
Dear Editor and Reviewers,1

Many thanks for your valuable comments and suggestions, which were very useful for improving presentation of2

results and paper readability. In the following, we will answer all the comments raised by the reviewers in detail.3

The reviewers’ comments are in bold, citations in Italic and our answers are in regular font.4

1 Reviewer 2:5

1.1 Major comments6

The study presents results from two downscaling methods for GCM precip itation. One is dynamical7

downscaling with the CCLM RCM and the second is a statistical emulator for CCLM based on CNNs.8

The downscaling is applied to simulations with the MPI−ESM1−2 HR GCM. Both approaches are9

in principle useful and the results are informative.10

11

Thanks a lot for the positive feedback. We have to mention that we also conducted a simulation where we12

downscaled EC−Earth3−Veg GCM using CCLM and the trained CNN (see Sec. 4.1 Applying CNN to a different13

GCM and https://zenodo.org/records/10417111). We will add more details of the simulations in a new version14

of the manuscript.15

However, the method evaluation is very limited as it is only based on MAE, while many other16

evaluation measures could have been used. I suggest to add at least an analysis of the bias in the17

mean and include a justification for the specific choice of evaluation measures. Moreover, the analysis18

of MAE of GCM simulations and GCM-driven RCM simulations relative to observations is funda-19

mentally wrong, because the random internal variability in the simulations and in the observations is20

not synchronised.21

We are aware that he simulations are in the so-called ”free” mode and do not include any kind of data assimilation22

and do not ”see” the observations. However, we conduct averaging of 30 years on each day, i.e. we have 30 first of23

January for example and the resulted pattern is not only a random pattern of a single day. However, as suggested24

by you, we added the new figure 5 in the new version of the manuscript, showing biases of the climatological values.25

With such figures we again confirm the added values of the RCM downscaling conducted in our study for mean26

states. The overall added value pattern is similar in both cases, i.e. using MAE or climatological bias. This might27
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be embedded in the 30-years averaging in the MAE calculation, which cancels out small random variablities, which28

are induced by the dynamical downscaling.29

The choice of using MAE for the comparisons are motivated by the fact that a mean of absolute errors over30

30 years already cancels out the majority of randomness within the dataset. And we are ultimately interested in31

the reduction of the mean error via downscaling. Other reason for selection of MAE lays in the distribution of32

Precipitation. According to the study of Hodson (2022), MAE is more suitable for precipitation than other metrics.33

For the rest of the manuscript, we will show the MAE, because we are comparing the emulated pattern against34

the RCM-pattern and there is no comparison to observations.35

The manuscript is also not well written, and important conceptual basics and technical details are36

not clearly explained. It needs substantial rewriting before it is suited for publication.37

We have implemented your critics in the new version of the manuscript and modified the text a lot to meet your38

expectations.39

1.2 Specific comments40

The introduction contains many good points, but there is some repetition and it should be better41

structured. The purpose of the paper should be made clear in the abstract and at the beginning of42

the introduction. What are the research questions?43

We modified the introduction accordingly with a focus on the research questions listed as bullet points in the44

introduction.45

• Research Question 1: How effectively can CMIP6 models be downscaled for the CORDEX Central Asia region46

to enhance precipitation simulations? (Kendon et al., 2014; Demory et al., 2020; Hess et al., 2022)47

• Research Question 2: Can convolutional neural networks (CNNs) effectively downscale GCM outputs, and how48

do they perform when applied to GCMs they were not initially trained on? (Sun and Lan, 2021; Rasp and49

Lerch, 2018)50

Is this mainly a methodological study or is the main purpose to provide high-resolution scenarios51

to inform impact and adaptation studies? The first part of the introduction suggests that the CCLM52

predictions are the main point, and only after line 110 it is said that a ML emulator will be tested,53

and that three research topics are addressed. The second research topic (line 118) is unclear. What54
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is meant with the ‘dynamical downscaling signal for heavy precipitation’? Signal of what? The third55

topic is training a CNN-based emulator for CCLM, but why is evaluation not mentioned? It would56

also be good to discuss whether there are already published findings on the added value of RCMs57

over Central Asia, for instance from CORDEX.58

We have modified the introduction a lot to make those points clear. We added a paragraph listing the few59

downscaling efforts done in Central Asian domain.60

Line 11: ‘we downscale CCLM’ is not correctly phrased61

We have changed it to ”Additionally, we employ the CCLM to refine future climate projections.”62

Lines 16-18: The setup of the CNN training and evaluation, and the applications are not clearly63

explained in the abstract. Of course, the CNN emulator is model-specific, as it is designed to emulate64

a specific RCM.65

We reformulated this part in the new version of the manuscript.66

Line 25: Maraun and Widmann (2018) ‘Statistical downscaling and bias correction for climate67

research’, Cambridge University Press, is a standard reference for statistical downscaling and should68

also be cited.69

That is true. We added this source in the new version.70

Lines 101-102: If ML is used for postprocessing large-scale data separately for each time step, as71

is the case for the emulator presented, there is no iterative use of the output. It is therefore unclear72

how this comment relates to the study.73

We have removed this sentence and explained the conservation process of the DL architecture we have used in74

this study. For example the following part is added to the new introduction:75

”CNNs are adept at maintaining spatial coherence in the output, which is critical in downscaling where preserving76

the geographical patterns of climate variables (like precipitation) is crucial (Kurth et al., 2018). Constrained CNNs77

integrate physical constraints or laws directly into the training process. The constraining is done by changing the loss78

function or the network’s architecture to enforce compliance with physical laws (i.e., conservation of mass, energy,79

or momentum). Unconstrained CNNs operate without explicitly incorporating physical laws or constraints into the80

network’s architecture or loss functions. They focus solely on learning from the input data to the output predictions81

based on the data-driven patterns they detect. This study explores unconstrained and constrained CNN approaches82

to understand their effectiveness in downscaling and how they perform when applied to GCMs on which they were83
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not initially trained.”84

Lines 153-159: It is not clear what is meant with ‘high/low challenges to adaptation’.85

we added the following paragraph to the new introduction: ”Challenges to adaptation refer to the degree of86

difficulty that societies might face in adjusting to the environmental, economic, and social impacts of climate change.87

Specifically, this term refers to a society’s fundamental susceptibility and the accessibility and efficacy of technologies88

and approaches designed to lessen the impacts of climate change. The adaptation challenges are minimal in the89

SSP126 scenario, which envisions a sustainable future. This implies that, under this scenario, global cooperation90

and sustainable practices lead to advancements in technology and governance that significantly reduce vulnerability91

to climate change impacts. Additionally, societal structures are resilient, and resources are managed to minimise92

environmental stresses and maximise human well-being.”93

Section 2.1.1: There should be a reference to Fig. 1a to specify the CCLM domain, and in the94

figure caption ‘study region’ should be replaced with ‘CCLM simulation domain’.95

We added this into the new version.96

Section 2.1.2: The setup for the CNN training is not fully clear. What are the simulation periods97

for the scenario runs? Are the input and output variables daily precipitation?98

We implemented this data in the new version of the manuscript.99

Line 161-162: If input and output are precipitation, what is the meaning of energy and mass100

conservation in this context? Is ‘energy’ and ‘mass’ in this context the same or are these different101

quantities? It turns out later that the details are given in appendix A and that for the hard constraint102

the meaning of ‘mass and energy conservation’ is that the precipitation over a GCM gridcell is103

conserved in the high-resolution precipitation. However, the main part needs to be self-contained104

and written such that it is not confusing. Therefore, a short explanation of the main aspects of the105

constraints and a reference to the appendix should be given here.106

We agree with this point and therefore moved this part to the main part of the manuscript. We explain each107

layer in the main part of the paper with references to the new figure 2. Description of the constraint layers are now108

presented in section 2.1.3.109

Appendix A is very unsystematic and unclear. Specific problems are listed in the next five points.110

Line 417: The simplest way to ensure mass conservation would be to scale all small-scale values111

within a given large-scale gridcell with the ratio of the large-scale value and the sum of the small-112
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scale values. Why is this not done and what is the reason for the specific choice using the exponential113

dependency of the scaling factors on the small-scale values?114

Thanks a lot for this point, this might need further explanation. The way of scaling that you are describing is115

also one possibility described in Harder et al., 2023. The work showed though that using the softmax constraints116

layer gives better results. The exponential both ensures positive predictions and leads to more variance between117

subpixels in the super-resolved prediction. The multiplicative rescaling you are describing e.g. struggles when the118

sum of the small-scale values gets close to zero.119

Line 418: Why is the MAE loss function mentioned in the context of the hard constraint, which120

in the way it is formulated does not depend on the loss function for the CNN? It is said already in121

line 192 that MAE is the loss function for the CNN.122

That’s correct, the hard constraints layers dont depend on the loss function. There is a formulation of the soft123

constraining, which includes an addional term in the loss function. We have removed that part in the new version of124

the manuscript.125

Lines 419-424: Is this the loss function for the whole CNN, or is it only relevant for the constraint126

layer? If it is the former, this contradicts the statement in line 192. If it is the latter, the use of two127

loss functions needs to be explained. How are the yi calculated from the values in the previous layer?128

Why is there an explicit version for calculating yi for the hard constraint (eqn. A2) but not for the129

soft constraint?130

The loss function is always for the whole CNN. If there are hard constraints are included there is no change in the131

loss function at all. Next to hard constraints there also exist soft constraints, which is a way of enforcing constraints132

through an additional term in the loss function. Soft constraints and hard constraints are fundamentally different133

as hard constraints build on reajusting the outputs during training and inference at the end of the neural network134

through a non-trainable layer. This is an explicit function that is applied. Soft constraints are not enforced explicitly135

but through the penalizing term mentioned above.136

Lines 425-426: It is not clear why a loss function is mentioned if there is no constraint layer. It is137

already said in line 192 that MAE is the loss function used for the whole CNN.138

The loss function is mentioned because it is used for the soft constraints and changed for this.139

Lines 428-429: This sentence says that MAE is an evaluation criterion for the different settings.140

This is confusing. Are the ‘loss function’ and the ‘evaluation criterion’ used differently? If so, it needs141
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to be explained how, or the statement on the evaluation criterion needs to be moved to the ‘metrics’142

section.143

The MAE is both used as a loss function and an evaluation metric. A loss function is used during the training144

to optimize the neural networks parameters, while an evaluation metric is calculated on the validation or test data145

set to evaluate the model on an independent dataset. Those are two different use cases, but both can use an MAE.146

This information is added into the new version for clarifying.147

Lines 162-171: Although GCM errors affect the output, the emulator is a statistical model, which148

should be not very sensitive to the states used for fitting, otherwise there is the usual problem of149

stability of statistical relationships in statistical downscaling. The phrasing ‘introduce biases in the150

downscaling process’ is misleading, as the ‘downscaling process’ is the CCLM model or the CNN151

emulator, not the output. The discussion in this part is conceptually unclear as in conflates models152

and outputs. The fact that biases and errors of the CCLM and CNN output are partly caused by153

propagation of GCM biases and errors needs to be taken into account in the evaluation.154

We changed the whole paragraph into a new one :155

”In the context of deep learning for climate modelling, the ’perfect model’ approach involves starting with high-156

resolution data, which is considered accurate or nearly perfect, and intentionally degrading it to a lower resolution.157

The aim is to simulate a scenario where the ’truth’ (the original high-resolution data) is known, and then to recover158

this high-resolution from the artificially degraded data using deep learning techniques. This approach is a crucial159

part of training, as it teaches the model the desired mapping from low to high resolution, enabling the model160

to effectively learn how to upscale or enhance resolution while minimizing the loss of critical information. It’s a161

controlled experiment that helps refine the model’s capabilities.162

The ”imperfect model” approach, on the other hand, acknowledges that both the low-resolution (GCM output)163

and the high-resolution (RCM output) datasets have their inherent errors and limitations. In this scenario, we do164

not have a single source of truth but rather two separate sets of data:165

• Low-resolution data: This may capture global or large-scale phenomena but miss regional details (Xu et al.,166

2021; Chokkavarapu and Mandla, 2019).167

• High-resolution data: This provides detailed regional information but may still have errors or not perfectly re-168

flect reality due to limitations in data collection, model configuration, or computational constraints (Muttaqien169
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et al., 2021).170

In this setup, the challenge for deep learning is to learn a mapping between these two independently imperfect171

data sets. With using the CNN we try to train a model that can predict high-resolution details from low-resolution172

inputs as accurately as possible despite the absence of a perfect ground truth. This involves understanding and173

modeling the uncertainties and biases inherent in both datasets.”174

Lines 189-190: The statement that the unconstrained CNN works best is based on the evaluation,175

and the performance ranking depends in principle on the evaluation measures. This is the method176

section and the reader does not know yet what the evaluation measures are. The statement on the177

best architecture should be moved to the result section and it should be made clear that the ranking178

of methods can depend on the evaluation measures.179

We agree and have moved this part to the results and explain it in a right order now.180

Lines 196-206: How different are the CHIRPS, APHODITE and CPCC data on the coarser grids181

for which they are all available?182

Based on the point raised by reviewer 1, we have removed this lines from the new version of the manuscript.183

Lines 210-215: It would be good to also do the evaluation on the coarse grid, or at least comment184

why this is not done. See also Volosciuk et al. (HESS 2017) ‘A combined statistical bias correction185

and stochastic downscaling method for precipitation’ for a discussion on the distinction between biases186

and differences in statistical properties on different spatial scales.187

We did not initially include an evaluation on the coarse grid primarily due to our specific focus on the impacts188

at a higher spatial resolution, which is more relevant for local climate adaptation strategies, like the work of Russo189

et al. (2020). Nevertheless, to enhance the robustness of our findings and provide a comprehensive analysis, we will190

include a discussion on the implications of not evaluating at coarser resolutions in the revised manuscript. This191

discussion will reference the findings of Volosciuk et al. (2017) to provide a theoretical framework for understanding192

the scale-dependent nature of biases and differences in statistical properties.193

We added the following paragraph to the discussions : ”Our study evaluated the downscaling skill primarily194

using higher resolution observations, which are critical for capturing localized climate phenomena relevant to regional195

adaptation strategies. However, as Volosciuk et al. (2017) noted, examining downscaling outputs at coarser resolutions196

can be equally informative. Their work emphasizes that downscaling methods can introduce or fail to correct biases197

that differ significantly across spatial scales. By evaluating on a coarser grid, it is possible to distinguish between198
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the inherent biases of the model and those introduced by the downscaling process. This distinction is crucial for199

understanding the limitations and strengths of downscaling methods in representing climatic variables across different200

scales.”201

Lines 216-223: The evaluation is very limited because it only addresses temporal variability, and202

only with one specific measure. Other measures for the agreement of simulated and observed temporal203

variability could also be used such as correlations of the timeseries or Brier Score for threshold204

exceedances. Differences in distributions, including the bias in the mean, potentially also in quantiles205

should also be analysed. The various aspects of evaluation are discussed for instance in Maraun et al.206

(Earth’s Future 2015) ‘VALUE: A framework to validate downscaling approaches for climate change207

studies’.208

Indeed we show correlations as numbers in the paranthesis within new Figure 9, new Figure 10 c and d, whenever209

we do not shuffle the datasets. We also added the simple bias maps in new figure 5. The current model set-up has210

already been evaluated in a previous study i.e. Russo et al. (2020). Here, we apply that setting for creating the211

CMIP6-based CORDEX-CA.212

Moreover, the terminology is not correct. A bias is a systematic difference between a statistical213

variable calculated from two datasets. It often refers to variables that characterise distributions (such214

as the mean, variance, or quantiles), but can also be used for variables that characterise temporal215

variability (such as autocorrelation or spectra) or spatial variability (such as correlation lengths, for216

instance Widmann et al. (IJC 2019) ‘Validation of spatial variability in downscaling results from the217

VALUE perfect predictor experiment’. It is not common practice to use the term bias to characterise218

the agreement of individual time steps, and therefore MAE should not be called bias.219

This issue was raised also by reviewer 1 and we agree with it. We now show both MAE and the simple bias maps.220

Please see answer to reviewer 1.221

Section 3.1.1: If I understand correctly the MAE is calculated based on pairs of daily simulated222

and observed values. If so, this approach is fundamentally wrong, because the precipitation series are223

realisations of random internal variability, which are different in the observations and in the GCM224

simulations or GCM-driven RCM simulations. This is different for reanalyses and reanalysis-driven225

RCM simulations because of the data assimilation in reanalyses. MAE is based on pairs of values for226

a given time and a measure for how similar the timeseries are. It makes no sense to calculate MAE227
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for non-synchronised timeseries, because there is no justification for the paring of values. In this228

situation the MAE is only affected by the difference in variance and provides no meaningful measure229

of agreement of the specific temporal behaviour. This section and Fig. 3 should therefore be deleted.230

We completely agree on this point and removed the subsection and its figures.231

Lines 259-261: The GCM biases that affect the climate change signal in RCM simulations are232

not the MAE for short-term variability but systematic biases for instance in the large-scale mean233

circulation for the present climate, which may be linked to unrealistic large-scale climate change.234

The links between biases and climate change signals are complex, and should be discussed more235

carefully.236

As mentioned above, this section is removed from the new version of the manuscript.237

Line 322: Project reference is missing238

We corrected that.239

Lines 351-353: This argument is missing the main point. CCLM is driven at the lateral bound-240

aries by the GCM values for the state variables of CCLM (temperature, pressure, wind speed etc.).241

Precipitation is not used for driving the RCM. The CNN input is the GCM precipitation, which has242

different biases in the two GCM, and therefore the mapping from the MPI-GCM-precipitation to the243

CCLM precipitation cannot be successfully transferred to EC-Earth.244

We added this point in the new version.245

Discussion and conclusions: This section needs to be rewritten after the issues listed above have246

been addressed.247

We have rewritten those sections.248

Line 516: Reference for the Harder et al. 2022 preprint should be updated to the peer-reviewed249

version Harder et al. 2023.250

Done.251

On behalf of all authors,252

Bijan Fallah253
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Abstract. To estimate future climate change impacts, usually high-resolution climate projections are necessary. Statistical

and dynamical downscaling or a hybrid of both methods are mostly used to produce input datasets for impact modelers. In

this study, we use the regional climate model (RCM) COSMO-CLM (CCLM) version 6.0 to identify the added value of

dynamically downscaling a general circulation model (GCM) from the sixth phase of the Coupled Model Inter-comparison

Project (CMIP6) and its climate change projections’ signal over Central Asia (CA). We use the MPI-ESM1-2-HR (at 1° spatial5

resolution) to drive the CCLM (at 0.22° horizontal resolution) for the historical period of 1985-2014 and the projection period

of 2019-2100 under three different shared socioeconomic pathways (SSPs): SSP1-2.6, SSP3-7.0 and SSP5-8.5 scenarios. Using

the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) gridded observation dataset
:
as

::::::::
reference, we

evaluate the CCLM performance over the historical period using a simulation
:::::::::::
performance

::
of

::::::
CCLM

:
driven by ERAInterim

reanalysis
:::
over

:::
the

::::::::
historical

::::::
period. CCLM’s added value, compared to its driving GCM, is significant

:::::
(more

::::
than

:::::::::
5mm/day)10

over CA mountainous areas, which are at higher risk of extreme precipitation events. Furthermore, we downscale the CCLM for

::::::::::
Additionally,

:::
we

:::::::
employ

::
the

::::::
CCLM

::
to
:::::
refine

:
future climate projections. We present high-resolution maps of heavy precipitation

changes based on CCLM and compare them with CMIP6 GCMs ensemble. Our analysis shows a significant increase in heavy

precipitation intensity and frequency over CA areas that are already at risk of extreme climatic events in the present day. Finally,

applying our single model high-resolution dynamical downscaling, we train a convolutional neural network (CNN) to map the15

low-resolution GCM simulations to the
:
a
:::::
GCM

:::::::::
simulation

::
to
:::

its dynamically downscaled CCLMones. We show that applied

1



::
the

:
CNN could emulate the GCM-CCLM model chain over large CA areas. However, this specific emulator has shortcomings

::::
This

:::::::
emulator

:::
has

::::::
added

:::::
values

:
when applied to a new GCM-CCLM model chain. Our downscaling data and the pre-trained

CNN model could be used by scientific
::::::::
Scientific communities interested in downscaling CMIP6 models and searching for a

trade-off between the
:::::
could

:::
use

:::
our

:::::::::::
downscaling

::::
data.

::::
The

::::
CNN

::::::::::
architecture

:::
can

:::
be

::::::
applied

::
as

:::
an

:::::::::
alternative

::
to dynamical and20

statistical methods.

1 Introduction

It is very well acknowledged that the
:::
The

:::::::::
increasing

:
global mean temperature is increasing due to anthropogenic greenhouse

gas emissions (Allan et al., 2021). The most critical
:::::::
presents

:
a
:::::::::
significant challenge for societyis to assess and predict the future

impact of this warming on the
:
,
:::::::
requiring

:::
the

::::::::::
assessment

:::
and

:::::::::
prediction

::
of

:::::
future

:::::::
impacts

::
on human health, natural ecosystems,25

and economy for
::::::::
economies

::::::
across different regions of the World. Studies of

::::
world

::::::::::::::::
(Allan et al., 2021).

::::::::
Regional

::::::
studies

::
on

:
vul-

nerability, impactsand adaptation at the regional scale require
:
,
:::
and

:::::::::
adaptation

:::::::::
necessitate

:
reliable high-resolution climate pro-

jections(Maraun et al., 2015), which are based on dynamical downscaling through RCMs(Rummukainen, 2010; Feser et al., 2011)

:::::::
typically

:::::::
achieved

:::::::
through

:::::::::
dynamical

::::::::::
downscaling

:::
via

::::::::
Regional

::::::
Climate

:::::::
Models

:::::::
(RCMs)

:::::::::::::::::::::::::::::::::
(Rummukainen, 2010; Feser et al., 2011)

, statistical techniques (Fowler et al., 2007) or hybrid approaches using both (Meredith et al., 2018; Laflamme et al., 2016)30

::::::::::::::::::::::::::::::::::::::::
(Maraun and Widmann, 2018; Fowler et al., 2007)

:
,
::
or

:
a
::::::
hybrid

::
of

::::
both

:::::::::
approaches

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Maraun et al., 2015; Meredith et al., 2018; Laflamme et al., 2016)

.

Countries should develop an adaptation and mitigation strategy to cope with potential future risks of climate change. Usually,

climate projections are used as the basis for decision-making in spending financial resources on infrastructure, society, and

environments (Maraun et al., 2015). Central Asia (CA)is assumed to be
:
,
:::::::::
recognized

::
as

:
one of the most vulnerable regions to35

climate change impacts. CA’s water resources depend on water
:
,
::
is

::::::
heavily

:::::::::
dependent

:::
on

:::::
water

::::::::
resources from glaciers and

rivers that are shrinking due to rising temperatures and decreasing precipitation (Reyer et al., 2017). Food securityis at severe

risk in CA with reduction of crop yields due to climate change (Allan et al., 2021). Extreme
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Reyer et al., 2017; Fallah et al., 2023; Didovets et al., 2024; Fallah and Rostami, 2024)

:
.
:::
The

::::
area

:::::
faces

:::::::::
significant

:::::::::
challenges

::
to
:::::

food
:::::::
security,

:::::::::::
characterized

:::
by

::::::::
declining

::::
crop

::::::
yields

:::
and

:::
an

::::::::
increased

::::::::::
occurrence

::
of

:::::
severe

::::
and

:::::::
frequent

::::::::
extreme

:::::::
weather events like floods and landslidesare happening more frequently and intensively in40

the region leading to severe damage to infrastructures, livelihoodsand crops, subsequently causing
:
.
:::::
These

:::::::::
conditions

:::::::
damage

:::::::::::
infrastructure,

::::::::::
livelihoods,

:::
and

::::::::::
agriculture,

:::::::
resulting

::
in population displacement and migration (Reyer et al., 2017)

:::::::::::::::::::::::::::::::
(Allan et al., 2021; Reyer et al., 2017)

.

Given the above-mentioned
::::::
Despite

:::::
these

:::::::
critical concerns, the impact modelling is still hindered in CA, based on the

lack
::::::::::
development

:
of high-resolution climate projections but also on the elevated level of uncertainty

::
in

:::
CA

::
is
::::::::

impeded
:::
by45

::
the

::::::::::
significant

:::::::::::
uncertainties

:::::::
inherent

:
in the existing high-resolution observational and reanalysis datasets . Motivated by

these challenges, in this manuscript we produce a dynamically downscaled state of the projected climate over CA from a

single GCM of the
::::::::::::::::
(Fallah et al., 2016a)

:
.
:::::::::
Dynamical

:::::::::::
downscaling

::
of CMIP6 project. In some cases, for properly reproducing

::::::
models

:::
for

:::
the

:::
CA

::::::
region

::
is
:::::
vital

:::
for

:::::::::
accurately

:::::::::
simulating extreme convective precipitation eventsand local topographical

2



effects, downscaling is essential for representing local dynamics (Kendon et al., 2014; Demory et al., 2020). Various factors,50

such as
:
,
:::::
which

::::
are

:::::::::
influenced

:::
by the orography of the region, the large-scale atmospheric circulation, the

::
and

:
sea sur-

face temperature anomalies in Indian Oceans
::
the

::::::
Indian

::::::
Ocean

:
and the Pacific , and the soil moisture feedback influence

convective precipitation events in central Asia (Xu et al., 2022). The main goal of dynamical downscaling is to improve

:::::::::::::::::::::::::::::::::::::::::::::::
(Kendon et al., 2014; Demory et al., 2020; Xu et al., 2022).

::::::::::
Dynamical

::::::::::
downscaling

::::::::
enhances the resolution of a driving Global

Circulation Model (GCM ) and produce a robust
::::
GCM

:
and

::::::::
produces

:
a
::::::
robust,

:
physically consistent regional state of the cli-55

mate. This is often considered a critical point for preferring the use of RCMs to
::::::::::::
High-resolution

:::::::::::
atmospheric

::::::
models

:::::
have

::::
been

:::::
shown

::
to
:::::
have

:::::
better

::::
skills

::::
over

::::::::
complex

:::::::::::
topographies

::
in

:::::::::
estimating

:::::::
variables

::::
like

::::::::::
precipitation

::::
than

::
in

::::
situ

:::::::::::
observations,

:::::::::::::
satellite-derived

:::
and

:::::
radar

:::::::
datasets

:::::::::::::::::::
(Lundquist et al., 2019)

:
.
:::::
Many

::::::
studies

:::::::
confirm

:::
that

::::::
RCMs

:::
can

:::::
better

::::::::
represent

::::::::::
small-scale

::::::::::
atmospheric

:::::::
features,

::::::::
especially

:::
for

:::::::::::
precipitation

:::
over

::::::::
complex

::::::::::
topographies

:::::::::::::::::::::::::::::::::::::::::::
(Ban et al., 2015; Wang et al., 2013; Frei et al., 2003)

:
.
::::
This

::::::
method

::
is

::::
often

::::::::
preferred

::::
over

:
statistical downscaling approachesthat rely on the assumption that statistical relationships60

found for the present also hold true for the future . Dynamical downscaling reproduce a wide range of local physical processes,

especially important for the representation of precipitation (Hess et al., 2022). Traditional statistical downscaling approaches

are based on model output statistics and try to improve the spatial resolutions based on statistical relationships and not

dynamical processes (Hess et al., 2022; Lange, 2019). The resulting statistically-downscaled data usually lacks physical consistency

and might be too smooth (Lange, 2019; Fallah et al., 2023). On the other hand
:
,
:::::
which

::::::
assume

::::
that

::::::
present

::::::::
statistical

:::::::::::
relationships65

:::
will

:::::
hold

::
in

:::
the

::::::
future

:::::::::::::::
(Hess et al., 2022)

:
.
::::::::
However, RCMs are computationally demanding , especially at the very high

resolutions useful for impact studies. At the same time, they suffer from
:::
and

::::::
inherit a ’cascade ’ of uncertainties that must

be taken into account prior to the performance of climate projections . In order to improve the models inter-comparability and

to provide a robust, validated benchmark for the performance of high-resolution climate projections using RCMs , over the

years members from different
::
of

::::::::::
uncertainty’,

:::::::
meaning

::::
that

:::
the

::::::::::
uncertainties

::
in

:::
the

::::::
models

::::
will

::::::
expand

::::
from

:::
one

::::
step

::
or

:::::
chain

::
to70

::::::
another,

::::::
highly

:::::::
affecting

:::::
RCM

::::::::
outcomes

:::
and

:::::
must

::
be

:::::::::
considered

::::
prior

::
to

::::::::::
performing

::::::
climate

:::::::::
projections

::::::::::::::::::::::::::::::::::::::::
(Mitchell and Hulme, 1999; Sørland et al., 2018)

:
.
::::::
Despite

:::::
these

::::::::::::
considerations,

:::
the

:::::
added

:::::
value

::
of

::::::
RCMs

:::::::::
concerning

::::
their

::::::
driving

:::::
GCM

::
is

:::::::::
constantly

::::::
debated

::
in

:::
the

::::::::::
community

:::
and

::
is

:::::
highly

:::::::::
dependent

::
on

:::
the

::::::
driving

:::::
GCM

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Jacob et al., 2012; Lenz et al., 2017; Fotso-Nguemo et al., 2017; Di Luca et al., 2012, 2015)

:
.
:::
An

:::::
RCM

::
is

:::::
tuned

::
to

:::::::
perform

::::
over

:::
the

:::::
target

::::
local

:::::::
region.

::::::::
However,

:
a
:::::
GCM

::
is
:::::

tuned
:::

to
::::::::
represent

::::::
energy

:::
and

:::::
water

:::::::
balance

:::::::
globally

:::::::::::::::::
(Sørland et al., 2018).

:
75

::::::
Various

:
international institutions have joined forces into

::::::::::
collaborated

:::::
within

:
the Coordinated Regional Climate Downscaling

Experiment (CORDEX) .

CORDEX is a program sponsored by the World Climate Research Program (WCRP) aimed at developing an improved

framework for generating regional-scale climate projections for impact assessment and adaptation studies worldwide within
::
to

::::::
address

:::::
these

:::::
issues

:::
and

::::::::
improve

:::
the

:::::::
models’

::::::::::::::::
inter-comparability.

:::::::::
CORDEX

::::
aims

::
to

:::::
create

::
a
:::::
better

:::::::::
framework

:::
for

:::::::::
producing80

::::::
climate

:::::::::
projections

::
at
::
a
:::::::
regional

::::
scale

::::
that

::
is

::::::
suitable

:::
for

::::::
impact

:::::::::
evaluation

:::
and

:::::::::
adaptation

::::::::
planning

:::::::
globally,

:::::::
aligned

::::
with

:::
the

:::::::
timeline

::
of the Intergovernmental Panel on Climate Change Sixth Assessment Report (Kikstra et al., 2022)timeline and beyond.

CORDEX aims to produce regional climate projections and to evaluate their performance through different experiments. The

usage of CORDEX-like simulations must be adapted to the needs of the impact modelling. CORDEX data are often affected

3



by diverse sources of uncertainty: systematic biases in the driving GCM and RCM itself, uncertainty in scenarios, the model85

internal variability, model-specific response to driving GCM’s boundary forcing and a small population of RCM simulations.

We might underestimate/overestimate the uncertainty if the sample is too small (Hewitson et al., 2014).

Unfortunately, most of the research conducted in/for the CORDEX initiative .
::::::::
However,

:::::
most

:::::::::
CORDEX

:::::::
research

:
focuses

on highly industrialized countries (Allan et al., 2021), and fewer institutes run RCM simulations over CA (refer to ). Sadly,

the developing countries (CA included) are the ones who will suffer the most from the consequences of global warming90

(Naddaf, 2022). In particular, only two CORDEX model simulations are available to date for CA, driven by the fifth phase of the

coupled model intercomparison project (CMIP5) GCMs (Taylor et al., 2012). On the other hand, no
:::::::::::::::::::::::::::::::
(Allan et al., 2021; Taylor et al., 2012)

:
.
::
No

:
simulation (except this study) driven by the CMIP6 model simulations has been planned so far for CA

::::::::::::
CORDEX-CA

:
(see

https://wcrp-cordex.github.io/simulation-status/CMIP6_downscaling_plans.html, last visited on 14.08.2023). One motivation

to conduct dynamical downscaling, especially over areas with complex topography, as in CA, is that high-resolution atmospheric95

models have been shown to have better skills in estimating variables like precipitation than in situ observations, satellite-derived

and radar datasets (Lundquist et al., 2019). Many studies confirm that RCMs can better represent small-scale atmospheric

features, especially for precipitation over complex topographies (Ban et al., 2015; Frei et al., 2003).

Despite these considerations, the added value of RCMs concerning their driving GCM is constantly debated in the community

and is highly dependent on the driving GCM (Jacob et al., 2012; Lenz et al., 2017; Fotso-Nguemo et al., 2017; Di Luca et al., 2012, 2015)100

. An RCM is tuned to perform over the target local region. However, a GCM is tuned to represent energy and water balance

globally (Sørland et al., 2018). Additionally, there is a debate in the community on whether the GCM-RCM chain might

suffer from a "cascade of uncertainty", meaning that the uncertainties in the models will expand from one step or chain

to another (Mitchell and Hulme, 1999; Sørland et al., 2018), highly affecting RCM outcomes. A significant advantage of the

high-resolution RCMs is the use of high-resolution surface forcings like the topography, land use and land cover, soil type, and105

coastlines (Hong and Kanamitsu, 2014).

Here, we focus on the added value of the dynamical downscaling for precipitation. Precipitation is one of the most critical

variables in vulnerability, impacts and adaptation studies (Jacob et al., 2012). Mountain precipitation is especially vital for

studying floods and water availability in the field of hydrology (Smith et al., 2010). Extreme daily precipitation is one of the

primary triggers of landslide events in CA , especially in Tajikistan and Kyrgyzstan (Wang et al., 2021). On the other hand,110

precipitation simulation is challenging for any climate model (Russo et al., 2019). RCMs have been shown to potentially add

value in simulating mesoscale convective precipitation, coastal rainfall, and extreme rainfall events (Giorgi and Gutowski Jr, 2015; Russo et al., 2020, 2019; Feser et al., 2011)

.
::::::::::
17.04.2024).

::::::
Sadly,

::::::::::
developing

::::::::
countries,

:::::::::
including

::::
CA,

::::
bear

:::
the

:::::
brunt

:::
of

::::::
global

:::::::::
warming’s

::::::::::::
consequences,

:::::
with

::::
only

::
a

::::::
limited

:::::::
number

::
of

:::::::::
CORDEX

::::::
model

::::::::::
simulations

::::::::
available

:::
for

::::
this

::::::
region

:::::::::::::
(Naddaf, 2022).

::::
The

:::::::::
dynamical

:::::::::::
downscaling

:::
in

:::
CA

:::
can

:::::::
provide

:::::::
detailed

:::::::
insights

::::
into

:::::::
regional

:::::::
climate

::::::::::
phenomena

:::::
often

:::
not

::::::::
captured

::
by

:::::::::::::::
coarser-resolution

::::::
global

:::::::
models115

::::::::::::::::
(Russo et al., 2019).

:::::::
Climate

::::::::::
projections

:::::
might

:::
be

:::::::
sensible

::
to

:::::::
different

:::::::::
parameter

:::::::
settings,

:::::::::::
emphasizing

:::
the

:::::
need

:::
for

::::::
careful

:::::::::
calibration

:::
and

::::::::
validation

::
of

:::::::
regional

:::::::
models.

:::::::::
Dynamical

::::::::::::
downscaling’s

:::::
added

:::::
value

:::
lies

::
in

::
its

:::::
ability

::
to

:::::
tailor

::::::
climate

:::::::::
projections

::::
more

::::::
closely

::
to

:::::::
regional

::::::::
specifics,

::::::
thereby

:::::::::
improving

:::
the

:::::
utility

::
of

:::::::
climate

::::
data

::
for

:::::::
regional

:::::::
climate

::::::
change

::::::
impact

::::::::::
assessments

4
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::::::::::::::::
(Russo et al., 2020).

:::::::
Despite

:::::
some

:::::::::
systematic

::::::
biases,

:::::::::
dynamical

::::::::::
downscaling

::::::::::
consistently

::::::::
provides

::::::::::
high-quality

:::::::
datasets

::::
that

::::::::
accurately

:::::::
describe

:::
the

::::::::::
climatology

:::
of

::
all

::::::
climate

::::::::
variables

::
in

:::
CA

:::::::::::::::
(Qiu et al., 2022).

:
120

In recent years, machine learning (ML) approaches like convolutional neural network (CNNs) have emerged as a promising

statistical downscaling tool due to their ability to learn
::::::
Beyond

:::::::::
dynamical

::::::::
methods,

:::::
recent

::::::::::::
developments

::
in

:::::::
machine

::::::::
learning,

::::::::
including

:::::
CNNs

::
as

:::
the

::::
most

:::::::
popular

::::::
choice,

:::::
offer

::::::::
promising

:::
and

:::::::::
potentially

:::::::::::::
transformative

::::::
avenues

:::
for

::::::::
statistical

:::::::::::
downscaling

:::::::::::::::::::::::::::::::::
(Harder et al., 2023; Rampal et al., 2024).

::::::
CNNs

::::
have

::::::
proven

:::::::
effective

::
in

::::::::
numerous

:::::
earth

::::::
science

:::::::::
disciplines

::::::
besides

:::::::::::
downscaling,

::::
such

::
as

:::::::::::
classification

:::::::::::::::::::::::
(Gardoll and Boucher, 2022)

:
,
:::::::::::
segmentation

::::::::::::::::
(Galea et al., 2024)

:::
and

::::::::
prediction

:::::::::::::::::::::::
(Watson-Parris et al., 2022)125

:::::
thanks

::
to

::::
their

:::::::
capacity

::
to
::::::
extract

:
features from spatial data and capture

::::::
identify

:
non-linear mappings

::::::::::
relationships between in-

puts and outputs(Sun and Lan, 2021). Unlike the point-wise approaches, they apply an image-to-image translation which might

reduce the spatial intermittency problems of post-processing methods (Rasp and Lerch, 2018). CNNs have been successfully

applied to various tasks in computer vision, natural language processing, and image super-resolution. In climate science, CNNs

have been used for statistical downscaling of temperature and precipitation over different regions and time scales, using distinct130

types of predictors and predictands (Baño-Medina et al., 2021; Serifi et al., 2021; Yang et al., 2023; Sun and Lan, 2021; Hess et al., 2022)

. Super-resolution (SR) in ML tries to increase the resolution of images or videos and preserve their content and details. The task

is challenging because SR involves recovering high-frequency information lost or degraded in low-resolution images or videos

(Dong et al., 2015). ML can generate high-resolution data that looks realistic and has good accuracy in prediction. However,

when ML is applied to a physical system like the Earth’s atmosphere, it may face a significant challenge: the predicted output135

values may need to obey physical laws such as energy, momentum, and mass conservation. These violations of constraints can

be harmful - causing errors that may accumulate as climate models iteratively run on their own output (Harder et al., 2022). If

there exists a physical relationship between low-resolution
:
.

:::::
CNNs

::::
can

::::::::
recognize

::::
and

:::::::
encode

::::::
spatial

:::::::::
hierarchies

:::
in

::::
data

:::::::::::::::
(Zhu et al., 2017),

:::::::
making

:::::
them

:::::::::::
exceptionally

::::::::
suitable

:::
for

::::::::
geospatial

:::::
data,

:::::
which

::
is
:::::::::::
fundamental

::
in

:::::::
climate

:::::::::
modelling.

::::::
Unlike

:::::::::
traditional

::::::::
statistical

:::::::
methods

::::
that

:::::
often

::::::
require

:::::::
manual140

:::::::
selection

::::
and

::::::
careful

::::::::::
engineering

::
of

::::::::
features,

:::::
CNN

:::::::::::
automatically

::::::
learns

:::
the

:::::
most

::::::::
predictive

:::::::
features

:::::::
directly

:::::
from

:::
the

::::
data

:::::::::::::::::::
(Reichstein et al., 2019)

:
.
:::::
CNNs

::::
can

:::::
model

::::::::
complex

:::::::::
non-linear

::::::::::
relationships

::::::::
between

::::
input

::::
data

:
and high-resolution datasets

via some equations, one could enforce physical constraints between the datasets. This could be achieved by adding a constraint

layer at the end of a neural networkarchitecture (Harder et al., 2022). Therefore, we could guarantee that we employ physical

constraints (like mass and energy conservation) in the prediction.However, in the GCM-RCM chain, unlike many statistical145

methods that try to re-distribute the precipitation amount from a coarse grid box to nested finer ones (Lange, 2019), precipitation

might not follow the mass conservation. The RCM has its internal variability and lends information from a GCM only at its

boundaries. In an unconstrained set-up, a CNN might be able to learn the hidden physical mappings between the RCM and its

driving GCM. Therefore, we will explore both the
:::::::
outputs,

::::
often

:::::::
present

::
in

::::::
climate

::::
data

:::
due

::
to

:::::::
intricate

::::::::::
interactions

::
in

:::::::
weather

:::::::
systems.

::::::
CNNs

:::
are

::::::::
generally

:::::
more

:::::::::::::
straightforward

:::
and

::::::::
efficient

:::
for

::::
tasks

::::
that

::::
aim

::
to

::::::
predict

:::
or

:::::::
classify

:::::
based

:::
on

:::::::
patterns150

:::::::::
distributed

:::::
across

::::
the

::::::
spatial

:::::::
domain,

::::
such

:::
as

::::::::::
temperature

:::
or

::::::::::
precipitation

::::::::
patterns

::
in

:::::::
climate

::::::
models

:::::::::::::::::
(Racah et al., 2017)

:
.
:::::
CNNs

::::
are

:::::
adept

::
at

:::::::::::
maintaining

::::::
spatial

:::::::::
coherence

::
in

:::
the

:::::::
output,

:::::
which

:::
is

::::::
critical

::
in
:::::::::::

downscaling
::::::

where
:::::::::
preserving

::::
the

::::::::::
geographical

:::::::
patterns

::
of

::::::
climate

::::::::
variables

::::
(like

:::::::::::
precipitation)

::
is

::::::
crucial

:::::::::::::::
(Kurth et al., 2018)

:
.
::::::::::
Constrained

:::::
CNNs

::::::::
integrate

:::::::
physical
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:::::::::
constraints

::
or

::::
laws

:::::::
directly

:::
into

:::
the

:::::::
training

:::::::
process.

::::
The

::::::::::
constraining

::
is
:::::
done

::
by

::::::::
changing

:::
the

::::
loss

:::::::
function

::
or

:::
the

:::::::::
network’s

:::::::::
architecture

::
to
:::::::
enforce

:::::::::
compliance

::::
with

::::::::
physical

::::
laws

::::
(i.e.,

::::::::::
conservation

::
of

:::::
mass,

::::::
energy,

:::
or

::::::::::
momentum).

::::::::::::
Unconstrained

::::::
CNNs155

::::::
operate

:::::::
without

::::::::
explicitly

:::::::::::
incorporating

::::::::
physical

::::
laws

::
or

::::::::::
constraints

:::
into

::::
the

::::::::
network’s

::::::::::
architecture

:::
or

:::
loss

:::::::::
functions.

:::::
They

::::
focus

::::::
solely

::
on

:::::::
learning

:::::
from

:::
the

::::
input

::::
data

::
to

:::
the

::::::
output

:::::::::
predictions

:::::
based

:::
on

:::
the

:::::::::
data-driven

:::::::
patterns

::::
they

::::::
detect.

::::
This

:::::
study

:::::::
explores

:
unconstrained and constrained CNN approaches .

::
to

:::::::::
understand

:::::
their

:::::::::::
effectiveness

::
in

:::::::::::
downscaling

:::
and

:::::
how

::::
they

::::::
perform

:::::
when

:::::::
applied

::
to

::::::
GCMs

::
on

:::::
which

::::
they

:::::
were

:::
not

:::::::
initially

::::::
trained.

:

:::
The

:::::::
research

::::::::
questions

:::::::
guiding

:::
this

:::::
study

::::
are:160

–
:::::::
Research

::::::::
Question

:::
1:

::::
How

:::::::::
effectively

::::
can

:::::::
CMIP6

::::::
models

:::
be

::::::::::
downscaled

:::
for

:::
the

:::::::::
CORDEX

:::::::
Central

:::::
Asia

:::::
region

:::
to

:::::::
enhance

::::::::::
precipitation

:::::::::::
simulations?

–
:::::::
Research

::::::::
Question

::
2:

::::
Can

:::::::::::
convolutional

::::::
neural

:::::::
networks

:::::::
(CNNs)

:::::::::
effectively

:::::::::
downscale

:::::
GCM

:::::::
outputs,

:::
and

::::
how

:::
do

::::
they

::::::
perform

:::::
when

:::::::
applied

::
to

::::::
GCMs

:::
they

:::::
were

:::
not

:::::::
initially

::::::
trained

:::
on?

:

Our final goal is to explore a hybrid framework using dynamical downscaling and deep learning to enhance the spatial165

resolution of GCM-like climate datasets. The tested methodology could be easily and rapidly applied to new climate datasets.

Since the dynamical downscaling approaches have high computational costs and require hardware capacities (thousands of

central processing units) , scientists, especially impact modelers, must find trade-offs between the dynamically constraint and

statistical downscaling methods. Therefore, our study would be a good starting point to test the idea of training the CNN onthe

dynamical chain of a single GCM-RCM to find physical relationships between the coarse state of a GCM and the finer state of170

an RCM. By finding an emulator for a specific GCM-RCM chain, we could apply it to different time periods and forcings, but

for the same GCM. Therefore, the manuscript will focus on three main topics: 1-added value of CCLM for the representation

of precipitation over CA, 2-dynamical downscaling signal of CCLM for heavy precipitation and 3-training a CCLM emulator

using
:
a CNN. We present data and methods in section 2. The results of dynamical and hybrid downscaling are introduced in

section 3 and 4, respectively. Finally, we discuss the results and draw conclusions in section 5.175

2 Data and methods

:::
The

:::::::::
schematic

:::::
shown

::
in

:::::
figure

::
1)

::::::
depicts

:::
the

:::::::::::
methodology

::::
used

::
in

::::
this

:::::
study.

::
In

:::
the

::::::::
following

:::
we

:::
will

:::::::
explain

:
it
::
in

:::::
more

::::::
details.

2.1 Employed Models and Experimental Setups

2.1.1 RCM180

In our study, we conduct a series of simulations with the COnsortium for Small scale Modelling in CLimate Mode (COSMO-CLM
::::::
CCLM)

RCM. COSMO-CLM
::::::
CCLM is a regional climate model developed by the German Weather Service (DWD) and the German

Climate Computing Center (Deutsches Klimarechenzentrum, DKRZ) in Germany (Rockel and Geyer, 2008) from the COSMO
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numerical weather prediction model
:::::::::::::::::::::
(Rockel and Geyer, 2008), widely used for short-term weather forecasting. The original

core of COSMO-CLM or CCLM, was called Local MOdel (LM), developed by DWD for weather forecasting. The adopted185

LM version for climate purposes formed the COSMO-CLM (Böhm et al., 2003). COSMO-CLM
::::::
CCLM

::::::::::::::::
(Böhm et al., 2003)

:
.
::::::
CCLM is designed to simulate the regional climate at high spatial resolution, allowing researchers to study various aspects

of the climate system, such as temperature, precipitation, and extreme events. CCLM has been utilized in numerous studies

to evaluate the impact of climate change on various regions, including Europe
:::::::::::::::
(Russo et al., 2021), Africa (Panitz et al., 2014;

Dosio and Panitz, 2016), and Asia (Jacob et al., 2014; Kotlarski et al., 2014; Wang et al., 2013). It has also been used for climate190

projection studies and to assess the effectiveness of climate adaptation and mitigation strategies. The model has been thoroughly

evaluated and validated (Russo et al., 2019; Kjellström et al., 2011)
::::::::::::::::::::::::::::::::::::::::::::::::::::
(Fallah et al., 2016b; Russo et al., 2019; Kjellström et al., 2011)

. Its ability to produce realistic simulations of the current climate and its variability has made it one of the most widely used

regional climate models in the scientific community (Sørland et al., 2021).

For our experiments, we have used a similar model set-up as the "optimal" set-up provided in the study of Russo et al.195

(2019). We set up our simulations in accordance with CORDEX. The CORDEX protocol requires a set of simulations that

can be divided into two main groups. The first one, referred to as the evaluation run, consists of a single model experiment

performed over the period 1979-2014, using ERAInterim at a spatial resolution of T255 (∼ 0.7°) as the driving data. In the

second stream (projection), the models must run with boundary conditions from GCMs of the CMIP6 project for the period

1950-2100 under different SSPs (here, we have chosen a single GCM: MPI-ESM1-2-HR
:::
and

:::::::
SSP126,

:::::::
SSP370

::::
and

:::::::
SSP585200

:::::::
scenarios). SSPs are baseline scenarios describing the future development pathways depending on population, technology and

economic growth, urbanization, investment in healthcare and education, land use and energy (Riahi et al., 2017).

We have chosen the two available CORDEX-CA evaluation simulations from other models, driven by ERAInterim at 0.22°

horizontal resolution, for comparison/evaluation of our RCM simulations, which are driven by ERAInterim for the evaluation

period. The two simulations are 1) ERAInterim-RMIB-UGent-ALARO-0 (Giot et al., 2016) and 2) ERAInterim-GERICS-205

REMO2015 (Jacob and Podzun, 1997; Fotso-Nguemo et al., 2017).

2.1.2 CNN
:::::
CNNs

We create an emulator of CCLM using
:
a
:
CNN. We use the output of the COSMO-CLM

::::::
CCLM

:
Version 6.0 RCM, which is

driven by the MPI-ESM1-2-HR GCM under four different scenarios : historical, SSP126, SSP370 and SSP585
:::
(for

::::::::::
2019-2100).

Historical is based on the data of greenhouse gas levels, land use, and other climate forcings from 1850 to 2014 that were210

observed. SSP126 (Shared Socioeconomic Pathway 1 - RCP2.6) represents a "green" future where global resources are pro-

tected, human well-being is improved, and income gaps are narrowed. This scenario has low challenges to adaptation and low

greenhouse gas emissions.
:::::::::
Challenges

::
to

:::::::::
adaptation

:::::
refer

::
to

:::
the

::::::
degree

::
of

::::::::
difficulty

::::
that

:::::::
societies

:::::
might

::::
face

:::
in

::::::::
adjusting

::
to

::
the

:::::::::::::
environmental,

:::::::::
economic,

:::
and

::::::
social

:::::::
impacts

::
of

::::::
climate

:::::::
change.

:::::::::::
Specifically,

:::
this

:::::
term

:::::
refers

::
to

:
a
::::::::

society’s
:::::::::::
fundamental

:::::::::::
susceptibility

:::
and

::::
the

::::::::::
accessibility

::::
and

:::::::
efficacy

::
of

:::::::::::
technologies

::::
and

::::::::::
approaches

:::::::
designed

:::
to

:::::
lessen

::::
the

:::::::
impacts

::
of

:::::::
climate215

::::::
change.

::::
The

:::::::::
adaptation

:::::::::
challenges

:::
are

::::::::
minimal

::
in

:::
the

:::::::
SSP126

::::::::
scenario,

::::::
which

::::::::
envisions

:
a
::::::::::

sustainable
::::::
future.

::::
This

:::::::
implies

:::
that,

::::::
under

:::
this

::::::::
scenario,

::::::
global

::::::::::
cooperation

::::
and

:::::::::
sustainable

::::::::
practices

::::
lead

::
to
::::::::::::

advancements
:::

in
:::::::::
technology

::::
and

::::::::::
governance
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:::
that

::::::::::
significantly

::::::
reduce

:::::::::::
vulnerability

::
to
:::::::
climate

::::::
change

:::::::
impacts.

:::::::::::
Additionally,

:::::::
societal

:::::::::
structures

:::
are

:::::::
resilient,

::::
and

::::::::
resources

::
are

::::::::
managed

::
to
::::::::
minimise

::::::::::::
environmental

:::::::
stresses

::::
and

::::::::
maximise

::::::
human

::::::::::
well-being. SSP370 (Shared Socioeconomic Pathway

3 - RCP7) depicts a regional rivalry future where nationalism and regional conflicts prevail, global issues are ignored, and220

inequality is increasing. This scenario has high challenges to adaptation and high greenhouse gas emissions. SSP585 (Shared

Socioeconomic Pathway 5 - RCP8.5) portrays a fossil-fueled development future where global markets are connected, tech-

nological progress is fast, but environmental policies are weak. This scenario has low challenges to adaptation and very high

greenhouse gas emissions. As an additional dataset, we merge the ERA-Interim reanalysis and CCLM simulation driven by it

(ERAInterim-CCLM) to our previous simulations
::::
data

::::
pool

::
of

:::::
GCM

:::
and

:::::
RCM

::::
(see

:::
Fig.

::
1). We then train our CNN model based225

on the architecture proposed by Harder et al. (2022)
::::::::::::::::
Harder et al. (2023), which can incorporate physical constraints to ensure

mass conservation and energy balance. We evaluate our model in the CA domain. Using the GCM as low-resolution data may

introduce biases and errors in the downscaling process because the GCM may not capture the regional features and variability

of the climate system accurately (Xu et al., 2021; Chokkavarapu and Mandla, 2019). RCM itself is prone to different biases.

Therefore, we have both an imperfect input and imperfect output. Upscaling the RCM (the so-called perfect model experiment)230

may reduce these biases and errors because the RCM can better represent the regional climate characteristics and feedbacks

(Muttaqien et al., 2021). However, we are interested in the so-called
:::
We

::::
have

::
to

::::
note

::::
that

::
we

::::
use

:::
not

:::
the

:::::
whole

:::::
GCM

:::::::
domain

::
as

::::
input

:::
for

:::
the

:::::
CNN

:::
but

::::
only

:::
the

::::::
domain

::::::::
covering

:::
the

:::
CA

::::
(Fig.

:::
3).

::
In

:::
the

::::::
context

::
of
:::::

deep
:::::::
learning

:::
for

::::::
climate

::::::::::
modelling,

:::
the

:::::::
’perfect

::::::
model’

::::::::
approach

:::::::
involves

:::::::
starting

::::
with

:::::::::::::
high-resolution

::::
data,

:::::
which

::
is

:::::::::
considered

:::::::
accurate

::
or

::::::
nearly

::::::
perfect,

::::
and

::::::::::
intentionally

:::::::::
degrading

:
it
::
to

::
a

:::::
lower

:::::::::
resolution.

:::
The

::::
aim

:
is
::
to
::::::::
simulate235

:
a
:::::::
scenario

::::::
where

:::
the

::::::
’truth’

::::
(the

:::::::
original

::::::::::::
high-resolution

:::::
data)

::
is
:::::::
known,

:::
and

:::::
then

::
to

::::::
recover

::::
this

:::::::::::::
high-resolution

:::::
from

:::
the

::::::::
artificially

::::::::
degraded

::::
data

:::::
using

::::
deep

::::::::
learning

:::::::::
techniques.

:::::
This

::::::::
approach

:
is
::

a
::::::
crucial

::::
part

::
of

:::::::
training,

:::
as

:
it
:::::::

teaches
:::
the

::::::
model

::
the

:::::::
desired

:::::::
mapping

:::::
from

:::
low

::
to

::::
high

:::::::::
resolution,

::::::::
enabling

:::
the

:::::
model

::
to

:::::::::
effectively

:::::
learn

:::
how

::
to
:::::::
upscale

::
or

:::::::
enhance

:::::::::
resolution

::::
while

::::::::::
minimizing

:::
the

::::
loss

::
of

::::::
critical

::::::::::
information.

:::
It’s

::
a
::::::::
controlled

::::::::::
experiment

:::
that

:::::
helps

:::::
refine

:::
the

:::::::
model’s

::::::::::
capabilities.

:

:::
The

:
"imperfect model" set-up (Stengel et al., 2020; Leinonen et al., 2020), where the dynamical mapping from GCM to240

RCM is of higher interest.
::::::::
approach,

:::
on

:::
the

:::::
other

:::::
hand,

::::::::::::
acknowledges

::::
that

::::
both

:::
the

:::::::::::::
low-resolution

:::::
(GCM

:::::::
output)

::::
and

:::
the

::::::::::::
high-resolution

::::::
(RCM

:::::::
output)

:::::::
datasets

::::
have

::::
their

::::::::
inherent

:::::
errors

::::
and

:::::::::
limitations.

:::
In

:::
this

::::::::
scenario,

:::
we

:::
do

:::
not

:::::
have

:
a
::::::
single

:::::
source

::
of

:::::
truth

:::
but

:::::
rather

:::
two

:::::::
separate

::::
sets

::
of

::::
data:

:

–
::::::::::::
Low-resolution

:::::
data:

:::
This

::::
may

:::::::
capture

:::::
global

::
or

:::::::::
large-scale

::::::::::
phenomena

:::
but

::::
miss

::::::
regional

::::::
details

:::::::::::::::::::::::::::::::::::::::::
(Xu et al., 2021; Chokkavarapu and Mandla, 2019)

:
.245

–
:::::::::::::
High-resolution

::::
data:

::::
This

:::::::
provides

:::::::
detailed

:::::::
regional

::::::::::
information

:::
but

::::
may

::::
still

::::
have

:::::
errors

::
or

:::
not

::::::::
perfectly

:::::
reflect

::::::
reality

:::
due

::
to

:::::::::
limitations

::
in

::::
data

:::::::::
collection,

:::::
model

::::::::::::
configuration,

::
or

::::::::::::
computational

:::::::::
constraints

::::::::::::::::::::
(Muttaqien et al., 2021).

:

::
In

:::
this

::::::
setup,

:::
the

::::::::
challenge

:::
for

::::
deep

::::::::
learning

::
is

::
to

::::
learn

::
a
::::::::
mapping

:::::::
between

:::::
these

:::
two

::::::::::::
independently

:::::::::
imperfect

::::
data

::::
sets.

::::
With

:::::
using

:::
the

::::
CNN

:::
we

:::
try

::
to

::::
train

:
a
::::::
model

:::
that

::::
can

::::::
predict

::::::::::::
high-resolution

::::::
details

::::
from

::::::::::::
low-resolution

::::::
inputs

::
as

:::::::::
accurately

::
as

:::::::
possible

::::::
despite

:::
the

:::::::
absence

::
of

:
a
::::::
perfect

:::::::
ground

::::
truth.

:::::
This

:::::::
involves

::::::::::::
understanding

:::
and

::::::::
modeling

:::
the

:::::::::::
uncertainties

:::
and

::::::
biases250

:::::::
inherent

::
in

::::
both

:::::::
datasets.
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Many regions of CA receive low precipitation throughout the year and the spatio-temporal variability of precipitation is

large. One needs a large dataset of GCM output and the corresponding RCM with various precipitation patterns for training a

CNN to find an RCM emulator that captures the mapping from GCM to RCM.

We
::::
First,

::::
the

::::
daily

:::::::
datasets

:::
are

:::::::
shuffled

:::::::::
randomly.

:::
We

::::
then

:
have used a total number of 68141 (60%), 22714 (20%) and255

22714 (20%) RCM simulation days for training, testing and evaluation
::::::::
validation

:::
and

::::::
testing, respectively. The low-resolution

(GCM) and high-resolution (RCM) datasets (GCM) have 30 × 60 and 120 × 240 grid points over latitudes and longitudes,

respectively. Therefore, the downscaling factor (N) is 4 in this case. For a complete explanation of the CNN architecture, we

refer to the work of Harder et al. (2022)
:::::::::::::::::
Harder et al. (2023) and the corresponding GitHub repository at

::::::
Zenodo

:::::::::
repository

::
at

https://zenodo.org/records/8150694 (last visited on 21st of June 2023). Here, we briefly explain the architecture of the CNN260

used

:::::
Figure

::
2

:::::
shows

:::
the

:::::::::
schematic

::
of

:::
the

:::::::
standard

:::::
CNN

:::::::
(without

:::::::::
constraint

::::::
layers)

::::::::::
architecture

::::
used

:::
for

:::
two

:::::
times

:::::::::::
up-sampling

in this study:

:
.
:::
We

:::::
briefly

:::::::
explain

:::
the

::::
steps

::::::
shown

::
in

:::
the

:::::::::
schematic:

– The input layer is a low-resolution (LR)image of size 30 × 60 with only one channel, i. e. , precipitation value in mm/day.265

::::
Conv

:::::::::::::
(Convolutional

::::::
Layer):

::::::::
Initially,

::::
these

::::::
layers

::::
help

::
in

::::::::
extracting

:::::::
various

:::::
levels

::
of

:::::::
features

:::::
from

:::
the

::::::::::::
low-resolution

::::::
images,

::::
such

::
as
::::::
edges,

:::::::
textures,

::::
and

::::
other

:::::::
relevant

::::::
image

::::::
details.

– The first layer is a convolutional layer with 64 filters of size 3 × 3 × 1 and stride 1. The output is a feature map of size 30

× 60 × 64.
:::::
ReLU

::::::::
(Rectified

::::::
Linear

:::::::::
Activation

:::::
Unit):

::::
This

:::::::::
non-linear

::::::::
activation

:::::::
function

::
is
::
a

:::
key

::::::
player

::
in

:::
our

:::::::
model’s

:::::::
learning

:::::::
process.

:
It
:::::::::
introduces

:::::::::::
non-linearity,

:::::::::
outputting

:::
the

:::::
input

::::::
directly

::
if
:::
it’s

:::::::
positive;

:::::::::
otherwise,

::
it

::::::
outputs

:::::
zero.

::::
This270

::::::::
intriguing

:::::::
function

:::::
helps

:::
the

:::::::
network

::::
learn

::::::::
complex

::::::
patterns

:::::::::
efficiently.

:

– The second layer is a sub-pixel convolutional layer with 256 filters of size 3 × 3 × 64 and stride 1. The output is a feature

map of size 60 × 120 × 64.

– The third layer is another sub-pixel convolutional layer with 256 filters of size 3 × 3 × 64 and stride 1. The output is a

feature map of size 120 × 240 × 64.275

– The fourth layer is a convolutional layer with 1 filter of size 3 × 3 × 64 and stride 1. The output is high-resolution

(HR) image of size 120 × 240 × 1.
::::::::
TransConv

:::::::::::
(Transposed

::::::::::::
Convolutional

:::::::
Layer):

::::
This

::::
layer

::
is
:::::::

crucial
:::
for

:::
the

::::
task

::
of

:::::::::
upscaling.

:
It
::::::::

increases
::::

the
:::::
spatial

::::::::::
dimensions

:::
of

:::
the

::::::
feature

:::::
maps,

::::::::::
performing

::
a

:::
sort

:::
of

::::::
learned

:::::::::::
interpolation.

:::::
This

:::::::
reassures

:::
us

::::
about

:::
the

:::::::
model’s

::::::
ability

::
to

:::
add

::::::
details

::
to

:::
the

:::::::
upscaled

::::::
images

:::::
based

:::
on

:::
the

::::::
features

::::::::
extracted

:::
and

:::::::::
processed

::
in

:::
the

::::::
earlier

::::::
layers.280

– The fifth layer is an optional renormalization layer that applies a linear transformation to the HR image toensure that the

total mass or energy is conserved between the LR and HR images.
::::::::
ResBlock

::::::::
(Residual

::::::
Block):

:::::
They

:::::
allow

:::
the

::::::
model

::
to

::::
learn

::::::::::
corrections

:::
(or

::::::::
residuals)

:::
to

:::
the

:::::::
primary

::::::::::
interpolated

:::::::
outputs,

:::::::
refining

:::
the

::::::
details

::::
and

::::::
adding

:::::::::::::
high-frequency

9
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:::::::::
information

::::
that

::::::::
enhances

:::
the

:::::::::
perceptual

::::::
quality

:::
of

:::
the

::::::::
upscaled

::::::
images.

:::::::
Adding

:::::::
original

:::::
input

:::::::
features

:::::
(from

::::::
earlier

:::::
layers)

::
to
:::
the

::::::
output

::
of

::::::
several

::::::::::::
convolutional

:::::
layers

::::::
ensures

::::
that

::
no

:::::::
critical

:::::::::
information

::
is
::::
lost

:::::
during

::::::::::
processing.285

For this work, we find the unconstrained CNN(NoCL) performing the best, most likely due to the significant mismatch

between low-resolution and

2.1.3
:::::::::
Constraint

::::::
layers

:::
We

:::
test

:::
the

::::
CNN

::::
with

:::::
three

:::::::
different

::::::::::
constraining

:::::::
methods

::
in

:::
the

:::
last

:::::
CNN

:::::
layer:

::
1-

:::
soft

::::::::::
constraining

::::::
(SCL),

::
2-

::::
hard

::::::::::
constraining

:::::
(HCL)

::::
and

::
3-

::::::
without

::::::::::
constraining

::::::::
(NoCL).

:::
For

:
a
:::::::
detailed

::::::::::
information

::
on

:::
the

::::::
settings

::::
used

:::
we

::::
refer

::
to

:::
the

::::
work

::
of

:::::::::::::::::
Harder et al. (2023)290

:
.
::
In

:::
the

::::::::
following,

:::
we

::::::
explain

::::::
briefly

:::
the

::::
three

::::::::
different

::::::::::
constraining

:::::::::::::
methodologies.

:::
The

::::::
set-up

::
of

::::::::::
constraining

::
is

::
as

:::::::::
following:

:::::::
consider

:
a
:::::
factor

::
N
:::
for

:::::::::::
downscaling

::
in

::
all

:::::
linear

:::::::::
directions

:::
and

:::
let

:::::::
n :=N2

:::
and

:::
yi,:::::::::

i= 1, ...,n
:::
be

:::
the high-resolution samples.

A description of the constraint layers can be found in the appendix, see 2.1.3
::::
patch

::::::
values

::::
that

:::::::::
correspond

::
to
:::::::::::::

low-resolution

::::
pixel

::
x.

::::
The

::::
mass

:::::::::::
conservation

:::
law

:::
has

:::
the

:::::::::
following

:::::
form:

1

n

n∑
i=1

yi = x.

::::::::::

(1)295

:::::
Hard

:::::::::::
constraining:

:
it
::::
uses

:::
the

::::::::
SoftMax

:::::::::::
constraining,

:::::
which

::
is

:
a
:::::::::::

constraining
:::
for

::::::::
quantities

::::
like

:::::
water

:::::::
content.

:
It
::::::::
enforces

::
the

::::::
output

::
to

::
be

::::::::::::
non-negative.

:::
For

::::::::::
constraining

:::
the

::::::::
predicted

:::::::::
quantities,

:::
we

:::
use

:
a
:::::::
SoftMax

::::::::
operator

::
on

:::
the

::::::::::
intermediate

:::::::
outputs

::
of

:::
the

:::::
neural

::::::::
networks

::::::
before

::
the

:::::::::::
constraining

::::
layer

::::
(ỹi):::

and
::::::::
multiply

:
it
::::
with

:::
the

::::::::::::
corresponding

:::::
input

::::
pixel

:::::
value

::
x:

:

yi = exp(ỹj) ·
x

1
n

∑n
i=1 exp(ỹi)

.

:::::::::::::::::::::::::

(2)

::
yi :

is
:::
the

::::
final

::::::
output

::::
after

::::::::
applying

:::
the

:::::::::
constraints.

:::
We

:::::
have

::::
used

:::
the

:::::
mean

:::::::
absolute

::::
error

::::::
(MAE)

:::
as

:::
the

:::
loss

::::::::
function.300

:::
Soft

::::::::::::
constraining:

:::
This

::
is
:::::
done

::
by

::::::
adding

::
a
:::::::::::
regularization

:::::
term

::
to

:::
the

:::
loss

::::::::
function.

::::
The

:::::
MAE

:::
loss

::::
then

::::::::
extended

::::
with

:::
an

::::::::
additional

::::::::
constraint

::::::::
violation

:::::
(CV)

:::
loss

::::
term

:::
to:

Loss = (1−α) ·MAE+α ·CV,
::::::::::::::::::::::::::

(3)

:::::
where

:::
CV

::
is

:::
the

::::::::
constraint

::::::::
violation,

::::::
which

::
is

::
the

::::::::::::
mean-squared

:::::
error

:::
over

:::
all

::::::::
constraint

:::::::::
violations

:::::::
between

::
an

:::::
input

::::
pixel

::
x

:::
and

:::
the

:::::::::
super-pixel

::::::::::::::
(high-resolution

::::::::
grid-cell)

::
yi::305

CV = MSE(
1

n

n∑
i=1

yi,x)

:::::::::::::::::::

(4)
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:::
We

:::
use

:::
the

::::::::
α= 0.99

::
in

:::
this

:::::
study.

:

:::::::
Without

:::::::::::
constraining

:
:
::
In

:::
this

:::::
setup

:::
we

::::::
remove

:::
the

:::::::::::
constraining

::::
layer

::::
after

:::
the

::::
last

:::::::::::
convolutional

::::
layer

::
in
:::
the

::::::
CNN.

:::
The

::::::::
constraint

::::::
layers

::
are

:::::::
applied

:
at
:::
the

::::
end

::
of

::
the

:::::
CNN

::::::::::
architecture,

::::
and

::
all

::::::
satisfy

::
the

::::::
criteria

::::
that

:::
the

:::::::
resulting

:::::::::::::
high-resolution

::::
patch

:::::::::
conserves

:::
the

:::::
values

::
in

::::::::::::
low-resolution

::::::
pixels.

::::
The

::::::::::
performance

::
of
:::
the

::::::::
different

::::::
settings

::
is
:::::::
assessed

:::::::
through

:::
the

:::::
MAE.310

We use the MAE
::::
mean

::::::::
absolute

::::
error

::::::
(MAE)

:
as the loss function. We use 160 epochs, with a batch size of 64 and a learning

rate of 0.001 for training with HCL and NoCL; and 0.00001 for SCL. Training takes 15 hours on an NVIDIA Corporation

Graphics Ampere 104 [GeForce Ray Tracing Texel eXtreme (RTX) 3060 Ti Lite Hash Rate] graphics processing unit (GPU).

:::
We

:::
use

:::
the

::::
same

::::::
model

:::::
set-up

::
as

::
in

::::::::::::::::
Harder et al. (2023)

:
,
:::
and

:::
the

::::::::::::
computational

::::
cost

::
of

:::
the

::::
CNN

::
is
::::
very

:::::
high,

::::::::
therefore,

:::
we

:::
did

:::
not

::::::
conduct

::::
any

:::::::::::::
cross-validation

::
in

:::
this

::::::
study.315

:::
We

::::
must

::::
note

::::
that

:::
the

:::::
MAE

:::
can

:::
be

::::
used

:::
as

::::
both

:
a
::::
loss

:::::::
function

::::
and

::
an

:::::::::
evaluation

::::::
metric.

:::
A

:::
loss

::::::::
function

::
is

::::
used

::::::
during

::::::
training

::
to

::::::::
optimize

:::
the

:::::
neural

:::::::
network

::::::::::
parameters,

:::::
while

::
an

:::::::::
evaluation

::::::
metric

:
is
:::::::::
calculated

::
on

:::
the

:::::::::
validation

::
or

:::
test

::::
data

:::
set

::
to

:::::::
evaluate

:::
the

:::::
model

:::
on

::
an

::::::::::
independent

:::::::
dataset.

:::::
Those

:::
are

::::
two

:::::::
different

:::
use

:::::
cases,

:::
but

::::
both

::::
can

:::
use

::
an

::::::
MAE.

2.2 Evaluation Data
::::
and

::::::
testing

According to Ciarlo et al. (2021), the choice of observational data significantly influences the added value calculation of an320

RCM, as well as the extreme events detection. To reduce these issues, they recommended to use observations with a resolution

comparable to the one of the model. Therefore, for assessing the added value of COSMO-CLM
::::::
CCLM

:
with respect to the

driving model
:::::
GCM, we use the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) as our gridded

observation. CHIRPS has a resolution of 0.05° and covers the area between 50°S-50°N. CHIRPS is based on satellite informa-

tion and station data, and, in contrast to reanalysis data, it is independent of climate model simulations. Therefore, CHIRPS325

could be an excellent alternative to similar but not identical coarse datasets like Global Precipitation Climatology Centre

(GPCC) (Becker et al., 2013) for data-sparse regions with convective rainfall (Funk et al., 2015). The APHRODITE’s (Asian

Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation) dataset might be another alternative of an

evaluation dataset. However, the merged domain version which could be used for our study, covering the period 1950-2007, is

available only at 0.25° and 0.5° horizontal resolutions (Yatagai et al., 2007).330

For evaluating
::::::
testing the CNN methods, instead of using CHIRPS, we use the corresponding CCLM simulation

::::
(20%

:::
of

::
the

:::::
data,

::
as

:::::::::
mentioned

::::::
above) as our targetand

:
.
:::
We calculate the metrics on CNN and

::
the

:::::
CNN

:::
and

::::::::::
interpolated

:
GCM outputs

with respect to CCLM
::::::
output.

2.3 Metrics

In a first step, the
:::
The selected GCM, RCM and observational data is

::
are

:
interpolated onto the RCM grid using the distance-335

weighted average method. Interpolation of the coarser grid to a higher resolution one might create unrealistic values. This issue

was discussed in the work of Ciarlo et al. (2021). Usually, the interpolation does not account for the physical processes and

constraints that govern the original data, the statistical properties (like mean, variance and skewness) are not preserved, and it

introduces artifacts
:::::::
artefacts and errors that depend on the choice of interpolation method, the spatial distribution of the data
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points and the resolution ratio.
:::::::::
Therefore,

:::::::::::::::::
dynamical/statistical

:::::::::::
downscaling

::
is

::::
used

::
to

:::::::
increase

:::
the

:::::::::
resolution

::
of

:::
the

:::::::
climate340

::::
data,

:::
and

:::
we

:::
use

::::::
simple

:::::::::::
interpolation

::
as

:
a
:::::::
baseline

::
in
::::
our

:::::
study.

Since precipitation does not follow a normal distribution, following Hodson (2022), we use the mean absolute error (MAE )

::::
MAE

:
to explore the bias of the simulations

:::::::
emulated

::::
and

::::::::::
dynamically

::::::::::
downscaled

:::::::::::
precipitation (F) against observations(O):

MAE =
1

N

1

T
:

T∑
t=1

|Ft −Ot| (5)

where N
:
T
:

is equal to the number of time steps(T). We quantify the added value (AV) as the ability of the downscaling345

approach to decrease the MAE of the driving GCM when calculated against the reference dataset (CHIRPS or target CCLM

simulation), i.e., :
:

AV = MAEGCM −MAECCLM (6)

where MAEGCM and MAECCLM are the biases of
:::::::::
differences

::
of

:::::::::::
interpolated GCM and RCM with respect to the reference

dataset.350

::
As

:::
an

::::::::
additional

::::::
metric

:::
we

:::
also

:::
use

:::
the

::::::::::::
climatological

:::::
bias,

:::
i.e.,

:::
the

::::::::
difference

::::::::
between

:::
the

:::::
model

:::
and

::::::::::::
observations:

BIAS = PRMODEL −PROBS
::::::::::::::::::::::::

(7)

3 Results

Figure 3.a shows the topography of the CORDEX-CA simulation domain. Figure 1.b presents the annual climatology
:::::
mean

::::
daily

:::::::::::
precipitation

:::::::
averaged

::::
over

:::
all

:::::
years (mm/day) of daily precipitation as derived from CHIRPS data for the period 1985-355

2014. The regions with the highest values of precipitation are the mountainous areas of CA. Additionally, also the Asian

summer monsoon region north of India and along the Himalayas in the southeastern part of the domain present pronounced

precipitation values. Figure 3.c shows the distribution of the WorldClim weather stations (Fick and Hijmans, 2017) over CA,

representing a proxy for the density of the station data used in the CHIRPS dataset. Over East China, especially over the Tibetan

Plateau, the observation data distribution could be sparser
::
is

:::::
sparse. The data-model comparison is to be considered unreliable360

over this region (Randall et al., 2007; Cui et al., 2021; Yan et al., 2020; Russo et al., 2019).

3.1 Added value of CCLM driven by ERAInterim

To characterize the overall performance of the
:::::
CCLM

:
model in time and space, we

::::::
Figures

::
4
::::

and
::
5
:
show the maps of

yearly
:::::
annual, winter (DJF), and summer (JJA)

::::
MAE

::::
and

:
mean biases of precipitation between

::::::::::
interpolated

:
ERAInterim
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and CCLM
:::::
driven

:::
by

::::::::::
ERAInterim, calculated over the period 1985-2014 with respect to CHIRPS . We calculate the MAE365

of daily precipitation for 1985-2014 from ERAInterim and CCLM driven by ERAInterim
::::
(Eq.

:
5
::::

and
:::
Eq.

:::
6). Figures 4.a-c

show the MAE of ERAInterim with respect to CHIRPS for annual, winter and summer averages. The differences in MAEs

between ERAInterim and CCLM (MAEERAInterim,CHIRPS −MAECCLM,CHIRPS) or the added values
:::::
added

:::::
value

::
of

:::
the

:::::::
CCLM

::::
RCM

:::::::::
compared

::
to

:::
the

::::::::::
interpolated

:::::::::::
ERAInterim

:::::
GCM

:
are shown in Figures 4.d-f. CCLMbias is higher

::
’s

:::::
MAE

::
is

::::
high dur-

ing the Asian summer monsoon, over the South and Southeast of the domain
::::::
(regions

:::
in

::::::::
magenta). During winter, the bias370

::::
MAE

:
is generally lower. CCLM presents a bias reduction for prominent locations within the domain

::::
MAE

:::::::::
reduction

:::
for

::::::::::
mountainous

:::::
areas

::
of

:::::::::::
Afghanistan,

:::::::::
Kyrgizstan

::::
and

::::::::
Tajikistan

:
and an increase of bias

::::
MAE

:
near the boundaries: South of the

domain throughout the year, South and Southeast during the summer.

Added values of GERICS-REMO2015 and RMIB-UGent-ALARO-0 driven by ERAInterim are shown in Figure 4.g-l re-

spectively. The CHIRPS dataset is again used as the observational dataset Oto calculate MAE and AV according to equations375

5 and 6. The AV .
::::
The

:::::
added

:::::
value

::
of

:::::
RCM is the most pronounced over areas with complex topography

:::
and

::::::::
especially

::::::
during

::::::
summer, for all three considered RCMS

::::::
RCMS

:::::::::
considered (Figs.4.d-l). Areas where the downscaling reduces the bias of

:::::
RCM

:::
has

::::::
smaller

:::::
MAE

::::
than the reanalysis with respect to observations are located over Tajikistan, Kyrgyzstan, North of Afghanistan

and part of the Himalayas. Mountain areas of Tajikistan and Kyrgyzstan are the main source of water for the former Soviet

Union countries. However, precipitation during the colder seasons might be of more importance for water availability. The an-380

nual AV patterns still show positive values over those areas (Figure 4.d,g and j). Considering the whole domain, all three RCMs

sensibly reduce the large and local-scale bias of ERAInterim against CHIRPS(Figure 4), especially for complex topographies.

The nested RCMs show similar values of MAE near their lateral boundaries, with respect to their driving model (Figure 4,

panels a,b,c). Therefore, negative AV quantities might originate from the boundary effect, especially near the east and south-

eastern boundaries, where the monsoonal precipitation is dominant.
::::::::::::::::::
GERICS-REMO2015

:::::
shows

::::::::::
pronounced

:::::::
negative

::::::
added385

:::::
values

:::
for

::::::
annual

:::
and

::::::
winter

:::::
above

:::::
Tibet.

:

3.1.1 Added value of CCLM driven by MPI-ESM1-2-HR

We showed that COSMO-CLM can reduce the bias of its driving reanalysis for daily precipitation, especially over areas with a

complex topography like Tajikistan and Kyrgyzstan. In particular, our model simulation shows similar skills as in the previously

published CORDEX-CA simulations. Here, we calculate the added value of the CCLM simulations driven by MPI-ESM1-2-HR390

for 1985-2014. It can be seen in figure ??.a that the MPI-ESM1-2-HR shows less bias than the ERAInterim over Tajikistan

and Kyrgyzstan. According to Déqué et al. (2007),
::
As

:::
an

:::::::::
additional

:::::
check,

::::
we

:::
also

:::::
show

:::
the

::::
bias

:::
in the GCM bias is one

of the most important sources of uncertainty in the RCM’s regional climate projection, and the smaller MAEMPI-ESM1-2-HR

compared to MAEERAInterim over Tajikistan and Kyrgyzstan might increase the skill of the final regional projections (under

the assumption that the model bias remains conserved under other radiative forcings). The added value of CCLM driven by395

MPI-ESM1-2-HR shows smaller values over those areas compared to the simulation driven by ERAInterim, especially for

summer season (Figure ??.f). Our analysis of the two driving datasets (ERAInterim and MPI-ESM1-2-HR) tends to confirm

the findings of the Sørland et al. (2018), at least for daily precipitation, that the biases of the GCM-RCM chain are not additive
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and not independent. For example, in all regions with high values of yearly precipitation, where GCM has a slight bias, the

RCM does not present higher biases or vice versa. The large-scale patterns in the parent GCM are usually a limiting factor400

for the dynamical downscaling following the "garbage in, garbage out" problem (Rummukainen, 2010). AV in an RCM is

achieved by the improved representation of surface processes, which usually are present over areas with complex topography

(Torma et al., 2015) or over coastal areas with strong land–sea differences (Feser et al., 2011)
:::::::::::
climatologies

::
of

::::::
models

::
in

::::::
figures

::
5.

::::
Once

:::::
again

:::
the

::::::
biases

:::
are

::::::::::
pronounced

::
on

::::
the

::::
right

::::::
bottom

::::::
corner

::
of

:::
the

:::::::
domain

::::::
during

:::
the

:::
JJA

::::
and

:::::
south

::::::
Tibetan

:::::::
Plateau

:::::::::
throughout

:::
the

::::
year.405

3.1.1 Extreme precipitation patterns in CCLM and CMIP6 GCMs

We explore climate change signals in the high-resolution output, given
:::::
Given

:
that the CCLM simulation has shown some

added value for precipitation over mountainous areas of CA
:
,
:::
we

::::::
explore

:::::::
climate

::::::
change

::::::
signals

::
in

:::
its

:::::::::::::
high-resolution

:::::
output.

The resulting high-resolution maps might have biases inherited from the GCM-RCM selection. We assume that many model

biases remain conserved among the different time slices and, therefore, could
:::
can

:
be removed when calculating the changes410

between the historical (1985-2014) and future periods (2070-2099).

We present the resulting climate change trends in CCLM and the CMIP6 GCMs ensemble statistics (ensemble mean and

standard deviation). We analyzed 31, 33 and 38 models for SSP126, SSP370 and SSP585 scenarios with a total number of

simulations of 158, 185 and 242, respectively (see
::::::::::::
Supplementary

::::::::
materials

:
for the list of models used in this study). To

give the same weight to individual models, we first calculate the statistics over all the members of each model and then415

build the final statistics. We have chosen the yearly 99th percentile of daily precipitation (PR99 hereafter), which considers

the three days of the year with the highest precipitation. We also chose the number of very heavy precipitation days in the

period (ECA_RX20mm) as a different index, one of several precipitation-related indices used to monitor and analyze climate

variability and change. For example, this index is often used in climate research to assess the impacts of very heavy precipitation

events on water resources, agriculture, and natural ecosystems (Klok and Klein Tank, 2008). Figure 6 presents the changes in420

averaged PR99 at the end of the century (2070-2099) with respect to the historical period (1985-2014) for CCLM (a,d and g)

and CMIP6 GCMs (b,e and h) under different scenarios. The downscaling signals indicate that those characteristics depend on

the scenario and time period. The large-scale patterns remain the same among all three selected scenarios with intensification

when the anthropogenic influence increases. The standard deviation of the models’ ensemble is shown in Figures 6.c,f and i.

According to our analysis, the Himalayas, especially Nepal, North India, and Bhutan, have the highest uncertainty among the425

GCMs and in all scenarios. Except for this area and the eastern boundary of the domain, the standard deviation remains under 3

mm/day. Under the pessimistic SSP585 and the regional rivalry SSP370 scenarios, areas with more than 9 mm/day increase in

PR99 for CCLM over Northwest India, North Pakistan, North Iran, Southwest of Iran exist and South and Southeast of Black

Sea. A reduction pattern is detected East of the Mediterranean Sea in Jordan, Syria, and South of Turkey. Similar patterns are

also observed in the CMIP6 ensemble mean. However, due to the averaging, the GCMs’ ensemble mean patterns are around ±430

5 mm/day over those areas. Under the SSP126 scenario, which agrees with the 2°C target, the increasing patterns of more than

± 9 mm/day for CCLM and ± 5 mm/day for GCMs disappeared. In CA, areas of increased PR99 over Kyrgyzstan, Tajikistan,
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North of Pakistan and Southwest Iran are regions with a considerable risk of rainfall-triggered events like landslides (Wang

et al., 2021; Kirschbaum et al., 2010) and floods (for example, Pakistan floods of 2010 and 2022).

Figures 7.1,d and g show the ECA_RX20mm values for CCLM for the three scenarios at the end of the century. The patterns435

are like those shown in Figure 6, indicating that the number (frequency) of very heavy precipitation days also increases with

an enhanced anthropogenic influence, particularly over the Tibetan Plateau. From Figures 7.b,e and h, we conclude that the

CMIP6 GCM ensemble also presents a very similar behavior to CCLM. The ensemble standard deviations, however, increase

over Tajikistan and Kyrgyzstan for ECA_RX20mm values (Figures 7.c,f and i). The increased frequency and intensity of

extreme precipitation over elevated areas of CA due to anthropogenic forcing is alerting (Fallah et al., 2023). The presented440

CCLM simulation contributes to study the sensitivity of dynamical downscaling to different levels of anthropogenic forcing at

the local scale. This information might be of interest for the scientific community working on the impact of climate change in

CA.

4 CCLM emulator using a Convolutional Neural Network
::::
CNN

We have shown that the dynamical downscaling added value to explore the local effects of climate change during the historical445

period, especially over areas with enhanced topographical forcings. Here, we create an emulator of COSMO-CLM
::::::
CCLM for

precipitation over CA. We demonstrate that the unconstrained CNN model could reconstruct high-resolution features from a

coarse GCM, which are like the target COSMO-CLM simulations. As explained previously, a CNN could be trained on our

GCM-RCM chain and be applied as a fast and computationally cheap downscaling method. However, the skill of such a model

must be explored and verified.450

One major source of error in training a CNN is usually the problem of over-fitting. However, in our case, we have an overly

complex climate system (i.e. COSMO-CLM) with highly complex precipitation fields as input, and a low-complex CNN on the

model side. Therefore, our problem is of an under-fitting nature. Here we want to demonstrate that the emulator has significantly

more skill
::
is

:::::
better

::
at

::::::::::
downscaling than a simple interpolation, especially for areas receiving extreme precipitation values. More

specifically, our goal is to show that the COSMO-CLM
::::::
CCLM

:
emulator can produce COSMO-CLM-like

:::::::::
CCLM-like patterns455

when fed by the parent GCM.

For the CNN approach, we focus on the CA domain introduced as a domain covering
:::::::
covering

::::
only the former Soviet Union

countries (Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan) and not the CORDEX-CA domain previously

shown in Figure 3. This domain is the region of interest in the Green Central Asia project ?https://www.greencentralasia.org/en,

which is financed by the German Foreign office. Figure 8.a shows the MAE from
:
of

:
the interpolated MPI-ESM1-2-HR with460

respect to the COSMO-CLM
:::::
using

::
the

:::::::
CCLM

:::::
driven

::
by

::
it from the test dataset , i.e., MAE(MPI-ESM1-2-HR,MPI-ESM1-2-HR-CCLM)

:
as

::
the

::::::
"true"

::::::::::
precipitation. As can be seen, COSMO-CLM

:::::
CCLM

:
produces different precipitation values

::::::::
compared

::
to

:::
its

::::::
driving

:::::
GCM, especially over regions with complex topography. This has been noticed in the added value and downscaling signal

maps of COSMO-CLM. To explore a potential skill in
::::
Here,

:::
we

:::::::
assume

:::
that

:::
the

:::::::
CCLM

:
is
:::

the
:::::::

ground
::::
truth

::::
and

:::::
check

::
if

:::
the

::::
CNN

::::
can

:::::::
produce

:
it
:::::
using

:::
the

:::::
GCM

:::
as

::::
input

:::::
data.

:::
To

:::::::
evaluate

:::
the

::::::::::
performance

:::
of the emulator, we show the maps of MAE465
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reduction, i.e., MAEGCM,CCLM −MAECNN,CCLM in figures
:::::
added

:::::
value

::
in

::::::
Figures

:
8.b-d. Comparison of MAE reduction maps

shows that the unconstrained CNN produces significant skills over elevated regions of CA and the constrained runs do not

present considrable patterns of changes. For example, there are areas of negative and positive
:::::
added values remarkably close

together over elevated areas of CA created by HCL and SCL emulators. NoCL, in contrast, shows systematic positive values

over large parts of the domain. The fingerprint of the GCM is detectable
::::
There

:::
are

::::::
several

:::::::
artifacts

:
in the MAE reduction maps470

of constrained models, especially over North of India,
::::::
which

:::::::
represent

:::
the

:::::
GCM

::::
grid

:::::
shape. We produce the boxplots of daily

precipitation over the newly-considered domain
:::
CA

:::::::
domain

:::::::
covering

:::
the

::::::
former

:::::
soviet

::::::
union to explore the improvement in

the distributions (Figure 9). The correlation coefficients between the time-series of average precipitation over the domain with

respect to CCLM are
:::
also

:
presented in Figure 9 (values in the parentheses). For the daily averages

:
,
:
NoCL presents the best

performance (highest correlation coefficient). However, the values of outliers are less
::::::
smaller than the ones from CCLM and all475

other model simulations. The distribution is more condensed around the median (smallest interquartile range). The distribution

of all constrained models
:::
both

::::::::::
constrained

::::::
models

::::::
(HCL,

::::
SCL)

:
is like the

::::::::::
interpolated GCM one. This was expected, since the

constraining conserves the mass of high-resolution grid-boxes within the corresponding low-resolution grid-box (Equation 1).

4.1 Applying
:::
the CNN to a different GCM

Here, we
:::
We evaluate the emulator’s generalization ability, i.e. the ability to create reliable predictions of

::
on

:
a new data set.480

We conduct here a new 15-year dynamical simulation with COSMO-CLM
::::::
CCLM

:
driven by the EC-Earth3-Veg (Döscher

et al., 2022) GCM under ssp370 from 2019 to 2033. We use this data as input to our COSMO-CLM
:::::
CCLM

:
emulator, which

was previously trained on the MPI-ESM1-2-HR and its COSMO-CLM run
::
to

::::::
emulate

:::::::
CCLM

::::
using

::::::::::::
MPI-ESMI-2

:::
HR

::
as

:::::
input

:::::
GCM. We now use the emulator to reconstruct the local features of COSMO-CLM

::::::
CCLM driven by EC-Earth3-Veg. Fig-

ure 10.a presents the MAE of the
:::::::::
interpolated

:
EC-Earth3-Veg with respect to the dynamically downscaled simulation using485

COSMO-CLM
::::::::
dynamical

:::::::::::
downscaling

::::
with

::::::
CCLM, i.e., the COSMO-CLM

::::::
CCLM simulation driven by EC-Earth3-Veg. The

MAE pattern of EC-Earth3-Veg is remarkably like the one from MPI-ESM1-2-HR (Figure 8.a). However, the COSMO-CLM

::::::
CCLM emulator based on the NoCL CNN model does not show positive error reduction everywhere in the domain (Figure

10.b).
:::
We

:::::
chose

:::
the

::::::
NoCL

::::
CNN

:::::::
because

::
it
:::::::
showed

:::
the

::::
best

::::::::::
performance

::::::
among

:::
the

::::::::::
constrained

:::::
ones. Training the CNN on

the MPI-ESM1-2-HR/CCLM might have ignored learning processes which overcome considerable biases in the driving GCM.490

The COSMO-CLM
::::::
CCLM

:
emulator tries to find relations between the MPI-ESM1-2-HR and COSMO-CLM

::::::
CCLM, which

might be specific to these two models and there is no guarantee that those relationships also apply to the new EC-Earth3-Veg

and COSMO-CLM
::::::
CCLM

:
driven by EC-Earth3-Veg. This new GCM-RCM chain contains new sets of models and is ex-

tremely sensitive to the characteristics of the EC-Earth3-Veg model because, as we showed previously, the RCM state follows

the state of its driving GCM.
::
We

::::
note

::::
that

::::::
CCLM

::
is

:::::
driven

::
at

:::
the

::::::
lateral

:::::::::
boundaries

::
by

:::
the

:::::
GCM

::::::
values

:::
for

:::
the

::::
state

::::::::
variables495

::
of

::::::
CCLM

:::::::::::
(temperature,

::::::::
pressure,

::::
wind

:::::
speed

:::::
etc.).

::::::::::
Precipitation

::
is
:::
not

:::::
used

::
for

:::::::
driving

:::
the

:::::
RCM.

::::
The

::::
CNN

:::::
input

::
is

:::
the

:::::
GCM

:::::::::::
precipitation,

:::::
which

:::
has

::::::::
different

:::::
biases

::
in

:::
the

:::
two

::::::
GCM,

:::
and

::::::::
therefore

:::
the

::::::::
mapping

::::
from

:::
the

::::::::::::::::::::::::::
MPI-ESM1-2-HR-precipitation

::
to

:::
the

:::::::
CCLM

::::::::::
precipitation

::::::
cannot

::
be

:::::::::::
successfully

:::::::::
transferred

::
to

:::::::::::::
EC-Earth3-Veg.

:
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Knowing these limitations, the CNN model shows added values of more than 1 mm/day over the Alborz Mountains and

South of the Caspian Sea in the North of Iran (black rectangular in Figures 10.a and b) and some parts of Tajikistan and500

Kyrgyzstan. Exploring the field mean of daily precipitation distribution indicates that the CNN’s median value and the outliers

are lower than both the EC-Earth3-Veg and COSMO-CLM
::::::
CCLM simulations (Figure 10.c). Only the day-to-day correlation

is being improved. The model was
::
As

:::::::::
mentioned

::::::
before,

::
all

::::::
model

::::
were trained on the shuffled dataset and ignored the memory

in the time series but here we fed the original (without shuffling) dataset and calculated the correlations
:::
the

::::::
trained

:::::
NoCL

::::::
model

:::
was

:::::
given

:::::::::
unshuffled

:::::::::::::::
EC-EARTH3-Veg

::
to

:::::
make

::::
new

:::::::::
predictions. The correlation coefficient increases using the NoCL model505

from 0.815 (EC-Earth3-Veg) to 0.844 (NoCL). Over the
:::::
black

:::::::::
rectangular

::::
box

::
in

::::::
Figure

:::::
10.b,

:::
the region where the NonCL

model reduces the MAE, i.e., the black rectangular box in Figure 10.b, the distribution of precipitation converges to the one

from COSMO-CLM
::::::
CCLM (Figure 10.d) . Only the outliers larger than 20 mm/day are not reconstructed by the NoCL. This

region
:::
and receives the highest amount of precipitation in Iran and supplies water for a large portion of population in the

country, including the capital city Tehran with a population of over 10 million people.
::::
Only

:::
the

::::::
outliers

:::::
larger

::::
than

:::
20

:::::::
mm/day510

::
are

:::
not

::::::::::::
reconstructed

::
by

:::
the

::::::
NoCL.

:

::
As

::
a
::::
new

:::
test

:::
for

:::::::::::::
generalization,

::
we

:::::::::::
intentionally

:::
did

::::
not

::::::
include

::
a

:::::::
scenario

::::::::
(SSP370)

::
in
::::

the
::::::
training

::::::::
process.

::::
This

:::::
move

::::::
allowed

:::
us

::
to

:::::
apply

:::
the

::::::
model

::
to

::
a
:::::::
specific

:::::::::
simulation

:::
and

:::::::
witness

:::
its

:::::
ability

:::
to

::::::::
reproduce

:::
an

::::::::
unknown

:::::::
forcing.

::::::
Figure

:::
11

:::::::::::
demonstrates

:::
the

:::
AV

::
of

::::
the

::::
CNN

::::::::
emulator

:::
for

:::::::
SSP370

:::
in

::::::::::
comparison

::
to

:::
the

:::::::::
dynamical

:::::::::::
downscaling

::::
with

:::::::
CCLM,

::::
i.e.,

:::
the

::::::
CCLM

:::::::::
simulation

:::::
driven

:::
by

:::::::
SSP370.

:::
The

::::
AV

::::::
pattern

:
is
::::::::
strikingly

::::::
similar

:::
to

::
the

::::
one

:::::
shown

::
in
::::::
Figure

::::
8.d.

:::
We

:::::::
conclude

::::
that

:::
the515

::::
CNN

:::
can

:::::
learn

:::::::
patterns

:
it
::::
was

:::
not

::::::
trained

:::
for,

:::
as

::::::::
evidenced

:::
by

:::
the

::::::
SSP370

::::::::
scenario.

:

5 Discussion and conclusions

Regional climate change impact assessments require high resolution climate projections. The main strategies to produce such

datasets are statistical and dynamical downscaling, as well as a hybrid of the two methods. Statistical downscaling (SD) usually

has limited capability to consider the dynamic influences of the complex topography. The large-scale domain does not reflect520

the spatial diversity and variation of the local climate and the topography, which may affect the accuracy of the statistical

relationships (Li et al., 2022). For SD applied to precipitation, the observations need to contain detailed information about the

precipitation distribution in areas with complex topography (Lundquist et al., 2019). On the other hand, dynamical downscaling

requires a massive amount of
::::::
massive

:
computational time and data storage space.

::
A

:::::::
30-year

::::::
CCLM

:::::::::
simulation

::::::
driven

:::
by

::::::::::
ERAInterim

::::
took

:::::::
roughly

:::
one

:::::
week

::
to

:::::
finish

:::::
using

::::
216

:::::::::
processors

::
of

:::
the

::::::::
HLRE-4

:::::::
Levante

::::::::
computer

::
at

:::
the

:::::::
German

:::::::
Climate525

:::::::::
Computing

::::::
Center

::::::::
(DKRZ). Additionally, the added value of RCMs is still debated , since

::::
since

::::
they

:::
are highly dependent on

the driving GCMs.

In this study, we contribute to the few dynamical downscaling efforts over the CORDEX-CA domain, a small step towards

an RCM ensemble creation for CA. A single RCM simulation can help identify model biases and uncertainties that need to be

addressed in future model improvements. It is essential to note that relying solely on a single model run for CMIP6 instead,530

of an RCM ensemble, may not provide any comprehensive understanding of the potential climate change impacts on a region.
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Therefore, it is recommended that researchers conduct multiple simulations with different initial and boundary conditions and

different model configurations to account for the uncertainty associated with climate projections.

In a first part of the study we demonstrate the added value of RCMs
::::
(here

:::
we

:::::
chose

::
to

:::
use

:::
the

:::::::::::::::::::
COSMO-CLM/CCLM

::::::
model)

over GCMs for CA in the representation of precipitation. Our COSMO-CLM run shows AV
::::::
CCLM

:::
run

:::::
shows

::::::
added

:::::
value535

with respect to its driving GCM, comparable to the range of values obtained for other RCMs applied to
::
the

:
CORDEX-CA

domain over the evaluation period. It also reproduces extreme precipitation changing patterns like the CMIP6 ensemble mean

at the end of the century. Both COSMO-CLM
::::::
CCLM

:
and CMIP6 ensemble present elevated risk (frequency and intensity) of

heavy precipitation events over vulnerable areas of CA due to different anthropogenic influences.

:::
Our

:::::
study

::::::::
evaluated

:::
the

:::::::::::
downscaling

::::
skill

::::::::
primarily

:::::
using

::::::
higher

:::::::::
resolution

:::::::::::
observations,

:::::
which

:::
are

:::::::
critical

:::
for

::::::::
capturing540

:::::::
localized

:::::::
climate

:::::::::
phenomena

:::::::
relevant

:::
to

:::::::
regional

:::::::::
adaptation

::::::::
strategies.

::::::::
However,

:::
as

:::::::::::::::::::
Volosciuk et al. (2017)

:::::
noted,

:::::::::
examining

::::::::::
downscaling

::::::
outputs

::
at
:::::::

coarser
:::::::::
resolutions

:::
can

:::
be

::::::
equally

:::::::::::
informative.

:::::
Their

::::
work

::::::::::
emphasizes

:::
that

:::::::::::
downscaling

:::::::
methods

::::
can

::::::::
introduce

::
or

:::
fail

::
to

::::::
correct

::::::
biases

::::
that

:::::
differ

:::::::::::
significantly

::::::
across

:::::
spatial

::::::
scales.

:::
By

:::::::::
evaluating

:::
on

:
a
:::::::
coarser

::::
grid,

::
it

::
is

:::::::
possible

::
to

:::::::::
distinguish

:::::::
between

::::
the

:::::::
inherent

:::::
biases

:::
of

:::
the

::::::
model

:::
and

:::::
those

:::::::::
introduced

:::
by

:::
the

:::::::::::
downscaling

:::::::
process.

:::::
This

:::::::::
distinction

:
is
::::::

crucial
::::

for
::::::::::::
understanding

:::
the

:::::::::
limitations

::::
and

::::::::
strengths

::
of

:::::::::::
downscaling

:::::::
methods

::
in
:::::::::::

representing
:::::::
climatic

::::::::
variables

::::::
across545

:::::::
different

::::::
scales.

Additionally, acknowledging the computational and memory constraints of an RCM to be run at very
::::::
running

:::
an

:::::
RCM

::
at

high resolution, here we also show that a single GCM-RCM model chain can be used to train a climate emulator based on a

CNN model. It can learn some nonlinear and physical relationships between the coarse and fine-resolution datasets, based on

atmospheric governing equations. This can overcome the problem of spatial intermittency seen in some statistical downscal-550

ing approaches (Harder et al., 2022)
::::::::::::::::
(Harder et al., 2023). However, we have also shown that the CNN model has limitations,

::::::
namely

:::::
when

:::::::::::
generalizing,

:
as it did not achieve a robust error-reduction pattern when applied to a different GCM-CCLM

chain
:::::
given

:
a
::::::::
different

:::::
GCM

::
as

:::::
input. The learning process depends strongly on the GCM/CCLM relationships. More impor-

tantly, an RCM is forced to follow its driving GCM and only on local scales can produce extra information. Therefore, we

recommend running a GCM-RCM simulation for several years and evaluating the model performance before applying it to555

a new specific GCM. An application of the presented CCN is
::::
could

:::
be to apply it for other experiments of the same GCM:

One can
:::::
could use the trained emulator for paleo-climate experiment of the parent GCM to create more than 10,000 years of

downscaled simulation. One can also downscale the volcanic forcing experiments using the trained emulator. This will aid the

paleo-climate community in conducting proxy-model comparisons at local scales.
::::::::
However,

:::::::
previous

::::::
studies

:::::
have

:::::
shown

::::
that

::
the

:::::
CNN

::::::
suffers

:::::
from

:::
the

::::
same

::::::::::::
generalisation

:::::::
problem

:::
as

:::::
when

::::::
applied

::
to

::
a

:::
new

::::::
GCM

:::
and

::::
such

:::::::::::
applications

::::
must

::
be

::::::
tested560

:::::::::::::::::::::::::
(Jouvet and Cordonnier, 2023).

:

::
In

::
an

:::::
effort

:::
to

:::::::
evaluate

:::
the

:::::::
model’s

:::::::::::::
generalization

::::::::::
capabilities,

:::
we

::::::::::
deliberately

::::::::
excluded

:::
the

:::::::
SSP370

::::::::
scenario

:::::
from

:::
the

::::::
training

:::::::
dataset.

::::
This

:::::::
strategy

::::
was

:::::::::::
implemented

:::
to

:::::
assess

::::::::
whether

:::
the

:::::
model

::::::
could

:::::::::
effectively

::::
infer

::::
and

::::::::
replicate

:::::::
patterns

::::
from

::::::::
untrained

::::::::
scenarios.

:::::::::::
Remarkably,

:::
the

:::::::
model’s

:::::
output

:::
for

:::
the

:::::::
SSP370

:::::::
scenario

:::::::
exhibits

::
an

::::
AV

::::::
pattern

:::
that

::::::
closely

:::::::
mirrors

::
the

:::::::::
dynamical

:::::::::::
downscaling

::::::
results

::::::::
obtained

::::
with

:::
the

:::::::
CCLM,

:::::
driven

:::
by

:::
the

:::::
same

:::::::
SSP370

::::::::
scenario.

::::
This

:::::::::
alignment

:::::::
strongly565

:::::::
supports

:::
the

::::::
notion

::::
that

:::
our

::::::
CNN

::::::::
emulator

::
is

:::
not

:::::
only

:::::::
capable

::
of

::::::::
learning

::::
from

:::
its

:::::::
training

::::
data

::::
but

::::
also

::::::::
proficient

:::
in
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::::::::::
generalizing

::
to

::::
new,

:::::::
unseen

:::::::::
conditions.

::::
The

::::::::
similarity

::
in
::::

AV
:::::::
patterns

:::::::
between

:::
the

::::::
model

::::::
output

:::
and

:::
the

:::::::
CCLM

:::::::::
simulation

::::::::::
underscores

:::
the

:::::::::
robustness

:::
and

::::::::::
adaptability

::
of
::::

our
::::::
model,

::::::::
affirming

::
its

::::::::
potential

:::
for

:::::::
broader

:::::::::
applicative

::::::::
scenarios

::
in

:::::::
climate

:::::::::
modelling.

We note that this work is only a step to demonstrate the potential of such a hybrid approach, and we encourage the community570

to explore different model structures and parameter combinations for further improvement. For example, our few model set-

ups showed that the constrained model
::::
using

::
a
:::::::::
physically

::::::::::
constrained

:::::
CNN set-up

:
,
::::
that

::::::
applies

::
a

:::::
linear

::::::::::::
transformation

:::
to

::
the

:::::::::::::
high-resolution

::::::
image

::
to

::::::
ensure

::::
that

:::
the

::::
total

::::
mass

:::
or

::::::
energy

::
is

:::::::::
conserved

:::::::
between

:::
the

::::
low

:::
and

:::::::::::::
high-resolution

:::::::
images,

did not successfully downscale the precipitation. The constraints might not be satisfied in the original dataset and therefore

the constrained model set-up did not lead to better results. In contrast, with a higher degree of freedom, the unconstrained575

model run produced more realistic patterns . Alternative
::::
CNN

::::::::
produced

:::::::
patterns

:::::
closer

::
to

:::
the

:::::
target

:::::
RCM.

::::::::::
Alternative

:::::::
machine

:::::::
learning models, such as generative adversarial networks (GAN

:::::
GANs), which can generate more high-frequency patterns,

might improve the downscaled pattern, and should
:::::
could

:
be tested in future studies. An additional set-up might be to add

::::::
provide

:
more information to

::
the

:
CNN by adding characteristics like surface height, vegetation, land-cover, land-use, etc. as

new channels within the input layer.580

ERAInterim
1979-2014

CHIRPS Obs.
1985-2014

MPI-ESM1-2-HR 
1985-2014

EC-Earth3-Veg 
2019-2033

MPI-ESM1-2-HR
SSP1-2.6, SSP3-7.0 & SSP5-8.5 

2020-2100

CCLM

Evaluation 
&

Added 
value

High Resolution RCM 
Data PoolCNNHigh Resolution CNN

Data

Figure 1.
:::::::

Schematic
::
of

:::
the

::::::::::
methodology

::::
used

::
in

:::
this

:::::
study.

:::::
Green

:::::
arrows

::::
show

:::
the

::::
data

:::
flow

::::
used

:::
for

::::::
training

:::
the

::::
CNN

:::
and

:::::::
magenta

:::
for

:::::::
evaluation

:::
and

:::::::::
calculation

::
of

::
the

:::::
added

:::::
values.

:::::::
Datasets

::
are

::::::
shown

::
by

:::::::::
rectangular,

:::::::::
downscaling

::::::
models

::
by

::::::::
hexagonal

:::
and

::::::::
evaluation

::::::
analysis

::
by

:::::
circle.
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Figure 2.
::::::::
Schematic

::
of

:::
the

::::
CNN

:::::::::
architecture

::
for

::
2
::::
times

:::::::::
upsampling

::::
with

:::
the

::::::::
constraints

::::
layer.

::::
The

::::
inputs

:::
are

:::::::::::
low-resolution

::::
(LR)

::::::
images

:
of
::::

size
:::::
30×60

:::
and

:::
the

:::::
output

::
is

:
a
::::::::::::
super-resolution

::::
(SR)

:::::
image

::
of

:::
size

:::::::
60×120.

:::
This

:::::
figure

::
is

:::::::
modified

:::
from

::::::::::::::::
(Harder et al., 2023).

Code availability. The code for "Physics-Constrained Deep Learning for Climate Downscaling," is available on Zenodo at the following

DOI: https://zenodo.org/uploads/8150694. The input, output, trained models, a snapshot of the code employed in the deep-learning down-

scaling process, COSMO-CLM model setups for all Regional Climate Model (RCM) simulations conducted, a list of CMIP6 model informa-

tion used for comparative analysis, and a Jupyter notebook for executing a test case of the "Physics-Constrained Deep Learning for Climate

Downscaling" as described in the manuscript are available at Zenodo with the following DOI: https://zenodo.org/records/10417111.585

Appendix A: Constraint layers

We test the CNN with three different constraining methods in the last CNN layer: 1- soft constraining (SCL), 2- hard constraining

(HCL) and 3- without constraining (NoCL). For a detailed information on the settings used we refer to the work of Harder et al. (2022)

. In the following we explain briefly the three different constraining methodologies. The set-up of constraining is as following:

Consider a factor N for downscaling in all linear directions and let n :=N2 and yi, i= 1, ...,n be the high-resolution patch590

values that correspond to low-resolution pixel x. The mass conservation law has the form of the following constraint:

1

n

n∑
i=1

yi = x.
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(a)

(b)

(c)

Figure 3. a) Study region
:::::
CCLM

::::::::
simulation

::::::
domain over Central Asia and the topography (m), (b) CHIRPS climatology for 1985-2014

(
:::::
average

::
of

::::
daily

:::::
values

::::
over

::
all

::::
years

::
in

:
mm/day), and (c) WorldClim’s weather stations (red dots).
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(a) ERAInterim Annual MAE (b) ERAInterim DJF MAE (c) ERAInterim JJA MAE

(d) CCLM Annual AV (e) CCLM DJF AV (f) CCLM JJA AV

(g) GERICS-REMO2015 Annual AV (h) GERICS-REMO2015 DJF AV (i) GERICS-REMO2015 JJA AV

(j) RMIB-UGent-ALARO-0 Annual AV (k) RMIB-UGent-ALARO-0 DJF AV (l) RMIB-UGent-ALARO-0 JJA AV

Figure 4.
::::
Mean

::::::
average

::::
error

:
(MAE

:
) of daily precipitation (mm/day) from ERAInterim, as well as, added value (AV) as measured by MAE

differences between ERAInterim and RCMs (MAEERAInterim −MAERCM) in mm/day for annual (a,d,j,i), winter
:::::::
December,

:::::::
January,

:::::::
February

(b,e,h,k) and summer
::::
June,

:::
July,

::::::
August (c,f,i,l). CHIRPS is used as observation.

::
All

:::::::
daatasets

:::
are

:::::::::
interpolated

:
to
:::
the

::::::
CCLM

:::
grid.
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(a) ERAInterim Annual Bias (b) ERAInterim DJF Bias (c) ERAInterim JJA Bias

(d) CCLM Annual Bias (e) CCLM DJF Bias (f) CCLM JJA Bias

(g) GERICS-REMO2015 Annual Bias (h) GERICS-REMO2015 DJF Bias (i) GERICS-REMO2015 JJA Bias

(j) RMIB-UGent-ALARO-0 Annual Bias (k) RMIB-UGent-ALARO-0 DJF Bias (l) RMIB-UGent-ALARO-0 JJA Bias

Figure 5. MAE
:::
Bias

::
of daily

:::::::::::
climatological

::
precipitation (mm/day) from MPI-ESM1-2-HR

::::::::
ERAInterim, as well

as, added value (AV) as measured by MAE differences between MPI-ESM1-2-HR and
::::::::::::::
ERAInterim-driven

::
RCMs

(MAEMPI-ESM1-2-HR −MAERCM:::::::::::::::::::
PRERAInterim-CCLM − PROBS) in mm/day for annual (aand ,d

::
,j,i), winter

::::::::
December,

:::::::
January,

::::::::
February

(band ,e
::
,h,k) and summer

::::
June,

:::
July,

::::::
August (cand ,f

::
,i,l). CHIRPS is used as observation.
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(a) SSP126-CCLM (b) SSP126-CMIP6-ensmean (c) SSP126-CMIP6-ensstd

(d) SSP370-CCLM (e) SSP370-CMIP6-ensmean (f) SSP370-CMIP6-ensstd

(g) SSP585-CCLM (h) SSP585-CMIP6-ensmean (i) SSP585-CMIP6-ensstd

Figure 6. Changes in averaged yearly 99th percentile (3 days per year) of total precipitation (mm/day) with respect to 1985-2014 references
for a,b) SSP126, d,e) SSP370 and g,h) SSP585 at the end of the century (2070-2099) from CCLM and CMIP6 GCMs’ ensemble mean. The
ensemble’s standard deviations are shown in c,f and i.

Hard constraining: It uses the SoftMax constraining, which is a proper constraining for quantities like water content. It

enforces the output to be non-negative. For constraining the predicted quantities, we use a SoftMax operator on the intermediate

outputs of the neural networks before the constraining layer (ỹi) and multiply it with the corresponding input pixel value x:595

yi = exp(ỹj) ·
x

1
n

∑n
i=1 exp(ỹi)

.

yi is the final output after applying the constraints. We have used the mean absolute error (MAE) as the loss function.
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(a) SSP126-CCLM (b) SSP126-CMIP6-ensmean (c) SSP126-CMIP6-ensstd

(d) SSP370-CCLM (e) SSP370-CMIP6-ensmean (f) SSP370-CMIP6-ensstd

(g) SSP585-CCLM (h) SSP585-CMIP6-ensmean (i) SSP585-CMIP6-ensstd

Figure 7. Changes in number of days with precipitation more than 20mm
::
20

:::
mm

:
in the period with respect to 1985-2014 references for

a,b) SSP126, d,e) SSP370 and g,h) SSP585 at the end of the century (2070-2099) from CCLM and CMIP6 GCMs’ ensemble mean. The
ensemble’s standard deviations are shown in c,f and i.

Soft constraining: This is done by adding a regularization term to the loss function. MAE is then changed to the following:

Loss = (1−α) ·MAE+α ·CV,

where CV is the constraint violation, which is the mean overall constraint violations between an input pixel x and the600

super-pixel (high-resolution grid-cell) yi:

CV = MSE(
1

n

n∑
i=1

yi,x)
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(a) MAE(GCM, GCM-CCLM) (b) AV HCL α=0.001

(c) AV SCL α=0.99 (d) AV NoCL

Figure 8. a) MAE (MPI-ESM1-2-HR,CCLM). MPI-ESM1-2-HR is remapped bilinearly to the 0.25×0.25 grid. b-d) Added Value (AV) or
MAE(MPI-ESM1-2-HR,CCLM) - MAE(CNN,CCLM) for different constraining method.

We use the α= 0.99 in this study.

Without constraining: In this setup we remove the constraining layer after the last convolutional layer in the CNN. We use

the MAE as the loss function.605

The constraint layers are applied at the end of the CNN architecture, and all satisfy the criteria that the resulting high-resolution

patch shall conserve the values in low-resolution pixels. The performance of the different settings will be assessed through the

MAE.

Appendix A: CNN runs

We used the following commands for training the CNN model based on the Harder et al. (2022)
:::::::::::::::
Harder et al. (2023):610

# f o r t h e run wi th s o f t c o n s t r a i n i n g run , w i th a f a c t o r o f a l p h a 0 . 9 9 :

$ py thon main . py −− d a t a s e t d a t a s e t −−model cnn −− model_ id

t w c _ c n n _ s o f t _ c o n s t r a i n t s _ e p o c h s _ 1 6 0 _ l r _ 0 .00001 _ a l p h a _ 0 . 9 9615

−− c o n s t r a i n t s s o f t −− l o s s m a s s _ c o n s t r a i n t s −− a l p h a 0 . 9 9

−− epochs 160 −− b a t c h _ s i z e 64 −− l r 0 .00001
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Figure 9. Boxplot of averaged daily precipitation over the
:::::
Central

:::::
Asian

:
domain

:::::
(shown

::
in

:::::
Figure

::
7)

:
for different models

::
and

:::
test

::::::
dataset

:::::
(22714

::::
days

::
or

:::
62.2

:::::
years). Numbers in the parenthesis indicate the correlation coefficients between each model and the CCLM simulation.

# f o r t h e run wi th so f tmax c o n s t r a i n i n g or ha rd c o n s t r a i n i n g :

$ py thon main . py −− d a t a s e t d a t a s e t −−model cnn −− model_ id620

t w c _ c n n _ s o f t m a x c o n s t r a i n t s _ e p o c h s _ 2 0 0 _ b a t c h _ s i z e _ 6 4 _ l r _ 0 . 0 0 1

−− c o n s t r a i n t s so f tmax −− l r 0 .001 −− epochs 160 −− b a t c h _ s i z e 64 −− l o s s mae

# f o r t h e s t a n d a r d CNN run w i t h o u t c o n s t r a i n i n g :

$ py thon main . py −− d a t a s e t d a t a s e t −−model cnn −− model_ id625

t w c _ c n n _ n o n e c o n s t r a i n t s _ e p o c h s _ 1 6 0 _ b a t c h _ s i z e _ 6 4 _ l r _ 0 . 0 0 1

−− c o n s t r a i n t s none −− l r 0 .001 −− epochs 160 −− b a t c h _ s i z e 64 −− l o s s mae

Note that the datasets available at shall be downloaded in a folder called dataset
:::
and

:::::
codes

:::
are

::::::::
available

::
at

::::::
Zenodo

::::::
(DOI:

https://zenodo.org/records/10417111
:
)
::::
with

:::::::::::::
comprehensive

:::::
details

:::::::
utilized

::
in

:::
the

:::::
paper.

:
630

The final model run outputs could be find here : .
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(a) MAE(EC-Earth3-Veg, CCLM) (b) AV NoCL

(c) CA (d) Box

Figure 10. a) MAE of GCM (EC-Earth3-Veg) vs CCLM run. GCM is remapped bilinearly to the 0.25×0.25 grid. b) Added value (AV)
or MAE reduction (MAE(EC-Earth3-Veg,CCLM) - MAE(CNN,CCLM) for unconstrained method. c) and d) boxplots of averaged daily
precipitation over the CA domain and the black box shown in a and b over North of Iran. Numbers in the parenthesis indicate the correlation
coefficients of each model with respect to CCLM.

Figure 11.
:::::
Added

::::
value

::::
(AV)

::
or

:::::
MAE

:::::::
reduction

:::::::::::::::::::::
(MAE(EC-MPI-ESM1-2HR,

:::::::::::::::::
CCLM)—MAE(CNN,

:::::::
CCLM))

::
for

::
an

:::::::::::
unconstrained

::::::
method

:::
that

:::
was

:::
not

:::::
trained

:::
but

::::::
applied

:
to
:::
the

::::::
SSP370

:::::::
scenario.
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