
1 
 

Assessment of surface ozone products from downscaled CAMS 
reanalysis and CAMS daily forecast using urban air quality 
monitoring stations in Iran 

Najmeh Kaffashzadeh1 and Abbas Ali Aliakbari Bidokhti1 
1 Institute of Geophysics, University of Tehran, Tehran, Iran  5 
Correspondence to: Kaffashzadeh Najmeh (najmeh.kaffashzadeh@gmail.com) 

Abstract. Tropospheric ozone time series consist of the effects of various scales of motion, from meso to large timescales, 

which is often challenging for global models to capture. This study uses two global datasets, namely the reanalysis and daily 

forecast of the Copernicus Atmosphere Monitoring Service (CAMS), to assess the capability of these products in presenting 

ozone’s features on regional scales. We obtained 16 relevant meteorological and several pollutant species, such as O3, CO, 10 
NOx, etc., from CAMS. Furthermore, we employed a comprehensive set of in situ measurements of ozone at 27 urban stations 

in Iran for the year 2020. We decomposed the time series into three spectral components, i.e., short (S), medium (M), and long 

(L) terms. To cope with the scaling issue between the measured data and the CAMS’ products, we developed a downscaling 

approach based on a Long Short-Term Memory (LSTM) neural network method, with, apart from modeled ozone, also 

assimilated meteorological quantities, as well as lagged O3 observations. Results show the benefit of applying the LSTM 15 
method instead of using the original CAMS products for providing O3 over Iran. It is found that lagged O3 observation has a 

larger contribution than other predictors in improving the LSTM. Comparing to the S, the M component shows more 

associations with observations, e.g., correlation coefficients larger than 0.7 for S and about 0.95 for M in both models. The 

performance of the models varies across cities; for example, the highest error is for areas with high emissions of O3 precursors. 

The robustness of the results is confirmed by performing an additional downscaling method. This study demonstrates that 20 
coarse-scale global model data such as CAMS needs to be downscaled for regulatory purposes or policy applications at local 

scales. Our method can be useful not only for the evaluation but also for the prediction of other chemical species, such as 

aerosols. 

1 Introduction 

Near-surface ozone (O3) is a secondary air pollutant that deteriorates human health and plants via damaging respiratory systems 25 
(Bell et al., 2006; Fowler et al., 2009; Mills et al., 2011; Malley et al., 2015; Pozzer et al., 2023). Exposure to high 

concentrations of air pollution, especially O3, leads to premature deaths, in particular for those suffering from 

asthma disease. Many efforts have been made to study ozone and its precursors in Iran, which suffers from severe ambient air 
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pollution (Lelieveld et al., 2009; Bidokhti et al., 2016; Faridi et al., 2018; Yousefian et al., 2020). As an example, Hadei et al. 30 
(2017) reported a total of 1363 premature deaths attributed to O3 in Tehran within three years, 2013–2016. Long-term 

exposures to ambient O3 are responsible for 173 deaths from respiratory disease in Ahvaz for the year 2012 (Goudarzi et al., 

2015). 

Ozone is either transported naturally from the stratosphere or produced in situ by photochemical oxidation of ozone’s precursor 

gases such as nitrogen oxides (NOx), non-methane volatile organic compounds (NMVOC), methane (CH4), or carbon 35 
monoxide (CO) in the presence of sunlight (Crutzen 1974; Monks et al., 2015; Cooper et al., 2014). The ozone levels are not 

only a function of its precursor’s emissions but also of meteorological conditions that influence the evolution of emissions, 

depositions, and photochemical products (Bloomer et al., 2009; Li et al., 2020). It has been shown that not only local emissions 

and winds but also synoptic conditions control the ozone levels over Iran (Borhani et al., 2021; Zohdirad et al., 2022; Jafari 

Hombari and Pazhoh, 2022). Several synoptic systems, which cause the high levels of ozone over Tehran, have been 40 
recognized and classified in a study by Khansalari et al. (2020) and Lashkari et al. (2020).  

Reanalysis data provide a global picture of past weather and climate. These data are constructed by combining atmospheric 

observations such as satellites, radar, and in situ measurements with a detailed simulation of the atmosphere, using data 

assimilation techniques. Reanalysis data have been widely used as an initial condition for the daily forecast of the atmosphere 

or boundary conditions in regional models, for the study of climate change, and as proxies to complement insufficient in situ 45 
measurements. In recent years, the Copernicus Atmosphere Monitoring Service (CAMS) has been mainly developed to 

assimilate observations of chemical compositions to provide analyses of tropospheric ozone and aerosol concentrations, but it 

also holds outputs for several meteorological variables (Innes et al., 2019). Several studies have evaluated CAMS reanalysis 

(hereafter CAMSRA) products and compared them with other reanalysis datasets and a control run (without assimilation of 

atmospheric composition). As an example, an intercomparison of tropospheric ozone from seven reanalysis datasets in East 50 
Asia has reported that CAMSRA depicts more reasonable spatial-temporal variability than other datasets (Park et al., 2020). 

They also show the suitability of CAMSRA for the study of local tropospheric ozone on seasonal to interannual timescales but 

the inadequacy of that to study long-term trends. Results of the study by Huijnen et al. (2020) reveal the ability of CAMSRA 

to reproduce background O3 in terms of mean and variability on various timescales such as synoptic, seasonal, etc. Several 

studies mention that the performance of CAMSRA differs depending on the region (Wang et al., 2020; Wagner et al., 2021). 55 
For instance, it has been shown that there is more agreement between CAMSRA and observations over Europe than in the 

Tropics (Errera et al., 2021). CAMS also provides daily forecasts (hereafter CAMSFC), which have a finer horizontal 

resolution and a larger number of vertical model levels than CAMSRA. System upgrades and verifications of CAMSFC are 

reported in several studies (Schulz et al., 2021; Eskes et al., 2021). A recent validation based on various observations shows 

that, in terms of bias, CAMSFC overestimates surface ozone values at most of the stations (Sudarchikova et al., 2021). 60 
However, it shows significant correlations across most of the stations, e.g., in China. 

Despite many evaluation studies of CAMSRA and CAMSFC in different parts of the globe, less attention has been given so 

far to Iran, which is a country with a complex topography and diverse meteorological systems that contribute to the ozone 
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levels in this area. This study aims to address two questions: (1)  how are the performances of CAMSRA and CAMSFC in 

simulating ozone over this region? (2) To what extent can downscaled CAMS datasets be used to study surface ozone at a city 65 
scale? To compensate for the limited spatial resolutions of the models, we downscale the CAMS ozone using the Long Short-

Term Memory (LSTM) technique. The data are compared with the measured ozone data at 27 air quality monitoring 

stations distributed over different parts of the country. That allows us to assess the CAMS over diverse zones, e.g., a highly 

populous and polluted area vs. a small and desert-like town. 

A detailed description of the datasets used in this study is presented in Sect. 2. The methodology is explained in Sect. 3, and 70 
the results are shown in Sect. 4. The discussion is presented in Sect. 5, and the paper ends with the conclusion's remarks in 

Sect. 6.  

2 Description of Data 

2.1 CAMS products 

This study uses two data products, namely CAMSRA and CAMSFC, that have been produced by the ECMWF in the 75 
framework of the CAMS. These datasets focusing on surface ozone are introduced in the following subsections. An overview 

of the main differences and similarities between both products is given in Table 1. For more details on other aspects, the reader 

is referred to the references. 

2.1.1 CAMS reanalysis (CAMSRA) 

This product is the latest (state-of-the-art) global CAMS reanalysis dataset of atmospheric compositions. They are produced 80 
using a four-dimensional variational (4D-Var) scheme as an assimilation technique. The chemistry module of the CAMS relies 

on the IFS (CB05) tropospheric chemistry mechanism with 52 species and 130 reactions (Huijnen et al., 2010; Flemming et 

al., 2015; Huijnen et al., 2020). Dry deposition velocities are derived from the SUMO model (Michou et al., 2004). 

Anthropogenic emissions are based on the MACCity inventory (Granier et al., 2011), with modified wintertime CO emissions 

over North America and Europe (Stein et al., 2014). Monthly mean biogenic VOC emissions are derived offline from MEGAN 85 
(Guenther et al., 2006), using NASA’s Modern-Era Retrospective Analysis for Research and Applications (MERRA) 

reanalyzed meteorological fields (Sindelarova et al., 2014). Daily biomass-burning emissions originating from the Global Fire 

Assimilation System, version 1.2 (GFASv1.2, Kaiser et al., 2012) are inferred from satellite observations of fire activities. The 

meteorological model consists of the given version of the Integrated Forecast System (IFS), i.e., CY42R1, with an interactive 

ozone and aerosol radiation scheme. Comparing to the previous atmospheric chemistry CAMS reanalysis data, CAMSRA has 90 
a finer horizontal resolution of 80 km with 60 vertical model levels, with the top level at 0.1 hPa. CAMSRA covers data for 
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the period of January 2003 to December 2021. The data are archived in 3 hourly time intervals. Hereafter, the ozone from this 

dataset is called O3RA. 

2.1.2 CAMS forecast (CAMSFC) 

In addition to the aforementioned datasets, CAMSFC issues (and produces) a daily global forecast of atmospheric compositions 100 
twice a day, which is initialized from analysis at 00:00 and 12:00 UTC. The forecast consists of more than 50 chemical and 

seven different aerosols, providing also several meteorological parameters. Compared to CAMSRA, in CAMSFC the initial 

conditions of each forecast are obtained from analysis of atmospheric composition in near-real time, i.e., combining the 

previous forecasts with satellite observations using the 4D-VAR data assimilation technique. CAMSFC uses an atmospheric 

model to determine the evolution of the concentration of all species over time for the next five days. Apart from the required 105 
initial state, it also uses inventory-based or observation-based emissions estimates as boundary conditions at the surface. 

Biogenic emissions originate from CAMS-GLOB-BIO v1.1, which is calculated from the MEGAN v2.1 model using ERA-

Interim meteorology (Sindelarova et al., 2022). Monthly average of anthropogenic emissions is derived from the 

CAMS_GLOB_ANT v2.1 inventory based on a combination of EDGAR v4.3.2x and CEDS emissions (Granier et al., 2019). 

Biomass burning emissions are based on GFAS. Dry depositions of trace gases are calculated online. Sulfur species, nitrate, 110 
and ammonium are coupled between chemistry and aerosol schemes. In contrast to the CAMSRA, CAMSFC is available at a 

finer horizontal resolution of 40 km. CAMSFC is upgraded regularly, e.g., once a year, during which the model’s resolution 

can change or new species can be added. From 9 July 2019 onwards, CAMSFC uses the assimilation system’s IFS CY46R1, 

in which the vertical model levels have been upgraded from 60 to 137. Details of other upgrades to this system can be found 

in Haiden et al. (2019) and Basart et al. (2019). IFS CY47R1 was used on 6 October 2020, with some upgrades in observations, 115 
emissions, and model changes (Eskes et al., 2021; Sudarchikova et al., 2021). The temporal coverage of the CAMSFC is from 

2015 to the present, with temporal resolutions of 1 hourly (only for surface fields) and 3 hourly. This study uses 3 hourly 

forecast fields from 00:00 UTC up to 24 hours. Hereafter, the ozone from this dataset is called O3FC.    

2.2 In situ measurement datasets 

Surface-based measurements of ozone were extracted from the Tehran air quality control portal, which is publicly available, 120 
for 21 stations. A couple of the stations contain no data records, and the data sparsity at the stations differs from year to year. 

Hourly time series of surface ozone for other cities are not accessible to the public and were obtained from the Iranian 

Environmental Protection Organization for 54 air quality monitoring stations. We added the Geophysics station, which is 

located at the Geophysics Institute, University of Tehran, Tehran. This station measures surface ozone along with several other 

variables such as air temperature, nitrogen oxides, wind, total ozone column, etc. Most of the air quality monitoring stations 125 
in Iran are installed in the cities, as they are aimed for the public health report. There is no information about stations’ type or 

availability of the data at background sites. To have a common quality, the validity of the data was checked by performing a 
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few statistical tests, such as (1) range test: verifies if the values are within the acceptable range limits (Zahumensky, 2004; 

Taylor and Loescher, 2013); (2) constant value test: checks the required variability among successive values (Zahumensky, 

2004); and (3) discontinuity test: identifies suspicious data points before and ahead of the discontinuities (Zurbenko et al., 130 
1996; Gerharz et al., 2011). We use the stations containing data for the year 2020, where more than 50 % of the data is available 

for each month. Table A1 lists the names and geographical locations of the stations, of which the first 22 are ordered based on 

the stations’ latitudes. In Table A1, there is a number along with the stations’ names, hereafter, the stations are referred with 

these numbers. To include more stations in the analysis, we consider five more stations in Table A1, i.e., from 23 to 27, which 

only one or two months of the year 2020 contain less than 50 percent of data (see Figure A1). The distribution of the stations 135 
is shown in Fig. 1, which covers three large cities (Tehran, Shiraz, and Tabriz) and six small cities (Birjand, Gilan, Hamedan, 

Zanjan, Markazi, and Yazd). Hereafter, the observation datasets and observed ozone time series are called OBS and O3OBS, 

respectively.  

Both reanalysis and forecast datasets were co-located with OBS through temporal and spatial interpolations. OBS data are 

available in hourly resolution, in contrast to the CAMS datasets that are available in 3 hourly intervals. To match the frequency 140 
of the CAMS outputs with OBS, 3 hourly observed values are considered in such a way that at least two hourly values are 

available; otherwise, it renders the value as missing.  

3 Methodology 

This section has been divided into three sections. Sect. 3.1 details the theory of decompositions and the method used in this 

study. Sect. 3.2 describes the procedure for neural network modeling and the pre-processing of its input. Sect. 3.3 defines the 145 
metrics (indicators) that have been used to assess the CAMS performance and error sources.  

3.1 Spectral decomposition of the time series 

The presence of various scales of motion, which are caused by several physical and chemical processes, in the time series of 

O3 can complicate the analysis and interpretation of data. As an example, short-term and fast fluctuations in the O3 time series 

are majorly attributed to chemical processes such as NO titration, whereas long-term and seasonal variations are mainly related 150 
to solar radiation, long-range transport, and stratosphere-troposphere exchange (Monks, 2000). Scale analysis is a method by 

which the time series can be separated into different temporal terms. Here, the time series of O3 is decomposed into three 

different spectral components, namely short (period less than 2 days), medium (period of 2–21 days), and long (periods longer 

than 21 days) terms, by applying the Kolmogorov-Zurbenko (KZ) technique (Rao et al., 1997). KZ is essentially a low-pass 

filter that consists of repeated moving averages. Its use has been demonstrated in earlier studies (Hogrefe et al., 2000; Kang et 155 
al., 2013; Seo et al., 2014). A detailed discussion of the KZ filter along with a comparison to other separation techniques can 

be found in Eskridge et al. (1997) and Loneck and Zurbenko (2020). KZ requires two input parameters, KZ (m, k), where m 

is the window size for filtering and k is the number of iterations. Since the values that have been commonly used for m and k 

Deleted: ic

Deleted: ic160 



6 
 

in the literature may not be applicable for 3-hourly data, we selected them based on the criteria suggested in Yang and Zurbenko 

(2010): 

𝑚	 ×	√𝑘 	≤ 𝑝                                                                                                                                                                            (1) 

KZ filters out all periods that are less than p, i.e., the number of filtered time intervals. Therefore, three components of interest 

in this study are estimated as follows: 165 
S = O - KZ (5, 5)                                                                                                                                                                        (2) 

M = KZ (5, 5) – KZ (35, 5)                                                                                                                                                         (3) 

L = KZ (35, 5),                                                                                                                                                                            (4) 

where O refers to the original time series and S, M, and L indicate the short, medium, and long terms, respectively. Here, the 

units of O and the spectral terms are in nmol mol-1. As expected from Eq. (1), KZ (5, 5) filters all periods less than 11.2 time 170 
steps. This corresponds to 33.54 hours, or 1.4 days, as the data are recorded in an interval of 3 hours. The same holds for KZ 

(35, 5), which filters all periods less than 9.8 days. Hence, the S refers to the short scale fluctuations, which are done in less 

than 1.4 days. Similarly, M refers to synoptic scale events with time scales ranging from 1.4 to 9.8 days. The variations with 

the time scales of more than 9.8 days are represented in the L term. 

3.2 Statistical downscaling 175 

To bridge the spatial scaling issue between coarse resolution CAMS datasets and local-scale measured data, statistical 

downscaling (SD) methods have been developed (Wilby and Wigley, 1997). SD refers to the use of statistical-based techniques 

to determine a relationship between global scale models’ outputs and observed local (small) scale variables (Wilby et al., 2004; 

Wilby and Dawson, 2013). There are numerous SD methods such as linear regression (Sachindra et al., 2013; Beecham et al., 

2014), stochastic weather generators (Wilks, 1999; Kilsby et al., 2007; Semenov and Stratonovitch, 2010), and artificial neural 180 
networks (Tripathi et al., 2006; Ahmed et al., 2015; Sachindra et al., 2018; Sebbar et al., 2023), to name a few. In this study, a 

deep learning method known as the LSTM network was used to analyze the complex relationship between O3 and its 

precursors. LSTM is a modified version of a recurrent neural network designed to handle long-term (and short-term) 

dependencies in sequential data (Hochreiter and Schmidhuber 1997). LSTM contains memory cells that can hold (and store) 

information for a long time, so making them suitable for time series analysis. The standard LSTM consists of three gates: 185 
input, forget, and output gates for controlling the movement of information. We use Keras, a high-level neural network Python 

library (“Keras: the Python Deep Learning library”, Chollet, 2015; https://keras.io) to build and train the LSTM model. This 

model requires a specific configuration and tuning to work effectively with the datasets. A range of control values for several 

hyperparameters (Table A2) were tested by multiple trial-and-errors. The most effective hyperparameters (Table A5) were 

selected using the Random Search optimization method. 190 
To prepare the LSTM inputs, several meteorological variables (Table A3) were obtained from the CAMSRA and CAMSFC 

datasets. To prevent overfitting of the model, a cross-validation Lasso regression was performed to identify the potential 



7 
 

predictors at each station. The lagged O3 (from OBS) was also considered as the model inputs, since the concentration of O3 

is not only affected by meteorological factors but also by the influence of the O3 levels in the past. A partial autocorrection 

function was utilized to estimate the correlation between observed O3 at time T and earlier time steps. For most of the stations, 195 
the autocorrelation coefficients decrease after a time lag of 24 hours within a confidence interval of 95 %. So, the O3OBS at 

times T-1,…, and T-8, were also considered predictors at each station. Selected predictors and observed O3 were decomposed 

using Eq. (2), (3), and (4).  

In order to provide the final output, i.e., downscaled O3, the LSTM architecture was trained on the decomposed datasets. The 

data records were divided into 65 % for the training subset and 35 % for the validation subset. The best model was chosen 200 
based on the R2 score (coefficient of determination) and mean square error (MSE). The selected model was applied to all data 

records to provide a downscaled output. All these procedures were applied to each station separately and are illustrated in Fig. 

2. 

3.3 Model evaluation 

We use the mean square error (MSE) as a metric to evaluate the models’ performance. The MSE is defined as the squared 205 
mean of the difference between modelled (xm) and observed (xo) variables. 

This metric can be modified to include all relevant model evaluation indicators, i.e., bias, variance, and correlation, as (Murphy, 

1988; Solazzo and Galmarini, 2016): 

𝑀𝑆𝐸 =	 (�̅�! −	�̅�"	)# +	(	𝜎! − 𝑟	𝜎")# +	𝜎"#(1 − 𝑟#)                                                                                                                          (5)                                                                                             

where 𝜎! and 	𝜎" refer to the standard deviation of the modelled and observed data, respectively, and r is the coefficient of 210 
correlation between the observed and assimilated datasets. In Eq. (5), the first term (hereafter E1) shows the deviation between 

average modelled (�̅�!) and measured (�̅�") datasets and refers to the model accuracy. The second term (hereafter E2) contains 

the variance error, i.e., the discrepancy in amplitude or phase between the variability of the modelled and observed values, that 

determines the precision of the model. Also, the third part (hereafter E3) refers to unsystematic errors related to the associativity 

between observed and assimilated datasets. In other words, the E2 indicates an explained error, which reveals the variance 215 
error arising from the variability of the modelled variables that are not observed in measurements. That could arise from 

overfitting associated with complex chemical processes in the model or imbalance among coupled components. The E3 

represents an unexplained error, reflecting the lack of observed variability in the modelled data. That refers to the variabilities 

which are not captured by the models, even though those variabilities exist in the observations. The E3 can arise from random 

and non-representative errors caused by sub-scales and non-resolvable processes in the observations, or from a deficiency of 220 
the model in capturing meso-scale phenomena. Due to the spectral decomposition of the data, the S and M components have 

zero mean fluctuations. Hence, the E1 term in Eq. (5) is zero, and only the E2 and E3 terms are analyzed below.  

To compare the distribution of error of modeled O3 before and after downscaling, the skill score (SS) is calculated as (Wilks, 

2006) 
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𝑆𝑆 = 	1 −	 $%&
$%&!"#

                                                                                                                                                                       (6) 225 

Here, MSEref and MSE refer to the MSE of O3RA  (or O3FC) and downscaled O3 (O3SD), respectively. The value of SS varies 

between 0 and 1. The value is zero once there is no preference in O3SD with respect to O3RA  (or O3FC), i.e., the O3 variability is 

not explained by selected predictors. The value of SS is one when the MSE of O3SD is zero, which means the whole O3 

variability in the LSTM model is explained by the predictors, i.e., the LSTM model is perfect. 

4 Results  230 

4.1 Spectral components 

The time series of O3 and all meteorological variables for OBS and CAMS datasets decompose into three spectral components, 

short (S), medium (M), and long (L), by applying the method (KZ filter) explained in Sect. 3.1. Figure 3 shows the original 

time series of O3OBS, O3RA, and O3FC and their estimated spectral components at the first station. To clearly see the signals, we 

only show part of the time series, here for the summer months (June, July, and August: JJA). Looking at the original 3 hourly 235 
time series (Fig. 3a), both CAMS datasets overestimate and underestimate ozone during different periods, but it is difficult to 

determine any clear patterns or identify specific reasons for the model bias. The S component contains frequent fast oscillations 

occurring every day with regular maxima and minima (see Fig. 3b). In this figure, the amplitude of S oscillations of the O3RA 

and O3FC is different from that in OBS, indicating differences in the diurnal cycle of observed and simulated ozone mixing 

ratios. The M term captures variability on the timescale of synoptic systems. Some episodic events are more visible in the M 240 
component than in the S component. For instance, in Fig. 3c, the M component of the OBS represents a clear signal of an 

episodic event in the middle of June. This episode is not well captured in CAMSRA while it is captured in CAMSFC. It seems 

that for most of the periods, the variations of the M component in both CAMS datasets are in good agreement with those in 

OBS, while the amplitudes of oscillations in CAMS do not correspond well with those in OBS. The underestimation and 

overestimation of the amplitude (with respect to observations) in CAMSFC is less than that in CAMSRA. Compared to the S 245 
and M terms, which oscillate around zero, the mean values of the L components are not zero (see Fig. 3d). The L represents 

variations of the ozone mixing ratios on seasonal, semi-seasonal, and multiannual timescales. Comparing the variations of 

CAMSRA and CAMSFC with OBS for L shows more similarity between CAMSFC and OBS than between CAMSRA and 

OBS. Both models exhibit a high bias with respect to the ozone mixing ratios. Nevertheless, the decomposition of the L 

component is not reliable due to the limited period (one year) of the available data, so hereafter we only assess the S and M 250 
components.  

4.2 Variable selections 

The time series for 16 relevant meteorological variables were extracted from CAMS products. To avoid model overfitting, we 

identify potential predictors of the variables. To decide on the importance of the variables, we used the LassoCV estimator. 
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The relationships between predictors and O3OBS were estimated by performing LASSO (Least Absolute Shrinkage and 255 
Selection Operator) regression. The variables with the highest absolute Lasso coefficient (importance weight) are considered 

the most important. Figure. 4 shows that the T2m is the most explanatory meteorological variable and NO, NO2, and O3RA are 

the main chemical variables for CAMSRA_S at most of the stations. The variables with high feature importance (weight > 

0.1) were considered for use in the LSTM modeling. Table 2 lists selected predictors for both components of CAMSRA at 

each station. At station 1, twelve variables, namely, T, V, U10m, V10m, MSLP, SP, T2m, SH, W, CO, NO2, and O3RA, are 260 
identified as the potential predictors of the S component, while four variables, i.e., U10m, W, SO2, and O3RA, are selected for 

the M term. Some of the selected predictors are common between the S and M components. A few meteorological variables 

such as T2m, SP, MSLP, W, and U10m (or V10m) appear for the S component at most of the stations. These variables reflect 

the information about temperature, pressure, and vertical velocity. Temperature is one of the key meteorological factors 

influencing the S term variability of O3 through its effect on biogenic emissions, photochemical kinetics reaction rate, and 265 
anthropogenic emissions. Stable anticyclones and sunny conditions promote O3 formation and accumulation. Zonal and 

meridional winds at 10 meters are important for the dispersion of ozone precursors at local scales. For most of the stations, the 

S term is affected by pollutant species such as O3RA, NO, and NO2, of which NO and NO2 are recognized as potential drivers 

of O3 levels. Selection of TCC and FCC for the M component at most stations indicates that cloud covers are mostly associated 

with synoptic systems (e.g., occurrence of high pressure systems associated with clear-sky conditions) and O3 variability on 270 
this scale. The M component at a few stations, e.g., 4, 6, 9, 13, etc., shows weak associations with the parameters, so no 

variables are selected for them. This situation often happens for the M component and suggests the role of other factors (not 

included in the predictors). There are a few stations where O3RA (O3FC) is not selected as an important variable, which is related 

to the small (weak) associations between O3RA (O3FC) and O3OBS. For instance, SH is selected as the main factor effecting the 

M term at station 23, i.e., Rasht. This station is located between the mountains (Alborz) and coast (Caspian Sea), with a local 275 
environment of rainy with a humid subtropical climate. That is similar to the Western Mediterranean regions, where a lack of 

strong synoptic advection, combined with the orographic characteristics and the land-sea breezes, favors episodes of high 

ozone levels over this region (Millan et al., 1999; Velchev et al., 2011; Wentworth et al., 2015). Similar to the CAMSRA, for 

the CAMSFC the number of selected parameters for the S is larger than that for the M (see Table A4). In CAMSFC, BLH and 

V10m (or U10m) appear as dominant meteorological drivers affecting the S component. Stable boundary layer height causes 280 
the accumulation of ozone and its precursors during night or under light (weak) winds conditions. Moreover, ozone in residual 

layer can be transported over long distances with prevailing winds. In the morning, trapped ozone can be entrained downward 

into the mixed layer (Stull, 1988; Zhang and Rao., 1999). The M term is mostly associated with O3FC. 

4.3 LSTM model and validation 

The LSTM model was trained and validated with the datasets, as explained in Sect. 3.2. We tuned hyperparameters, which 285 
allow the learning algorithm to run until the error from the model, i.e., the loss function, has been sufficiently minimized. As 
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there are no given values to set these numbers, the optimum values were obtained by multiple trial-and-error tests (see Table 

A5). The best model was selected based on MSE and R2 score (coefficient of determination), which indicates the amount of 

explained variance by the LSTM model. Figure 5 shows the R2 of the selected model for all data series at each station. For 

most of the datasets, the R2 is larger than 0.5, indicating that more than 50 % of the O3 variance is explained by the LSTM. 290 
The R2 for the M component is larger than that for the S term, despite the smaller number of predictors for the M. That might 

reflect that the M component is easier to be modeled due to less complexity. In this figure, the R2 of the M is around 0.9 for 

all stations, while it varies for the S term. The R2 value of the S at the stations over the city of Tehran is within the same range 

of 0.7 to 0.8. Both CAMSRA and CAMSFC show the R2 less than 0.5 for the S term at a few stations, namely 22 (Yazd), 24 

(Zanjan), and 25 (Markazi). A possible reason for that could be the peculiar characteristics of short-term ozone variability at 295 
these sites or their geographical locations. Model to model differences in R2 are more pronounced in the S, that is likely due 

to the different emissions inventories used in the models.  

Figure 6 shows the box plots of MSE and different terms of MSE, i.e., E2, E3, for both components of O3SD. For the sake of 

simplicity, descriptions of the results are mostly based on the mean values. Nevertheless, the values of the indicators at each 

station are shown as a scatter point next to the box plots.	From Fig. 6a, it turns out that the mean MSE (shown with red squares) 300 
of O3 for the S component is larger than that for the M component for both models. That could arise from the uncertainties in 

O3 precursor emissions affecting modeled local photochemistry and likely S variability. The largest value of the MSE is 

associated with the O3SD of the stations located in the city of Tehran. That can be associated with the uncertainties in CAMS 

emissions inventories, which may have larger impact in cites with high anthropogenic emissions sources. The stations in the 

northern part of the city (e.g., stations 4, 5, 6, 7, 8, and 9) show a larger MSE than the stations in the southern part (e.g., stations 305 
10, 11, 14, 15, 16, 17, and 19). That can be associated with the deficiency of the emissions inventories in capturing the local 

emissions changes within urban areas. The large value of MSE is also found for the S term at the stations located in Shiraz and 

Tabriz, which are known as big and highly populated cities with numerous local anthropogenic emissions sources (e.g., thermal 

power plants, oil refinery, cars, etc.). Station 2 in Tabriz shows less MSE than stations 1 and 3, which are located in the 

industrialized part of the city. That can be associated with the uncertainties in the spatial variations of the emissions inventories 310 
used in CAMS. Although the CAMS anthropogenic emission inventories account for emissions from different sectors, such as 

transportation, residential and energy sectors, as well as biogenic fluxes, they have a temporal and spatial allocation with a 

monthly spatial grid resolution of 0.1°x0.1°. Low values of the MSE for CAMSRA_S and CAMSFC_S are attributed to stations 

22 (Yazd), 20 (Hamedan), and 24 (Zanjan). Similar to R2, the lowest MSE belongs to the Yazd station, which contains fewer 

local emissions sources than other cities such as Tehran, Tabriz, and Shiraz. 315 
Fig. 6b shows the explained error (E2) in CAMSRA and CAMSFC for both components. E2 is a model related error, a possible 

source for this can be a misrepresentation of short- and meso-scale phenomena in models. The small values of E2 reflect the 

low contributions of E2 to the MSE and the noticeable improvement of the O3SD (via downscaling procedures). The major 

portions of the MSE are associated with the unexplained errors (E3) for both components, see Fig. 6c. The E3 for the S 

component is larger than that for M, as expected from the variance of these components. The S variability is associated with 320 Deleted: results from
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the effect of daytime photochemical production, downward transport of O3 rich from upper levels, combined with O3 loss by 

depositions (in the surface layer). A large value of E3 for the S component can arise from the CAMS’ deficiency in resolving 

the meso-scale phenomena such as local winds, NO titration, deposition rates and their influences on O3 variability. Assessing 

the element of E3 (see the third term of Eq. (5)) shows that large variances of observations (𝜎") or small correlations (r) cause 325 
the large E3 and consequently the large MSE. Fig. A2a shows the correlation between the models and observation datasets for 

both components. This figure shows that M contains a larger correlation (r > 0.9) than S in both models. A high value of 

correlation between two terms can be attributed to the larger covariance of two terms or the less variance of each term. Fig. 

A2b shows the covariance between models and observations. As can be seen in this figure, the mean value of covariance for 

the S components is larger than the M. So, the smaller correlation of S in comparison to that of M is attributed to the larger 330 
variance of S (Fig. A2c). In other words, the better model performance (i.e., smaller E3 and MSE) for the M is not associated 

with the larger covariance of the M component. That is attributed to the less variance of the M than that of the S, see Fig. 3 

and Fig. A2c. 

In order to examine the effect of the CAMS products and lagged O3 (from actual observations) on the LSTM model, we exclude 

the measured lagged ozone from the predictors of the LSTM model, hereafter LSTMno_lag. The R2 of the LSTMno_lag is shown 335 
in Fig. A3. Overall, the R2 of the LSTMno_lag is less than that of the LSTM. This suggests that the LSTMno_lag may carry the 

risk of not including all important predictors (e.g., lagged ozone) in the model. This feature is more noticeable in the M term 

than the S term, i.e., the R2 of the S component is less affected by removing the lagged O3. That reflects the CAMS products, 

which explain more of the S variance than that of the M term. In other words, most of the variance of the M term in the LSTM 

is explained by the lagged O3 (not by the CAMS products). That could be a reason for the better performance (less MSE) of 340 
the M than the S. Figure A4a shows the MSE of the LSTMno_lag. In this figure, the MSE of the datasets increases by two times 

with respect to that of the LSTM. The higher values of the MSE in the LSTMno_lag are attributed to the removal of the observed 

lagged O3 from the model. Although the R2 of the LSTMno_lag for the S is larger than that for the M term, the MSE of the S is 

higher than that of the M term. This is similar to the MSE of the LSTM, which is related to the higher variance of S than M. 

Similar to the LSTM, in LSTMno_lag, the low values of MSE are seen for the S component of O3 at stations 22 (Yazd), 20 345 
(Hamedan), and 24 (Zanjan). 

The skill score (SS) of the downscaled models O3SD with respect to the O3RA  and O3FC for all datasets are shown in Fig. 7. In 

panel (a) of this figure, the mean value of SS for three datasets, namely CAMSRA_S, CAMSRA_M, and CAMSFC_M is 

larger than 0.9. This reflects that the downscaling procedure (LSTM) improves the accuracy of the results in the three 

mentioned datasets. The lower value of the SS for CAMSFC_S can be attributed to the higher skill of the reference dataset, 350 
i.e., O3FC, or the less accuracy of the LSTM model. The SS of the LSTMno_lag for CAMSRA_S shows the same high accuracy 

as that in the LSTM, whereas for other datasets the mean SS declines to less than 0.8 (see Fig. 7b). There is a large difference 

between SS of the LSTM and LSTMno_lag  for the M component, which shows the importance of the lagged O3 for modeling of 

the M term. Larger values of SS for the CAMSRA than that for the CAMSFC reflect a better performance of O3FC over Iran, 

That is also shown in Fig. A7a, in which the MSE of CAMSFC_S is less than that of CAMSRA_S. 355 
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5 Discussion 

Analysis of the spectral components in this study reveals that the O3 variability in both CAMS products possesses a nearly 

similar shape (although in different phases and amplitudes) as those in OBS. Although both datasets share many of the same 

parameters in common, there are several differences that distinguish O3RA from O3FC. O3FC is produced by a model with finer 

horizontal and vertical resolutions. Different anthropogenic and biogenic emissions have been used in both models (see Table 360 
1). CAMS-GLOB-ANT (used in CAMSFC) provides up-to-date emissions of air pollutants and greenhouse gases, at the spatial 

and temporal resolution required by the model (0.1°x0.1°). CAMSRA uses MACCity emission inventory with a resolution of 

0.5°x0.5°. Figure A6 shows a comparison of CAMS-GLOB-ANT and MACCity for a couple of ozone precursors, i.e., NOx 

and CO. Compared to CAMS-GLOB-ANT, MACCity provides higher NOx and CO emissions. CAMS-GLOB-ANT shows 

more details of the emissions’ variability due to the finer spatial resolution. The area with the highest emissions in both 365 
inventories are located over Tehran. 

The results of the models’ performances show a larger MSE for the S than that for the M in both CAMS. That arises from the 

larger variance of the S in comparison to the M (Hogrefe et al., 2000; Hogrefe et al., 2014; Kaffashzadeh 2018; Kaffashzadeh 

and Aliakbari Bidokhti, 2022). The results of the error apportionment show the negligible contribution of the E2 to the MSE. 

E2 arises from the limited spatial resolutions of the CAMS in capturing short- and meso-scale phenomena that are attenuated 370 
(alleviated) by the SD procedures. The MSE has mostly arisen from the E3, which emphasizes the lack of observed variability 

in the CAMS data. The E3 assessment shows less variability for both components of O3SD than in O3OBS. That could arise from 

random errors inherent in the OBS data due to sub-scale or non-resolvable processes in an observational network. The 

variability in the measured data might be generated from the non-representatives’ errors due to random effects caused by 

turbulence or sub-scale perturbations (Gandin, 1988; Steinacker et al., 2011). It is not straightforward to distinguish and 375 
exclude these errors in the measured data because of their chaotic and unsystematic behaviors. Adding the lagged O3 to the 

predictors of the downscaled model halfs the E3 (and MSE). Less MSE of the M in comparison to that of the S attributes to 

not only the less variance of the M than the S but also the larger contribution of the lagged O3 in the M than that in the S (as 

shown in Sect. 4). The S component shows large associations with meteorological variables such as T2m, BLH, U10m, and 

V10m and pollutant species such as CO, NO, and NO2. That is due to short-term O3 fluctuations associated with processes 380 
such as vertical mixing, local NO titration, depositions, wind speeds, solar flux, etc.  

The S component shows the large value of MSE for the stations located in Tehran, Shiraz, and Tabriz, which are known as the 

most populated cities (and so large local emissions sources) in Iran. The largest MSE belongs to O3 at the stations over Tehran 

(see Fig. A4). That can be partly attributed to the complex topography and local (meso) scale flow (e.g., slope, mountain, and 

valley flow) over the city. The pollutant concentrations are highly affected by these factors, which are hardly captured by the 385 
global chemistry models (Fiore et al., 2003). The MSE of O3 over Tehran in the warm season is much higher than that in the 

cold season (see Fig. A5). That could arise from the uncertainty of O3 precursors in CAMS, as they are not adjusted by data 

assimilation systems. CAMS-GLOB-BIO (used in CAMSFC, see Table 1) provides a monthly average of the global biogenic 
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emissions, which are calculated using the MEGAN (used in CAMSRA, see Table 1), driven by ERA-Interim meteorological 

fields. In summer, rising temperatures speed up the rate of many reactions and enhance biogenic VOC emissions (Sillman and 390 
Samson, 1995). The city of Tehran suffers from high levels of emitted NOx from several sources, such as road traffic, industrial 

activities, the energy conversion sector, etc. (Hosseini and Shahbazi, 2016; Yousefian et al., 2020). The latest Tehran emission 

inventory indicates that the annual emissions of VOC and NOx are approximately 91 and 103 thousand tons, respectively 

(Shahbazi et al., 2022). The contributions of vehicles to VOCs and NOx emissions are estimated to be 79 % and 35.2 %, 

respectively, and increase to 79.5 % and 37.2 %, respectively, in the summer. In addition to the aforementioned factors, what 395 
distinguishes Tehran from other cities is the difference between day and nighttime populations. During the day, traffic in 

Tehran reaches its highest level due to the arrival of private vehicles and passenger and cargo transportation vehicles from 

surrounding areas and cities. This issue has a significant impact on the city's traffic and the vehicle traffic on intercity routes 

leading to Tehran. The impact of these (meso scale) factors cannot be captured in a global emissions inventory with a limited 

resolution. That induces large model uncertainties, in particular for the S variability, which has large associations with pollutant 400 
species. Besides, for some periods the emissions are not available and so prescribed, which means they are either kept fixed 

since the last year available or extrapolated (projected) with a climatological trend. MACCity emission inventory has not been 

updated since 2010, and recent years are only based on projections of past trends. CAMS-GLOB-ANT provides the monthly 

average of the global emissions of 36 compounds over the period 2000-2019. The MSE distribution over Tehran is uneven; 

the northern part of the city shows a larger MSE than that over the southern part. That can be attributed to the uncertainty of 405 
the simulated CO species, as it is selected as a predictor at the stations located in the northern part. The CO concentration 

increases, moving from the south to the north of Tehran (Sharipour and Aliakbari Bidokhti, 2014).  

Stratospheric ozone can affect surface ozone levels indirectly through vertical downward transport of ozone from the lower 

stratosphere and/or the upper troposphere in larger time scales (Zanis et al., 2014; Akritidis et al., 2016) or directly through 

intense stratospheric intrusions (rarer) (Akritidis et al., 2010; Chen et al., 2022). Over Tehran, a major portion of O3 during 410 
spring is transferred from the stratosphere (Aliakbari Bidokhti and Shariepour, 2007). A study by (Shariepour and Aliakbari 

Bidokhti, 2013) showed that several mid-latitude low pressure weather systems accompanied by tropopause folding affect 

northern Iran (Caspian Sea), and can cause downward transport of stratospheric ozone rich air towards the surface. During 

summer, the occurrence of tropopause folding and their intensity over the Eastern Mediterranean and the Middle East regions 

are majorly controlled by the Asian monsoon. Since the zone of upper level baroclinicity and fold occurrences spread 415 
northwestward over this region, it first reaches Iran in July (Tyrlis et al., 2014). The large MSE of O3SD for the cities of Shiraz 

and Tabriz is mostly associated with the geographical locations of the cities. Tabriz is the largest economic (industrialized) 

hub and metropolitan area in northwestern Iran, which is often affected by cyclonic activities (Asakereh and Khojasteh, 2021) 

and summer circulations over the Eastern Mediterranean region (Tyrlis et al., 2013). Although CAMSRA captures the long-

range transport processes and atmospheric background in the troposphere, it shows a lower skill over the Mediterranean, in 420 
particular the eastern part, compared to other regions (Errera et al., 2021). Shiraz, as the capital of Fars province, is the largest 

city with more than 1.2 million inhabitants in the southwestern of Iran. This city has high levels of air pollutions due to 
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population growth, urbanization, and traffic-related emissions. The city is located in a valley between two mountain ranges 

with east-west orientations. The model representation of the terrain is considered to be an important key factor for achieving 

a good representation of the wind flow in complex terrain (Mughal et al., 2017). The low MSE values in the cities of Yazd, 425 
Hamedan, and Zanjan are associated with the station locations, which are less populated and affected by the emissions sources.  

To assess the sensitivity and robustness of the results to SD methods, the data are downscaled using another SD method, 

namely the multiple linear regression (MLR) model. In this model, the predictors and predictand were the same as the LSTM 

model. Figure A7b shows the MSE of O3SD with the MLR model. In similarity with the LSTM model (similar to the results in 

Sect. 4), the MSE for the S is larger than the M components downscaled with the MLR model. Although the mean value of 430 
the MSE of the downscaled data with the MLR is slightly larger than that of the LSTM. That could arise from the larger 

correlation (and covariance) between downscaled datasets and OBS in the LSTM model. Similar to the LSTM, the SS of the 

MLR is high for all downscaled datasets; the SS for the CAMSFC_S datasets is less than other datasets (see Fig. A8a). Two 

experiments were designed to assess the sensitivity of the model to less obvious predictors. In the first experiment, i.e., 

MLRno_lag(expr1), the model was trained only using O3RA and O3FC. In the second experiment, i.e., MLRno_lag(expr2), the model was 435 
trained using the most influential meteorological variables (see Table A6). For the sake of simplicity (and being less 

expensive), both experiments were performed using the MLRno_lag model. Table A7 lists the results of these experiments for 

station 22 (Yazd). As can be seen, the MSE of MLRno_lag(expr1) and MLRno_lag(expr2) are larger than that of MLRno_lag. That shows 

that part of the O3 variability is explained by meteorology and partly by the chemistry (O3RA or O3FC). Separating these two 

factors causes a decline of r (see Fig. A9).  440 

6 Conclusions 

In this paper, the variability of O3 in two datasets, namely CMASRA and CAMSFC, was assessed against observations at 27 

urban stations distributed over Iran. Our observation datasets contain time series from various cities in Iran, e.g., highly polluted 

cities vs. small cities. This helps identify where the models capture reality and where they need more improvements. To cope 

with the limited spatial resolutions of CAMS, the data were downscaled using an LSTM neural network. The potential 445 
predictors (inputs) for the LSTM were identified from chemical and meteorological variables at each station. We decomposed 

all time series into three spectral components, i.e., short (S), medium (M), and long (L) terms. The S term consists of intraday 

and diurnal variations; the M term includes synoptic multiday fluctuations; and the other motions, i.e., seasonal, semi-seasonal, 

and trend, are carried in the L. We only assessed the S and M terms due to the availability of one-year data, i.e., 2020; the L 

component is primarily used to check the biases between model data and observations but should not be considered reliable 450 
with respect to trend analysis, etc. Since S and M components have zero-mean fluctuations, the bias term (the distance between 

the time average of model data and observations) is zero, and the main focus of this study was to analyze the variability terms, 

e.g., variance and covariance. The results presented in this study reveal several key points:  
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• Various variables were identified as potential predictors of ozone. The S term shows high associations with 

temperature, 10 m wind components, and NOx, while the M component shows higher associations with cloud cover 455 
and simulated ozone. In CAMSFC, boundary layer height appears to be the dominant meteorological driver of the S 

component. The R2 of the LSTM model for the M component is larger than that for the S term, despite a smaller 

number of predictors for M than for S. That might reflect that the M term is easier to be modeled. 

• The SS of the downscaled CAMSFC_S is lower than other datasets. This can be attributed to the higher skill of the 

reference dataset, i.e., O3FC. The SS of the LSTMno_lag for CAMSRA_S shows the same high accuracy as LSTM, 460 
whereas for other datasets, the mean SS declines to 0.5. That shows the importance of the observed (lagged) O3 as a 

predictor in the LSTM. The robustness of the results was also confirmed using additional downscaling procedures, 

i.e., MLR.  

• Both datasets, i.e., CAMSRA and CAMSFC, show less MSE for the M component than for the S term. That is mainly 

attributed to the low variance of M and is not related to the large covariance of this component. The MSE was mainly 465 
associated with unexplained model errors (E3), which could be caused by the CAMS deficiency in resolving the 

mesoscale phenomena such as local winds, NO titration, deposition rates, and their impact on O3 variability. In 

addition, uncertainties in emission inventories might affect this error. Including a proxy of stratospheric ozone 

contribution to surface ozone (stratospheric ozone tracer) may be beneficial in explaining short term ozone variability, 

thus reducing the error (a recommendation for future work). 470 
• In both datasets, the highest MSE appears for O3SD at stations in the cities with high emissions, in particular over 

Tehran in the warm season. That majorly arises from the uncertainty of O3 precursors, e.g., NOx, in CAMS. This can 

be considered a starting point for improving the results of surface ozone, in particular at urban sites.  

To date, most of the studies of ozone and other pollutants in Iran rely on reanalysis products, without using decompositions or 

downscaling procedures. Our findings show that the CAMSRA and CAMSFC datasets have some deficiencies in simulating 475 
ozone, in particular over the cities with high emissions of ozone precursors. Downscaling improves these products and makes 

them suitable for the study of ozone in major metropolitan areas. The method used in this study is not only applicable for the 

evaluation of the global models but also for prediction purposes. 
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Table 1. An overview of similarities and differences between the CAMSRA and CAMSFC datasets used in this study 
 

Name (references) CAMSRA (Innes et al., 
2019) 

CAMSFC (Basart et al., 2019; 
Haiden et al., 2019; 

Sudarchikova et al., 2021) 
 

Temporal coverage 2003 to 2021 2015 to present  

Assimilation system IFS Cycle 42r1 4D-Var 

 
IFS Cycle 46r1 (implemented on 

9 July 2019) 
IFS Cycle 47r1 (implemented in 

6 October 2020) 
 

 

Deleted: some 785 



25 
 

Horizontal resolution 0.75°x0.75° (T255)  
 

0.4°x0.4° (T511) 
 

 

Vertical resolution L60 Up to 0.1 hPa 
 

L137 up to 0.01 hPa 
 

 

Temporal resolution 
(output frequency) 3 hourly 

 
1 hourly (surface level),  
3 hourly (multi-level) 

 

Anthropogenic emissions MACCity 

 
CAMS_GLOB_ANT v2.1 

(cy46r1) 
CAMS_GLOB_ANT v4.2 

(cy47r1) 

 

Biomass burning 
emissions GFASv1.2 

 
GFASv1.2 (cy46r1) 
GFASv1.4 (cy47r1) 

 

 

Biogenic emissions MEGAN CAMS_GLOB_BIO v1.1 
  

 
Chemistry modules 

 
modified CB05 

modified CB05 with a few 
upgrades such as dry depositions 
velocity, coupling with aerosol 

scheme, etc. 

 

 
Input meteorological 

observations 
 

As in ERA5 As in ERA5  
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Figure 1. Geographical location and distribution of the measured air quality stations used in this study. The purple box areas 
correspond to the locations of the cities. Here the stations are represented with a number, details on the name and geographical 
coordinates of the stations are given in Table A1. The arrows refer to the stations, which are overlaid on the cities’ maps of Tabriz, 790 
Tehran, and Shiraz (Fars). 
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Figure 2. A schematic of the downscaling processes: (a) input data retrieval, (b) decomposition and prescreening, (c) LSTM 
modeling, and (d) downscaled datasets.  795 
 

 
Figure 3. Different spectral components, i.e., (a) original time series, (b) short (S), (c) medium (M), and (d) long term (L) of O3

OBS 
(black), O3

RA (red), and O3
FC (blue) at station 1. The vertical axis in all panels shows the ozone mixing ratio in nmol mol-1. 
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 800 
 
 

 
 
 805 

 
Figure 4. Cross-validation Lasso regression to identify the potential predictors for ozone modeling. The higher absolute Lasso 
coefficient, the most important would be the variable. 
 
 810 

Table 2. The most important explanatory variables of the CAMSRA at each station  

Stations’ 
number S M 

1 T, V, U10m, V10m, MSLP, SP, T2m, SH, W, 
CO, NO2, O3RA U10m, W, CO, O3RA 

2 MSLP, SP, T2m, SH, W, NO2, O3RA U10m, SP, SO2, O3RA 

3 T, MSLP, SP, T2m, CO, SO2, NO2, O3RA T, U, DT2m, W, NO2, O3RA 

4 U, U10m, MSLP, SP, T2m, SH, W, CO, NO, 
NO2, O3RA - 

5 U, U10m, MSLP, SP, T2m, W, CO, NO, NO2, 
O3RA T2m 

6 U, V, U10m, V10m, MSLP, SP, T2m, SH, 
CO, NO - 

7 U, U10m, MSLP, SP, T2m, SH, W, CO, NO, 
NO2 U, T2m 
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8 U, U10m, MSLP, SP, T2m, SH, W, CO, NO, 
NO2, O3RA TCC, T2m 

9 T, U, V, U10m, V10m, MSLP, SP, T2m, SH, 
W, CO, NO, NO2 - 

10 T, U, U10m, MSLP, SP, T2m, W, NO, O3RA 
TCC, FCC, U, V, U10m, V10m, MSLP, 

SP, T2m, DT2m, SH, SO2, NO, NO2, 
O3RA 

11 U, U10m, MSLP, SP, T2m, W, CO, NO, NO2, 
O3RA  TCC, FCC, U, W 

12 T, U, U10m, MSLP, SP, T2m, W, NO, NO2, 
O3RA  TCC 

13 MSLP, SP, T2m, SH, W, NO, O3RA  - 

14 T, U, U10m, MSLP, SP, T2m, SH, W, NO, 
O3RA TCC, FCC, T2m, DT2m, SO2, O3RA 

15 U, U10m, MSLP, SP, T2m, W, NO, O3RA  TCC, U 

16 MSLP, SP, T2m, W, NO, O3RA  T, U, SP, W, O3RA  

17 T2m, O3RA - 

18 T2m, SH, W, NO, O3RA  TCC, FCC, DT2m, W, O3RA 

19 T, V10m, T2m, W, NO, O3RA  TCC, FCC, V10m 

20 T, V, V10m, SP, T2m, SH, NO2, O3RA TCC, SP, T2m, W, NO2, O3RA 

21 T, V10m, T2m,W, CO, O3RA  CC, U, SP, SH, W, SO2, O3RA  

22 T, V10m, MSLP, SP, T2m, W, O3RA  TCC, FCC, U, V10m, MSLP, SP, SH, 
O3RA 

23 T, T2m, DT2m, W, O3RA  SH 

24 T2m, O3RA - 

25 - DT2m, CO 

26 T, V, V10m, MSLP, SP, T2m, CO, O3RA  - 

27 T, V, U10m, V10m, MSLP, SP, T2m, CO - 
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Figure 5. The R2 of the LSTM model for both S and M components of O3. In this figure, CAMSRA_S and CAMSFC_S refer to the 815 
S components of CAMSRA and CAMSFC, respectively. Likewise, CAMSRA_M and CAMSFC_M refer to the M component of 
CAMSRA and CAMSFC, respectively. 
 
 
 820 

 
 
Figure 6. The (a) MSE, (b) E2, and (c) E3 of the downscaled O3RA and O3FC with LSTM for both S and M components. In this figure, 
CAMSRA_S and CAMSFC_S refer to the S components of CAMSRA and CAMSFC, respectively. Likewise, CAMSRA_M and 
CAMSFC_M refer to the M component of CAMSRA and CAMSFC, respectively. 825 
 



31 
 

 
Figure 7. The SS of the downscaled O3RA and O3FC with (a) LSTM and (b) LSTMno_lag 
 
 830 
 
 
 
Appendix A 
 835 
Table A1. The stations’ names and their geographical locations 
 

Number Name Latitude Longitude Number Name Latitude Longitude 

1 Abresan 
(Tabriz) 38.066 46.326 15 Shad abad 

(Tehran) 35.67 51.297 

2 
Namaz 
square 

(Tabriz) 
38.079 46.289 16 Mahallati 

(Tehran) 35.661 51.466 

3 
Azarbayej
an square 
(Tabriz) 

38.112 46.276 17 District 19 
(Tehran) 35.635 51.362 

4 
Aqdasiye

h 
(Tehran) 

35.795 51.484 18 Masoudieh 
(Tehran) 35.63 51.499 

5 Sadr 
(Tehran) 35.778 51.429 19 Ray (Tehran) 35.604 51.426 

6 District 2 
(Tehran) 35.777 51.368 20 Hamedan 

(Hamedan) 34.8 48.5 

7 Punak 
(Tehran) 35.762 51.332 21 

Birjand 
(Khorasan 
Jonoubi) 

32.87 59.21 

8 
Geophysi

cs 
(Tehran) 

35.74 51.385 22 Yazd manabe 
tabiei (Yazd) 31.93 54.37 
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9 
Setad 

bohran 
(Tehran) 

35.727 51.431 23 Rasht (Gilan) 37.29 49.61 

10 
Tarbiat 

Modares 
(Tehran) 

35.717 51.386 24 Zanjan ark 
(Zanjan) 36.67 48.48 

11 
Sharif 

university 
(Tehran) 

35.702 51.351 25 Mirzaye shirazi 
(Markazi) 34.09 49.7 

12 
District 

21 
(Tehran) 

35.698 51.243 26 Kazeroon gate 
(Shiraz) 29.61 52.53 

13 Piroozi 
(Tehran) 35.696 51.494 27 Imam Hossein 

square (Shiraz) 29.62 52.54 

14 Fath 
square 35.679 51.337     

 
 

 840 
Figure A1. Data coverage (per month) of the hourly surface-based measured ozone at five air quality monitoring stations 
 
 
Table A2. The hyperparameter settings of the LSTM model 
 845 

hyperparameter values 

Train portion 65 % 
Test  portion 35 % 

Epoch  1…30 
Batch size [12, 24, 48, 72, 96, 120] 
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Optimizer ADAM 
Units (hidden layer) 2…10 

Dropout rate 0.001 
Learning rate 0.001…0.1 
Loss function MSE 

 
 
 
 
Table A3. A list of the meteorological variables that were extracted from CAMS data products. ⊕	and ⊖  present available and 850 
unavailable variables, respectively.  
 

Meteorological 
variable  (symbol) Units Definition CAMSRA CAMSFC 

T °K Temperature ⊕ ⊕ 

T2m °K 2 meter 
temperature ⊕ ⊕ 

DT2m °K 2 metre dewpoint 
temperature ⊕ ⊕ 

SH kg kg-1 Specific humidity ⊕ ⊕ 

U m s-1 U component of 
wind ⊕ ⊕ 

V m s-1 V component of 
wind ⊕ ⊕ 

U10m m s-1 10 meter U wind 
component ⊕ ⊕ 

V10m m s-1 10 meter V wind 
component ⊕ ⊕ 

W Pa s-1 Vertical velocity ⊕ ⊕ 

BLH m Boundary layer 
height ⊖ ⊕ 

SP Pa Surface pressure ⊕ ⊕ 

MSLP Pa Mean sea level 
pressure ⊕ ⊖ 

TCC % Total cloud cover ⊕ ⊕ 

FCC % Fraction of cloud 
cover ⊕ ⊕ 

UV J m-2 
Downward UV 
radiation at the 

surface 
⊖ ⊕ 

SD s Sunshine 
duration ⊖ ⊕ 

 
 
 855 
Table A4. As Table 2, but for CAMSFC datasets. 
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Stations’ 
number S M 

1 DT2m, BLH, U10m, W, T, SH, NO2, NOx, CO U, O3FC 

2 BLH, W, T, U U, SP, O3FC 

3 BLH, T2m, U10m, W, T, U, O3FC T, U, O3FC 

4 BLH, V10m, V, O3FC - 

5 V10m, O3FC  O3FC 

6 BLH, U10m, V10m, T, U, V, SP,  O3FC SD 

7 BLH, T2m, V10m, W, T, V, SO2,  O3FC  O3FC 

8 BLH, V10m, W, T, V, O3FC SD, U, O3FC 

9 BLH, T2m, V10m, W, T, V, NO, SO2, CO,  
O3FC - 

10 V10m, O3FC BLH, T, O3FC 

11 BLH, V10m, W, V, O3FC SD, O3FC 

12 BLH, V10m, O3FC  O3FC 

13 BLH, V10m, T, V, O3FC  O3FC 

14 BLH, V10m, V, SP, NOx, SO2, CO, O3FC DT2m, V10m, O3FC 

15 T2m, V10m, O3FC SD, BLH, O3FC 

16 BLH, U10m, V10m, T, V, O3FC DT2m, BLH, T2m, U10m, V10m, W, T, 
U, V, SH, SP, NO, SO2, CO, O3FC 

17 T2m, O3FC BLH, V10m, O3FC 

18 BLH, V10m, W, T, V, NO, O3FC SD, T2m, U10m, V10mWu, V, NO2, 
NO, NOx, SO2, CO, O3FC  

19 BLH, V10m, O3FC  TCC, O3FC  

20 DT2m, BLH, T2m, U10m, T, U, SH, O3FC TCC, BLH, W, Q, SP, O3FC  

21 BLH, V, SO2 BLH, T, SP, SO2, CO, O3FC  

22 DT2m, SD, BLH, T2m, U10m, V10m, W, T, 
U, V, SH, SP, NO2, CO, O3FC  BLH, U10m, SH, SP, SO2 

23 U10m, O3FC SH 

24 T2m, O3FC - 

25 BLH DT2m, BLH, O3FC  
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26 BLH - 

27 SP - 
 
 
 860 
Table A5. The optimum units, dropout, learning rate and batch size to perform the LSTM model. Here, the T and F refer to True 
and False. 
 
 

models CAMSRA CAMSFC 

Stations’ 
number S M S M 

1 10, T, 0.04, 24 10, T, 0.04, 24 2, T, 0.09, 48 4, F, 0.04, 48 

2 4, F, 0.04, 48 4, F, 0.04, 48 10, T, 0.04, 24 10, T, 0.04, 24 

3 10, T, 0.04, 24 4, F, 0.04, 48 2, T, 0.09, 48 4, F, 0.04, 48 

4 4, F, 0.04, 48 4, F, 0.04, 48 10, T, 0.04, 24 4, F, 0.04, 48 

5 10, T, 0.04, 24 4, F, 0.04, 48 10, T, 0.04, 24 4, F, 0.04, 48 

6 10, T, 0.04, 24 10, T, 0.04, 24 10, T, 0.04, 24 10, T, 0.04, 24 

7 10, T, 0.04, 24 4, F, 0.04, 48 10, T, 0.04, 24 4, F, 0.04, 48 

8 10, T, 0.04, 24 10, T, 0.04, 24 2, T, 0.09, 48 10, T, 0.04, 24 

9 4, F, 0.04, 48 10, T, 0.04, 24 4, F, 0.04, 48 10, T, 0.04, 24 

10 10, T, 0.04, 24 4, F, 0.04, 48 4, F, 0.04, 48 4, F, 0.04, 48 

11 10, T, 0.04, 24 10, T, 0.04, 24 4, F, 0.04, 48 10, T, 0.04, 24 

12 4, F, 0.04, 48 10, T, 0.04, 24 2, T, 0.09, 48 10, T, 0.04, 24 

13 4, F, 0.04, 48 4, F, 0.04, 48 10, T, 0.04, 24 4, F, 0.04, 48 

14 2, T, 0.09, 48 2, T, 0.09, 48 10, T, 0.04, 24 4, F, 0.04, 48 

15 4, F, 0.04, 48 10, T, 0.04, 24 4, F, 0.04, 48 10, T, 0.04, 24 

16 10, T, 0.04, 24 10, T, 0.04, 24 10, T, 0.04, 24 10, T, 0.04, 24 

17 10, T, 0.04, 24 10, T, 0.04, 24 10, T, 0.04, 24 10, T, 0.04, 24 

18 4, F, 0.04, 48 4, F, 0.04, 48 4, F, 0.04, 48 10, T, 0.04, 24 

19 10, T, 0.04, 24 2, T, 0.09, 48 10, T, 0.04, 24 2, T, 0.09, 48 
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20 2, T, 0.09, 48 10, T, 0.04, 24 4, F, 0.04, 48 4, F, 0.04, 48 

21 2, T, 0.09, 48 4, F, 0.04, 48 10, T, 0.04, 24 10, T, 0.04, 24 

22 10, T, 0.04, 24 10, T, 0.04, 24 10, T, 0.04, 24 4, F, 0.04, 48 

23 4, F, 0.04, 48 10, T, 0.04, 24 10, T, 0.04, 24 10, T, 0.04, 24 

24 4, F, 0.04, 48 10, T, 0.04, 24 4, F, 0.04, 48 10, T, 0.04, 24 

25 10, T, 0.04, 24 10, T, 0.04, 24 10, T, 0.04, 24 10, T, 0.04, 24 

26 10, T, 0.04, 24 10, T, 0.04, 24 4, F, 0.04, 48 10, T, 0.04, 24 

27 4, F, 0.04, 48 10, T, 0.04, 24 2, T, 0.09, 48 10, T, 0.04, 24 
 865 
 
 
 

 

 870 
Figure A2. The (a) correlation (r), (b) covariance (cov), and (c) variance (var) of the O3

SD with LSTM.  
 
 
 
 875 
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Figure A3. As Fig. 5, but for the LSTMno_lag model. 
 
 880 
 

 
Figure A4. The MSE of the O3

SD at the stations (excluding the stations over Tehran city) for (a) the cold {months = 1 to 3, and 10 to 
12} and (b) the warm {months = 4 to 9} seasons, respectively. 
 885 
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Figure A5. The MSE of the O3

SD at the stations over Tehran for (a) the cold {months = 1 to 3, and 10 to 12} and (b) the warm 
{months = 4 to 9} seasons. 
 
 890 

 
 
Figure A6. The annual average of surface emissions of the (a)-(b) NOx and (c)-(d) CO in the CAMS-GLOB-ANT and MACCity 
emission inventories.  
 895 
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Figure A7. The MSE of the O3

SD by the (a) LSTMno_lag, (b) MLR, and (c) MLRno_lag models 
 

 900 
Figure A8. As Fig. 7 but for the downscaled data with (a) MLR and (b) MLRno_lag models. 
 
 
 
Table A6. The most important explanatory variables of the models at most of the stations.  905 
 

 Meteorological variables Chemical species 
CAMSRA_S T2m NO, NO2, O3RA 

CAMSFC_S BLH, V10m O3FC 
CAMSRA_M TCC, U O3RA 

CAMSFC_M - O3FC 
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Table A7. The results of the experiments (1) MLRno_lag(expr1): the model was trained only using O3

RA and O3
FC, (2) MLRno_lag(expr2): 910 

the model was trained using the meteorological variables with high priority (listed in Table A6) at station 22 (Yazd). The r refers to 
the correlation coefficient between O3

SD and measured O3.  
 

  MLRno_lag MLRno_lag(expr1) MLRno_lag(expr2) 
 MSE r MSE r MSE r 

CAMSRA_S 14.94 0.41 16.06 0.33 16.09 0.32 
CAMSFC_S 14.69 0.43 16.30 0.31 16.01 0.33 
CAMSRA_M 1.85 0.61 2.81 0.22 2.92 0.10 
CAMSFC_M 1.77 0.63 2.90 0.12 - - 

 

 915 
Figure A9. The correlation (r) between measured O3 and O3

SD by the (a) MLRno_lag, (b) MLRno_lag (expr1), and (c) MLRno_lag (expr2) 

models. 


