
Dear Editor and Reviewers,1

Many thanks for your valuable comments and suggestions, which were very useful for improving presentation of2

results and paper readability. In the following, we will answer all the comments raised by the reviewers in detail.3

The reviewers’ comments are in bold, citations in Italic and our answers are in regular font.4

1 Reviewer 1:5

1.1 General comments:6

I appreciate that the authors have made some effort to add two new figures, which are important7

new information, and their research is a lot more detailed and feels reproducible. I still think that8

the quality of their research is also good. However, the quality of the manuscript still does not9

feel ready for publishing. I started reviewing until page 7 (see attached reviewed manuscript) but10

did not continue because I saw that some of my previous comments on the first manuscript were11

not incorporated. There are still acronyms that have not been introduced, information (or even the12

same sentences) repeated several times throughout a section, and many grammatical mistakes. I13

recommend that they have a native English speaker go through the manuscript (or use tools like14

Grammarly) before sending it again for review. I ask the authors to apply my recommendations15

to the whole manuscript (not only my comments till page 7) and re-read their paper thoroughly to16

ensure everything is in its right place.17

We appreciate your effort in reviewing the revised manuscript. Following your recommendations, we have used18

Grammarly to correct the grammatical mistakes and have thoroughly reviewed the entire manuscript to eliminate19

any information repetition. We hope that the new version now meets the GMD standards. The numerous changes20

made are visible in the tracked changes version of the manuscript. We added the report and the score achieved from21

Grammarly at the end of this answer. As you can notice, we reached the score of 99 and the Plagiarism index of 222

%, which is mainly related to the open discussion version of our paper in GMD.23

You mentioned where the abbreviation SSP was first introduced in the main text, but this abbreviation was24

already spelled out in the abstract.25

Regarding the comment on yi, we had two ys : ỹi and yi.26
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2 Reviewer 2:27

2.1 Minor comments28

Most of my review comments have been addressed. However, the statement in the response letter on29

the use of MAE is inconsistent with the manuscript. There are also a few minor points that should30

be corrected or clarified before publication, which are listed below. Use of MAE I had commented31

on the fact that free-running GCM simulations and observation are completely different realisations32

of random internal variability, and that any comparison that uses pairs for a given time, including33

calculating the MAE between timeseries from GCM-driven RCMs or emulators and from observations34

makes no sense. In response to this, the authors have removed the original section 3.1.1. and Figure35

3. This is however not made clear in section 2.1. of the response letter, which says ‘We are aware36

that he simulations are in the so-called ”free” mode and do not include any kind of data assimilation37

and do not ”see” the observations. However, we conduct averaging of 30 years on each day, i.e.38

we have 30 first of January for example and the resulted pattern is not only a random pattern of39

a single day.’ This reads as if the averaging over 30-years had been done in the original version,40

which is not the case, and no wrong analysis had been conducted. It only becomes clear in section41

2.2. of the response letter that the original section 3.1.1 of the manuscript has been removed. It is42

unclear to me why the authors discussed their response to this issue in such an unclear way. More43

importantly, the statement in the response letter means that there should now be an evaluation of the44

representation of the annual cycle instead of an evaluation of the temporal variability in the timeseries.45

However, it seems that this is not the case. The explanation of the MAE calculation (lines 228- 232)46

does only mention timesteps, which indicates the use of the simulated and observed timeseries, and47

the averaging over 30 years for each day of the year is not mentioned. The MAE results that are48

shown are based on setups where the pairing is justified (comparing ERA- Interim-driven CCLM49

simulations with observations, or comparing GCM-driven CCLM and CNN simulations) and there is50

no indication that any of these results are based on the annual cycle rather than on the full timeseries.51

Please clarify the situation and explain the use of MAE in the manuscript such that there is no room52

for misinterpretations of what has been done.53

We agree fully with this point that the response was not fully clear and apologies for the unclear answer. The54
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above-mentioned sentences were also not fully explaining the desired calculation. As you correctly hinted, now we55

use MAE just for pairs of simulations when the usage could be justified. The t in equation 5 will remain the daily56

time-step and T= 365 days × 30 years, which shall be enough data for shaping the statistics. We will add a clear57

sentence to clarify this.58

Further points59

• The terminology for the mapping from low resolution to high resolution randomly switches60

between ‘upscaling’ and ‘downscaling’. A consistent terminology should be used, preferably61

using the standard term ‘downscaling’.62

• The reason for randomly shuffling the data (line 160) should be given, at it should be clarified63

that the input and output datasets are shuffled in the same way in order to retain the original64

pairing.65

• The reason for choosing the SoftMax constraining (equation 2) rather than a simple, linear66

scaling is explained in the response letter, but not in the paper. The explanation should be67

added to the paper.68

Thanks a lot for the clarifying comment. We changed the up-scaling to downscaling to keep the form homogeneous69

throughout the manuscript.70

We added the following paragraph for clarifying the shuffling of the data: ”We randomly shuffled the dataset71

at the pair level, ensuring that each input (GCM) and its corresponding output (RCM) were shuffled together. We72

preserve the intrinsic relationships between coarse-resolution and fine-resolution data across diverse forcing scenarios.73

Maintaining the original pairing ensured that the model accurately captures the dependencies between inputs and74

outputs, which is crucial for effective downscaling. The rationale for shuffling the dataset was to mitigate any temporal75

or spatial autocorrelation that could bias the training process. This randomization helps the model generalize better76

by exposing it to diverse conditions, leading to more robust and reliable performance. Preserving input-output pairs77

during shuffling ensures that the fine-resolution targets remain correctly aligned with their corresponding coarse-78

resolution features, retaining the integrity of the data relationships throughout the training process.”79

We added the following information to the new version of the manuscript :80

”The simplest way to ensure mass conservation would be to scale all small-scale values within a given large-scale81

gridcell with the ratio of the large-scale value and the sum of the small-scale values. However, (Harder et al., 2022)82
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showed that using the SoftMax constraints layer gives better results. The exponential both ensures positive predic-83

tions and leads to more variance between subpixels in the super-resolved prediction. The multiplicative rescaling84

struggles when the sum of the small-scale values gets close to zero.”85

On behalf of all authors,86

Bijan Fallah87

References88

Harder, P., Yang, Q., Ramesh, V., Sattigeri, P., Hernandez-Garcia, A., Watson, C., Szwarcman, D., and Rolnick,89

D.: Generating physically-consistent high-resolution climate data with hard-constrained neural networks, 2022.90
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\begin{abstract}

High-resolution climate projections are essential for estimating future climate

change impacts. Statistical and dynamical downscaling methods, or a hybrid of

both, are commonly employed to generate input datasets for impact modelling.

In this study, we utilise the regional climate model (RCM) COSMO-CLM (CCLM)

version 6.0 to assess the added value of dynamically downscaling a general

circulation model (GCM) from the sixth phase of the Coupled Model

Intercomparison Project (CMIP6) and its climate change projections over

Central Asia (CA). The MPI-ESM1-2-HR GCM (at 1° spatial resolution) drives the

CCLM (at 0.22° horizontal resolution) for the historical period of 1985-2014 and

the projection period of 2019-2100 under three shared socioeconomic

pathways (SSPs): SSP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios. Using the

Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS)

gridded observation dataset as a reference, we evaluate the performance of

CCLM driven by ERA-Interim reanalysis over the historical period. The added

value of CCLM, compared to its driving GCM, is signi�cant (more than 5

mm/day) over mountainous areas in CA, which are at higher risk of extreme

precipitation events. Additionally, we employ CCLM to re�ne future climate

projections. We present high-resolution maps of heavy precipitation changes

based on CCLM and compare them with the CMIP6 GCM ensemble. Our analysis

indicates a signi�cant increase in the intensity and frequency of heavy

precipitation events over CA areas already at risk of extreme climatic events by
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the end of the century. Finally, we train a convolutional neural network (CNN) to

map a GCM simulation to its dynamically downscaled CCLM counterpart. The

CNN successfully emulates the GCM-CCLM model chain over large CA areas,

demonstrating added value when applied to a new GCM-CCLM model chain.

The scienti�c community interested in downscaling CMIP6 models could use

our downscaling data, and the CNN architecture offers an alternative to

traditional dynamical and statistical methods.

\end{abstract}

\introduction %% \introduction[modi�ed heading if necessary]

The increasing global mean temperature due to anthropogenic greenhouse gas

emissions presents a signi�cant challenge for society, requiring the

assessment and prediction of future impacts on human health, natural

ecosystems, and economies across different regions of the world

\citep{allan2021ipcc}. Researchers conducting regional studies on

vulnerability, impacts, and adaptation typically achieve reliable high-resolution

climate projections through dynamical downscaling via RCMs

\citep{rummukainen2010state, feser2011regional}, statistical techniques

\citep{maraun2018statistical, fowler2007linking}, or a hybrid of both

approaches \citep{maraun2015value, meredith2018classi�cation,

la�amme2016statistical}.

CA, recognised as one of the most vulnerable regions to climate change

impacts, heavily depends on water resources from glaciers and rivers that are

shrinking due to rising temperatures and decreasing precipitation

\citep{reyer2017climate, fallah2023anthropogenic, didovets2024attribution,
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fallah2024exploring}. The area faces signi�cant challenges to food security,

characterised by declining crop yields and an increased occurrence of severe

and frequent extreme weather events like �oods and landslides. These

conditions damage infrastructure, livelihoods, and agriculture, resulting in

population displacement and migration \citep{allan2021ipcc,

reyer2017climate}.

Signi�cant uncertainties inherent in the existing detailed observational and

reanalysis datasets impede the development of high-resolution climate

projections in CA \citep{fallah2016emergence}. One option to complement

these datasets is to use dynamical downscaling with RCMs. CMIP6 provides a

framework for coordinated climate model experiments, enhancing our

understanding of past, present, and future climate changes. Dynamical

downscaling of CMIP6 models for the CA region is vital for accurately

simulating extreme convective precipitation events, which are in�uenced by

the orography of the region \citep{lundquist2019our, ban2015heavy

wang2013regional,frei2003daily,russo2019sensitivity}, large-scale

atmospheric circulation, and sea surface temperature anomalies in the Indian

Ocean and the Paci�c \citep{kendon2014heavier, demory2020european,

xu2022central}. This method enhances the resolution of a driving GCM and

produces a robust, physically consistent regional state of the climate. Despite

some systematic biases, dynamical downscaling consistently provides high-

quality datasets that accurately describe the climatology of all climate

variables in CA \citep{qiu2022hcpd}.

Various international institutions have collaborated within the Coordinated

Regional Climate Downscaling Experiment (CORDEX) to address these issues
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and improve the inter-comparability of RCMs. CORDEX aims to create a robust

framework for producing climate projections at a regional scale that is suitable

for impact evaluation and adaptation planning globally. This effort aligns with

the timeline of the Intergovernmental Panel on Climate Change's Sixth

Assessment Report \citep{kikstra2022ipcc}. However, most CORDEX research

focuses on highly industrialised countries \citep{allan2021ipcc,

taylor2012overview}. Developing regions, including CA, bear the brunt of global

warming's consequences, yet they have access to only a limited number of

CORDEX model simulations \citep{naddaf2022climate}. As of the latest update,

no simulation driven by CMIP6 has been planned for CORDEX-CA (see

\url{https://wcrp-cordex.github.io/simulation-

status/CMIP6_downscaling_plans.html}, last visited on 17.04.2024).

Beyond dynamical methods, recent developments in machine learning,

including CNNs, offer promising avenues for statistical downscaling

\citep{harder2023hard, rampal2024enhancing}. CNNs have proven effective in

numerous earth science disciplines besides downscaling, such as

classi�cation \citep{gardoll2022classi�cation}, segmentation

\citep{galea2024deep}, and prediction \citep{watson2022climatebench}

thanks to their capacity to extract features from spatial data and identify

nonlinear relationships between inputs and outputs. CNNs can recognise and

encode spatial hierarchies in data \citep{zhu2017deep}, making them

exceptionally suitable for analysing geospatial data, a critical component in

climate modelling. Unlike traditional statistical methods that often require

manual selection and careful engineering of features, CNNs automatically learn

the most predictive features directly from the data \citep{reichstein2019deep}.

They are generally more straightforward and ef�cient than traditional
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statistical downscaling methods for tasks aiming to predict or classify patterns

distributed across spatial domains, such as temperature or precipitation

patterns in climate models \citep{racah2017extremeweather}. CNNs are adept

at maintaining spatial coherence in the output, which is critical in downscaling

where preserving the geographical patterns of climate variables (like

precipitation) is crucial \citep{kurth2018exascale}.

Researchers classify CNNs into two categories based on their last layer: 1)

constrained and 2) unconstrained. Constrained CNNs integrate physical laws

directly into the training process, such as mass, energy, or momentum

conservation. This integration is achieved by modifying the loss function or the

network's architecture to ensure compliance with these laws. In contrast,

unconstrained CNNs do not explicitly incorporate physical laws or constraints.

Instead, they rely solely on learning from the input data, generating output

predictions based on the patterns detected in the data.

This study explores unconstrained and constrained CNN approaches to

understand their effectiveness in downscaling and their performance when

applied to GCMs not initially used for training.

The research questions guiding this study are:

\begin{itemize}

\item \textbf{Research Question 1:} How effectively can CMIP6 models be

downscaled to enhance precipitation simulations for the CORDEX Central Asia

region?

\item \textbf{Research Question 2:} Can CNNs effectively downscale GCM

outputs, and how do they perform when applied to GCMs that did not initially
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train them?

\end{itemize}

This article focuses on two main topics: 1) the added value of CCLM for

representing precipitation over Central Asia, and 2) training a CCLM emulator

using a CNN. We present data and methods in Section 2. Sections 3 and 4

introduce the results of dynamical and hybrid downscaling, respectively.

Finally, we discuss the results and conclude in Section 5.

\section{Data and Methods}

The methodology employed in this study is illustrated in Figure \ref{�g:0}. The

following sections provide a detailed explanation of this methodology.

\subsection{Employed Models and Experimental Setups}

\subsubsection{Regional Climate Model (RCM)}

In this study, we conduct simulations using the CCLM regional climate model.

Developed by the German Weather Service (DWD) and the German Climate

Computing Center (Deutsches Klimarechenzentrum, DKRZ), CCLM originates

from the COSMO numerical weather prediction model

\citep{rockel2008performance}, which is widely utilised for short-term weather

forecasting. Explicitly designed for regional climate simulation, CCLM enables

researchers to investigate various aspects of the climate system, including

temperature, precipitation, and extreme events. It has been extensively used to

assess the impact of climate change across different regions such as Europe

\citep{russo2021long}, Africa \citep{panitz2014cosmo,dosio2016climate}, and

Asia \citep{jacob2014euro,kotlarski2014regional,wang2013regional}.
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Additionally, CCLM has been employed in climate projection studies to evaluate

climate adaptation and mitigation strategies. The model has undergone

thorough evaluation and validation

\citep{fallah2016westerly,russo2019sensitivity,kjellstrom2011century}, and its

ability to generate realistic simulations of present climate conditions and

variability has established it as one of the most widely used regional climate

models in the scienti�c community \citep{sorland2021cosmo}.

For our experiments, we utilised a model setup similar to the "optimal"

con�guration described by \cite{russo2019sensitivity}. In their study,

\cite{russo2019sensitivity} optimised the CCLM regional climate model for CA

by adjusting albedo based on forest fraction ratios and soil conductivity to

account for the soil's liquid water and ice proportions. These modi�cations

signi�cantly improved the model's climatological performance and the

distribution of incoming radiation, leading to more accurate climate

representations for the region. According to the CORDEX protocol, simulations

are divided into two primary phases. The �rst phase, the evaluation run,

involves a single model experiment over the period 1979-2014, using

ERAInterim reanalysis data at a spatial resolution of T255 ($\sim$

0.7\textdegree). The second phase, the projection run, utilises boundary

conditions from GCMs of the CMIP6 project for the period 1950-2100 under

various SSPs. For this study, we selected the MPI-ESM1-2-HR GCM and

considered SSP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios. SSPs represent

baseline scenarios that describe future pathways based on population growth,

technological advancement, economic development, urbanisation, and

investments in healthcare, education, land use, and energy

\citep{riahi2017shared}.
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Historical data for this study are based on greenhouse gas levels, land use, and

other climate forcings observed from 1850 to 2014. The Shared Socioeconomic

Pathway (SSP) scenarios used in the projections are as follows:

\begin{itemize}

\item \textbf{SSP1-2.6} represents a "green" future, characterised by global

efforts to protect resources, improve human well-being, and narrow income

gaps. This scenario assumes low challenges to adaptation and low greenhouse

gas emissions. Adaptation challenges in this context refer to the dif�culties

societies might face in adjusting to the impacts of climate change, including

their susceptibility and the availability and effectiveness of mitigation

technologies and strategies. Under SSP1-2.6, global cooperation and

sustainable practices lead to advancements in technology and governance,

signi�cantly reducing vulnerability to climate change impacts. Societal

structures are resilient, and resources are managed to minimise environmental

stresses while maximising human well-being.

\item \textbf{SSP3-7.0} depicts a future characterised by regional rivalry,

where nationalism and regional con�icts dominate, global issues are neglected,

and inequality increases. This scenario involves high challenges to adaptation

and high greenhouse gas emissions.

\item \textbf{SSP5-8.5} represents a future of fossil-fueled development with

globally connected markets, rapid technological progress, and weak

environmental policies. This scenario has low challenges to adaptation but

results in very high greenhouse gas emissions.

\end{itemize}

For comparison and evaluation of our RCM simulations, we have selected two

CORDEX-CA evaluation simulations from other models driven by ERAInterim at
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a 0.22° horizontal resolution: 1) \textbf{ERAInterim-RMIB-UGent-ALARO-0}

\citep{giot2016validation} and 2) \textbf{ERAInterim-GERICS-REMO2015}

\citep{jacob1997sensitivity,fotso2017added}.

\subsubsection{CNNs}

In this study, we develop a CNN-based emulator for the CCLM driven by the

MPI-ESM1-2-HR GCM. This CNN utilises outputs from the GCM, covering both

the historical period from 1985 to 2014 and future scenarios spanning 2019 to

2100, as inputs to model the responses of the CCLM, which serves as the

target. Given the low annual precipitation and signi�cant spatio-temporal

variability in many regions of CA, a comprehensive dataset that includes

various precipitation patterns from both GCMs and RCMs is essential for

effectively training the CNN to map from GCM to RCM outputs. To enhance

model training, we have augmented our dataset with ERA-Interim reanalysis

data and corresponding CCLM simulations driven by it (ERAInterim-CCLM) (see

Fig. \ref{�g:0}).

We train our CNN model based on the architecture proposed by

\cite{harder2023hard}, which incorporates physical constraints to ensure mass

conservation and energy balance. The model architecture features:

\begin{itemize}

\item Conv (Convolutional Layer): These layers help extract various levels of

features from low-resolution images, such as edges, textures, and other

relevant image details.
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\item ReLU (Recti�ed Linear Activation Unit): This nonlinear activation function

introduces non-linearity and returns the input unchanged if it is positive;

otherwise, it returns zero. This function enables the network to learn complex

patterns ef�ciently.

\item TransConv (Transposed Convolutional Layer): This layer is crucial for

downscaling. It increases the spatial dimensions of the feature maps,

performing a sort of learned interpolation. This allows the model to add details

to the downscaled images based on the features extracted and processed in

the earlier layers.

\item ResBlock (Residual Block): These blocks allow the model to re�ne the

initial lower-resolution predictions, which are downscaled (interpolated

outputs) to a higher resolution. They enhance the model's ability to add �ne

details and textures (high-frequency information), improving the perceptual

quality and sharpness of the images at the increased resolution."

\end{itemize}

In the context of deep learning for climate modelling, the "perfect model"

approach involves starting with high-resolution data and intentionally

upscaling it to a lower resolution. The machine learning model is subsequently

trained to reproduce the high-resolution data while receiving this arti�cial low-

resolution input. The aim is to simulate a scenario where the "truth" (the

original high-resolution data) is known and then to recover this high-resolution

from the arti�cially upscaled data. This approach teaches the model the

desired mapping from low to high resolution, enabling the model to effectively

learn how to downscale or enhance resolution while minimising the loss of

critical information. It is a controlled experiment that helps re�ne the model's

capabilities.
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The "imperfect model" approach, on the other hand, acknowledges that both

the low-resolution (GCM output) and the high-resolution (RCM output) datasets

have their inherent errors and limitations. In this scenario, we do not have a

single source of truth but rather two separate sets of data:

\begin{itemize}

\item Low-resolution data: may capture global or large-scale phenomena but

miss regional details \citep{xu2021bias,chokkavarapu2019comparative}.

\item High-resolution data: provides detailed regional information but may still

have errors or not perfectly re�ect reality due to limitations in data collection,

model con�guration, or computational constraints

\citep{muttaqien2021downscaling}.

\end{itemize}

In this setup, CNN's challenge is learning to map between two independently

imperfect datasets. The CNN is trained to predict high-resolution details from

low-resolution inputs as accurately as possible despite the absence of perfect

ground truth. This process involves understanding and modelling the

uncertainties and biases inherent in both datasets.

Prior to training, the dataset was randomly shuf�ed at the pair level to ensure

that each GCM input and its corresponding RCM output remained together,

preserving the intrinsic relationships between the coarse and �ne-resolution

data. This approach prevents temporal or spatial autocorrelation from biasing

the training process. It also improves the model's generalisation and

performance by exposing it to various conditions. For the dataset distribution,

68,141 days (60$\%$) of RCM simulation data were used for training, 22,714
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days (20$\%$) for validation, and 22,714 days (20$\%$) for testing. The low-

resolution (GCM) dataset consists of 30 $\times$ 60 grid points, and the high-

resolution (RCM) dataset comprises 120 $\times$ 240 grid points over latitudes

and longitudes, respectively, resulting in a downscaling factor (N) of 4.

\subsubsection{Constraint layers}\label{constraint_layers}

We test the CNN with three different constraining methods in the last CNN

layer \citep{harder2023hard}: 1) soft constraining (SCL), 2) hard constraining

(HCL) and 3) without constraining (NoCL). In the following, we explain brie�y the

three different constraining methodologies. The setup of constraining is as

follows: consider a factor N for downscaling in all linear directions and let

$n:=N^2$ and $y_{i}$, $i = 1,...,n$ be the high-resolution patch values that

correspond to low-resolution pixel $x$. The mass conservation law has the

following form:

\begin{equation}

\frac{1}{n} \sum_{i=1}^{n} y_{i} = x .

\label{eq:1}

\end{equation}

\textbf{Hard constraining:} uses the SoftMax, which constrains quantities like

water content by enforcing the output to be non-negative. The simplest way to

ensure mass conservation would be to scale all small-scale values within a

given large-scale grid cell with the ratio of the large-scale value and the sum of

the small-scale values. However, \cite{harder2022} demonstrated that

employing the SoftMax constraints layer gives better results. The exponential
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ensures positive predictions and leads to more variance between subpixels in

the super-resolved prediction. The multiplicative rescaling struggles when the

sum of the small-scale values gets close to zero. Therefore, the SoftMax

operator is used on the intermediate outputs of the CNN before the

constraining layer ($\tilde{y}_{i}$) and multiplies it by the corresponding input

pixel value $x$:

\begin{equation}

y_{i} = \exp(\tilde{y}_{j}) \cdot \frac{x}{\frac{1}{n} \sum_{i=1}^{n} \exp

(\tilde{y}_{i})}.

\label{eq:2}

\end{equation}

$y_{i}$ is the �nal output after applying the constraints. We have used the

mean absolute error (MAE) as the loss function (Eq. \ref{eq:5}).

\textbf{Soft constraining:} This is done by adding a regularisation term to the

loss function. The MAE loss is then extended with an additional constraint

violation (CV) loss term:

\begin{equation}

\text{Loss} = (1 − \alpha) \cdot MAE + \alpha \cdot \text{CV},

\label{eq:3}

\end{equation}

Where CV is the mean-squared error over all constraint violations between an

input pixel x and the super-pixel (high-resolution grid-cell) $y_{i}$:

1
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\begin{equation}

\text{CV} = \text{MSE} (\frac{1}{n} \sum_{i=1}^{n} y_{i}, x)

\label{eq:4}

\end{equation}

We use $\alpha = 0.99$.

\textbf{Without constraining}: In this setup, we remove the constraining layer

after the last convolutional layer in the CNN.

We use 160 epochs, using a batch size of 64 and a learning rate of 0.001 for

training with HCL and NoCL and 0.00001 for SCL. Training takes 15 hours on an

NVIDIA Corporation Graphics Ampere 104 [GeForce Ray Tracing Texel eXtreme

(RTX) 3060 Ti-Lite Hash Rate] graphics processing unit (GPU). We use the same

model setup as in \cite{harder2023hard}.

It is important to note that the MAE can serve both as a loss function and an

evaluation metric. As a loss function, it is used during training to optimise the

neural network's parameters. Conversely, when used as an evaluation metric, it

is calculated on the validation or test data sets to assess the model's

performance using an independent dataset. Despite their different

applications, MAE is suitable for both roles.

\subsection{Evaluation and testing}
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According to \cite{ciarlo2021new}, the choice of observational data can

signi�cantly in�uence the perceived added value of an RCM, particularly in

detecting extreme events, where poor-quality data might misleadingly suggest

improved model performance. They recommend using observations with

spatiotemporal resolutions comparable to the model's for enhanced accuracy.

In line with this, we use CHIRPS as our gridded observation to assess the added

value of the CCLM driven by the GCM. CHIRPS provides a resolution of 0.05°,

covers latitudes from 50°S to 50°N, and offers independent observations

derived from satellite information and station data. This contrasts with

reanalysis data, which depend on climate model simulations

\citep{funk2015climate}. We allocate 20$\%$ of the CCLM simulation data as

the target to evaluate our CNN emulator instead of using CHIRPS directly. We

measure the added value of the CNN by comparing the MAE of both the CNN

outputs and the interpolated GCM outputs against the target CCLM output. This

comparison assesses whether the CNN outperforms simple interpolation. The

selected GCM and observational data are interpolated onto the RCM grid using

the distance-weighted average method. \cite{ciarlo2021new} previously noted

that such interpolation might create unrealistic values, as it does not account

for the physical processes and could introduce artefacts depending on the

interpolation method, the spatial distribution of data points, and the resolution

ratio. Therefore, we use simple interpolation as a baseline, recognising its

limitations in preserving the statistical properties of precipitation, which does

not follow a normal distribution. Following \citep{hodson2022root}, we apply

the MAE to quantify the biases in emulated and dynamically downscaled

precipitation ($F$) against observations ($O$):

\begin{equation}

2
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\text{MAE} = \frac{1}{T}\sum\limits_{t=1}^{T}|F_{t}-O_{t}| \label{eq:5}

\end{equation}

Where $T$ represents the number of time steps over 30 years of daily data. We

de�ne added value (AV) as the reduction in MAE achieved by the downscaling

relative to the driving GCM:

\begin{equation}

\text{AV} = \text{MAE}_{GCM} - \text{MAE}_{CCLM}

\label{eq:6}

\end{equation}

Where $\text{MAE}_{GCM}$ and $\text{MAE}_{CCLM}$ are the differences

between interpolated GCM and RCM with respect to the reference dataset.

As an additional metric, we also use the climatological bias, i.e., the difference

between the model and observations:

\begin{equation}

\text{BIAS} = \text{PR}_{MODEL} - \text{PR}_{OBS}

\label{eq:6-1}

\end{equation}

\section{Results}

Figure \ref{�g:1}.a illustrates the topography of the CORDEX-CA simulation

domain. Figure 1.b displays the mean daily precipitation, averaged over the

years 1985-2014 (mm/day), derived from CHIRPS data. The regions with the

3
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highest precipitation are the mountainous areas of CA, particularly notable in

the Asian summer monsoon region north of India and along the Himalayas in

the southeastern part of the domain, where precipitation values are

pronounced. Figure \ref{�g:1}.c depicts the distribution of WorldClim weather

stations \citep{�ck2017worldclim} across CA, serving as a proxy for the density

of station data used in the CHIRPS dataset. Observational data are sparsely

distributed in East China, especially over the Tibetan Plateau. Consequently,

data-model comparisons are considered unreliable in this region

\citep{randall2007climate,cui2021evaluation,yan2020surface,russo2019sensit

ivity}.

\subsection{Added value of CCLM driven by ERAInterim}

To characterise the overall performance of the CCLM model across time and

space, Figures \ref{�g:2} and \ref{�g:2-1} present maps displaying annual,

winter (DJF), and summer (JJA) MAE and mean biases. These biases in

precipitation are calculated between the interpolated ERAInterim data and

CCLM outputs driven by ERAInterim for the period 1985-2014, in comparison to

CHIRPS (see Eq. \ref{eq:5} and Eq. \ref{eq:6}). Figures \ref{�g:2}.a-c illustrate

the MAE for ERAInterim for annual, winter, and summer averages. The added

value of the CCLM RCM compared to the interpolated ERAInterim is depicted in

Figures \ref{�g:2}.d-f. During the Asian summer monsoon, CCLM's MAE is high

over the south and southeast of the domain (regions in magenta), whereas it is

generally lower during winter. CCLM shows an MAE reduction in the

mountainous areas of Afghanistan, Kyrgyzstan, and Tajikistan, as well as an

increase near the domain's southern boundaries throughout the year and in the

south and southeast during summer.

4

5

6

7
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The AVs of GERICS-REMO2015 and RMIB-UGent-ALARO-0 driven by ERAInterim

are presented in Figures \ref{�g:2}.g-l, using CHIRPS as the observational

dataset. The added value of RCM is most pronounced in areas with complex

topography, especially during summer, across all three RCMs (Figs.\ref{�g:2}.d-

l). Areas where the RCM has a smaller MAE than the reanalysis in comparison

to observations are found over Tajikistan, Kyrgyzstan, northern Afghanistan,

and part of the Himalayas—regions that are crucial water sources for former

Soviet Union countries. Nevertheless, precipitation during the colder seasons

may be more critical for water availability. The annual AV patterns still show

positive values in these regions (Figure \ref{�g:2}.d,g, and j). Across the entire

domain, all three RCMs signi�cantly reduce the large and local-scale bias of

ERAInterim, especially in complex topographies. The nested RCMs exhibit

similar $\text{MAE}$ values near their lateral boundaries, relative to their

driving model (Figure \ref{�g:2}, \textit{a},\textit{b},\textit{c}). Thus, negative AV

quantities may result from boundary effects, particularly near the eastern and

southeastern boundaries where monsoonal precipitation dominates. GERICS-

REMO2015 displays pronounced negative added values annually and during

winter above Tibet.

Additionally, model climatology biases are displayed in Figures \ref{�g:2-1}.

Once again, these biases are noticeable in the lower right corner of the domain

during JJA and across the southern Tibetan Plateau throughout the year.

\subsubsection{Extreme precipitation patterns in CCLM and CMIP6 GCMs}

8

9
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Given that the CCLM simulation has demonstrated added value for

precipitation over the mountainous regions of CA, we explore climate change

signals in its high-resolution output. These high-resolution maps may inherit

biases from the GCM-RCM selection and could vary under different

anthropogenic forcings. We assume that many model biases are consistent

across different time slices and, therefore, can be removed when calculating

changes between the historical period (1985-2014) and future periods (2070-

2099).

We present climate change trends in CCLM and the CMIP6 GCMs ensemble

statistics (ensemble mean and standard deviation). We analysed 31, 33, and 38

models for SSP126, SSP370, and SSP585 scenarios, respectively, with a total of

158, 185, and 242 simulations (see Supplementary materials for the list of

models used). We calculate statistics over each model's members to ensure

equal weighting for individual models before building the �nal statistics. We

have selected the yearly 99th percentile of daily precipitation (PR99), which

accounts for the three days with the highest precipitation each year.

Additionally, we chose the number of very heavy precipitation days during the

period (ECA-RX20mm) as another index, which is commonly used in climate

research to assess the impacts of heavy precipitation events on water

resources, agriculture, and natural ecosystems \citep{klok2008updated}.

Figure \ref{�g:4} shows the changes in averaged PR99 at the end of the century

(2070-2099) compared to the historical period (1985-2014) for CCLM (a,d,g) and

CMIP6 GCMs (b,e,h) under different scenarios. The large-scale patterns remain

consistent across all three scenarios, intensifying with increased

anthropogenic in�uence. The standard deviation of the models' ensemble is

10
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depicted in Figures \ref{�g:4}.c,f, i. Our analysis indicates that the Himalayas,

particularly Nepal, North India, and Bhutan, exhibit the highest uncertainty

among the GCMs in all scenarios. Except for this region and the eastern

boundary of the domain, the standard deviation remains below 3 mm/day.

Under the SSP585 and SSP370 scenarios, regions including Northwest India,

North Pakistan, North and Southwest Iran, and the South and Southeast of the

Black Sea are projected to experience increases in PR99 values exceeding 9

mm/day. A reduction in PR99 is detected in the eastern Mediterranean,

speci�cally in Jordan, Syria, and southern Turkey. Similar patterns are observed

in the CMIP6 ensemble mean, but due to averaging, the ensemble mean

patterns are approximately ±5 mm/day over these areas. Under the SSP126

scenario, which is aligned with the 2°C warming target, the previously observed

increases in precipitation exceeding ±9 mm/day for CCLM and ±5 mm/day for

GCMs are no longer evident. In CA, areas such as Kyrgyzstan, Tajikistan,

northern Pakistan, and southwestern Iran are particularly vulnerable to

rainfall-induced hazards, including landslides \citep{wang2021atmospheric,

kirschbaum2010global} and �oods (e.g., the Pakistan �oods of 2010 and 2022).

Figures \ref{�g:5}.1, d, and g illustrate the ECA-RX20mm values for CCLM at the

end of the century across three scenarios. The observed patterns align with

those in Figure \ref{�g:4}, underscoring an increase in the frequency of very

heavy precipitation days, particularly marked over the Tibetan Plateau, as

anthropogenic in�uences intensify. Similarly, Figures \ref{�g:5}.b, e, and h

reveal that the CMIP6 GCM ensemble mirrors the behaviour observed in CCLM.

However, the ensemble standard deviations for ECA-RX20mm values rise over

Tajikistan and Kyrgyzstan, as shown in Figures \ref{�g:5}.c, f, and i. The growing

frequency and intensity of extreme precipitation events over the elevated

12
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regions of Central Asia, driven by anthropogenic factors, are a cause for

concern \citep{fallah2023anthropogenic}. This CCLM simulation enhances our

understanding of how dynamical downscaling's sensitivity to different levels of

anthropogenic forcing can vary locally.

\section{CCLM emulator using a CNN}

We have demonstrated that dynamical downscaling adds signi�cant value in

capturing local climate change effects, particularly over areas in�uenced by

complex topography. In this study, we create a CCLM emulator for precipitation

over CA. As previously explained, a CNN trained on our GCM-RCM chain could

serve as a fast, cost-effective downscaling method, though its ef�cacy needs

to be rigorously assessed.

We aim to establish that this emulator outperforms simple interpolation,

particularly in areas experiencing extreme precipitation. We aim to show that

the CCLM emulator can replicate CCLM-like precipitation patterns when driven

by the parent GCM.

Focusing on the CA domain, which encompasses the former Soviet Union

countries (Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan),

we exclude the broader CORDEX-CA domain shown in Figure \ref{�g:1}. This

domain is the region of interest in the Green Central Asia project

\url{https://www.greencentralasia.org/en}, which the German Foreign Of�ce

�nances. Figure \ref{�g:6}.a illustrates the MAE of the interpolated MPI-ESM1-

2-HR, using the CCLM output as the 'true' precipitation. CCLM generates
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distinct precipitation patterns, particularly in areas with complex topography.

Assuming CCLM as the ground truth, we examine whether the CNN can

replicate these outputs using the GCM as input. To assess the emulator's

effectiveness, we present added value maps (relative to the parent GCM) in

Figures \ref{�g:6}.b-d. A comparison of MAE reduction maps reveals that the

unconstrained CNN demonstrates signi�cant skill over elevated regions of CA,

whereas constrained runs show less noticeable pattern changes. For instance,

the HCL and SCL emulators generate closely mingled negative and positive

added values across elevated areas, while NoCL consistently exhibits positive

values across the domain. Several artefacts in the MAE reduction maps of

constrained models, particularly over northern India, re�ect the shape of the

GCM grid. We also produce boxplots of daily precipitation for the CA domain to

explore distribution improvements (Figure \ref{�g:7}). Correlation coef�cients

between time-series averages of precipitation across the domain and CCLM are

presented in Figure \ref{�g:7} (values in parentheses). Among daily averages,

NoCL achieves the best performance (highest correlation coef�cient), although

it records fewer outliers than CCLM and other model simulations. The

distribution is concentrated around the median, exhibiting the narrowest

interquartile range. The distribution pro�les of both constrained models (HCL,

SCL) resemble those of the interpolated GCM, expected since the constraints

maintain mass consistency within corresponding grid boxes (Equation

\ref{eq:1}).

\subsection{Applying the CNN to a different GCM}

We evaluate the emulator's generalisation ability, i.e., its capacity to generate

reliable predictions on new datasets. We conduct a new 15-year dynamical

17
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simulation using CCLM, driven by the EC-Earth3-Veg \citep{doscher2022ec}

GCM under the SSP370 scenario from 2019 to 2033. This data serves as input to

our CCLM emulator, which was previously trained to emulate CCLM outputs

using MPI-ESMI-2 HR. We now use the emulator to reconstruct the local

features of CCLM driven by EC-Earth3-Veg. Figure \ref{�g:8}.a presents the

MAE of the interpolated EC-Earth3-Veg with respect to the dynamical

downscaling with CCLM. Remarkably, the MAE pattern of EC-Earth3-Veg closely

mirrors that of MPI-ESM1-2-HR (Figure \ref{�g:6}.a). However, the NoCL

emulator does not uniformly show positive error reduction across the domain

(Figure \ref{�g:8}.b). We chose NoCL for its superior performance among the

three CNNs. The emulator attempts to establish relationships between MPI-

ESM1-2-HR and CCLM, which may be speci�c to these models and might not

necessarily apply to the new EC-Earth3-Veg and CCLM con�guration. As

demonstrated previously, the RCM state depends on the state of its driving

GCM. CCLM is driven at the lateral boundaries by the GCM values for state

variables (temperature, pressure, wind speed, etc.) and not by precipitation,

which is the CNN's input. The precipitation inputs from the two GCMs carry

different biases, complicating the transfer of mapping from MPI-ESM1-2-HR-

driven CCLM outputs to those driven by EC-Earth3-Veg.

Despite these challenges, the CNN model demonstrates added values

exceeding 1 mm/day in regions such as the Alborz Mountains and the southern

Caspian Sea in northern Iran (highlighted in black rectangles in Figures

\ref{�g:8}.a and b) and parts of Tajikistan and Kyrgyzstan. Exploration of the

daily precipitation distribution �eld-mean indicates that the CNN's median

value and outliers are lower than those of the EC-Earth3-Veg and CCLM

simulations (Figure \ref{�g:8}.c). The day-to-day correlation has improved,

18
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although all models were trained on a shuf�ed dataset that ignored the

memory in the time series. The trained NoCL model was provided with

unshuf�ed EC-EARTH3-Veg data for new predictions, increasing the correlation

coef�cient from 0.815 (EC-Earth3-Veg) to 0.844 (NoCL). Over the highlighted

area in Figure \ref{�g:8}.b, where the NoCL model reduces MAE, the distribution

of precipitation converges towards that of CCLM, encompassing the region with

the highest rainfall in Iran, vital for a large portion of the population, including

Tehran. Only the outliers larger than 20 mm/day are not reconstructed by NoCL.

As a further test of generalisation, we intentionally excluded the SSP370

scenario from the training process. This allowed us to apply the model to a

speci�c simulation and assess its ability to handle an unknown forcing. Figure

\ref{�g:81} demonstrates the AV of the CNN emulator for SSP370 in comparison

to the dynamical downscaling with CCLM, revealing that the AV pattern is

strikingly similar to that shown in Figure \ref{�g:6}.d. This con�rms that the

CNN can learn and reproduce patterns under different forcing scenarios it was

not explicitly trained on, as demonstrated by its performance with the SSP370

scenario.

\section{Discussion and conclusions}

Regional climate change impact assessments require high-resolution climate

projections. The main strategies to produce such datasets are statistical and

dynamical downscaling, as well as a hybrid of the two methods. Statistical

downscaling often struggles to account for the dynamic in�uences of complex

landscapes, including topography and varying surface parameters such as

vegetation, soil types, and water bodies like lakes, which may affect the

22
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accuracy of statistical relationships \citep{li2022spatial}. For statistical

downscaling methods applied to precipitation, observations need to contain

detailed information about precipitation distribution in areas with complex

topography \citep{lundquist2019our}.

Conversely, dynamical downscaling requires massive computational time and

data storage. For example, a 30-year CCLM simulation driven by ERAInterim

took roughly one week to complete using 216 processors of the HLRE-4 Levante

computer at the German Climate Computing Center (DKRZ). Additionally, the

added value of RCMs is still debated, as they are highly dependent on the

driving GCMs.

In this study, we contributed to the dynamic downscaling efforts over the

CORDEX-CA domain, taking a small step towards creating an RCM ensemble for

CA. A single RCM simulation helps identify model biases and uncertainties that

need to be addressed in future model improvements. It is essential to note that

a single model run for CMIP6, instead of an RCM ensemble, may not provide a

comprehensive understanding of potential climate change impacts on a region.

Therefore, it is recommended that researchers conduct multiple simulations

with different initial and boundary conditions and model con�gurations to

account for the uncertainty associated with climate projections.

In the �rst part of the study, we demonstrated the added value of RCMs (using

the CCLM model) over GCMs for CA in representing precipitation. Our CCLM run

showed added value with respect to its driving GCM, comparable to the range

of values obtained for other RCMs applied to the CORDEX-CA domain over the

evaluation period. It also reproduced extreme precipitation patterns similar to
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the CMIP6 ensemble mean projections for the end of the century. Both the

CCLM and CMIP6 ensembles indicated an increased risk (in terms of intensity

and frequency) of heavy precipitation events in vulnerable regions of CA due to

various human activities.

Our study evaluated the downscaling skill using high-resolution observations, a

crucial step for accurately capturing localised climate phenomena. This

evaluation was essential before further study steps and regional adaptation

strategies could be implemented. However, as \cite{volosciuk2017combined}

noted, examining downscaling outputs at coarser resolutions can be equally

informative. Their work emphasises that downscaling methods can introduce or

fail to correct biases that differ signi�cantly across spatial scales. By

evaluating on a coarser grid, it is possible to distinguish between the inherent

biases of the model and those introduced by the downscaling process. This

distinction is crucial for understanding the limitations and strengths of

downscaling methods in representing climatic variables across different

scales.

We showed that a single GCM-RCM model chain could be used to train a

climate emulator based on a CNN model. It learned nonlinear and physical

relationships between the coarse and �ne-resolution datasets, addressing the

issue of spatial intermittency—where data points are unevenly distributed or

missing across space—common in some statistical downscaling approaches

\citep{harder2023hard}. However, we also demonstrated that the CNN model

had limitations when generalising, as it did not achieve a robust error-reduction

pattern when given a different GCM as input. The learning process strongly

depended on the GCM/CCLM relationships. More importantly, an RCM was
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forced to follow its driving GCM and could only produce extra information on a

local scale. The presented CNN could be applied to other experiments of the

same GCM, such as using the trained emulator for paleo-climate experiments

or downscaling volcanic forcing experiments. This would aid the paleo-climate

community in conducting proxy-model comparisons at local scales. However,

previous studies have shown that the CNN suffered from the same

generalisation problem when applied to a new GCM, and such applications

must be tested \citep{jouvet2023ice}.

We deliberately excluded the SSP370 scenario from the training dataset to

evaluate the model's generalisation capabilities for other scenarios of the

same GCM. This strategy allowed us to assess whether the model could

effectively infer and replicate patterns from untrained scenarios. Remarkably,

the model's output for the SSP370 scenario exhibited an AV pattern mirrored

the dynamical downscaling results of the CCLM driven by the same SSP370

scenario. This alignment strongly supported the notion that our CNN emulator

could learn from its training data and generalise to new, unseen conditions. The

similarity in AV patterns between the model output and the CCLM simulation

underscored the robustness and adaptability of our model, af�rming its

potential for broader applications in climate modelling.

This work was an initial step in demonstrating the potential of such a hybrid

approach. We encourage the community to explore different model structures

and parameter combinations for further improvement. For example, our initial

setups showed that a physically constrained CNN setup that applies a linear

transformation to ensure mass or energy conservation between the low and

high-resolution images did not successfully downscale precipitation. The
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original dataset might not satisfy the constraints, leading to suboptimal

results. In contrast, with a higher degree of freedom, the unconstrained CNN

produced patterns closer to the target RCM. Future studies could test

alternative machine learning models, such as generative adversarial networks

(GANs), which can generate more high-frequency patterns and improve the

downscaled output. Additionally, incorporating more information into the CNN

by adding characteristics like surface height, vegetation, land cover, and land

use as new channels within the input layer could enhance model performance.
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1. is then extended Passive voice misuse Clarity

2. This Intricate text Clarity

3. Wordy sentences Clarity

4. are pronounced Passive voice misuse Clarity

5. are sparsely distributed Passive voice misuse Clarity

6. are calculated Passive voice misuse Clarity

7. is depicted Passive voice misuse Clarity

8. are found Passive voice misuse Clarity

9. are displayed Passive voice misuse Clarity

10. different Wordy sentences Clarity

11. a total of Wordy sentences Clarity

12. is depicted Passive voice misuse Clarity

13. is detected Passive voice misuse Clarity

14. Similar patterns are observed in the
CMIP6 ensemble mean, but due to
averaging, the ensemble mean patterns
are approximately ±5 mm/day over
these areas.

Unclear sentences Clarity

15. is aligned Passive voice misuse Clarity

16. Figures \ref{�g:5}.1, d, and g illustrate
the ECA-RX20mm values for CCLM at
the end of the century across three
scenarios.

Unclear sentences Clarity

17. Wordy sentences Clarity

with respect to → concerning, for, to

precipitation averages
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18. was previously trained Passive voice misuse Clarity

19. Wordy sentences Clarity

20. is driven Passive voice misuse Clarity

21. etc. Inappropriate colloquialisms Delivery

22. were trained Passive voice misuse Clarity

23. are not reconstructed Passive voice misuse Clarity

24. the added value of dynamically
downscaling a general circulation
model (GCM) from the sixth phase of
the Coupled Model

GMDD - Climate Model
Downscaling in Central Asia: A
Dynamical and a Neural Network
Approach
https://gmd.copernicus.org/prepri
nts/gmd-2023-227/

Originality

25. the CCLM (at 0.22° horizontal
resolution) for the historical period of
1985-2014 and the projection period of
2019-2100 under three shared
socioeconomic pathways (SSPs): SSP1-
2.6, SSP3-7.0, and SSP5-8.5 scenarios.
Using the Climate Hazards Group
InfraRed Precipitation with Station
data (CHIRPS) gri…

GMDD - Climate Model
Downscaling in Central Asia: A
Dynamical and a Neural Network
Approach
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nts/gmd-2023-227/

Originality

26. future climate projections. We present
high-resolution maps of heavy
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