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Abstract. To estimate
:::::::::::::
High-resolution

::::::
climate

::::::::::
projections

:::
are

:::::::
essential

:::
for

:::::::::
estimating

:
future climate change impacts, usually

high-resolution climate projections are necessary. Statistical and dynamical downscaling
::::::::
methods, or a hybrid of bothmethods

are mostly used to produce
:
,
:::
are

:::::::::
commonly

::::::::
employed

::
to
::::::::

generate input datasets for impact modelers
::::::::
modelling. In this study,

we use the regional climate model (RCM)
::::::
employ

:
COSMO-CLM (CCLM) version 6.0to identify the added value ,

::
a

:::::::
regional

::::::
climate

::::::
model,

::
to

:::::::
explore

:::
the

:::::::
benefits of dynamically downscaling a general circulation model (GCM) from the sixth phase5

of the Coupled Model Inter-comparison Project (CMIP6) and its ,
::::::::
focusing

::
on

:
climate change projections ’ signal over

:::
for

Central Asia (CA). We use
:::
The

:::::::
CCLM,

::
at

:::::
0.22°

:::::::::
horizontal

:::::::::
resolution,

::
is

:::::
driven

:::
by the MPI-ESM1-2-HR

:::::
GCM (at 1° spatial

resolution) to drive the CCLM (at 0.22° horizontal resolution) for the historical period of 1985-2014 and the projection period

of 2019-2100under three different
:
,
:::::
under

:::::
three shared socioeconomic pathways (SSPs): SSP1-2.6, SSP3-7.0,

:
and SSP5-8.5

scenarios. Using the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) gridded observation dataset as10

:
a reference, we evaluate the performance of CCLM driven by ERAInterim

:::::::::::
ERA-Interim

:
reanalysis over the historical period.

CCLM’s added value
::::
The

:::::
added

:::::
value

::
of

::::::
CCLM, compared to its driving GCM, is significant (more than 5mm

:
5
::::
mm/day) over

CA mountainous areas
::::::::::
mountainous

:::::
areas

::
in
::::

CA, which are at higher risk of extreme precipitation events. Additionally, we

employ the CCLM to refine future climate projections. We present high-resolution maps of heavy precipitation changes based

on CCLM and compare them with
:::
the

:
CMIP6 GCMs

::::
GCM

:
ensemble. Our analysis shows

:::::::
indicates

:
a significant increase in15
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heavy precipitation
::
the

:
intensity and frequency

::
of

:::::
heavy

:::::::::::
precipitation

:::::
events

:
over CA areas that are already at risk of extreme

climatic events in the present day
::
by

:::
the

::::
end

::
of

:::
the

:::::::
century. Finally, we train a convolutional neural network (CNN) to map

a GCM simulation to its dynamically downscaled CCLM . We show that the CNN could emulate
::::::::::
counterpart.

::::
The

:::::
CNN

::::::::::
successfully

::::::::
emulates the GCM-CCLM model chain over large CA areas. This emulator has added values

:
,
::::::::::::
demonstrating

:::::
added

:::::
value when applied to a new GCM-CCLM model chain. Scientific communities

:::
The

::::::::
scientific

:::::::::
community

:
interested20

in downscaling CMIP6 models could use our downscaling data. The CNN architecture can be applied as
:
,
::::
and

:::
the

:::::
CNN

:::::::::
architecture

::::::
offers an alternative to

:::::::::
traditional dynamical and statistical methods.

1 Introduction

The increasing global mean temperature due to anthropogenic greenhouse gas emissions presents a significant challenge for

society, requiring the assessment and prediction of future impacts on human health, natural ecosystems, and economies across25

different regions of the world (Allan et al., 2021). Regional
:::::::::
Researchers

::::::::::
conducting

:::::::
regional studies on vulnerability, impacts,

and adaptation necessitate
:::::::
typically

:::::::
achieve reliable high-resolution climate projections , which are typically achieved through

dynamical downscaling via Regional Climate Models (RCMs )
::::::
RCMs (Rummukainen, 2010; Feser et al., 2011), statistical

techniques (Maraun and Widmann, 2018; Fowler et al., 2007)
::::::::::::::::::::::::::::::::::::::::
(Maraun and Widmann, 2018; Fowler et al., 2007), or a hybrid

of both approaches (Maraun et al., 2015; Meredith et al., 2018; Laflamme et al., 2016)
:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Maraun et al., 2015; Meredith et al., 2018; Laflamme et al., 2016)30

.

Central Asia (CA), recognized
:::
CA,

::::::::::
recognised as one of the most vulnerable regions to climate change impacts, is heavily

dependent
::::::
heavily

:::::::
depends on water resources from glaciers and rivers that are shrinking due to rising temperatures and de-

creasing precipitation (Reyer et al., 2017; Fallah et al., 2023; Didovets et al., 2024; Fallah and Rostami, 2024)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Reyer et al., 2017; Fallah et al., 2023; Didovets et al., 2024; Fallah and Rostami, 2024)

. The area faces significant challenges to food security, characterized
:::::::::::
characterised by declining crop yields and an increased35

occurrence of severe and frequent extreme weather events like floods and landslides. These conditions damage infrastructure,

livelihoods, and agriculture, resulting in population displacement and migration (Allan et al., 2021; Reyer et al., 2017).

Despite these critical concerns, the development of high-resolution climate projections in CA is impeded by the significant

:::::::::
Significant uncertainties inherent in the existing high-resolution

::::::
detailed observational and reanalysis datasets (Fallah et al., 2016a)

.
::::::
impede

::::
the

::::::::::::
development

::
of

:::::::::::::
high-resolution

:::::::
climate

::::::::::
projections

::
in

::::
CA

:::::::::::::::::
(Fallah et al., 2016a).

:::::
One

::::::
option

::
to

:::::::::::
complement40

::::
these

:::::::
datasets

::
is
:::

to
:::
use

:::::::::
dynamical

:::::::::::
downscaling

::::
with

:::::::
RCMs.

::::::
CMIP6

::::::::
provides

::
a

:::::::::
framework

:::
for

::::::::::
coordinated

:::::::
climate

::::::
model

::::::::::
experiments,

:::::::::
enhancing

::::
our

::::::::::::
understanding

::
of

::::
past,

:::::::
present,

::::
and

:::::
future

:::::::
climate

::::::::
changes. Dynamical downscaling of CMIP6

models for the CA region is vital for accurately simulating extreme convective precipitation events, which are influenced by

the orography of the region
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Lundquist et al., 2019; Ban et al., 2015; Wang et al., 2013; Frei et al., 2003; Russo et al., 2019),

large-scale atmospheric circulation, and sea surface temperature anomalies in the Indian Ocean and the Pacific (Kendon et al.,45

2014; Demory et al., 2020; Xu et al., 2022). Dynamical downscaling
::::
This

::::::
method

:
enhances the resolution of a driving GCM and

produces a robust, physically consistent regional state of the climate. High-resolution atmospheric models have been shown to

have better skills over complex topographies in estimating variables like precipitation than in situ observations, satellite-derived
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and radar datasets (Lundquist et al., 2019). Many studies confirm that RCMs can better represent small-scale atmospheric

features, especially for precipitation over complex topographies (Ban et al., 2015; Wang et al., 2013; Frei et al., 2003). This50

method is often preferred over statistical downscaling approaches, which assume that present statistical relationships will

hold in the future (Hess et al., 2022). However, RCMs are computationally demanding and inherit a ’cascade of uncertainty’,

meaning that the uncertainties in the models will expand from one step or chain to another, highly affecting RCM outcomes

and must be considered prior to performing climate projections (Mitchell and Hulme, 1999; Sørland et al., 2018). Despite these

considerations, the added value of RCMs concerning their driving GCM is constantly debated in the community and is highly55

dependent on the driving GCM (Jacob et al., 2012; Lenz et al., 2017; Fotso-Nguemo et al., 2017; Di Luca et al., 2012, 2015).

An RCM is tuned to perform over the target local region. However, a GCM is tuned to represent energy and water balance

globally (Sørland et al., 2018).
::::::
Despite

:::::
some

:::::::::
systematic

::::::
biases,

:::::::::
dynamical

:::::::::::
downscaling

::::::::::
consistently

::::::::
provides

:::::::::::
high-quality

::::::
datasets

::::
that

:::::::::
accurately

:::::::
describe

:::
the

::::::::::
climatology

::
of

::
all

:::::::
climate

:::::::
variables

::
in
::::
CA

::::::::::::::
(Qiu et al., 2022).

:

Various international institutions have collaborated within the Coordinated Regional Climate Downscaling Experiment60

(CORDEX) to address these issues and improve the models’ inter-comparability
:
of

::::::
RCMs. CORDEX aims to create a better

:::::
robust

:
framework for producing climate projections at a regional scale that is suitable for impact evaluation and adaptation

planning globally, aligned
:
.
::::
This

:::::
effort

:::::
aligns

:
with the timeline of the Intergovernmental Panel on Climate Change

::
’s Sixth As-

sessment Report (Kikstra et al., 2022). However, most CORDEX research focuses on highly industrialized
:::::::::::
industrialised coun-

tries (Allan et al., 2021; Taylor et al., 2012). No simulation (except this study) driven by the CMIP6 model simulations has been65

planned so far for CORDEX-CA (see , last visited on 17.04.2024). Sadly, developing countries,
:::::::::
Developing

:::::::
regions, including

CA, bear the brunt of global warming’s consequences, with
::
yet

::::
they

:::::
have

:::::
access

::
to

:
only a limited number of CORDEX model

simulations available for this region (Naddaf, 2022). The dynamical downscaling in CA can provide detailed insights into

regional climate phenomena often not captured by coarser-resolution global models (Russo et al., 2019). Climate projections

might be sensible to different parameter settings, emphasizing the need for careful calibration and validation of regional70

models. Dynamical downscaling’s added value lies in its ability to tailor climate projections more closely to regional specifics,

thereby improving the utility of climate data for regional climate change impact assessments (Russo et al., 2020). Despite some

systematic biases, dynamical downscaling consistently provides high-quality datasets that accurately describe the climatology

of all climate variables in CA (Qiu et al., 2022)
::::::::::::
(Naddaf, 2022).

::
As

:::
of

::
the

:::::
latest

::::::
update,

:::
no

::::::::
simulation

::::::
driven

::
by

::::::
CMIP6

::::
has

::::
been

::::::
planned

:::
for

:::::::::::::
CORDEX-CA

::::
(see https://wcrp-cordex.github.io/simulation-status/CMIP6_downscaling_plans.html,

::::
last

::::::
visited75

::
on

:::::::::::
17.04.2024).

Beyond dynamical methods, recent developments in machine learning, including CNNsas the most popular choice, offer

promising and potentially transformative avenues for statistical downscaling (Harder et al., 2023; Rampal et al., 2024). CNNs

have proven effective in numerous earth science disciplines besides downscaling, such as classification (Gardoll and Boucher,

2022), segmentation (Galea et al., 2024)
:
, and prediction (Watson-Parris et al., 2022) thanks to their capacity to extract features80

from spatial data and identify non-linear
:::::::
nonlinear

:
relationships between inputs and outputs.

CNNs can recognize
:::::
CNNs

:::
can

::::::::
recognise

:
and encode spatial hierarchies in data (Zhu et al., 2017), making them exception-

ally suitable for
::::::::
analysing geospatial data, which is fundamental

:
a
::::::
critical

:::::::::
component

:
in climate modelling. Unlike traditional

3
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statistical methods that often require manual selection and careful engineering of features, CNN automatically learns
:::::
CNNs

:::::::::::
automatically

:::::
learn the most predictive features directly from the data (Reichstein et al., 2019). CNNs can model complex85

non-linear relationships between input data and outputs, often present in climate data due to intricate interactions in weather

systems. CNNs
::::
They are generally more straightforward and efficient for tasks that aim

:::
than

:::::::::
traditional

::::::::
statistical

:::::::::::
downscaling

:::::::
methods

:::
for

::::
tasks

::::::
aiming

:
to predict or classify based on patterns distributed across the spatial domain

::::::
spatial

:::::::
domains, such as

temperature or precipitation patterns in climate models (Racah et al., 2017). CNNs are adept at maintaining spatial coherence in

the output, which is critical in downscaling where preserving the geographical patterns of climate variables (like precipitation)90

is crucial (Kurth et al., 2018).

::::::::::
Researchers

::::::
classify

::::::
CNNs

::::
into

:::
two

:::::::::
categories

:::::
based

:::
on

::::
their

:::
last

:::::
layer:

:::
1)

:::::::::
constrained

::::
and

::
2)

::::::::::::
unconstrained.

:
Constrained

CNNs integrate physical constraints or laws directly into the training process. The constraining is done by changing ,
:::::

such

::
as

:::::
mass,

::::::
energy,

:::
or

::::::::::
momentum

:::::::::::
conservation.

::::
This

::::::::::
integration

::
is

:::::::
achieved

:::
by

:::::::::
modifying

:
the loss function or the network’s

architecture to enforce compliance with physical laws(i.e., conservation of mass, energy, or momentum). Unconstrained CNNs95

operate without explicitly incorporating
:::::
ensure

::::::::::
compliance

::::
with

:::::
these

::::
laws.

:::
In

:::::::
contrast,

::::::::::::
unconstrained

:::::
CNNs

:::
do

:::
not

::::::::
explicitly

:::::::::
incorporate

:
physical laws or constraintsinto the network’s architecture or loss functions. They focus .

:::::::
Instead,

::::
they

:::
rely

:
solely

on learning from the input datato the
:
,
:::::::::
generating output predictions based on the data-driven patterns they detect.

:::::::
patterns

:::::::
detected

::
in

:::
the

::::
data.

This study explores unconstrained and constrained CNN approaches to understand their effectiveness in downscaling and100

how they perform
::::
their

:::::::::::
performance

:
when applied to GCMs on which they were not initially trained

::
not

:::::::
initially

:::::
used

:::
for

::::::
training.

The research questions guiding this study are:

– Research Question 1:
::::::::
Research

::::::::
Question

::
1: How effectively can CMIP6 models be downscaled

:
to

:::::::
enhance

:::::::::::
precipitation

:::::::::
simulations

:
for the CORDEX Central Asia regionto enhance precipitation simulations?105

– Research Question 2: Can convolutional neural networks (CNNs )
:::::::
Research

:::::::::
Question

::
2:

::::
Can

:::::
CNNs

:
effectively down-

scale GCM outputs, and how do they perform when applied to GCMs they were not initially trained on
:::
that

:::
did

::::
not

::::::
initially

::::
train

:::::
them?

The manuscript will focus on three
::::
This

:::::
article

:::::::
focuses

:::
on

::::
two main topics: 1-added

::
1)

:::
the

::::::
added

:
value of CCLM for

the representation of precipitation over CA, 2-dynamical downscaling signal of CCLM for heavy precipitation and 3-training110

::::::::::
representing

:::::::::::
precipitation

::::
over

::::::
Central

:::::
Asia,

:::
and

::
2)

:::::::
training a CCLM emulator using a CNN. We present data and methods in

section
::::::
Section

:
2. The

:::::::
Sections

::
3

:::
and

::
4

::::::::
introduce

:::
the results of dynamical and hybrid downscalingare introduced in section 3

and 4, respectively. Finally, we discuss the results and draw conclusions in section
:::::::
conclude

::
in
:::::::
Section 5.

2 Data and Methods
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:::
The

:::::::::::
methodology

:::::::::
employed in this study

:
is
:::::::::

illustrated
::
in

::::::
Figure

::
1.

::::
The

::::::::
following

:::::::
sections

:::::::
provide

::
a

:::::::
detailed

:::::::::
explanation

:::
of115

:::
this

:::::::::::
methodology. In the following we will explain it in more details.

2.1 Employed Models and Experimental Setups

2.1.1
::::::::
Regional

:::::::
Climate

::::::
Model

:
(RCM)

In our
:::
this

:
study, we conduct a series of simulations with the COnsortium for Small scale Modelling in CLimate Mode (CCLM

) RCM. CCLM is a
::::::::::
simulations

:::::
using

:::
the

::::::
CCLM

:
regional climate modeldeveloped

:
.
:::::::::
Developed

:
by the German Weather120

Service (DWD) and the German Climate Computing Center (Deutsches Klimarechenzentrum, DKRZ)
:
,
::::::
CCLM

:::::::::
originates

from the COSMO numerical weather prediction model (Rockel and Geyer, 2008), widely used
:::::
which

::
is

::::::
widely

:::::::
utilised for

short-term weather forecasting. The original core of COSMO-CLM or CCLM, was called Local MOdel (LM), developed

by DWD for weather forecasting. The adopted LM version for climate purposes formed the CCLM (Böhm et al., 2003)

. CCLM is designed to simulate the regional climate at high spatial resolution, allowing researchers to study
::::::::
Explicitly125

:::::::
designed

:::
for

:::::::
regional

:::::::
climate

::::::::::
simulation,

::::::
CCLM

:::::::
enables

::::::::::
researchers

::
to

:::::::::
investigate

:
various aspects of the climate system,

such as
:::::::
including

:
temperature, precipitation, and extreme events. CCLM has been utilized in numerous studies to evaluate

:
It
::::
has

::::
been

::::::::::
extensively

::::
used

::
to
::::::

assess
:
the impact of climate change on various regions , including

:::::
across

:::::::
different

:::::::
regions

::::
such

::
as

:
Europe (Russo et al., 2021), Africa (Panitz et al., 2014; Dosio and Panitz, 2016), and Asia (Jacob et al., 2014; Kot-

larski et al., 2014; Wang et al., 2013). It has also been used for
:::::::::::
Additionally,

::::::
CCLM

:::
has

:::::
been

:::::::::
employed

::
in

:
climate pro-130

jection studies and to assess the effectiveness of
::
to

:::::::
evaluate

:
climate adaptation and mitigation strategies. The model has

been thoroughly evaluated and validated (Fallah et al., 2016b; Russo et al., 2019; Kjellström et al., 2011). Its ability to produce

::::::::
undergone

::::::::
thorough

:::::::::
evaluation

:::
and

:::::::::
validation

::::::::::::::::::::::::::::::::::::::::::::::::::::
(Fallah et al., 2016b; Russo et al., 2019; Kjellström et al., 2011),

::::
and

::
its

::::::
ability

::
to

:::::::
generate realistic simulations of the current climate and its variability has made it

:::::
present

:::::::
climate

:::::::::
conditions

:::
and

:::::::::
variability

:::
has

:::::::::
established

::
it

::
as one of the most widely used regional climate models in the scientific community (Sørland et al., 2021).135

For our experiments, we used a similar model set-up as
::::::
utilised

:
a
::::::

model
:::::
setup

::::::
similar

:::
to the "optimal" set-up provided

in the studyof Russo et al. (2019) . The CORDEX protocolrequires a set of simulations that can be
::::::::::
configuration

:::::::::
described

::
by

::::::::::::::::
Russo et al. (2019).

:::
In

::::
their

:::::
study,

:::::::::::::::::
Russo et al. (2019)

::::::::
optimised

:::
the

::::::
CCLM

:::::::
regional

:::::::
climate

::::::
model

:::
for

:::
CA

:::
by

::::::::
adjusting

:::::
albedo

::::::
based

::
on

:::::
forest

:::::::
fraction

:::::
ratios

::::
and

:::
soil

:::::::::::
conductivity

::
to

:::::::
account

:::
for

:::
the

:::::
soil’s

:::::
liquid

:::::
water

::::
and

:::
ice

::::::::::
proportions.

::::::
These

:::::::::::
modifications

::::::::::
significantly

::::::::
improved

:::
the

:::::::
model’s

::::::::::::
climatological

::::::::::
performance

:::
and

:::
the

::::::::::
distribution

::
of

::::::::
incoming

::::::::
radiation,

::::::
leading140

::
to

::::
more

:::::::
accurate

:::::::
climate

::::::::::::
representations

:::
for

:::
the

::::::
region.

:::::::::
According

::
to

:::
the

:::::::::
CORDEX

::::::::
protocol,

:::::::::
simulations

:::
are

:
divided into two

main groups
::::::
primary

::::::
phases. The first one, referred to as

:::::
phase, the evaluation run, consists of

:::::::
involves a single model exper-

iment performed over the period 1979-2014, using ERAInterim
::::::::
reanalysis

::::
data at a spatial resolution of T255 (∼ 0.7°)as the

driving data. In the second stream (projection), the models must runwith .
::::
The

::::::
second

:::::
phase,

:::
the

:::::::::
projection

:::
run,

:::::::
utilises bound-

ary conditions from GCMs of the CMIP6 project for the period 1950-2100 under different SSPs(here, we have chosen a single145

GCM:
::::::
various

:::::
SSPs.

:::
For

::::
this

:::::
study,

:::
we

::::::::
selected

:::
the MPI-ESM1-2-HR and SSP126, SSP370 and SSP585 scenarios). SSPs

are baseline scenarios describing the future development pathways depending on population , technology and economic
:::::
GCM

5



:::
and

:::::::::
considered

:::::::::
SSP1-2.6,

::::::::
SSP3-7.0,

::::
and

::::::::
SSP5-8.5

::::::::
scenarios.

:::::
SSPs

::::::::
represent

:::::::
baseline

::::::::
scenarios

:::
that

:::::::
describe

::::::
future

::::::::
pathways

:::::
based

::
on

:::::::::
population

:
growth, urbanization, investment in healthcareand

:::::::::::
technological

::::::::::::
advancement,

::::::::
economic

::::::::::::
development,

::::::::::
urbanisation,

::::
and

::::::::::
investments

::
in

:::::::::
healthcare, education, land use,

:
and energy (Riahi et al., 2017).150

We have chosen the two available CORDEX-CA evaluation simulations from other models, driven by ERAInterim at 0.22°

horizontal resolution, for comparison/evaluation of our RCM simulations, which are driven by ERAInterim for the evaluation

period. The two simulations are 1) ERAInterim-RMIB-UGent-ALARO-0 (Giot et al., 2016) and 2) ERAInterim-GERICS-REMO2015

(Jacob and Podzun, 1997; Fotso-Nguemo et al., 2017).

2.1.2 CNNs155

We create an emulator of CCLM using a CNN. We use the output of the CCLM Version 6.0 RCM, which is driven by the

MPI-ESM1-2-HR GCM under four different scenarios (for 2019-2100). Historical is based on the data of
::::::::
Historical

::::
data

:::
for

:::
this

:::::
study

:::
are

:::::
based

:::
on

:
greenhouse gas levels, land use, and other climate forcings

:::::::
observed

:
from 1850 to 2014 that were

observed. SSP126
:::::
2014.

:::
The

::::::
Shared

:::::::::::::
Socioeconomic

:::::::
Pathway

::::::
(SSP)

:::::::
scenarios

:::::
used

::
in

:::
the

:::::::::
projections

:::
are

::
as

:::::::
follows:

:

–
::::::::
SSP1-2.6 represents a "green" futurewhere global resources are protected,

:
,
:::::::::::
characterised

:::
by

:::::
global

::::::
efforts

::
to
:::::::

protect160

::::::::
resources,

:::::::
improve

:
human well-beingis improved, and income gaps are narrowed

:
,
:::
and

::::::
narrow

:::::::
income

::::
gaps. This sce-

nario has
::::::
assumes

:
low challenges to adaptation and low greenhouse gas emissions. Challenges to adaptation

:::::::::
Adaptation

::::::::
challenges

:::
in

::::
this

::::::
context

:
refer to the degree of difficulty that

:::::::::
difficulties

:
societies might face in adjusting to the

environmental, economic, and social impacts of climate change. Specifically, this term refers to a society’s fundamental

:
,
::::::::
including

::::
their susceptibility and the accessibility and efficacy of technologies and approaches designed to lessen the165

impacts of climate change. The adaptation challenges are minimal in the SSP126 scenario, which envisions a sustainable

future. This implies that, under this scenario,
:::::::::
availability

:::
and

:::::::::::
effectiveness

:::
of

:::::::::
mitigation

::::::::::
technologies

::::
and

:::::::::
strategies.

:::::
Under

:::::::::
SSP1-2.6, global cooperation and sustainable practices lead to advancements in technology and governancethat

significantly reduce
:
,
::::::::::
significantly

:::::::
reducing

:
vulnerability to climate change impacts. Additionally, societal

:::::::
Societal struc-

tures are resilient, and resources are managed to minimise environmental stresses and maximise
::::
while

::::::::::
maximising human170

well-being. SSP370 depicts a regional rivalry future

–
::::::::
SSP3-7.0

::::::
depicts

:
a
::::::

future
:::::::::::
characterised

:::
by

:::::::
regional

::::::
rivalry,

:
where nationalism and regional conflicts prevail

:::::::
dominate,

global issues are ignored
::::::::
neglected, and inequality is increasing

:::::::
increases. This scenario has

::::::
involves

:
high challenges to

adaptation and high greenhouse gas emissions. SSP585 portrays a

–
::::::::
SSP5-8.5

::::::::
represents

::
a
::::::
future

::
of

:
fossil-fueled development future where global markets are connected

:::
with

::::::::
globally175

::::::::
connected

:::::::
markets,

:::::
rapid

:::::::::::
technological

::::::::
progress, technological progress is fast, but environmental policiesare weak

:::
and

::::
weak

::::::::::::
environmental

:::::::
policies. This scenario has low challenges to adaptation and

::
but

::::::
results

::
in very high greenhouse gas

emissions. As an additional dataset, we merge the
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:::
For

::::::::::
comparison

:::
and

:::::::::
evaluation

::
of

:::
our

:::::
RCM

:::::::::::
simulations,

:::
we

::::
have

:::::::
selected

:::
two

:::::::::::::
CORDEX-CA

::::::::
evaluation

::::::::::
simulations

:::::
from

::::
other

::::::
models

::::::
driven

::
by

::::::::::
ERAInterim

::
at

:
a
:::::
0.22°

:::::::::
horizontal

:::::::::
resolution:

::
1)

:::::::::::::::::::::::::::::::::
ERAInterim-RMIB-UGent-ALARO-0

:::::::::::::::
(Giot et al., 2016)180

:::
and

::
2)

:::::::::::::::::::::::::::::::
ERAInterim-GERICS-REMO2015

:::::::::::::::::::::::::::::::::::::::::::
(Jacob and Podzun, 1997; Fotso-Nguemo et al., 2017)

:
.

2.1.2
:::::
CNNs

::
In

:::
this

::::::
study,

:::
we

:::::::
develop

:
a
::::::::::
CNN-based

::::::::
emulator

:::
for

:::
the

:::::::
CCLM

:::::
driven

:::
by

:::
the

:::::::::::::::
MPI-ESM1-2-HR

::::::
GCM.

::::
This

:::::
CNN

:::::::
utilises

::::::
outputs

::::
from

:::
the

::::::
GCM,

::::::::
covering

::::
both

:::
the

::::::::
historical

::::::
period

::::
from

:::::
1985

::
to

:::::
2014

:::
and

::::::
future

::::::::
scenarios

::::::::
spanning

::::
2019

:::
to

:::::
2100,

::
as

:::::
inputs

::
to

::::::
model

:::
the

::::::::
responses

::
of

:::
the

:::::::
CCLM,

::::::
which

:::::
serves

::
as

:::
the

::::::
target.

:::::
Given

:::
the

::::
low

::::::
annual

::::::::::
precipitation

::::
and

:::::::::
significant185

:::::::::::::
spatio-temporal

::::::::
variability

::
in
:::::

many
:::::::

regions
::
of

::::
CA,

::
a

::::::::::::
comprehensive

::::::
dataset

::::
that

:::::::
includes

:::::::
various

::::::::::
precipitation

:::::::
patterns

:::::
from

::::
both

::::::
GCMs

:::
and

::::::
RCMs

::
is

:::::::
essential

:::
for

:::::::::
effectively

:::::::
training

:::
the

:::::
CNN

::
to

::::
map

:::::
from

:::::
GCM

::
to

:::::
RCM

:::::::
outputs.

:::
To

:::::::
enhance

::::::
model

:::::::
training,

:::
we

::::
have

:::::::::
augmented

:::
our

:::::::
dataset

::::
with ERA-Interim reanalysis and CCLM simulation

:::
data

:::
and

::::::::::::
corresponding

:::::::
CCLM

:::::::::
simulations

:
driven by it (ERAInterim-CCLM) to our previous data pool of GCM and RCM (see Fig. 1). We then

:::
We train our CNN model based on the architecture proposed by Harder et al. (2023), which can incorporate

::::::::::
incorporates190

physical constraints to ensure mass conservation and energy balance. We evaluate our model in the CA domain. We have to

note that we use not the whole GCM domain as input for the CNN but only the domain covering the CA (Fig. 3).
:::
The

::::::
model

:::::::::
architecture

::::::::
features:

–
::::
Conv

:::::::::::::
(Convolutional

::::::
Layer):

::::::
These

:::::
layers

::::
help

::::::
extract

:::::::
various

:::::
levels

::
of
:::::::

features
:::::

from
::::::::::::
low-resolution

:::::::
images,

::::
such

:::
as

:::::
edges,

:::::::
textures,

::::
and

::::
other

:::::::
relevant

::::::
image

::::::
details.195

–
:::::
ReLU

:::::::::
(Rectified

:::::
Linear

::::::::::
Activation

:::::
Unit):

::::
This

:::::::::
nonlinear

::::::::
activation

::::::::
function

:::::::::
introduces

:::::::::::
non-linearity

:::
and

:::::::
returns

:::
the

::::
input

:::::::::
unchanged

::
if
::
it

::
is

:::::::
positive;

:::::::::
otherwise,

:
it
::::::
returns

:::::
zero.

::::
This

:::::::
function

:::::::
enables

:::
the

:::::::
network

::
to

::::
learn

::::::::
complex

:::::::
patterns

::::::::
efficiently.

:

–
:::::::::
TransConv

::::::::::
(Transposed

::::::::::::
Convolutional

::::::
Layer):

::::
This

:::::
layer

::
is

::::::
crucial

:::
for

:::::::::::
downscaling.

:
It
::::::::

increases
:::
the

::::::
spatial

::::::::::
dimensions

::
of

:::
the

::::::
feature

:::::
maps,

::::::::::
performing

:
a
::::
sort

::
of

::::::
learned

::::::::::::
interpolation.

::::
This

::::::
allows

:::
the

:::::
model

::
to

::::
add

::::::
details

::
to

:::
the

::::::::::
downscaled200

::::::
images

:::::
based

::
on

:::
the

:::::::
features

::::::::
extracted

:::
and

:::::::::
processed

::
in

:::
the

:::::
earlier

::::::
layers.

–
::::::::
ResBlock

::::::::
(Residual

:::::::
Block):

:::::
These

::::::
blocks

:::::
allow

:::
the

::::::
model

::
to

:::::
refine

:::
the

:::::
initial

::::::::::::::
lower-resolution

::::::::::
predictions,

::::::
which

:::
are

:::::::::
downscaled

:::::::::::
(interpolated

:::::::
outputs)

::
to

:
a
::::::
higher

:::::::::
resolution.

::::
They

:::::::
enhance

:::
the

:::::::
model’s

:::::
ability

::
to

::::
add

:::
fine

::::::
details

:::
and

:::::::
textures

:::::::::::::
(high-frequency

:::::::::::
information),

:::::::::
improving

:::
the

::::::::
perceptual

::::::
quality

::::
and

::::::::
sharpness

::
of

:::
the

::::::
images

::
at

:::
the

::::::::
increased

::::::::::
resolution."

205

In the context of deep learning for climate modelling, the ’perfect model’
::::::
"perfect

:::::::
model" approach involves starting with

high-resolution data , which is considered accurate or nearly perfect, and intentionally degrading
::
and

:::::::::::
intentionally

::::::::
upscaling

:
it

to a lower resolution. The
::::::
machine

:::::::
learning

::::::
model

::
is

::::::::::
subsequently

::::::
trained

::
to
:::::::::
reproduce

:::
the

::::::::::::
high-resolution

::::
data

:::::
while

::::::::
receiving

:::
this

:::::::
artificial

::::::::::::
low-resolution

:::::
input.

::::
The aim is to simulate a scenario where the ’truth’

:::::
"truth"

:
(the original high-resolution data)

is known , and then to recover this high-resolution from the artificially degraded datausing deep learning techniques
:::::::
upscaled210
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:::
data. This approach is a crucial part of training, as it teaches the model the desired mapping from low to high resolution,

enabling the model to effectively learn how to upscale
::::::::
downscale

:
or enhance resolution while minimizing

:::::::::
minimising

:
the loss

of critical information. It ’s
::
is a controlled experiment that helps refine the model’s capabilities.

The "imperfect model" approach, on the other hand, acknowledges that both the low-resolution (GCM output) and the high-

resolution (RCM output) datasets have their inherent errors and limitations. In this scenario, we do not have a single source of215

truth but rather two separate sets of data:

– Low-resolution data: This may capture global or large-scale phenomena but miss regional details (Xu et al., 2021;

Chokkavarapu and Mandla, 2019).

– High-resolution data: This provides detailed regional information but may still have errors or not perfectly reflect reality

due to limitations in data collection, model configuration, or computational constraints (Muttaqien et al., 2021).220

In this setup, the challenge for deep learning is to learn a mapping between these
:::::
CNN’s

::::::::
challenge

::
is

:::::::
learning

::
to

::::
map

:::::::
between

two independently imperfect data sets. With using the CNN we try to train a model that can
:::::::
datasets.

::::
The

:::::
CNN

:
is
:::::::

trained
::
to

predict high-resolution details from low-resolution inputs as accurately as possible despite the absence of a perfect ground

truth. This
::::::
process involves understanding and modeling

::::::::
modelling the uncertainties and biases inherent in both datasets.

Many regions of CA receive low precipitation throughout the year and the spatio-temporal variability of precipitation is225

large. One needs a large dataset of GCM output and the corresponding RCM with various precipitation patterns for training a

CNN to find an RCM emulator that captures the mapping from GCM to RCM.

First, the daily datasets are shuffled randomly. We then have used a total number of 68141
::::
Prior

::
to

:::::::
training,

:::
the

:::::::
dataset

:::
was

::::::::
randomly

:::::::
shuffled

::
at
:::
the

::::
pair

::::
level

::
to
::::::
ensure

::::
that

::::
each

:::::
GCM

:::::
input

:::
and

:::
its

::::::::::::
corresponding

:::::
RCM

:::::
output

::::::::
remained

::::::::
together,

::::::::
preserving

:::
the

::::::::
intrinsic

::::::::::
relationships

::::::::
between

:::
the

:::::
coarse

::::
and

::::::::::::
fine-resolution

:::::
data.

::::
This

::::::::
approach

:::::::
prevents

::::::::
temporal

::
or

::::::
spatial230

::::::::::::
autocorrelation

:::::
from

::::::
biasing

:::
the

:::::::
training

:::::::
process.

::
It
::::
also

::::::::
improves

:::
the

:::::::
model’s

::::::::::::
generalisation

:::
and

:::::::::::
performance

:::
by

::::::::
exposing

:
it
::
to

:::::::
various

:::::::::
conditions.

::::
For

:::
the

::::::
dataset

::::::::::
distribution,

::::::
68,141

:::::
days (60%)

::
%)

::
of
::::::

RCM
:::::::::
simulation

::::
data

::::
were

::::
used

:::
for

::::::::
training,

::
22,22714

:::
714

::::
days

:
(20%) and 22714

:::
%)

:::
for

:::::::::
validation,

:::
and

::::::
22,714

::::
days

:
(20%) RCM simulation days for training, validation

and testing, respectively
:::
%)

:::
for

::::::
testing. The low-resolution (GCM) and

:::::
dataset

:::::::
consists

::
of

:::
30

::
×

:::
60

:::
grid

::::::
points,

::::
and

:::
the

:
high-

resolution (RCM) datasets have 30 × 60 and
:::::
dataset

:::::::::
comprises

:
120 × 240 grid points over latitudes and longitudes, re-235

spectively. Therefore, the
:
,
::::::::
resulting

::
in

:
a
:

downscaling factor (N) is 4 in this case. For a complete explanation of the CNN

architecture, we refer to the work of Harder et al. (2023) and the corresponding Zenodo repository at (last visited on 21st of

June 2023).
:
of
::
4.
:

Figure 2 shows the schematic of the standard CNN (without constraint layers) architecture used for two times up-sampling

in this study. We briefly explain the steps shown in the schematic:240

– Conv (Convolutional Layer): Initially, these layers help in extracting various levels of features from the low-resolution

images, such as edges, textures, and other relevant image details.
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– ReLU (Rectified Linear Activation Unit): This non-linear activation function is a key player in our model’s learning

process. It introduces non-linearity, outputting the input directly if it’s positive; otherwise, it outputs zero. This intriguing

function helps the network learn complex patterns efficiently.245

– TransConv (Transposed Convolutional Layer): This layer is crucial for the task of upscaling. It increases the spatial

dimensions of the feature maps, performing a sort of learned interpolation. This reassures us about the model’s ability to

add details to the upscaled images based on the features extracted and processed in the earlier layers.

– ResBlock (Residual Block): They allow the model to learn corrections (or residuals) to the primary interpolated outputs,

refining the details and adding high-frequency information that enhances the perceptual quality of the upscaled images.250

Adding original input features (from earlier layers) to the output of several convolutional layers ensures that no critical

information is lost during processing.

2.1.3 Constraint layers

We test the CNN with three different constraining methods in the last CNN layer : 1-
::::::::::::::::
(Harder et al., 2023)

:
:
::
1) soft constraining

(SCL), 2-
::
2) hard constraining (HCL) and 3-

::
3) without constraining (NoCL). For a detailed information on the settings used we255

refer to the work of Harder et al. (2023). In the following, we explain briefly the three different constraining methodologies. The

set-up
:::::
setup of constraining is as following

::::::
follows: consider a factor N for downscaling in all linear directions and let n :=N2

and yi, i= 1, ...,n be the high-resolution patch values that correspond to low-resolution pixel x. The mass conservation law

has the following form:

1

n

n∑
i=1

yi = x. (1)260

Hard constraining: it uses the SoftMaxconstraining, which is a constraining for ,
::::::
which

:::::::::
constrains quantities like water

content . It enforces
::
by

::::::::
enforcing

:
the output to be non-negative. For constraining the predicted quantities, we use a SoftMax

operator
:::
The

:::::::
simplest

::::
way

::
to

::::::
ensure

::::
mass

:::::::::::
conservation

::::::
would

::
be

::
to

:::::
scale

::
all

::::::::::
small-scale

:::::
values

::::::
within

:
a
:::::
given

:::::::::
large-scale

::::
grid

:::
cell

::::
with

:::
the

::::
ratio

:::
of

:::
the

:::::::::
large-scale

:::::
value

:::
and

:::
the

::::
sum

::
of

:::
the

::::::::::
small-scale

::::::
values.

::::::::
However,

:::::::::::::::::
Harder et al. (2022)

:::::::::::
demonstrated

:::
that

:::::::::
employing

:::
the

::::::::
SoftMax

:::::::::
constraints

:::::
layer

:::::
gives

:::::
better

::::::
results.

::::
The

::::::::::
exponential

:::::::
ensures

:::::::
positive

:::::::::
predictions

::::
and

:::::
leads

::
to265

::::
more

::::::::
variance

:::::::
between

::::::::
subpixels

:::
in

:::
the

::::::::::::
super-resolved

:::::::::
prediction.

::::
The

::::::::::::
multiplicative

::::::::
rescaling

::::::::
struggles

:::::
when

:::
the

::::
sum

:::
of

::
the

::::::::::
small-scale

::::::
values

::::
gets

::::
close

:::
to

::::
zero.

:::::::::
Therefore,

:::
the

::::::::
SoftMax

:::::::
operator

::
is
:::::

used on the intermediate outputs of the neural

networks
::::
CNN

:
before the constraining layer (ỹi) and multiply it with

::::::::
multiplies

:
it
:::
by the corresponding input pixel value x:

yi = exp(ỹj) ·
x

1
n

∑n
i=1 exp(ỹi)

. (2)
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yi is the final output after applying the constraints. We have used the mean absolute error (MAE) as the loss function .
::::
(Eq.270

::
5).

:

Soft constraining: This is done by adding a regularization
:::::::::::
regularisation

:
term to the loss function. The MAE loss

::
is then

extended with an additional constraint violation (CV) loss termto:

Loss = (1−α) ·MAE+α ·CV, (3)

where
::::::
Where CV is the constraint violation, which is the mean-squared error over all constraint violations between an input275

pixel x and the super-pixel (high-resolution grid-cell) yi:

CV = MSE(
1

n

n∑
i=1

yi,x) (4)

We use the α= 0.99in this study.

Without constraining: In this setup
:
, we remove the constraining layer after the last convolutional layer in the CNN.

The constraint layers are applied at the end of the CNN architecture, and all satisfy the criteria that the resulting high-resolution280

patch conserves the values in low-resolution pixels. The performance of the different settings is assessed through the MAE.

We use the mean absolute error (MAE) as the loss function. We use
:::
We

:::
use

:
160 epochs, with

::::
using

:
a batch size of 64 and

a learning rate of 0.001 for training with HCL and NoCL ; and 0.00001 for SCL. Training takes 15 hours on an NVIDIA

Corporation Graphics Ampere 104 [GeForce Ray Tracing Texel eXtreme (RTX) 3060 Ti Lite
:::::
Ti-Lite

:
Hash Rate] graphics

processing unit (GPU). We use the same model set-up
::::
setup as in Harder et al. (2023), and the computational cost of the CNN285

is very high, therefore, we did not conduct any cross-validation in this study.

We must
::
It

:
is
::::::::
important

::
to
:
note that the MAE can be used as both

::::
serve

::::
both

::
as

:
a loss function and an evaluation metric. A loss

function
::
As

:
a
::::
loss

::::::::
function,

:
it
:
is used during training to optimize

:::::::
optimise

:
the neural networkparameters, while

:
’s

::::::::::
parameters.

:::::::::
Conversely,

:::::
when

:::::
used

::
as an evaluation metric,

::
it
:
is calculated on the validation or test data set to evaluate the modelon

:::
sets

::
to

:::::
assess

:::
the

:::::::
model’s

:::::::::::
performance

::::
using

:
an independent dataset. Those are two different use cases, but both can use an MAE290

::::::
Despite

::::
their

::::::::
different

::::::::::
applications,

:::::
MAE

::
is

:::::::
suitable

:::
for

::::
both

::::
roles.

2.2 Evaluation and testing

According to Ciarlo et al. (2021), the choice of observational data significantly influences the added value calculation
:::
can

::::::::::
significantly

::::::::
influence

:::
the

::::::::
perceived

:::::
added

:::::
value

:
of an RCM, as well as the extreme eventsdetection. To reduce these issues,

they recommended to use observations with a resolution
:::::::::
particularly

::
in

::::::::
detecting

::::::
extreme

::::::
events,

::::::
where

::::::::::
poor-quality

::::
data

:::::
might295

::::::::::
misleadingly

:::::::
suggest

::::::::
improved

:::::
model

:::::::::::
performance.

:::::
They

::::::::::
recommend

::::
using

:::::::::::
observations

::::
with

::::::::::::
spatiotemporal

:::::::::
resolutions

:
com-

parable to the one of the model. Therefore, for assessing the added value of CCLM with respect to the driving GCM
:::::::
model’s

::
for

::::::::
enhanced

::::::::
accuracy.

::
In

::::
line

::::
with

:::
this, we use the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS

10



)
:::::::
CHIRPS

:
as our gridded observation . CHIRPS has

:
to

::::::
assess

:::
the

:::::
added

:::::
value

::
of

::::
the

::::::
CCLM

::::::
driven

::
by

:::
the

::::::
GCM.

::::::::
CHIRPS

:::::::
provides

:
a resolution of 0.05°and covers the area between ,

::::::
covers

:::::::
latitudes

:::::
from

:
50°S-50

:
S
:::

to
::
50°N. CHIRPS is based on300

:
,
:::
and

:::::
offers

:::::::::::
independent

::::::::::
observations

:::::::
derived

::::
from

:
satellite information and station data, and, in contrast to

:
.
::::
This

::::::::
contrasts

::::
with reanalysis data, it is independent of

:::::
which

::::::
depend

::
on

:
climate model simulations . Therefore, CHIRPS could be an excellent

alternative to similar but not identical coarse datasets like Global Precipitation Climatology Centre (GPCC) (Becker et al., 2013)

for data-sparse regions with convective rainfall (Funk et al., 2015).

For testing the CNN methods, instead of CHIRPS, we use the corresponding CCLM simulation (
:::::::::::::::
(Funk et al., 2015).

::::
We305

::::::
allocate

:
20% of the data, as mentioned above) as our target . We calculate the metrics on the CNN and

::::::
CCLM

:::::::::
simulation

:::
data

:::
as

:::
the

:::::
target

::
to

:::::::
evaluate

:::
our

:::::
CNN

::::::::
emulator

::::::
instead

::
of

:::::
using

::::::::
CHIRPS

:::::::
directly.

:::
We

:::::::
measure

:::
the

::::::
added

:::::
value

::
of

:::
the

:::::
CNN

::
by

:::::::::
comparing

:::
the

:::::
MAE

::
of

::::
both

:::
the

:::::
CNN

:::::::
outputs

:::
and

:::
the

:
interpolated GCM outputs with respect to

:::::
against

:::
the

:::::
target

:
CCLM

output.

::::
This

:::::::::
comparison

:::::::
assesses

:::::::
whether

:::
the

:::::
CNN

::::::::::
outperforms

::::::
simple

:::::::::::
interpolation.

:
The selected GCM , RCM and observational310

data are interpolated onto the RCM grid using the distance-weighted average method. Interpolation of the coarser grid to a

higher resolution
::::::::::::::::
Ciarlo et al. (2021)

::::::::
previously

::::::
noted

:::
that

::::
such

:::::::::::
interpolation

:
might create unrealistic values. This issue was

discussed in the work of Ciarlo et al. (2021). Usually, the interpolation
:
,
::
as

::
it does not account for the physical processes and

constraints that govern the original data, the statistical properties (like mean, variance and skewness) are not preserved, and it

introduces artefacts and errors that depend on the choice of
:::::
could

::::::::
introduce

:::::::
artefacts

:::::::::
depending

:::
on

:::
the interpolation method,315

the spatial distribution of the data points
:::
data

::::::
points,

:
and the resolution ratio. Therefore, dynamical/statistical downscaling is

used to increase the resolution of the climate data, and we use simple interpolation as a baselinein our study.

Since precipitation
:
,
:::::::::
recognising

:::
its

:::::::::
limitations

::
in

:::::::::
preserving

:::
the

::::::::
statistical

::::::::
properties

::
of

:::::::::::
precipitation,

::::::
which does not follow

a normal distribution, following Hodson (2022), we use
:
.
::::::::
Following

:::::::::::::
(Hodson, 2022)

:
,
:::
we

::::
apply

:
the MAE to explore the bias of

the
:::::::
quantify

:::
the

:::::
biases

::
in emulated and dynamically downscaled precipitation (F

::
F ) against observations (O

::
O):320

MAE =
1

T

T∑
t=1

|Ft −Ot| (5)

where
:::::
Where

:
T is equal to

::::::::
represents

:
the number of time steps . We quantify the

::::
over

:::
30

::::
years

:::
of

::::
daily

:::::
data.

:::
We

::::::
define

added value (AV) as the ability of the downscaling approach to decrease the MAE of the driving GCMwhen calculated against

the reference dataset (CHIRPS or target CCLM simulation), i.e.
::::::::
reduction

::
in

:::::
MAE

:::::::
achieved

:::
by

:::
the

::::::::::
downscaling

:::::::
relative

::
to

:::
the

::::::
driving

:::::
GCM:325

AV = MAEGCM −MAECCLM (6)

where
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:::::
Where

:
MAEGCM and MAECCLM are the differences of

::::::
between

:
interpolated GCM and RCM with respect to the reference

dataset.

As an additional metric,
:
we also use the climatological bias, i.e., the difference between the model and observations:330

BIAS = PRMODEL −PROBS (7)

3 Results

Figure 3.a shows
:::::::
illustrates

:
the topography of the CORDEX-CA simulation domain. Figure 1.b presents

:::::::
displays the mean

daily precipitationaveraged over all years
:
,
::::::::
averaged

::::
over

::
the

:::::
years

:::::::::
1985-2014

:
(mm/day)as ,

:
derived from CHIRPS datafor the

period 1985-2014. The regions with the highest values of precipitation are the mountainous areas of CA. Additionally, also
:
,335

:::::::::
particularly

:::::::
notable

::
in the Asian summer monsoon region north of India and along the Himalayas in the southeastern part of

the domainpresent pronounced precipitation values ,
::::::
where

::::::::::
precipitation

::::::
values

:::
are

::::::::::
pronounced. Figure 3.c shows

::::::
depicts the

distribution of the WorldClim weather stations (Fick and Hijmans, 2017) over CA, representing
:::::
across

::::
CA,

::::::
serving

::
as

:
a proxy

for the density of the station data used in the CHIRPS dataset. Over
:::::::::::
Observational

::::
data

:::
are

:::::::
sparsely

:::::::::
distributed

::
in East China,

especially over the Tibetan Plateau, the observation data distribution is sparse. The
:
.
:::::::::::
Consequently,

:
data-model comparison is340

considered unreliable over
::::::::::
comparisons

:::
are

::::::::::
considered

::::::::
unreliable

:::
in this region (Randall et al., 2007; Cui et al., 2021; Yan

et al., 2020; Russo et al., 2019).

3.1 Added value of CCLM driven by ERAInterim

To characterize

::
To

::::::::::
characterise

:
the overall performance of the CCLM model in

:::::
across

:
time and space, Figures 4 and 5 show the maps of345

::::::
present

:::::
maps

::::::::
displaying

:
annual, winter (DJF), and summer (JJA) MAE and mean biasesof precipitation between interpolated

ERAInterim and CCLM
:
.
:::::
These

::::::
biases

::
in

::::::::::
precipitation

:::
are

:::::::::
calculated

:::::::
between

:::
the

:::::::::::
interpolated

::::::::::
ERAInterim

::::
data

:::
and

:::::::
CCLM

::::::
outputs

:
driven by ERAInterim , calculated over

::
for

:
the period 1985-2014with respect ,

:::
in

::::::::::
comparison to CHIRPS (

::
see

:
Eq.

5 and Eq. 6). Figures 4.a-c show the MAE of ERAInterim with respect to CHIRPS
:::::::
illustrate

:::
the

:::::
MAE

:::
for

:::::::::::
ERAInterim for

annual, winter,
:
and summer averages. The added value of the CCLM RCM compared to the interpolated ERAInterim GCM350

are shown
:
is

:::::::
depicted

:
in Figures 4.d-f.

:::::
During

:::
the

::::::
Asian

:::::::
summer

::::::::
monsoon,

:
CCLM’s MAE is high during the Asian summer

monsoon, over the South and Southeast
:::
over

:::
the

:::::
south

::::
and

::::::::
southeast of the domain (regions in magenta). During winter, the

MAE
:
,
:::::::
whereas

:
it
:
is generally lower . CCLM presents a MAE reduction for

:::::
during

::::::
winter.

:::::::
CCLM

:::::
shows

:::
an

:::::
MAE

::::::::
reduction

::
in

:::
the mountainous areas of Afghanistan, Kyrgizstan and Tajikistanand an increase of MAE near the boundaries: South of the

domain
::::::::::
Kyrgyzstan,

:::
and

:::::::::
Tajikistan,

::
as

::::
well

:::
as

::
an

:::::::
increase

::::
near

:::
the

::::::::
domain’s

::::::::
southern

:::::::::
boundaries

:
throughout the year , South355

and Southeast during the
:::
and

::
in

:::
the

:::::
south

:::
and

::::::::
southeast

::::::
during

:
summer.

Added values
:::
The

::::
AVs of GERICS-REMO2015 and RMIB-UGent-ALARO-0 driven by ERAInterim are shown in Figure

::::::::
presented

::
in

:::::::
Figures

:
4.g-lrespectively. The CHIRPS dataset is again used ,

:::::
using

::::::::
CHIRPS

:
as the observational datasetO.
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The added value of RCM is the most pronounced over
:::
most

:::::::::::
pronounced

::
in areas with complex topographyand ,

:
especially

during summer, for all three RCMS considered
:::::
across

:::
all

:::::
three

::::::
RCMs

:
(Figs.4.d-l). Areas where the RCM has

:
a
:
smaller360

MAE than the reanalysis with respect
:
in
:::::::::::

comparison to observations are located
:::::
found over Tajikistan, Kyrgyzstan, North

of Afghanistan
:::::::
northern

:::::::::::
Afghanistan,

:
and part of the Himalayas. Mountain areas of Tajikistan and Kyrgyzstan are the main

source of water for the
:::::::
—regions

::::
that

:::
are

::::::
crucial

:::::
water

::::::
sources

:::
for

:
former Soviet Union countries. However

::::::::::
Nevertheless, pre-

cipitation during the colder seasons might be of more importance
::::
may

::
be

:::::
more

::::::
critical

:
for water availability. The annual AV

patterns still show positive values over those areas
:
in
:::::
these

::::::
regions

:
(Figure 4.d,g,

:
and j). Considering the whole

::::::
Across

:::
the

:::::
entire365

domain, all three RCMs sensibly
::::::::::
significantly reduce the large and local-scale bias of ERAInterimagainst CHIRPS, especially

for
:
,
::::::::
especially

:::
in complex topographies. The nested RCMs show similar values of

::::::
exhibit

::::::
similar

:
MAE

:::::
values

:
near their

lateral boundaries, with respect
::::::
relative to their driving model (Figure 4, a,b,c). Therefore

::::
Thus, negative AV quantities might

originate from the boundary effect, especially near the east
::::
may

:::::
result

::::
from

::::::::
boundary

:::::::
effects,

:::::::::
particularly

::::
near

:::
the

::::::
eastern

:
and

southeastern boundaries , where the monsoonal precipitation is dominant
:::::
where

::::::::::
monsoonal

::::::::::
precipitation

:::::::::
dominates. GERICS-370

REMO2015 shows
::::::
displays

:
pronounced negative added values for annual and

:::::::
annually

:::
and

::::::
during winter above Tibet.

As an additional check, we also show the bias in the climatologies of models in figures
:::::::::::
Additionally,

::::::
model

::::::::::
climatology

:::::
biases

:::
are

::::::::
displayed

::
in

:::::::
Figures 5. Once againthe biases are pronounced on the right bottom

:
,
:::::
these

:::::
biases

:::
are

:::::::::
noticeable

::
in

:::
the

:::::
lower

::::
right corner of the domain during the JJA and south

:::
JJA

:::
and

::::::
across

::
the

::::::::
southern Tibetan Plateau throughout the year.

3.1.1 Extreme precipitation patterns in CCLM and CMIP6 GCMs375

Given that the CCLM simulation has shown some
:::::::::::
demonstrated

:
added value for precipitation over mountainous areas

:::
the

::::::::::
mountainous

:::::::
regions

:
of CA, we explore climate change signals in its high-resolution output. The resulting

:::::
These

:
high-

resolution maps might have biases inherited
:::
may

::::::
inherit

:::::
biases

:
from the GCM-RCM selection

:::
and

:::::
could

::::
vary

:::::
under

::::::::
different

:::::::::::
anthropogenic

::::::::
forcings. We assume that many model biases remain conserved among the

::
are

:::::::::
consistent

:::::
across

:
different time

slices and, therefore, can be removed when calculating the changes between the historical
:::::
period

:
(1985-2014) and future380

periods (2070-2099).

We present the resulting climate change trends in CCLM and the CMIP6 GCMs ensemble statistics (ensemble mean and

standard deviation). We analyzed
:::::::
analysed 31, 33

:
, and 38 models for SSP126, SSP370,

:
and SSP585 scenarios,

:::::::::::
respectively,

with a total number of simulations of
:
of

:
158, 185, and 242 , respectively

:::::::::
simulations

:
(see Supplementary materials for the list of

models usedin this study). To give the same weight to individual models, we first calculate the statistics over all the members of385

each modeland then build
:
).

:::
We

::::::::
calculate

:::::::
statistics

::::
over

::::
each

:::::::
model’s

:::::::
members

::
to
::::::
ensure

:::::
equal

::::::::
weighting

:::
for

:::::::::
individual

::::::
models

:::::
before

:::::::
building

:
the final statistics. We have chosen the yearly 99th

:::::::
selected

:::
the

:::::
yearly

::::
99th

:
percentile of daily precipitation

(PR99hereafter), which considers
:::::::
accounts

:::
for the three days of the year with the highest precipitation . We also

:::
each

:::::
year.

::::::::::
Additionally,

:::
we

:
chose the number of very heavy precipitation days in

:::::
during

:
the period (ECA_RX20mm) as a different index,

one of several precipitation-related indices used to monitor and analyze climate variability and change. For example, this index390

is often
:::::::::::::
ECA-RX20mm)

::
as

:::::::
another

:::::
index,

::::::
which

::
is

:::::::::
commonly

:
used in climate research to assess the impacts of very heavy

precipitation events on water resources, agriculture, and natural ecosystems (Klok and Klein Tank, 2008). Figure 6 presents
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:::::
Figure

::
6

:::::
shows

:
the changes in averaged PR99 at the end of the century (2070-2099) with respect

::::::::
compared to the historical

period (1985-2014) for CCLM (a,dand ,g) and CMIP6 GCMs (b,eand
:
,h) under different scenarios. The downscaling signals

indicate that those characteristics depend on the scenario and time period. The large-scale patterns remain the same among395

all three selected scenarioswith intensification when the anthropogenic influenceincreases
::::::::
consistent

:::::
across

:::
all

::::
three

:::::::::
scenarios,

::::::::::
intensifying

::::
with

::::::::
increased

:::::::::::
anthropogenic

::::::::
influence. The standard deviation of the models’ ensemble is shown

:::::::
depicted in Fig-

ures 6.c,fand i. According to our analysis , ,
::
i.
::::
Our

:::::::
analysis

:::::::
indicates

::::
that the Himalayas, especially

::::::::::
particularly Nepal, North

India, and Bhutan, have
::::::
exhibit the highest uncertainty among the GCMs and in all scenarios. Except for this area

:::::
region and the

eastern boundary of the domain, the standard deviation remains under
:::::
below 3 mm/day. Under the pessimistic SSP585 and the400

regional rivalry SSP370 scenarios, areas with more than 9 mm/day increase in PR99 for CCLM over
::::::
regions

::::::::
including North-

west India, North Pakistan, North Iran, Southwest of Iranexist and
:::
and

:::::::::
Southwest

::::
Iran,

:::
and

:::
the

:
South and Southeast of Black

Sea
::
the

:::::
Black

::::
Sea

::
are

::::::::
projected

::
to

:::::::::
experience

::::::::
increases

::
in

:::::
PR99

:::::
values

:::::::::
exceeding

:
9
:::::::
mm/day. A reduction pattern is detected East

of the Mediterranean Sea in
::::
PR99

::
is

:::::::
detected

::
in

:::
the

::::::
eastern

:::::::::::::
Mediterranean,

:::::::::
specifically

::
in

:
Jordan, Syria, and South of

:::::::
southern

Turkey. Similar patterns are also observed in the CMIP6 ensemble mean. However, due to the ,
::::

but
:::
due

::
to
:

averaging, the405

GCMs’ ensemble mean patterns are around ±
::::::::::::
approximately

::
±5 mm/day over those

:::::
these areas. Under the SSP126 scenario,

which agrees
:
is
:::::::
aligned with the 2°C

:::::::
warming

:
target, the increasing patterns of more than ±

::::::::
previously

::::::::
observed

::::::::
increases

::
in

::::::::::
precipitation

:::::::::
exceeding

::
±9 mm/day for CCLM and ±

::
±5 mm/day for GCMs disappeared

:::
are

::
no

::::::
longer

::::::
evident. In CA, areas of

increased PR99 over
:::
such

:::
as Kyrgyzstan, Tajikistan, North of Pakistan

:::::::
northern

:::::::
Pakistan,

::::
and

:::::::::::
southwestern

:::
Iran

:::
are

::::::::::
particularly

::::::::
vulnerable

:::
to

:::::::::::::
rainfall-induced

:::::::
hazards,

:::::::::
including

::::::::
landslides

:::::::::::::::::::::::::::::::::::::
(Wang et al., 2021; Kirschbaum et al., 2010) and Southwest Iran410

are regions with a considerable risk of rainfall-triggered events like landslides (Wang et al., 2021; Kirschbaum et al., 2010)

and floods (for example,
:::
e.g.,

:::
the

:
Pakistan floods of 2010 and 2022).

Figures 7.1, dand g show the ECA_RX20mm ,
::::
and

:
g
::::::::
illustrate

:::
the

:::::::::::::
ECA-RX20mm values for CCLM for the three scenarios

at the end of the century . The patterns are like those shown
:::::
across

::::
three

:::::::::
scenarios.

::::
The

:::::::
observed

:::::::
patterns

:::::
align

::::
with

:::::
those in

Figure 6, indicating that the number (frequency )
::::::::::
underscoring

:::
an

:::::::
increase

::
in

::
the

:::::::::
frequency of very heavy precipitation daysalso415

increases with an enhanced anthropogenic influence, particularly ,
::::::::::
particularly

:::::::
marked

:
over the Tibetan Plateau. From ,

:::
as

:::::::::::
anthropogenic

:::::::::
influences

::::::::
intensify.

::::::::
Similarly,

:
Figures 7.b, eand h, we conclude ,

::::
and

:
h
::::::
reveal that the CMIP6 GCM ensemble

also presents a very similar behavior to CCLM. The
::::::
mirrors

:::
the

::::::::
behaviour

::::::::
observed

::
in

:::::::
CCLM.

::::::::
However,

:::
the ensemble standard

deviations , however, increase
::
for

:::::::::::::
ECA-RX20mm

::::::
values

:::
rise

:
over Tajikistan and Kyrgyzstanfor ECA_RX20mm values (,

:::
as

:::::
shown

::
in

:
Figures 7.c, fand i). The increased

:
,
:::
and

::
i.

:::
The

:::::::
growing

:
frequency and intensity of extreme precipitation over elevated420

areas of CA due to anthropogenic forcing is alerting (Fallah et al., 2023). The presented CCLM simulation contributes to study

the sensitivity of dynamical downscaling
:::::
events

::::
over

:::
the

:::::::
elevated

::::::
regions

::
of
:::::::
Central

:::::
Asia,

:::::
driven

::
by

::::::::::::
anthropogenic

:::::::
factors,

:::
are

:
a
:::::
cause

:::
for

::::::
concern

:::::::::::::::::
(Fallah et al., 2023).

::::
This

::::::
CCLM

:::::::::
simulation

::::::::
enhances

:::
our

::::::::::::
understanding

::
of

::::
how

:::::::::
dynamical

::::::::::::
downscaling’s

::::::::
sensitivity

:
to different levels of anthropogenic forcing at the local scale. This information might be of interest for the scientific

community working on the impact of climate change in CA.
::
can

::::
vary

:::::::
locally.425
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4 CCLM emulator using a CNN

We have shown that the dynamical downscaling added value to explore the local effects of climate change during the historical

period, especially over areas with enhanced topographical forcings. Here
:::::::::::
demonstrated

:::
that

:::::::::
dynamical

:::::::::::
downscaling

::::
adds

::::::::
significant

::::
value

::
in

::::::::
capturing

:::::
local

::::::
climate

::::::
change

::::::
effects,

::::::::::
particularly

::::
over

::::
areas

:::::::::
influenced

:::
by

:::::::
complex

::::::::::
topography.

::
In

:::
this

:::::
study, we cre-

ate an emulator of CCLM
:
a
::::::
CCLM

::::::::
emulator for precipitation over CA. As explained previously

:::::::::
previously

::::::::
explained, a CNN430

could be trained on our GCM-RCM chain and be applied
::::
could

:::::
serve as a fastand computationally cheap downscaling method.

However, the skill of such a model must be explored and verified
:
,
:::::::::::
cost-effective

:::::::::::
downscaling

:::::::
method,

::::::
though

::
its

:::::::
efficacy

:::::
needs

::
to

::
be

:::::::::
rigorously

:::::::
assessed.

Here we want to demonstrate that the emulator is better at downscaling than a
::
We

::::
aim

:::
to

:::::::
establish

::::
that

::::
this

::::::::
emulator

::::::::::
outperforms

:
simple interpolation, especially for areas receiving extreme precipitationvalues. More specifically, our goal is435

:::::::::
particularly

::
in

:::::
areas

::::::::::
experiencing

:::::::
extreme

:::::::::::
precipitation.

:::
We

::::
aim to show that the CCLM emulator can produce

:::::::
replicate CCLM-

like patterns when fed
::::::::::
precipitation

:::::::
patterns

:::::
when

::::::
driven by the parent GCM.

For the CNN approach, we focus
::::::::
Focusing on the CA domaincovering only ,

::::::
which

:::::::::::
encompasses the former Soviet Union

countries (Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan)and not the ,
:::
we

:::::::
exclude

:::
the

::::::
broader

:
CORDEX-

CA domain previously shown in Figure 3. This domain is the region of interest in the Green Central Asia project https:440

//www.greencentralasia.org/en, which is financed by the German Foreign office
:::::
Office

:::::::
finances. Figure 8.a shows

::::::::
illustrates the

MAE of the interpolated MPI-ESM1-2-HR,
:
using the CCLM driven by it from the test dataset as the "true" precipitation. As

can be seen, CCLM produces different precipitation values compared to its driving GCM, especially over regions
:::::
output

:::
as

::
the

:::::
’true’

::::::::::::
precipitation.

::::::
CCLM

::::::::
generates

::::::
distinct

:::::::::::
precipitation

::::::::
patterns,

:::::::::
particularly

::
in
:::::

areas
:
with complex topography. Here,

we assume that the CCLM is
::::::::
Assuming

::::::
CCLM

:::
as the ground truthand check if ,

:::
we

::::::::
examine

:::::::
whether the CNN can produce445

it
:::::::
replicate

:::::
these

::::::
outputs

:
using the GCM as inputdata. To evaluate the performance of the emulator, we show the maps of

added value
:
.
:::
To

:::::
assess

:::
the

:::::::::
emulator’s

::::::::::::
effectiveness,

:::
we

::::::
present

::::::
added

:::::
value

:::::
maps

:::::::
(relative

::
to

:::
the

::::::
parent

::::::
GCM) in Figures

8.b-d. Comparison
:
A
::::::::::

comparison
:

of MAE reduction maps shows
::::::
reveals

:
that the unconstrained CNN produces significant

skills
::::::::::
demonstrates

:::::::::
significant

::::
skill

:
over elevated regions of CAand the constrained runs do not present considrable patterns of

:
,
:::::::
whereas

:::::::::
constrained

::::
runs

:::::
show

::::
less

:::::::::
noticeable

::::::
pattern changes. For example, there are areas of

:::::::
instance,

:::
the

:::::
HCL

:::
and

:::::
SCL450

::::::::
emulators

:::::::
generate

:::::::
closely

:::::::
mingled

:
negative and positive added values remarkably close together over elevated areasof CA

created by HCL and SCL emulators. NoCL, in contrast, shows systematic positive values over large parts of
:::::
across

:::::::
elevated

:::::
areas,

:::::
while

:::::
NoCL

::::::::::
consistently

:::::::
exhibits

:::::::
positive

::::::
values

:::::
across

:
the domain. There are several artifacts

::::::
Several

::::::::
artefacts in the

MAE reduction maps of constrained models, especially over North of India, which represent the GCM grid shape. We produce

the
:::::::::
particularly

::::
over

::::::::
northern

:::::
India,

::::::
reflect

:::
the

:::::
shape

::
of

:::
the

:::::
GCM

:::::
grid.

:::
We

::::
also

:::::::
produce boxplots of daily precipitation over455

::
for

:
the CA domain covering the former soviet union to explore the improvement in the distributions

:
to

:::::::
explore

::::::::::
distribution

:::::::::::
improvements

:
(Figure 9). The correlation coefficients between the

::::::::::
Correlation

:::::::::
coefficients

::::::::
between

:
time-series of average

precipitation over the domain with respect to CCLM are also
:::::::
averages

::
of

:::::::::::
precipitation

::::::
across

:::
the

::::::
domain

::::
and

:::::::
CCLM

:::
are

presented in Figure 9 (values in the parentheses). For the
::::::
Among

:
daily averages, NoCL presents

:::::::
achieves the best performance
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(highest correlation coefficient). However, the values of outliers are smaller than the ones from CCLM and all ,
::::::::
although

::
it460

::::::
records

:::::
fewer

:::::::
outliers

::::
than

::::::
CCLM

:::
and

:
other model simulations. The distribution is more condensed

:::::::::::
concentrated around the

median(smallest interquartile range),
:::::::::
exhibiting

:::
the

::::::::
narrowest

:::::::::::
interquartile

:::::
range. The distribution

::::::
profiles of both constrained

models (HCL, SCL) is like
:::::::
resemble

::::
those

::
of
:
the interpolated GCMone. This was expected, since the constraining conserves the

mass of high-resolution grid-boxes within the corresponding low-resolution grid-box
:
,
::::::::
expected

::::
since

:::
the

:::::::::
constraints

::::::::
maintain

::::
mass

::::::::::
consistency

:::::
within

::::::::::::
corresponding

::::
grid

:::::
boxes

:
(Equation 1).465

4.1 Applying the CNN to a different GCM

We evaluate the emulator’s generalization
:::::::::::
generalisation

:
ability, i.e.the ability to create ,

:::
its

:::::::
capacity

::
to

:::::::
generate

:
reliable pre-

dictions on a new data set
:::
new

:::::::
datasets. We conduct a new 15-year dynamical simulation with CCLM

::::
using

:::::::
CCLM,

:
driven

by the EC-Earth3-Veg (Döscher et al., 2022) GCM under ssp370
::
the

:::::::
SSP370

:::::::
scenario

:
from 2019 to 2033. We use this data

::::
This

:::
data

::::::
serves

:
as input to our CCLM emulator, which was previously trained to emulate CCLM

::::::
outputs using MPI-ESMI-470

2 HRas input GCM. We now use the emulator to reconstruct the local features of CCLM driven by EC-Earth3-Veg. Figure

10.a presents the MAE of the interpolated EC-Earth3-Veg with respect to the dynamical downscaling with CCLM, i.e., the

CCLM simulation driven by EC-Earth3-Veg. The
:
.
::::::::::
Remarkably,

::::
the MAE pattern of EC-Earth3-Veg is remarkably like the

one from
::::::
closely

:::::::
mirrors

:::
that

:::
of

:
MPI-ESM1-2-HR (Figure 8.a). However, the CCLM emulator based on the NoCL CNN

model does not
:::::
NoCL

::::::::
emulator

::::
does

:::
not

:::::::::
uniformly

:
show positive error reduction everywhere in

:::::
across

:
the domain (Figure475

10.b). We chose the NoCL CNN because it showed the best
:::::
NoCL

:::
for

::
its

:::::::
superior

:
performance among the constrained ones.

Training the CNN on the
::::
three

:::::::
CNNs.

:::
The

::::::::
emulator

::::::::
attempts

::
to

:::::::
establish

:::::::::::
relationships

::::::::
between MPI-ESM1-2-HR /CCLM

might have ignored learning processes which overcome considerable biases in the driving GCM. The CCLM emulator tries

to find relations between the MPI-ESM1-2-HR and CCLM, which might
::::
may be specific to these two models and there is no

guarantee that those relationships also
:::::
models

::::
and

:::::
might

:::
not

:::::::::
necessarily

:
apply to the new EC-Earth3-Veg and CCLM driven by480

EC-Earth3-Veg. This new GCM-RCM chain is extremely sensitive to the characteristics of the EC-Earth3-Veg model because,

as we showed
:::::::::::
configuration.

::
As

::::::::::::
demonstrated previously, the RCM state follows

:::::::
depends

::
on

:
the state of its driving GCM. We

note that CCLM is driven at the lateral boundaries by the GCM values for the state variables of CCLM
::::
state

::::::::
variables (tem-

perature, pressure, wind speed
:
, etc.) . Precipitation is not used for driving the RCM. The CNNinput is the GCM precipitation ,

which has different biases in the two GCM, and therefore the mapping from the MPI-ESM1-2-HR-precipitation to the CCLM485

precipitation cannot be successfully transferred to
:::
and

:::
not

:::
by

:::::::::::
precipitation,

:::::
which

::
is

:::
the

::::::
CNN’s

:::::
input.

::::
The

::::::::::
precipitation

::::::
inputs

::::
from

:::
the

:::
two

::::::
GCMs

::::
carry

::::::::
different

::::::
biases,

::::::::::
complicating

:::
the

:::::::
transfer

::
of

:::::::
mapping

:::::
from

::::::::::::::::::::
MPI-ESM1-2-HR-driven

::::::
CCLM

:::::::
outputs

::
to

::::
those

::::::
driven

::
by

:
EC-Earth3-Veg.

Knowing these limitations
::::::
Despite

:::::
these

:::::::::
challenges, the CNN model shows added values of more than

::::::::::
demonstrates

::::::
added

:::::
values

:::::::::
exceeding

:
1 mm/day over

::
in

::::::
regions

:::::
such

::
as

:
the Alborz Mountains and South of the

:::
the

::::::::
southern Caspian Sea in490

the North of Iran (black rectangular
:::::::
northern

:::
Iran

:::::::::::
(highlighted

::
in

:::::
black

:::::::::
rectangles in Figures 10.a and b) and some parts of

Tajikistan and Kyrgyzstan. Exploring the field mean of
:::::::::
Exploration

::
of

:::
the

:
daily precipitation distribution

::::::::
field-mean

:
indicates

that the CNN’s median value and the outliers are lower than both
::::
those

::
of

:
the EC-Earth3-Veg and CCLM simulations (Figure
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10.c). Only the
:::
The

:
day-to-day correlation is being improved. As mentioned before, all model

::
has

:::::::::
improved,

::::::::
although

:::
all

::::::
models were trained on the shuffled dataset and

:
a
:::::::
shuffled

::::::
dataset

::::
that ignored the memory in the time seriesbut here the

:
.495

:::
The

:
trained NoCL model was given

:::::::
provided

:::::
with unshuffled EC-EARTH3-Veg to make new predictions. The correlation

coefficient increases using the NoCL model
::::
data

::
for

::::
new

::::::::::
predictions,

:::::::::
increasing

:::
the

::::::::::
correlation

:::::::::
coefficient from 0.815 (EC-

Earth3-Veg) to 0.844 (NoCL). Over the black rectangular box
:::::::::
highlighted

::::
area

:
in Figure 10.b, the region where the NonCL

model reduces the MAE, i.e.,
:::::
where

:
the

:::::
NoCL

:::::
model

:::::::
reduces

::::::
MAE,

:::
the

:
distribution of precipitation converges to the one

from CCLM(Figure 10.d) and receives the highest amount of precipitation in Iranand supplies water
::::::
towards

::::
that

::
of

:::::::
CCLM,500

:::::::::::
encompassing

:::
the

::::::
region

::::
with

:::
the

:::::::
highest

::::::
rainfall

::
in

::::
Iran,

:::::
vital for a large portion of population in the country, including the

capital city Tehranwith a population of over 10 million people
:::
the

::::::::::
population,

::::::::
including

::::::
Tehran. Only the outliers larger than

20 mm/day are not reconstructed by the NoCL.

As a new test for generalization
:::::
further

::::
test

::
of

::::::::::::
generalisation, we intentionally did not include a scenario (

::::::::
excluded

:::
the

SSP370 ) in
:::::::
scenario

::::
from

:
the training process. This move allowed us to apply the model to a specific simulation and witness505

:::::
assess its ability to reproduce

::::::
handle an unknown forcing. Figure 11 demonstrates the AV of the CNN emulator for SSP370

in comparison to the dynamical downscaling with CCLM, i.e., the CCLM simulation driven by SSP370. The
:::::::
revealing

::::
that

::
the

:
AV pattern is strikingly similar to the one

:::
that shown in Figure 8.d. We conclude

:::
This

::::::::
confirms

:
that the CNN can learn

patterns
:::
and

::::::::
reproduce

:::::::
patterns

:::::
under

::::::::
different

::::::
forcing

::::::::
scenarios

:
it was not trained for, as evidenced by

::::::::
explicitly

::::::
trained

:::
on,

::
as

:::::::::::
demonstrated

::
by

:::
its

::::::::::
performance

::::
with

:
the SSP370 scenario.510

5 Discussion and conclusions

Regional climate change impact assessments require high resolution
:::::::::::::
high-resolution climate projections. The main strategies to

produce such datasets are statistical and dynamical downscaling, as well as a hybrid of the two methods. Statistical downscaling

(SD) usually has limited capability to consider
::::
often

::::::::
struggles

::
to

::::::
account

:::
for the dynamic influences of the complex topography.

The large-scale domain does not reflect the spatial diversity and variation of the local climate and the topography
:::::::
complex515

:::::::::
landscapes,

::::::::
including

::::::::::
topography

::::
and

::::::
varying

:::::::
surface

:::::::::
parameters

::::
such

::
as

::::::::::
vegetation,

:::
soil

::::::
types,

:::
and

:::::
water

::::::
bodies

::::
like

::::
lakes,

which may affect the accuracy of the statistical relationships (Li et al., 2022). For SD
:::::::
statistical

:::::::::::
downscaling

:::::::
methods

:
applied

to precipitation, the observations need to contain detailed information about the precipitation distribution in areas with complex

topography (Lundquist et al., 2019). On the other hand

:::::::::
Conversely, dynamical downscaling requires massive computational time and data storagespace. A

:
.
:::
For

::::::::
example,

:
a
:
30-year520

CCLM simulation driven by ERAInterim took roughly one week to finish
::::::::
complete using 216 processors of the HLRE-4 Lev-

ante computer at the German Climate Computing Center (DKRZ). Additionally, the added value of RCMs is still debatedsince

:
,
::
as they are highly dependent on the driving GCMs.

In this study, we contribute to the few dynamical
:::::::::
contributed

::
to

:::
the

::::::::
dynamic downscaling efforts over the CORDEX-CA

domain,
:::::
taking a small step towards

::::::
creating

:
an RCM ensemble creation for CA. A single RCM simulation can help

::::
helps

:
iden-525

tify model biases and uncertainties that need to be addressed in future model improvements. It is essential to note that relying
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solely on a single model run for CMIP6instead, ,
:::::::
instead of an RCM ensemble, may not provide any a

:
comprehensive under-

standing of the potential climate change impacts on a region. Therefore, it is recommended that researchers conduct multiple

simulations with different initial and boundary conditions and different model configurations to account for the uncertainty

associated with climate projections.530

In a
:::
the first part of the studywe demonstrate ,

:::
we

::::::::::::
demonstrated

:
the added value of RCMs (here we chose to use the

COSMO-CLM/
::::
using

:::
the

:
CCLM model) over GCMs for CA in the representation of

:::::::::
representing

:
precipitation. Our CCLM

run shows
::::::
showed added value with respect to its driving GCM, comparable to the range of values obtained for other RCMs

applied to the CORDEX-CA domain over the evaluation period. It also reproduces extreme precipitation changing patterns like

:::::::::
reproduced

:::::::
extreme

:::::::::::
precipitation

::::::
patterns

::::::
similar

:::
to the CMIP6 ensemble mean at

:::::::::
projections

:::
for the end of the century. Both535

::
the

:
CCLM and CMIP6 ensemble present elevated risk (frequency and intensity

:::::::::
ensembles

:::::::
indicated

:::
an

::::::::
increased

:::
risk

:::
(in

:::::
terms

::
of

:::::::
intensity

::::
and

::::::::
frequency) of heavy precipitation events over vulnerable areas

:
in

:::::::::
vulnerable

:::::::
regions of CA due to different

anthropogenic influences
::::::
various

::::::
human

::::::::
activities.

Our study evaluated the downscaling skill primarily using higher resolution observations, which are critical for capturing

localized climate phenomenarelevant to
::::
using

:::::::::::::
high-resolution

:::::::::::
observations,

::
a
::::::
crucial

::::
step

:::
for

:::::::::
accurately

::::::::
capturing

::::::::
localised540

::::::
climate

::::::::::
phenomena.

:::::
This

:::::::::
evaluation

::::
was

::::::::
essential

::::::
before

::::::
further

:::::
study

:::::
steps

::::
and

:
regional adaptation strategies

::::
could

:::
be

::::::::::
implemented. However, as Volosciuk et al. (2017) noted, examining downscaling outputs at coarser resolutions can be equally

informative. Their work emphasizes
:::::::::
emphasises

:
that downscaling methods can introduce or fail to correct biases that differ

significantly across spatial scales. By evaluating on a coarser grid, it is possible to distinguish between the inherent biases of

the model and those introduced by the downscaling process. This distinction is crucial for understanding the limitations and545

strengths of downscaling methods in representing climatic variables across different scales.

Additionally, acknowledging the computational and memory constraints of running an RCM at high resolution, here we

also show
::
We

:::::::
showed

:
that a single GCM-RCM model chain can

:::::
could be used to train a climate emulator based on a CNN

model. It can learn some
::::::
learned

:
nonlinear and physical relationships between the coarse and fine-resolution datasets. This

can overcome the problem
:
,
:::::::::
addressing

:::
the

:::::
issue

:
of spatial intermittencyseen

:::::::
—where

::::
data

:::::
points

::::
are

::::::::
unevenly

:::::::::
distributed550

::
or

:::::::
missing

:::::
across

::::::::::::::
space—common

:
in some statistical downscaling approaches (Harder et al., 2023). However, we have also

shown
:::
also

:::::::::::
demonstrated

:
that the CNN model has limitations , namely when generalizing

:::
had

:::::::::
limitations

:::::
when

::::::::::
generalising, as

it did not achieve a robust error-reduction pattern
:::::
when given a different GCM as input. The learning process depends strongly

:::::::
strongly

::::::::
depended on the GCM/CCLM relationships. More importantly, an RCM is

::::::
usually forced to follow its driving GCM

and only on local scales can
::
can

:::::
only produce extra information . An application of the presented CCN could be to apply it555

for
::
on

::
a

::::
local

:::::
scale.

::::
The

::::::::
presented

:::::
CNN

:::::
could

:::
be

::::::
applied

::
to
:

other experiments of the same GCM: One could use ,
::::
such

:::
as

::::
using

:
the trained emulator for paleo-climate experiment of the parent GCM to create more than 10,000 years of downscaled

simulation. One can also downscale the
:::::::::
experiments

:::
or

::::::::::
downscaling

:
volcanic forcing experimentsusing the trained emulator.

This will
:
.
::::
This

:::::
would

:
aid the paleo-climate community in conducting proxy-model comparisons at local scales. However,

previous studies have shown that the CNN suffers
:::::::
suffered from the same generalisation problem as when applied to a new560

GCM,
:
and such applications must be tested (Jouvet and Cordonnier, 2023).

18



In an effort to evaluate the model’s generalization capabilities, we
::
We

:
deliberately excluded the SSP370 scenario from the

training dataset
::
to

:::::::
evaluate

:::
the

:::::::
model’s

::::::::::::
generalisation

::::::::::
capabilities

:::
for

:::::
other

::::::::
scenarios

::
of

:::
the

:::::
same

:::::
GCM. This strategy was

implemented
::::::
allowed

:::
us to assess whether the model could effectively infer and replicate patterns from untrained scenarios.

Remarkably, the model’s output for the SSP370 scenario exhibits
:::::::
exhibited

:
an AV pattern that closely mirrors

:::::::
mirrored the565

dynamical downscaling results obtained with the CCLM ,
::
of

:::
the

::::::
CCLM driven by the same SSP370 scenario. This alignment

strongly supports
::::::::
supported

:
the notion that our CNN emulator is not only capable of learning

::::
could

:::::
learn from its training data

but also proficient in generalizing
::
and

:::::::::
generalise

:
to new, unseen conditions. The similarity in AV patterns between the model

output and the CCLM simulation underscores
::::::::::
underscored the robustness and adaptability of our model, affirming its potential

for broader applicative scenarios
:::::::::
applications

:
in climate modelling.570

We note that this work is only a step to demonstrate
:::
This

:::::
work

::::
was

::
an

:::::
initial

::::
step

::
in

::::::::::::
demonstrating

:
the potential of such a

hybrid approach, and we
:
.
:::
We encourage the community to explore different model structures and parameter combinations for

further improvement. For example, our few model set-ups showed that using
:::::
initial

:::::
setups

:::::::
showed

:::
that

:
a physically constrained

CNN set-up,
:::::
setup that applies a linear transformation to the high-resolution image to ensure that the total

:::::
ensure

:
mass or energy

is conserved
:::::::::::
conservation between the low and high-resolution images , did not successfully downscale the precipitation. The575

constraints might not be satisfied in the original dataset and therefore the constrained model set-up did not lead to better

::::::
original

::::::
dataset

::::::
might

:::
not

::::::
satisfy

:::
the

:::::::::
constraints,

:::::::
leading

::
to

:::::::::
suboptimal

:
results. In contrast, with a higher degree of freedom,

the unconstrained CNN produced patterns closer to the target RCM. Alternative
:::::
Future

::::::
studies

:::::
could

:::
test

:::::::::
alternative

:
machine

learning models, such as generative adversarial networks (GANs), which can generate more high-frequency patterns , might

:::
and

:
improve the downscaled pattern, and could be tested in future studies. An additional set-up might be to provide more580

information to
:::::
output.

:::::::::::
Additionally,

::::::::::::
incorporating

::::
more

::::::::::
information

::::
into the CNN by adding characteristics like surface height,

vegetation, land-cover, land-use, etc.
::::
land

:::::
cover,

::::
and

::::
land

:::
use

:
as new channels within the input layer

:::::
could

:::::::
enhance

::::::
model

::::::::::
performance.

Code availability. The code for "Physics-Constrained Deep Learning for Climate Downscaling" is available on Zenodo at the following

DOI: https://zenodo.org/record/8150694. This repository includes the input and output data, trained models, a snapshot of the code used in585

the deep-learning downscaling process, CCLM model setups for all Regional Climate Model (RCM) simulations conducted, and a list of

CMIP6 models used for comparative analysis. Additionally, a Jupyter notebook for executing a test case of the "Physics-Constrained Deep

Learning for Climate Downscaling" is available at Zenodo with the following DOI: https://zenodo.org/record/10417111.

Appendix A: CNN runs

We used the following commands for training the CNN model based on the Harder et al. (2023):590

# f o r t h e run wi th s o f t c o n s t r a i n i n g run , w i th a f a c t o r o f a l p h a 0 . 9 9 :

$ py thon main . py −− d a t a s e t d a t a s e t −−model cnn −− model_ id
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ERAInterim
1979-2014

CHIRPS Obs.
1985-2014

MPI-ESM1-2-HR 
1985-2014

EC-Earth3-Veg 
2019-2033

MPI-ESM1-2-HR
SSP1-2.6, SSP3-7.0 & SSP5-8.5 

2020-2100

CCLM

Evaluation 
&

Added 
value

High Resolution RCM 
Data PoolCNNHigh Resolution CNN

Data

Figure 1. Schematic of the methodology used in this study. Green arrows show the data flow used for training the CNN and magenta for
evaluation and calculation of the added values. Datasets are shown by rectangular, downscaling models by hexagonal and evaluation analysis
by circle.

t w c _ c n n _ s o f t _ c o n s t r a i n t s _ e p o c h s _ 1 6 0 _ l r _ 0 .00001 _ a l p h a _ 0 . 9 9595

−− c o n s t r a i n t s s o f t −− l o s s m a s s _ c o n s t r a i n t s −− a l p h a 0 . 9 9

−− epochs 160 −− b a t c h _ s i z e 64 −− l r 0 .00001

# f o r t h e run wi th so f tmax c o n s t r a i n i n g or ha rd c o n s t r a i n i n g :

$ py thon main . py −− d a t a s e t d a t a s e t −−model cnn −− model_ id600

t w c _ c n n _ s o f t m a x c o n s t r a i n t s _ e p o c h s _ 2 0 0 _ b a t c h _ s i z e _ 6 4 _ l r _ 0 . 0 0 1

−− c o n s t r a i n t s so f tmax −− l r 0 .001 −− epochs 160 −− b a t c h _ s i z e 64 −− l o s s mae

# f o r t h e s t a n d a r d CNN run w i t h o u t c o n s t r a i n i n g :

$ py thon main . py −− d a t a s e t d a t a s e t −−model cnn −− model_ id605

t w c _ c n n _ n o n e c o n s t r a i n t s _ e p o c h s _ 1 6 0 _ b a t c h _ s i z e _ 6 4 _ l r _ 0 . 0 0 1

−− c o n s t r a i n t s none −− l r 0 .001 −− epochs 160 −− b a t c h _ s i z e 64 −− l o s s mae
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Figure 2. Schematic of the CNN architecture for 2 times upsampling with the constraints layer. The inputs are low-resolution (LR) images
of size 30×60 and the output is a super-resolution (SR) image of size 60×120. This figure is modified from (Harder et al., 2023).

Note that the datasets and codes are available at Zenodo (DOI: https://zenodo.org/records/10417111) with comprehensive

details utilized in the paper.610
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(a)

(b)

(c)

Figure 3. a) CCLM simulation domain over Central Asia and the topography (m), (b) CHIRPS climatology for 1985-2014 (average of daily
values over all years in mm/day), and (c) WorldClim’s weather stations (red dots).
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(a) ERAInterim Annual MAE (b) ERAInterim DJF MAE (c) ERAInterim JJA MAE

(d) CCLM Annual AV (e) CCLM DJF AV (f) CCLM JJA AV

(g) GERICS-REMO2015 Annual AV (h) GERICS-REMO2015 DJF AV (i) GERICS-REMO2015 JJA AV

(j) RMIB-UGent-ALARO-0 Annual AV (k) RMIB-UGent-ALARO-0 DJF AV (l) RMIB-UGent-ALARO-0 JJA AV

Figure 4. Mean average
::::::
absolute

:
error (MAE) of daily precipitation (mm/day) from ERAInterim, as well as, added value (AV) as measured by

MAE differences between ERAInterim and RCMs (MAEERAInterim −MAERCM) in mm/day for annual (a,d,j,i), December, January, February
(b,e,h,k) and June, July, August (c,f,i,l). CHIRPS is used as observation. All daatasets

::::::
datasets are interpolated to the CCLM grid.
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(a) ERAInterim Annual Bias (b) ERAInterim DJF Bias (c) ERAInterim JJA Bias

(d) CCLM Annual Bias (e) CCLM DJF Bias (f) CCLM JJA Bias

(g) GERICS-REMO2015 Annual Bias (h) GERICS-REMO2015 DJF Bias (i) GERICS-REMO2015 JJA Bias

(j) RMIB-UGent-ALARO-0 Annual Bias (k) RMIB-UGent-ALARO-0 DJF Bias (l) RMIB-UGent-ALARO-0 JJA Bias

Figure 5. Bias of climatological precipitation (mm/day) from ERAInterim, as well as, ERAInterim-driven RCMs (PRERAInterim-CCLM−PROBS)
in mm/day for annual (a,d,j,i), December, January, February (b,e,h,k) and June, July, August (c,f,i,l). CHIRPS is used as observation.
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(a) SSP126-CCLM (b) SSP126-CMIP6-ensmean (c) SSP126-CMIP6-ensstd

(d) SSP370-CCLM (e) SSP370-CMIP6-ensmean (f) SSP370-CMIP6-ensstd

(g) SSP585-CCLM (h) SSP585-CMIP6-ensmean (i) SSP585-CMIP6-ensstd

Figure 6. Changes in averaged yearly 99th percentile (3 days per year) of total precipitation (mm/day) with respect to 1985-2014 references
for a,b) SSP126, d,e) SSP370 and g,h) SSP585 at the end of the century (2070-2099) from CCLM and CMIP6 GCMs’ ensemble mean. The
ensemble’s standard deviations are shown in c,f and i.
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