center (DKRZ) for its support in using supercomputer data and resources.

The German Foreign Office funded BF and ID via the Green Central Asia project (http://greencentralasia.org/en, last access: 4 July 2023).

20

http://greencentralasia.org/en


(a) MAE(GCM, GCM-CCLM) (b) AV HCL α=0.001

(c) AV SCL α=0.99 (d) AV NoCL

Figure 8. a) MAE (MPI-ESM1-2-HR,CCLM). MPI-ESM1-2-HR is remapped bilinearly to the 0.25×0.25 grid. b-d) Added Value (AV) or
MAE(MPI-ESM1-2-HR,CCLM) - MAE(CNN,CCLM) for different constraining method.

The DKRZ and PIK provided the computational resources. The authors gratefully acknowledge the German Federal Ministry of Education

and Research and the Land Brandenburg for supporting this project by providing resources on the high performance computer system at the

Potsdam Institute for Climate Impact Research. BF thanks the CCLM community for providing the model code and the pre-processing code435

to convert the GCM to CCLM input files. BF is supported by the Coming Decade project at DKRZ.

21



Figure 9. Boxplot of averaged daily precipitation over the Central Asian domain (shown in Figure 7) for different models and test dataset
(22714 days or 62.2 years). Numbers in the parenthesis indicate the correlation coefficients between each model and the CCLM simulation.
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